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10 ABSTRACT 

11 Piscivorous birds have a unique suite of adaptations to forage under the water. One 

12 method aerial birds use to catch fish is the plunge dive, wherein birds dive from a 

13 height to overcome drag and buoyancy in the water. The kingfishers are a well-

14 known clade that contains both terrestrially foraging and plunge-diving species, 

15 allowing us to test for morphological and performance differences between foraging 

16 guilds in an evolutionary context. Diving species have narrower bills in the dorso-

17 ventral and sagittal plane and longer bills (size corrected data, n=71 species, p<0.01 

18 for all), Although these differences are confounded by phylogeny (phylogenetically 

19 corrected ANOVA for dorso-ventral p=0.26 and length p=0.14), beak width in the 

20 sagittal plane remains statistically different (p<0.001). We examined the effects of 

21 beak morphology on plunge performance by physically simulating dives with 3D 

22 printed models of beaks coupled with an accelerometer, and through computational 

23 fluid dynamics (CFD). From physically simulated dives of bill models, diving species 
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2

24 have lower peak decelerations, and thus, enter the water more quickly, than 

25 terrestrial and mixed-foraging species (ANOVA p=0.002), and this result remains 

26 unaffected by phylogeny (phylogenetically corrected ANOVA p=0.05). CFD analyses 

27 confirm these trends in three representative species, and indicate that the 

28 morphology between the beak and head is a key site for reducing drag in aquatic 

29 species.

30

31 Keywords: plunge diving, avian hydrodynamics, beak, bow wave, Alcedinidae

32

33

34 INTRODUCTION

35

36 Plunge diving has evolved in multiple flying species to facilitate transitioning 

37 between the air and water – two mediums of vastly different densities. Birds 

38 including gannets, terns, and boobies have mastered diving from air into water to 

39 access fish meters below the surface. Morphological adaptations likely compliment 

40 this foraging strategy in order to both improve dive efficiency and avoid damage on 

41 water entry. The shape of the kingfisher’s bill has served as inspiration as a drag-

42 reducing structure for the Japanese Shinkansen Bullet train (1, 2). However, these 

43 functions have yet to be directly tested. 

44 The conversion of gravitational potential energy to kinetic energy during the 

45 dive provides momentum for the bird to overcome body drag and buoyancy in order 

46 to dive deeper (3). Birds are particularly buoyant due to the layer of air trapped 
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47 between the body and the feathers, typically used for insulation (4), as well as body 

48 fat and the avian system of airsacs (5). In the diving species the Lesser Scaup 

49 (presumably already adapted to reduce drag), over 80% of work during a dive is to 

50 overcome the significant costs of body buoyancy (6). 

51 Minimizing the energetic costs of drag have led to streamlined bauplans in 

52 swimming and flying animals (7-11). Bird beaks appear well-adapted to avoid both 

53 aerodynamic and hydrodynamic drag. Most beaks are relatively cone-shaped, with a 

54 small initial surface area relative to the direction of oncoming flow – thus reducing 

55 immediate profile drag. The gradual increase in cross-sectional area allows flow to 

56 remain laminar as it travels toward the wide middle-section of the animal. 

57 While much work has focused on how shape influences drag across flying 

58 and swimming animals, less work exists examining morphological function at the 

59 air-water interface.  Diving involves the animal rapidly transitioning between two 

60 fluids of different physical properties – from air, a relatively low density and 

61 viscosity fluid, to water, a higher density and viscosity fluid. Due to the high speed of 

62 entry, diving comes at the cost of an initial impact at the water’s surface. Gannets 

63 reportedly dive from a height of 30 meters in the air– a fall resulting in a speed of 22 

64 m/s when impacting the water (3). While these impact speeds could seriously 

65 damage a human entering feet-first (12), an avian injury due to water entry has not 

66 been reported. The neck musculature coupled with streamlined beak and skull help 

67 the gannet avoid injury by reducing impact forces (12).  In fact, large decelerations 

68 due to water impact during diving may not occur in birds. Accelerometers mounted 

69 to free-living Cape Gannets sampling at 16 to 32 Hz detected no or minimal 
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70 deceleration due to impact during foraging dives. (3). Drag reduction due to 

71 morphology may help reduce immediate impact forces. The hydrodynamic shape of 

72 the avian bill may also reduce turbulence during the initial dive, which may help 

73 avoid visual or vibrational detection by the prey (13).

74 Recent work examining water piercing by geometric cones suggests that 

75 beak morphology may be selected on to reduce impact force, and thus, drag on entry 

76 (14).  The lower the opening angle of the cone (or the tip angle), the lower impact 

77 forces and more smooth the transition between air and water (14). The opening 

78 angle of a cone (a) can be calculated as a= 2*arcsin(r/s), where r is the radius of the 

79 base, and s is the length of the side from base to tip (also called ‘slant height’). Thus, 

80 to decrease the angle of a cone, either the radius of the base (r) must decrease, or 

81 the length (s) must increase. If diving species of kingfisher are morphologically 

82 adapted to minimize drag, we would expect them to have longer bills with a 

83 narrower base relative to terrestrial species. 

84 Kingfishers (Alcedinidae) are an ideal clade in which to explore 

85 morphological adaptations for diving. They comprise 114 species that encompass 

86 terrestrial, aquatic, and mixed (both terrestrial and aquatic) foraging strategies (15), 

87 allowing us to test function and morphology in an evolutionary context. Here, we 

88 examine beak morphology to elucidate patterns of streamlining in diving species. 

89 We test hydrodynamic properties of bird beak shape by simulating dives with scaled 

90 3D printed plastic models of the birds. Printed models allow us for the first time to 

91 isolate shape from size.  Lastly, we use Computational Fluid Dynamics to explore 

92 flow around the beak and head.
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93

94 METHODS

95

96 Morphometrics

97

98 3D digital models of bird beaks were generously provided by the Mark My 

99 Bird project as 3D scans of specimens housed in the Natural History Museum at 

100 Tring and the Manchester Museum (See Appendix 1 for museum details and 

101 specimen IDs). Please see information in the appendix of (16) for details pertaining 

102 to scanning methodologies. The scans are available for download by request from 

103 markmybird.org. The scan of a Forest Kingfisher (Todiramphus macleayii) was 

104 obtained from a specimen in the Bangor University Brambell Natural History 

105 Museum. This scan was produced by Rowan Howe at the Pontio Innovation Centre 

106 with an Artec Spider (Artec Group, Luxembourg), with a standard resolution of 0.05 

107 mm and mesh resolution of 0.1 mm. Mesh generation was accomplished with Artec 

108 Studio 9 (Artec Group, Luxembourg). 

109 Morphometrics were measured directly from specimen scans, representing 

110 71 species (Appendix 1; Figure 1). Beak width was measured as the linear distance 

111 between either end of the lower and upper mandible external hinge. Beak height 

112 was measured from the linear distance between the most dorsal and most ventral 

113 points where the beak meets the feathered portion of the head along the sagittal 

114 plane. Beak length was measured from the tip of the bill to the end of the mandible 

115 hinge (Figure 2). 
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6

116 The mass of the individual museum specimen prior to preservation is 

117 unknown.  Body size from the literature was used as an estimation of representative 

118 body size for each specimen. Masses for each species were found in the CRC 

119 Handbook of Avian Masses (17). When available, average mass for a species was 

120 used. If male and female mass was reported separately, the two were averaged for 

121 subsequent analyses. Any species for which mass data was not available was 

122 excluded from this study. 

123

124 3D model manufacturing

125

126 Thirty-one species were subsampled for functional testing, representing a 

127 variety of foraging strategies and body sizes across the kingfisher phylogeny (Figure 

128 3). One beak model was printed for each of 31 species (Appendix 1).

129 Prior to 3D printing, scans were post-processed in Ultimaker Cura 3 to 

130 remove holes. To account for differences in drag due to body size, all scans were 

131 geometrically scaled to 9 cm from the tip to the posterior of the beak (Figure 2). 

132 Scans were finished by a transverse cut across the head of the animal at the end of 

133 the beak. This cut allowed us to incorporate the entire morphology of the beak 

134 alongside the joint where the beak meets the head. 

135 3D prints were produced on an Ultimaker 3+ (Ultimaker, Cambridge, MA, 

136 USA) with a 0.4 mm nozzle size. Prints were produced with a layer height of 0.1 mm, 

137 infill density of 20%, and four gradual infill steps. Beaks were printed with 
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138 biodegradable plastic poly lactic acid (PLA) filament (RS Components Ltd, 

139 Northants, UK). 

140

141 Physically Simulated dives

142

143 Beak models were attached to a closed 50 ml falcon conical centrifuge tube. 

144 The models were mounted to a 9 cm long wooden or plastic dowel to increase the 

145 distance between the beak and falcon tube ‘dive body,’ thus minimizing any effects 

146 of the tube shape and buoyancy during the initial entry phase of the dive. The tube 

147 contained an Axivity AX-3 triaxial accelerometer (Axivity Ltd, Newcastle, UK) 

148 sampling at 1600 Hz with a maximum value of ±16 G. The accelerometer was 

149 oriented to the beak model with the negative x axis aligned with gravity, and the 

150 positive z axis oriented dorsally. The falcon tube was weighted to equalize the 

151 weight of every model and support beam to that of the largest model. The mass of 

152 each of the total structure including models totaled 71.1 grams.

153 A fishing line track mounted perpendicular to the water surface was used to 

154 maintain model orientation during the dive. The tube was fitted with plastic 

155 drinking straws on either side lengthwise and threaded on to fishing line.  The dive 

156 tank was a 60 cm tall flower vase with an opening of 25 cm. (Figure 4A).  A 

157 simulated dive was performed by dropping the model (beak pointed down) in to the 

158 tank along the fishing wire track from 75 cm above the surface of the water. To 

159 confirm acceleration was not impacted by the trackway, and the accelerometer gave 
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8

160 a reliable reading, the accelerometer gravity axis during the fall was double 

161 integrated, and resulted in the correct 75 cm. 

162 The fishing line maintained orientation of the models vertically, although 

163 slight differences in entry angle along the dorso-ventral plane were apparent, 

164 leading to slight variation in deceleration values. To account for this, 10 drops were 

165 performed for each model.  All acceleration analyses were done only on the vertical 

166 (orthogonal to the water surface) component.  All accelerometer outputs were 

167 analyzed in a custom written Matlab script. For the purposes of this study, only the 

168 initial deceleration phase was analyzed – the time between when the beak has 

169 entered the water and has become fully submerged. At the time of submergence, the 

170 model experiences a maximum deceleration (Figure 4B). 

171 Any outliers above 3 standard deviations were removed from subsequent 

172 analyses. Resulting analyses for inter-species comparisons used the average 

173 maximum deceleration for each model. 

174

175 Statistical analyses

176 Each species was assigned to a foraging group based on behavior and diet 

177 descriptions in the Handbook of Birds of the World Alive (18). Three foraging 

178 groups were used: terrestrial, aquatic, or both. If a species could not be readily 

179 assigned to one of these groups, it was not included in the study. 

180 For analyses of morphological characters, in order to meet assumptions of 

181 normality and homoscedasticity, all measurements were log-10 transformed prior 

182 to analyses.  Morphometric characters were tested for size-dependence with a linear 
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183 regression between character and reported body size (all p<0.01). All three were 

184 adjusted for size by regressing log-10 adjusted values against log-10 adjusted body 

185 mass and calculating the residuals. The residuals were used for subsequent 

186 comparisons. An analysis of variance (ANOVA) tested for differences between 

187 foraging groups. 

188 In order to account for phylogenetic effects, a phylogenetic tree was 

189 constructed based on Anderson et al. (19) (Figure 1). Binomial names according to 

190 the Jetz et al. (20) phylogeny were used. Alcedo euryzona was placed as sister taxa to 

191 it’s conspecific A. peninsulae (18). To explore the relationship between foraging 

192 guild and performance, a sub-sampled phylogeny of the 31 tested species was 

193 constructed from the first phylogeny (Figure 3). These 31 species were selected to 

194 encompass a range of foraging guilds and body sizes across the phylogeny. In both 

195 phylogenies, branch lengths were set using arbitrary lengths using a Grafen 

196 transformation (21).  We tested for differences in morphology and hydrodynamic 

197 function between foraging groups with a phylogenetically corrected ANOVA 

198 according to Garland et al.’s method (22). The phylogenetic ANOVA was 

199 implemented via the phytools package in R (23). Both morphometric and 

200 performance phylogenetic ANOVAs were calculated with 10,000 simulations. To 

201 elucidate differences between groups, a pairwise posthoc test was performed using 

202 a Holm correction.

203

204 Computational Fluid Dynamics

205
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206 To simulate flow over the beak and head, a virtual flume was simulated using 

207 Autodesk CFD 2019.  Digital models of Ceyx, Dacelo, and Ceryle, were used as 

208 representative taxa; two attributed to terrestrial and one to aquatic feeding 

209 strategies. To create suitable, watertight meshes for CFD, the scan data was 

210 manipulated via a combination of Autodesk Maya 2019 and Autodesk Meshmixer.  

211 First, models were aligned to world axes (anterior aligned to +x, dorsal to +y, and 

212 right-lateral aligned to +z), and scaled such that beak length equaled 9 cm in all 

213 specimens, so as to match the physical models used above and to remove size 

214 effects. Models were then cropped posterior to the beak, but anterior to the eye 

215 sockets, before holes were filled, and the models made solid. A smoothing pass was 

216 applied to remove erroneous spikes in the laser scan data, or to remove small sharp 

217 topography caused by errant feathers when the specimens were scanned. To avoid 

218 flow artefacts from a flat surface at the back of the head, the filled surface was 

219 extruded, and then deformed into a cone-shape consistent with the edges of the 

220 head (Figure 5a). This avoided any abrupt or complex transitions from laser scan to 

221 reconstructed posterior.  The now watertight meshes were then downsampled 

222 using InstantMeshes (https://github.com/wjakob/instant-meshes (24)) to ~20,000 

223 triangles (figure 5A & B).

224 The downsampled meshes were imported into Autodesk CFD 2019, where 

225 simulations were constructed in a similar manner to (25). A fluid volume was 

226 generated around the mesh, so as to create a virtual flume with walls sufficiently far 

227 from the mesh to avoid edge effects. Using standard materials in Autodesk CFD, 

228 properties of fresh water (density  = 998.2 kgm-3, Viscosity = 0.001003 Pa-s) were 
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11

229 applied to the fluid volume.  Kingfisher models were given properties of ABS 

230 Polycarbonate, though as the models were stationary and mass-less, the material 

231 properties of the kingfisher beaks had little to no impact on results.  The anterior 

232 end of the flume was set as an input flow of 5ms-1, approximately the same as for the 

233 physical simulations. A zero-pressure boundary condition was applied to the 

234 opposing, posterior end allowing flow through the flume at a uniform 5 ms-1. All 

235 other fluid boundaries were set to a slip/symmetry condition. Gravity was not 

236 included in the simulation. Meshing of the domain was carried out automatically 

237 prior to the simulation process (Figure 5C). A steady-state simulation was run until 

238 convergence, utilizing the SST k-Omega turbulence model. Results were calculated 

239 and visualized using Paraview 5.6, and are presented vertically for consistency with 

240 physical simulations above. We also calculated coefficient of drag: Cd = 2F / ρ v2 a2, 

241 where ρ = 998.78, v2 is velocity, and a2 is cross-sectional area at the widest point of 

242 the model. 

243

244 RESULTS

245

246 Morphology

247 Diving, terrestrial, and both foraging groups differ significantly in beak 

248 morphology, but these results are confounded by phylogeny for beak length and 

249 depth.

250 After adjusting for body size, beak length differs between foraging groups 

251 (Fig. 6A; ANOVA F2,68=13.67, p<0.001). Aquatic foraging kingfishers have longer 
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252 beaks than terrestrial kingfishers (Tukey HSD p<0.001), but aquatic foragers do not 

253 differ from birds that forage in both (p=0.99). Terrestrial kingfishers have shorter 

254 beaks than birds found in the ‘both’ category (p=0.003). These relationships are 

255 confounded by phylogeny – foraging guilds are not statistically significantly 

256 different in beak length (Phylogenetic ANOVA F=13.67, p=0.14). 

257 Size-corrected beak depth differs significantly between foraging groups (Fig. 

258 6B; ANOVA F2,68=8.98, p<0.001). Aquatic foraging birds have shallower bills than 

259 terrestrial (p<0.001) and both (p=0.003) foraging groups, but terrestrial birds do 

260 not differ from birds that forage both ways (p=0.64). These significances are not 

261 resilient to phylogeny (Phylogenetic ANOVA F=8.79, p=0.255). 

262 Lastly, size-corrected beak width differs between foraging groups (Fig. 6C; 

263 ANOVA F2,68=48.97, p<0.001). Aquatic beaks are narrower than terrestrial 

264 (p<0.001) and both (p<0.001) groups. Terrestrial beaks do not differ significantly 

265 from birds that forage in both methods (p=0.944). After accounting for phylogenetic 

266 relatedness, beak width remains significantly different between groups 

267 (phylogenetic ANOVA F=48.97; p<0.001). Aquatic beaks remain significantly more 

268 narrow than terrestrial (pairwise phylogentically corrected p<0.001) and mixed 

269 (p=0.003) foraging groups. Terrestrial species do not differ significantly from birds 

270 that forage both aquatic and terrestrially (p=0.79). 

271

272

273 Performance – physical simulations
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13

274 Beaks from aquatic foraging species exhibited lower average peak 

275 decelerations during water entry than both terrestrial and aquatic-terrestrial 

276 foraging species (Figure 7; ANOVA F28,2=7.645, p=0.002). Aquatic and terrestrially 

277 foraging species dive deceleration were significantly different (Tukey HSD, 

278 p=0.002), while aquatic (p=0.92) and terrestrial (p=0.92) were not significantly 

279 different from foraging strategies that utilized both aquatic and terrestrial styles. 

280 When phylogeny was accounted for, the difference in performance between 

281 foraging guilds remains significant (phylogenetic ANOVA, F=7.64, p=0.047). 

282 However, a pairwise posthoc test with a Holm correction (26) found marginal 

283 differences between aquatic and terrestrial foraging groups (p=0.084), terrestrial 

284 and both foraging groups (p=0.084), and no difference between aquatic and both 

285 foraging groups (p=0.78). 

286

287 Performance – CFD

288 The CFD simulations indicate a higher anterior-posterior drag force in the 

289 terrestrially foraging taxa, Ceyx erithaca and Dacelo novaeguineae than the aquatic 

290 forager Ceryle rudis.   However, while this drag force was particularly high in Dacelo 

291 (6.86N, Cd = 0.23), the terrestrial Ceyx (2.98 N, Cd = 0.17) experienced only slightly 

292 more drag force than the aquatic Ceryle (2.27 N, Cd = 0.23). The three simulated 

293 kingfishers also exhibited differences in dorso-ventral drag force, Dacelo and Ceyx 

294 both experience force in the negative horizontal direction (i.e. force pushing the 

295 head ventrally) of 1.54 N and 0.68 N respectively. The aquatic foraging Ceryle 

296 however, experienced 0.14 N of force in a positive horizontal direction (i.e. a force 
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297 acting to lift the head).  Lateral forces were generally low, as would be expected, but 

298 were not zero due to asymmetries in the scan data.

299 Visualization of fluid velocity indicates that anterior to the head, at the 

300 posterior beak, is where most fluid is pushed forwards, generating pressure (or 

301 form) drag.  The bow waves are smallest in Ceryle, and then Ceyx, extending only a 

302 limited distance in front of the beak.  The Dacelo model produces a significant bow-

303 wave approximately twice the magnitude of the other models.  This is most notable 

304 in the extensive areas of water being pushed forwards in front of the tip of the beak 

305 (Figure 8).

306

307

308 DISCUSSION

309

310 Our data shows that diving kingfishers have morphological adaptations 

311 associated with aquatic foraging. Further, aquatic foraging species beak shapes 

312 produce less hydrodynamic drag than terrestrial species, measured as lower peak 

313 deceleration during impact with the water, and as drag force in CFD simulations. 

314 Collectively, we find evidence that supports adaptations for improved diving 

315 performance in aquatically foraging kingfishers relative to terrestrial and mixed 

316 foraging species. While the exact values for deceleration and drag of our models 

317 have been normalized to size and are therefore not directly applicable to individual 

318 taxa, they do provide valuable relative information regarding potential selection for 

319 drag-reducing shape. 
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320 Beak width in aquatically foraging species is less than in terrestrially foraging 

321 species. Both length and depth also differ between foraging groups, but these 

322 patterns were not significant once phylogeny was taken in to consideration.  Our 

323 study aligns with hydrodynamic expectations based on water piercing studies using 

324 geometrically perfect cones (12, 14). Diving species have beaks of lower base width, 

325 and tend toward longer beaks with lower base depth.  (Figure 6). Additional 

326 morphological details not measured in this study likely contribute to dive 

327 performance, including the morphology of the head, body and wings of the bird.  In 

328 Vincent et al.’s (14) recent work, the larger the radius of the cone base (r, 

329 corresponding to depth and width on our kingfishers), the higher the initial impact 

330 forces, due to increased frontal and surface area (12), which increase both pressure 

331 and friction drag respectively.  This suggests that not only the shape of the beak, but 

332 the shape of the frontal area of the bird (which is generally wider than the beak) 

333 likely plays a role in plunge diving. Our CFD analyses demonstrate that it is the rapid 

334 increase of frontal area at the beak-head transition that generates the largest drag 

335 forces, and this transition is smoothest in the diving species Ceryle rudis relative to 

336 terrestrial species – where a larger volume of water is accelerated in the direction of 

337 travel by the beak-head transition (Figure 8). 

338 Our CFD models were similar, but not entirely in agreement with our 

339 physical experiments. Dacelo novaeguineae’s physical model dive force was 107% 

340 that of the CFD model (physical model = 7.4 vs. CFD = 6.9 N), Ceyx erithaca was 

341 142% (4.2 vs. 2.3), and Ceryle rudis was 159% (3.6 vs. 2.3). Our CFD analysis was 

342 performed on models with hydrodynamically smoothed ends, unlike the physical 
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343 models mounted to a pole and accelerometer, and were also tested at slightly 

344 different velocities (4.5 physical models vs. 5 ms-1 CFD). Most notably, the CFD was 

345 performed in a closed boundary, simulating movement within water, rather than 

346 transitioning between low density (air) and high density (water) fluid. The 

347 mechanics of such transitions are complex (14), including cavitation and splash, and 

348 are thus difficult to simulate. Thus, our CFD is likely not a precise measure of the 

349 initial water entry phase, but is useful for comparing general hydrodynamic form 

350 between taxa. 

351 Notably, no apparent bow wave, where water is pushed forward in front of 

352 the animal (27, 28) appears at the tip of the Ceyx or Ceryle kingfisher bills in the CFD 

353 simulations (Figure 8A, B). However, a noticeable bow wave does appear at the 

354 beak-head joint (Figure 8C). The elongated beaks of diving birds, coupled with 

355 apparent beak-head streamlined morphologies, may delay the effects of this bow 

356 wave long enough to avoid detection by the prey. The larger, highly terrestrial 

357 forager, Dacelo displayed significantly greater bow waves, both in front of the beak-

358 head joint, and even in front of the beak tip, which is broader and deeper than the 

359 other two taxa simulated. 

360 Of interest are the resulting dorso-ventral drag forces in our CFD results 

361 produced by each beak, with the terrestrial forms Ceyx and Dacelo generating forces 

362 that push the head ventrally. Ceryle, meanwhile, generated only very small dorso-

363 ventral forces, acting in the opposite direction. This may be the result of the more 

364 curved beak, in comparison with the straighter beaks of the other two models. The 

365 lower forces acting orthogonal to the direction of movement may be necessary for 
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366 the bird to travel straight when diving into the water. Reducing these dorso-ventral 

367 forces may be more important during diving, in a more viscous fluid, than in flight 

368 through air.

369 Further work examining the hydrodynamics of living birds may illuminate 

370 additional patterns.  For example, our study examined only kingfisher dives with 

371 closed beaks, with particular interest at the air-water boundary. However, the 

372 kingfisher must open the bill to catch prey. At that point, the hydrodynamics of the 

373 bird are likely to be very different.  Computational fluid dynamic modeling of 

374 aquatic striking snakes suggests that prey could become dislodged by a bow wave 

375 created by the open jaw of the snake (27). However, the shape of the kingfisher bill, 

376 particularly in aquatic foragers, is much longer, and would likely open to a lesser 

377 angle, than a striking snake, which may reduce any emergent bow-wave. CFD 

378 models in aquatic snakes suggest that larger prey sizes can offset the bow wave 

379 induced movements of the prey. Behavioral studies have shown that captive Pied 

380 kingfishers tend to select the larger available prey items (29), and the Common 

381 kingfisher selects prey within a discrete size range of 5 to 6 cm in length (30). This 

382 size selection may impede the hydrodynamic effects of displacement from the open 

383 bill. Size selection could also be due to prey availability, depth (31), or visual 

384 limitations, such as contrast or light refraction (32), during foraging.

385 Selection may act not only on the beak, but the entire frontal area of diving 

386 birds.  Unlike the plunge diving gannets and terns, the kingfisher neck is noticeably 

387 shorter and the feathers appear to smoothly taper from the head to the body in the 

388 dive posture – potentially ensuring an entirely streamlined body. Further work 
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389 examining entire body morphology in live animals is necessary to better understand 

390 the potential for streamlining across species. 

391 While we adjusted the overall shape of the models in order to test questions 

392 pertaining to shape, not size, we can use our deceleration values to estimate if the 

393 dive itself is enough to overcome buoyancy with a rough calculation. Buoyancy (N) 

394 is calculated as Fb= ρ * Vbird * g, where ρ is the change between air and water density 

395 (998.78 kg m-3), Vbird is the volume of water displaced by the bird (i.e., the volume of 

396 the bird, m3), and g is gravity (9.81 m s-2). As a rough estimate, we can consider a 

397 spherical bird with a radius of 6 cm, which would have a buoyancy force of 2.1 N 

398 that must be overcome to submerge the bird. Our prints were scaled to the beak 

399 length of the largest species in the sample, the diving bird Megaceryle maxima, 

400 which weighs 325 grams and had a deceleration value of 7.36 m s-2. By F = m a, the 

401 impact force of the bird would be 2.392 N, - a force larger than the estimated 

402 buoyancy of our spherical bird, allowing total submergence. In contrast, the smallest 

403 diving species, Alcedo pusilla, has a mass of 13.3 grams, and had a deceleration value 

404 of 5.95 m s-2, resulting in an impact force of 0.43 N – not enough to overcome 

405 buoyancy for a 6 cm radius bird. Our calculation of buoyancy force is very rough, 

406 and does not account for the density of the animal or actual volumes.  Diving species 

407 may be less buoyant than their terrestrial counterparts in part due to differences in 

408 body mass and ability to retain air under feathers (5, 33, 34), although this has not 

409 been tested in kingfishers. Birds can actively adjust their buoyancy by changing the 

410 amount of air stored in the respiratory system during a dive (35). Birds may use leg- 
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411 or wing-produced thrust to help counter buoyancy during a dive following initial 

412 submergence (36, 37). 

413 Conflicting evolutionary demands are placed on beaks. For example, higher 

414 mechanical advantage in relation to more leaf-based diets appears to be a primary 

415 driver of beak shape in Anseriformes (38). Shape changes associated with increased 

416 bite force in the beaks of Darwin’s finches also limit the use of the jaw during song 

417 production (39). Thus, it is important to keep in mind that the beak shapes tested 

418 here are likely also under selection for other behaviors, including bite force, burrow 

419 excavation, or territorial defense. Additionally, morphological variables not 

420 measured here likely contribute to aquatic diving performance, including beak 

421 surface structure (40) and position of the nares.

422

423 In conclusion, we showed that diving kingfishers have narrower beaks, and a 

424 tendency toward longer and more shallow beaks once phylogeny is accounted for 

425 when comparing to terrestrial species.  Our physical simulations show that diving 

426 species beak shapes experience markedly less deceleration when entering the 

427 water, corroborated by CFD models. This repeated evolution of functionally and 

428 morphologically more hydrodynamic beaks across the kingfisher phylogeny 

429 suggests convergence on morphology to improve foraging success in diving birds.  

430 Our work may help further inspire engineering solutions, including robotics 

431 working at the air-water interface. 

432
433
434
435
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575
576 FIGURE LEGENDS
577
578 Figure 1: The phylogeny of 71 kingfishers (Alcedinidae) used for morphometric 
579 analysis in this study, constructed as a sub-sample of Anderson et al. (2018). 
580 Coloured circles represent classified foraging group: blue are aquatic foraging 
581 (diving) species, grey are mixed (aquatic and terrestrial), and green are terrestrially 
582 foraging species. See text for details. 
583
584 Figure 2: Morphometric variables collected for each species on the Common 
585 Kingfisher, Alcedo atthis. (A) Lateral view, (B) Dorsal view. Beak Length 
586 measurements were scaled to 9 cm in all 3D models to standardize for body size.  
587 See text for additional details. 
588
589 Figure 3: Phylogeny of 31 species of kingfishers used for performance testing, 
590 subsampled from the phylogeny in figure (1) (Anderson et al. 2018). Coloured 
591 circles represent classified foraging group: blue are aquatic foraging (diving) 
592 species, grey are mixed (aquatic and terrestrial), and green are terrestrially foraging 
593 species.
594
595 Figure 4: (A) Diagram of diving tank set up. Dive tank was 60 cm tall with an 
596 opening of 25 cm. The dive body consists of a 50 ml falcon tube containing the 
597 accelerometer and additional weights as needed. The accelerometer was mounted 
598 with the negative x-axis aligned with gravity, and the positive z axis oriented 
599 perpendicular to the bird dorsally. The falcon tube was fitted with plastic drinking 
600 straws on either side, and the straws were threaded along fishing line to maintain 
601 the dive orientation perpendicular to the water surface. (B) Exemplar 
602 accelerometer data from three representative species: Ceryle rudis (pied kingfisher), 
603 Dacelo novaeguineae (Laughing Kookaburra), and Ceyx erithaca (Black backed 
604 kingfisher). Data is smoothed by taking a running average for 3 points, and is 
605 truncated before cavitation. 
606
607 Figure 5: Kingfisher beak models and CFD domain. (A) Original scan data (above), 
608 and cleaned, smoothed, and scaled model (below) of Ceryle presented in lateral and 
609 posterior-lateral views. Models were cropped at the posterior most portion of the 
610 beak, then holes were filled, surfaces extruded, and final model then smoothed. (B) 
611 Original and cleaned meshes for Ceyx, Ceryle, and Dacelo, left to right. Grid 
612 represents 1 cm squares. (C) Meshed CFD domain. 
613
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614 Figure 6: (A-C) Residuals of morphological characters regressed against body mass, 
615 resulting in size-corrected beak morphometrics for kingfisher species classified as 
616 aquatic foragers (blue), mixed foragers (grey), and terrestrial foragers (green).  (D-
617 F) Uncorrected measurements for morphological characters (in mm).  Size-
618 corrected (A) beak length, (B), beak depth, and (C) beak width are all statistically 
619 significantly different between foraging guilds (ANOVA F2,68=48.97, p < 0.001). Once 
620 phylogeny is accounted for, only beak width (C) remains significantly different 
621 between size-corrected aquatic and terrestrial species (phylogenetically corrected p 
622 < 0.001). 
623
624 Figure 7: Average peak deceleration values measured for 3D printed scaled models 
625 of kingfisher beaks classified as aquatic foragers (blue), mixed foragers (grey), and 
626 terrestrial foragers (green). Aquatic and terrestrially foraging species dive 
627 deceleration are significantly different (ANOVA F28,2=7.645, p=0.002, Tukey HSD, 
628 p=0.002). This result is not affected by phylogenetic relatedness (phylogenetic 
629 ANOVA, F=7.64, p=0.047).
630
631 Figure 8: Water velocity in the anterior-posterior direction in front of the head of 
632 (A) Ceryle, (B) Ceyx, and (C) Dacelo. Velocity scale is truncated to illustrate areas of
633 high and low velocity. Note the much larger bow wave in front of the highly 
634 terrestrial Dacelo.  Bottom: Static pressure around (D) Ceryle, (E) Ceyx, and (F) 
635 Dacelo.
636
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Figure 1: The phylogeny of 71 kingfishers (Alcedinidae) used for morphometric analysis in this study, 
constructed as a sub-sample of Anderson et al. (2018). Coloured circles represent classified foraging group: 

blue are aquatic foraging (diving) species, grey are mixed (aquatic and terrestrial), and green are 
terrestrially foraging species. See text for details. 
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Todiramphus saurophaga
Todiramphus macleayii
Todiramphus nigrocyaneus
Dacelo novaeguineae
Clytoceyx rex
Melidora macrorrhina
Actenoides lindsayi
Chloroceryle americana
Chloroceryle inda
Chloroceryle aenea
Chloroceryle amazona
Ceryle rudis
Megaceryle alcyon
Megaceryle maxima
Alcedo argentata
Ceyx lepidus
Ceyx melanurus
Ceyx erithaca
Alcedo azurea
Alcedo pusilla
Ceyx fallax
Alcedo hercules
Alcedo quadribrachys
Alcedo atthis
Alcedo coerulescens
Alcedo cristata
Alcedo vintsioides
Alcedo leucogaster
Ceyx madagascariensis
Ceyx lecontei
Ceyx pictus

aquatic both terrestrial
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Figure 4: (A) Diagram of diving tank set up. Dive tank was 60 cm tall with an opening of 25 cm. The dive 
body consists of a 50 ml falcon tube containing the accelerometer and additional weights as needed. The 
accelerometer was mounted with the negative x-axis aligned with gravity, and the positive z axis oriented 

perpendicular to the bird dorsally. The falcon tube was fitted with plastic drinking straws on either side, and 
the straws were threaded along fishing line to maintain the dive orientation perpendicular to the water 

surface. (B) Exemplar accelerometer data from three representative species: Ceryle rudis (pied kingfisher), 
Dacelo novaeguineae (Laughing Kookaburra), and Ceyx erithaca (Black backed kingfisher). Data is 

smoothed by taking a running average for 3 points, and is truncated before cavitation. 
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Figure 5: Kingfisher beak models and CFD domain. (A) Original scan data (above), and cleaned, smoothed, 
and scaled model (below) of Ceryle presented in lateral and posterior-lateral views. Models were cropped at 

the posterior most portion of the beak, then holes were filled, surfaces extruded, and final model then 
smoothed. (B) Original and cleaned meshes for Ceyx, Ceryle, and Dacelo, left to right. Grid represents 1 cm 

squares. (C) Meshed CFD domain. 
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For Review OnlyFigure 7: Average peak deceleration values measured for 3D printed scaled models of kingfisher beaks 
classified as aquatic foragers (blue), mixed foragers (grey), and terrestrial foragers (green). Aquatic and 
terrestrially foraging species dive deceleration are significantly different (ANOVA F28,2=7.645, p=0.002, 

Tukey HSD, p=0.002). This result is not affected by phylogenetic relatedness (phylogenetic ANOVA, F=7.64, 
p=0.047). 
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Figure 8: Water velocity in the anterior-posterior direction in front of the head of (A) Ceryle, (B) Ceyx, and 
(C) Dacelo. Velocity scale is truncated to illustrate areas of high and low velocity. Note the much larger bow
wave in front of the highly terrestrial Dacelo.  Bottom: Static pressure around (D) Ceryle, (E) Ceyx, and (F)

Dacelo. 
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