

LJMU Research Online

Crandell, K, Howe, R and Falkingham, PL

Repeated evolution of drag reduction at the air-water interface in diving kingfishers

http://researchonline.ljmu.ac.uk/id/eprint/10697/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Crandell, K, Howe, R and Falkingham, PL (2019) Repeated evolution of drag reduction at the air-water interface in diving kingfishers. Interface, 16 (154). ISSN 1742-5689

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

2 3 4	1	
5 6	2	Repeated evolution of drag reduction at the air-water interface
7 8 9	3	in diving kingfishers
10 11	4	
12 13	5	Crandell, KE*, Howe, RO*, Falkingham, PL **
14 15 16	6	
17 18	7	* School of Natural Sciences, Bangor University
19 20 21	8	** School of Natural Sciences, Liverpool John Moores University
22 23	9	
24 25	10	ABSTRACT
26 27 28	11	Piscivorous birds have a unique suite of adaptations to forage under the water. One
29 30	12	method aerial birds use to catch fish is the plunge dive, wherein birds dive from a
31 32 33	13	height to overcome drag and buoyancy in the water. The kingfishers are a well-
33 34 35	14	known clade that contains both terrestrially foraging and plunge-diving species,
36 37	15	allowing us to test for morphological and performance differences between foraging
38 39 40	16	guilds in an evolutionary context. Diving species have narrower bills in the dorso-
40 41 42	17	ventral and sagittal plane and longer bills (size corrected data, n=71 species, p<0.01
43 44	18	for all), Although these differences are confounded by phylogeny (phylogenetically
45 46 47	19	corrected ANOVA for dorso-ventral $p=0.26$ and length $p=0.14$), beak width in the
48 49	20	sagittal plane remains statistically different (p< 0.001). We examined the effects of
50 51	21	beak morphology on plunge performance by physically simulating dives with 3D
52 53 54	22	printed models of beaks coupled with an accelerometer, and through computational
55 56 57	23	fluid dynamics (CFD). From physically simulated dives of bill models, diving species

have lower peak decelerations, and thus, enter the water more quickly, than terrestrial and mixed-foraging species (ANOVA p=0.002), and this result remains unaffected by phylogeny (phylogenetically corrected ANOVA p=0.05). CFD analyses confirm these trends in three representative species, and indicate that the morphology between the beak and head is a key site for reducing drag in aquatic species. Keywords: plunge diving, avian hydrodynamics, beak, bow wave, Alcedinidae **INTRODUCTION** Plunge diving has evolved in multiple flying species to facilitate transitioning between the air and water - two mediums of vastly different densities. Birds including gannets, terns, and boobies have mastered diving from air into water to access fish meters below the surface. Morphological adaptations likely compliment this foraging strategy in order to both improve dive efficiency and avoid damage on water entry. The shape of the kingfisher's bill has served as inspiration as a drag-reducing structure for the Japanese Shinkansen Bullet train (1, 2). However, these functions have yet to be directly tested. The conversion of gravitational potential energy to kinetic energy during the dive provides momentum for the bird to overcome body drag and buoyancy in order to dive deeper (3). Birds are particularly buoyant due to the layer of air trapped

Page 3 of 31

Under review for J. R. Soc. Interface

47	between the body and the feathers, typically used for insulation (4), as well as body
48	fat and the avian system of airsacs (5). In the diving species the Lesser Scaup
49	(presumably already adapted to reduce drag), over 80% of work during a dive is to
50	overcome the significant costs of body buoyancy (6).
51	Minimizing the energetic costs of drag have led to streamlined bauplans in
52	swimming and flying animals (7-11). Bird beaks appear well-adapted to avoid both
53	aerodynamic and hydrodynamic drag. Most beaks are relatively cone-shaped, with a
54	small initial surface area relative to the direction of oncoming flow – thus reducing
55	immediate profile drag. The gradual increase in cross-sectional area allows flow to
56	remain laminar as it travels toward the wide middle-section of the animal.
57	While much work has focused on how shape influences drag across flying
58	and swimming animals, less work exists examining morphological function at the
59	air-water interface. Diving involves the animal rapidly transitioning between two
60	fluids of different physical properties – from air, a relatively low density and
61	viscosity fluid, to water, a higher density and viscosity fluid. Due to the high speed of
62	entry, diving comes at the cost of an initial impact at the water's surface. Gannets
63	reportedly dive from a height of 30 meters in the air- a fall resulting in a speed of 22
64	m/s when impacting the water (3). While these impact speeds could seriously
65	damage a human entering feet-first (12), an avian injury due to water entry has not
66	been reported. The neck musculature coupled with streamlined beak and skull help
67	the gannet avoid injury by reducing impact forces (12). In fact, large decelerations
68	due to water impact during diving may not occur in birds. Accelerometers mounted
69	to free-living Cape Gannets sampling at 16 to 32 Hz detected no or minimal

Under review for J. R. Soc. Interface

Page 4 of 31

70	deceleration due to impact during foraging dives. (3). Drag reduction due to
71	morphology may help reduce immediate impact forces. The hydrodynamic shape of
72	the avian bill may also reduce turbulence during the initial dive, which may help
73	avoid visual or vibrational detection by the prey (13).
74	Recent work examining water piercing by geometric cones suggests that
75	beak morphology may be selected on to reduce impact force, and thus, drag on entry
76	(14). The lower the opening angle of the cone (or the tip angle), the lower impact
77	forces and more smooth the transition between air and water (14). The opening
78	angle of a cone (a) can be calculated as $a = 2^* \arcsin(r/s)$, where r is the radius of the
79	base, and s is the length of the side from base to tip (also called 'slant height'). Thus,
80	to decrease the angle of a cone, either the radius of the base (r) must decrease, or
81	the length (s) must increase. If diving species of kingfisher are morphologically
82	adapted to minimize drag, we would expect them to have longer bills with a
83	narrower base relative to terrestrial species.
84	Kingfishers (Alcedinidae) are an ideal clade in which to explore
85	morphological adaptations for diving. They comprise 114 species that encompass
86	terrestrial, aquatic, and mixed (both terrestrial and aquatic) foraging strategies (15),
87	allowing us to test function and morphology in an evolutionary context. Here, we
88	examine beak morphology to elucidate patterns of streamlining in diving species.
89	We test hydrodynamic properties of bird beak shape by simulating dives with scaled
90	3D printed plastic models of the birds. Printed models allow us for the first time to
91	isolate shape from size. Lastly, we use Computational Fluid Dynamics to explore
92	flow around the beak and head.

60

1 2		
2 3 4	93	
5 6	94	METHODS
7 8 0	95	
9 10 11	96	Morphometrics
12 13	97	
14 15 16	98	3D digital models of bird beaks were generously provided by the Mark My
17 18	99	Bird project as 3D scans of specimens housed in the Natural History Museum at
19 20	100	Tring and the Manchester Museum (See Appendix 1 for museum details and
21 22 23	101	specimen IDs). Please see information in the appendix of (16) for details pertaining
24 25	102	to scanning methodologies. The scans are available for download by request from
26 27	103	markmybird.org. The scan of a Forest Kingfisher (Todiramphus macleayii) was
28 29 30	104	obtained from a specimen in the Bangor University Brambell Natural History
31 32	105	Museum. This scan was produced by Rowan Howe at the Pontio Innovation Centre
33 34 25	106	with an Artec Spider (Artec Group, Luxembourg), with a standard resolution of 0.05
35 36 37	107	mm and mesh resolution of 0.1 mm. Mesh generation was accomplished with Artec
38 39	108	Studio 9 (Artec Group, Luxembourg).
40 41 42	109	Morphometrics were measured directly from specimen scans, representing
42 43 44	110	71 species (Appendix 1; Figure 1). Beak width was measured as the linear distance
45 46	111	between either end of the lower and upper mandible external hinge. Beak height
47 48 40	112	was measured from the linear distance between the most dorsal and most ventral
50 51	113	points where the beak meets the feathered portion of the head along the sagittal
52 53	114	plane. Beak length was measured from the tip of the bill to the end of the mandible
54 55 56	115	hinge (Figure 2).
57 58		

3	
4	
5	
6	
7	
8	
a	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ I วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
J∠ 22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
<u></u>	
44	
45 16	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

116	The mass of the individual museum specimen prior to preservation is
117	unknown. Body size from the literature was used as an estimation of representative
118	body size for each specimen. Masses for each species were found in the CRC
119	Handbook of Avian Masses (17). When available, average mass for a species was
120	used. If male and female mass was reported separately, the two were averaged for
121	subsequent analyses. Any species for which mass data was not available was
122	excluded from this study.
123	
124	3D model manufacturing
125	
126	Thirty-one species were subsampled for functional testing, representing a
127	variety of foraging strategies and body sizes across the kingfisher phylogeny (Figure
128	3). One beak model was printed for each of 31 species (Appendix 1).
129	Prior to 3D printing, scans were post-processed in Ultimaker Cura 3 to
130	remove holes. To account for differences in drag due to body size, all scans were
131	geometrically scaled to 9 cm from the tip to the posterior of the beak (Figure 2).
132	Scans were finished by a transverse cut across the head of the animal at the end of
133	the beak. This cut allowed us to incorporate the entire morphology of the beak
134	alongside the joint where the beak meets the head.
135	3D prints were produced on an Ultimaker 3+ (Ultimaker, Cambridge, MA,
136	USA) with a 0.4 mm nozzle size. Prints were produced with a layer height of 0.1 mm,
137	infill density of 20%, and four gradual infill steps. Beaks were printed with

1 2		
2 3 4	138	biodegradable plastic poly lactic acid (PLA) filament (RS Components Ltd,
5 6	139	Northants, UK).
7 8 9	140	
9 10 11	141	Physically Simulated dives
12 13	142	
14 15 16	143	Beak models were attached to a closed 50 ml falcon conical centrifuge tube.
17 18	144	The models were mounted to a 9 cm long wooden or plastic dowel to increase the
19 20 21	145	distance between the beak and falcon tube 'dive body,' thus minimizing any effects
21 22 23	146	of the tube shape and buoyancy during the initial entry phase of the dive. The tube
24 25	147	contained an Axivity AX-3 triaxial accelerometer (Axivity Ltd, Newcastle, UK)
26 27 28	148	sampling at 1600 Hz with a maximum value of ± 16 G. The accelerometer was
29 30	149	oriented to the beak model with the negative x axis aligned with gravity, and the
31 32	150	positive z axis oriented dorsally. The falcon tube was weighted to equalize the
33 34 35	151	weight of every model and support beam to that of the largest model. The mass of
36 37	152	each of the total structure including models totaled 71.1 grams.
38 39	153	A fishing line track mounted perpendicular to the water surface was used to
40 41 42	154	maintain model orientation during the dive. The tube was fitted with plastic
43 44	155	drinking straws on either side lengthwise and threaded on to fishing line. The dive
45 46	156	tank was a 60 cm tall flower vase with an opening of 25 cm. (Figure 4A). A
47 48 49	157	simulated dive was performed by dropping the model (beak pointed down) in to the
50 51	158	tank along the fishing wire track from 75 cm above the surface of the water. To
52 53	159	confirm acceleration was not impacted by the trackway, and the accelerometer gave
54 55 56		
57 58		
59		7

Under review for J. R. Soc. Interface

Page 8 of 31

a reliable reading, the accelerometer gravity axis during the fall was doubleintegrated, and resulted in the correct 75 cm.

The fishing line maintained orientation of the models vertically, although slight differences in entry angle along the dorso-ventral plane were apparent, leading to slight variation in deceleration values. To account for this, 10 drops were performed for each model. All acceleration analyses were done only on the vertical (orthogonal to the water surface) component. All accelerometer outputs were analyzed in a custom written Matlab script. For the purposes of this study, only the initial deceleration phase was analyzed – the time between when the beak has entered the water and has become fully submerged. At the time of submergence, the model experiences a maximum deceleration (Figure 4B). Any outliers above 3 standard deviations were removed from subsequent analyses. Resulting analyses for inter-species comparisons used the average maximum deceleration for each model. Statistical analyses Each species was assigned to a foraging group based on behavior and diet descriptions in the Handbook of Birds of the World Alive (18). Three foraging groups were used: terrestrial, aquatic, or both. If a species could not be readily assigned to one of these groups, it was not included in the study. For analyses of morphological characters, in order to meet assumptions of normality and homoscedasticity, all measurements were log-10 transformed prior to analyses. Morphometric characters were tested for size-dependence with a linear

1	
2	
3	
4	
5	
c	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
20	
5/	
58	
59	
<u> </u>	

regression between character and reported body size (all p<0.01). All three were
adjusted for size by regressing log-10 adjusted values against log-10 adjusted body
mass and calculating the residuals. The residuals were used for subsequent
comparisons. An analysis of variance (ANOVA) tested for differences between
foraging groups.
In order to account for phylogenetic effects, a phylogenetic tree was

189 constructed based on Anderson et al. (19) (Figure 1). Binomial names according to 190 the Jetz et al. (20) phylogeny were used. *Alcedo euryzona* was placed as sister taxa to 191 it's conspecific *A. peninsulae* (18). To explore the relationship between foraging 192 guild and performance, a sub-sampled phylogeny of the 31 tested species was 193 constructed from the first phylogeny (Figure 3). These 31 species were selected to 194 encompass a range of foraging guilds and body sizes across the phylogeny. In both 195 phylogenies, branch lengths were set using arbitrary lengths using a Grafen 196 transformation (21). We tested for differences in morphology and hydrodynamic 197 function between foraging groups with a phylogenetically corrected ANOVA 198 according to Garland et al.'s method (22). The phylogenetic ANOVA was 199 implemented via the phytools package in R (23). Both morphometric and 200 performance phylogenetic ANOVAs were calculated with 10,000 simulations. To 201 elucidate differences between groups, a pairwise posthoc test was performed using 202 a Holm correction. 203 204 Computational Fluid Dynamics 205

3 4	206	To simulate flow over the beak and head, a virtual flume was simulated using
5 6	207	Autodesk CFD 2019. Digital models of Ceyx, Dacelo, and Ceryle, were used as
7 8 0	208	representative taxa; two attributed to terrestrial and one to aquatic feeding
9 10 11	209	strategies. To create suitable, watertight meshes for CFD, the scan data was
12 13	210	manipulated via a combination of Autodesk Maya 2019 and Autodesk Meshmixer.
14 15	211	First, models were aligned to world axes (anterior aligned to +x, dorsal to +y, and
16 17 18	212	right-lateral aligned to +z), and scaled such that beak length equaled 9 cm in all
19 20	213	specimens, so as to match the physical models used above and to remove size
21 22	214	effects. Models were then cropped posterior to the beak, but anterior to the eye
23 24 25	215	sockets, before holes were filled, and the models made solid. A smoothing pass was
25 26 27	216	applied to remove erroneous spikes in the laser scan data, or to remove small sharp
28 29	217	topography caused by errant feathers when the specimens were scanned. To avoid
30 31	218	flow artefacts from a flat surface at the back of the head, the filled surface was
32 33 34	219	extruded, and then deformed into a cone-shape consistent with the edges of the
35 36	220	head (Figure 5a). This avoided any abrupt or complex transitions from laser scan to
37 38	221	reconstructed posterior. The now watertight meshes were then downsampled
39 40	221	using Instant Mashas (https://github.com/wiekab/instant_mashas (24)) to - 20,000
41 42 42	222	using instantmesnes (<u>intps://gitilub.com/wjakob/instant-mesnes</u> (24)) to ~20,000
45 44 45	223	triangles (figure 5A & B).
46 47	224	The downsampled meshes were imported into Autodesk CFD 2019, where
48 49	225	simulations were constructed in a similar manner to (25). A fluid volume was
50 51	226	generated around the mesh, so as to create a virtual flume with walls sufficiently far
52 53 54	227	from the mesh to avoid edge effects. Using standard materials in Autodesk CFD,
55 56	228	properties of fresh water (density = 998.2 kgm ⁻³ , Viscosity = 0.001003 Pa-s) were
57 58		
59		1

Page 11 of 31

1	
2	
3	
1	
-+	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
עו רי	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
27	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
77 / Q	
40	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

229	applied to the fluid volume. Kingfisher models were given properties of ABS
230	Polycarbonate, though as the models were stationary and mass-less, the material
231	properties of the kingfisher beaks had little to no impact on results. The anterior
232	end of the flume was set as an input flow of 5ms ⁻¹ , approximately the same as for the
233	physical simulations. A zero-pressure boundary condition was applied to the
234	opposing, posterior end allowing flow through the flume at a uniform 5 ms ⁻¹ . All
235	other fluid boundaries were set to a slip/symmetry condition. Gravity was not
236	included in the simulation. Meshing of the domain was carried out automatically
237	prior to the simulation process (Figure 5C). A steady-state simulation was run until
238	convergence, utilizing the SST k-Omega turbulence model. Results were calculated
239	and visualized using Paraview 5.6, and are presented vertically for consistency with
240	physical simulations above. We also calculated coefficient of drag: C_d = 2F / ρ v² a²,
241	where ρ = 998.78, v^2 is velocity, and a^2 is cross-sectional area at the widest point of
242	the model.
243	
244	RESULTS
245	
246	Morphology
247	Diving, terrestrial, and both foraging groups differ significantly in beak
248	morphology, but these results are confounded by phylogeny for beak length and
249	depth.
250	After adjusting for body size, beak length differs between foraging groups
251	(Fig. 6A; ANOVA F _{2,68} =13.67, p<0.001). Aquatic foraging kingfishers have longer

Under review for J. R. Soc. Interface

Page 12 of 31

2		
3 4	252	beaks than terrestrial kingfishers (Tukey HSD p<0.001), but aquatic foragers do not
5 6	253	differ from birds that forage in both (p=0.99). Terrestrial kingfishers have shorter
7 8	254	beaks than birds found in the 'both' category (p=0.003). These relationships are
9 10 11	255	confounded by phylogeny – foraging guilds are not statistically significantly
12 13	256	different in beak length (Phylogenetic ANOVA F=13.67, p=0.14).
14 15	257	Size-corrected beak depth differs significantly between foraging groups (Fig.
16 17 19	258	6B; ANOVA F _{2,68} =8.98, p<0.001). Aquatic foraging birds have shallower bills than
19 20	259	terrestrial (p<0.001) and both (p=0.003) foraging groups, but terrestrial birds do
21 22	260	not differ from birds that forage both ways (p=0.64). These significances are not
23 24 25	261	resilient to phylogeny (Phylogenetic ANOVA F=8.79, p=0.255).
26 27	262	Lastly, size-corrected beak width differs between foraging groups (Fig. 6C;
28 29	263	ANOVA $F_{2,68}$ =48.97, p<0.001). Aquatic beaks are narrower than terrestrial
30 31 32	264	(p<0.001) and both (p<0.001) groups. Terrestrial beaks do not differ significantly
33 34	265	from birds that forage in both methods (p=0.944). After accounting for phylogenetic
35 36	266	relatedness, beak width remains significantly different between groups
37 38 39	267	(phylogenetic ANOVA F=48.97; p<0.001). Aquatic beaks remain significantly more
40 41	268	narrow than terrestrial (pairwise phylogentically corrected p<0.001) and mixed
42 43	269	(p=0.003) foraging groups. Terrestrial species do not differ significantly from birds
44 45 46	270	that forage both aquatic and terrestrially (p=0.79).
47 48	271	
49 50	272	
52 53	273	Performance – physical simulations
54 55		
56 57 58		
59 60		http://mc.manuscriptcentral.com/irsi
00		Los and Los and Los and Los

Page 13 of 31

3 4	274	Beaks from aquatic foraging species exhibited lower average peak
5	275	decelerations during water entry than both terrestrial and aquatic-terrestrial
7 8 9	276	foraging species (Figure 7; ANOVA $F_{28,2}$ =7.645, p=0.002). Aquatic and terrestrially
10 11	277	foraging species dive deceleration were significantly different (Tukey HSD,
12 13	278	p=0.002), while aquatic ($p=0.92$) and terrestrial ($p=0.92$) were not significantly
14 15 16	279	different from foraging strategies that utilized both aquatic and terrestrial styles.
17 18	280	When phylogeny was accounted for, the difference in performance between
19 20	281	foraging guilds remains significant (phylogenetic ANOVA, F=7.64, p=0.047).
21 22 23	282	However, a pairwise posthoc test with a Holm correction (26) found marginal
23 24 25	283	differences between aquatic and terrestrial foraging groups (p=0.084), terrestrial
26 27	284	and both foraging groups (p=0.084), and no difference between aquatic and both
28 29 30	285	foraging groups (p=0.78).
30 31 32	286	
33 34	287	Performance – CFD
35 36	288	The CFD simulations indicate a higher anterior-posterior drag force in the

The CFD simulations indicate a higher anterior-posterior drag force in the terrestrially foraging taxa, *Ceyx erithaca* and *Dacelo novaeguineae* than the aquatic forager *Ceryle rudis*. However, while this drag force was particularly high in *Dacelo* (6.86N, $C_d = 0.23$), the terrestrial *Ceyx* (2.98 N, $C_d = 0.17$) experienced only slightly more drag force than the aquatic *Ceryle* (2.27 N, $C_d = 0.23$). The three simulated kingfishers also exhibited differences in dorso-ventral drag force, Dacelo and Ceyx both experience force in the negative horizontal direction (i.e. force pushing the head ventrally) of 1.54 N and 0.68 N respectively. The aquatic foraging *Ceryle* however, experienced 0.14 N of force in a positive horizontal direction (i.e. a force

1 2							
2 3 4	297	acting to lift the head). Lateral forces were generally low, as would be expected, but					
5 6 7 8 9	298	were not zero due to asymmetries in the scan data.					
	299	Visualization of fluid velocity indicates that anterior to the head, at the					
10 11	300	posterior beak, is where most fluid is pushed forwards, generating pressure (or					
12 13	301	form) drag. The bow waves are smallest in <i>Ceryle</i> , and then <i>Ceyx</i> , extending only a					
14 15 16	302	limited distance in front of the beak. The Dacelo model produces a significant bow-					
17 18 19 20 21 22 23 24 25	303	wave approximately twice the magnitude of the other models. This is most notable					
	304	in the extensive areas of water being pushed forwards in front of the tip of the beak					
	305	(Figure 8).					
	306						
26 27 28	307						
28 29 30 31 32 33 34 35 36 37 38 39 40 41	308	DISCUSSION					
	309						
	310	Our data shows that diving kingfishers have morphological adaptations					
	311	associated with aquatic foraging. Further, aquatic foraging species beak shapes					
	312	produce less hydrodynamic drag than terrestrial species, measured as lower peak					
	313	deceleration during impact with the water, and as drag force in CFD simulations.					
43 44	314	Collectively, we find evidence that supports adaptations for improved diving					
45 46	315	performance in aquatically foraging kingfishers relative to terrestrial and mixed					
47 48 49	316	foraging species. While the exact values for deceleration and drag of our models					
50 51	317	have been normalized to size and are therefore not directly applicable to individual					
52 53	318	taxa, they do provide valuable relative information regarding potential selection for					
54 55 56	319	drag-reducing shape.					
57 58							

60

Page 15 of 31

3 4	320	Beak width in aquatically foraging species is less than in terrestrially foraging
5 6	321	species. Both length and depth also differ between foraging groups, but these
7 8 0	322	patterns were not significant once phylogeny was taken in to consideration. Our
9 10 11	323	study aligns with hydrodynamic expectations based on water piercing studies using
12 13	324	geometrically perfect cones (12, 14). Diving species have beaks of lower base width,
14 15 16	325	and tend toward longer beaks with lower base depth. (Figure 6). Additional
16 17 18	326	morphological details not measured in this study likely contribute to dive
19 20	327	performance, including the morphology of the head, body and wings of the bird. In
21 22	328	Vincent et al.'s (14) recent work, the larger the radius of the cone base (r,
23 24 25	329	corresponding to depth and width on our kingfishers), the higher the initial impact
26 27	330	forces, due to increased frontal and surface area (12), which increase both pressure
28 29	331	and friction drag respectively. This suggests that not only the shape of the beak, but
30 31 32	332	the shape of the frontal area of the bird (which is generally wider than the beak)
33 34	333	likely plays a role in plunge diving. Our CFD analyses demonstrate that it is the rapid
35 36	334	increase of frontal area at the beak-head transition that generates the largest drag
37 38 39	335	forces, and this transition is smoothest in the diving species <i>Ceryle rudis</i> relative to
40 41	336	terrestrial species – where a larger volume of water is accelerated in the direction of
42 43	337	travel by the beak-head transition (Figure 8).
44 45 46	338	Our CFD models were similar, but not entirely in agreement with our
40 47 48	339	physical experiments. <i>Dacelo novaeguineae</i> 's physical model dive force was 107%

- 340 that of the CFD model (physical model = 7.4 vs. CFD = 6.9 N), *Ceyx erithaca* was
- 341 142% (4.2 vs. 2.3), and *Ceryle rudis* was 159% (3.6 vs. 2.3). Our CFD analysis was
- 342 performed on models with hydrodynamically smoothed ends, unlike the physical

models mounted to a pole and accelerometer, and were also tested at slightly different velocities (4.5 physical models vs. 5 ms⁻¹ CFD). Most notably, the CFD was performed in a closed boundary, simulating movement within water, rather than transitioning between low density (air) and high density (water) fluid. The mechanics of such transitions are complex (14), including cavitation and splash, and are thus difficult to simulate. Thus, our CFD is likely not a precise measure of the initial water entry phase, but is useful for comparing general hydrodynamic form between taxa.

Notably, no apparent bow wave, where water is pushed forward in front of the animal (27, 28) appears at the tip of the *Ceyx* or *Ceryle* kingfisher bills in the CFD simulations (Figure 8A, B). However, a noticeable bow wave does appear at the beak-head joint (Figure 8C). The elongated beaks of diving birds, coupled with apparent beak-head streamlined morphologies, may delay the effects of this bow wave long enough to avoid detection by the prey. The larger, highly terrestrial forager, Dacelo displayed significantly greater bow waves, both in front of the beak-head joint, and even in front of the beak tip, which is broader and deeper than the other two taxa simulated.

Of interest are the resulting dorso-ventral drag forces in our CFD results
produced by each beak, with the terrestrial forms *Ceyx* and *Dacelo* generating forces
that push the head ventrally. *Ceryle*, meanwhile, generated only very small dorsoventral forces, acting in the opposite direction. This may be the result of the more
curved beak, in comparison with the straighter beaks of the other two models. The
lower forces acting orthogonal to the direction of movement may be necessary for

the bird to travel straight when diving into the water. Reducing these dorso-ventral
forces may be more important during diving, in a more viscous fluid, than in flight
through air.

Further work examining the hydrodynamics of living birds may illuminate additional patterns. For example, our study examined only kingfisher dives with closed beaks, with particular interest at the air-water boundary. However, the kingfisher must open the bill to catch prey. At that point, the hydrodynamics of the bird are likely to be very different. Computational fluid dynamic modeling of aquatic striking snakes suggests that prev could become dislodged by a bow wave created by the open jaw of the snake (27). However, the shape of the kingfisher bill. particularly in aquatic foragers, is much longer, and would likely open to a lesser angle, than a striking snake, which may reduce any emergent bow-wave. CFD models in aquatic snakes suggest that larger prey sizes can offset the bow wave induced movements of the prey. Behavioral studies have shown that captive Pied kingfishers tend to select the larger available prey items (29), and the Common kingfisher selects prev within a discrete size range of 5 to 6 cm in length (30). This size selection may impede the hydrodynamic effects of displacement from the open bill. Size selection could also be due to prey availability, depth (31), or visual limitations, such as contrast or light refraction (32), during foraging. Selection may act not only on the beak, but the entire frontal area of diving birds. Unlike the plunge diving gannets and terns, the kingfisher neck is noticeably

388 dive posture – potentially ensuring an entirely streamlined body. Further work

shorter and the feathers appear to smoothly taper from the head to the body in the

examining entire body morphology in live animals is necessary to better understandthe potential for streamlining across species.

While we adjusted the overall shape of the models in order to test questions pertaining to shape, not size, we can use our deceleration values to estimate if the dive itself is enough to overcome buoyancy with a rough calculation. Buoyancy (N) is calculated as $F_b = \rho * V_{bird} * g$, where ρ is the change between air and water density (998.78 kg m⁻³), V_{bird} is the volume of water displaced by the bird (i.e., the volume of the bird, m^3), and g is gravity (9.81 m s⁻²). As a rough estimate, we can consider a spherical bird with a radius of 6 cm, which would have a buoyancy force of 2.1 N that must be overcome to submerge the bird. Our prints were scaled to the beak length of the largest species in the sample, the diving bird *Megaceryle maxima*, which weighs 325 grams and had a deceleration value of 7.36 m s⁻². By F = m a, the impact force of the bird would be 2.392 N, - a force larger than the estimated buoyancy of our spherical bird, allowing total submergence. In contrast, the smallest diving species, Alcedo pusilla, has a mass of 13.3 grams, and had a deceleration value of 5.95 m s⁻², resulting in an impact force of 0.43 N – not enough to overcome buoyancy for a 6 cm radius bird. Our calculation of buoyancy force is very rough. and does not account for the density of the animal or actual volumes. Diving species may be less buoyant than their terrestrial counterparts in part due to differences in body mass and ability to retain air under feathers (5, 33, 34), although this has not been tested in kingfishers. Birds can actively adjust their buoyancy by changing the amount of air stored in the respiratory system during a dive (35). Birds may use leg-

1 2	
2 3 4	411
5 6	412
7 8	413
9 10 11	414
12 13	415
14 15 16	416
17 18	417
19 20	418
21 22 23	419
24 25	420
26 27	421
28 29 30	422
31 32	423
33 34	424
35 36 37	425
38 39	426
40 41 42	427
43 44	428
45 46	429
47 48 49	430
50 51	431
52 53	432 422
54 55 56	434 435
57 58	733
59 60	

411 or wing-produced thrust to help counter buoyancy during a dive following initial 412 submergence (36, 37).

413 Conflicting evolutionary demands are placed on beaks. For example, higher 414 mechanical advantage in relation to more leaf-based diets appears to be a primary 415 driver of beak shape in Anseriformes (38). Shape changes associated with increased 416 bite force in the beaks of Darwin's finches also limit the use of the jaw during song 417 production (39). Thus, it is important to keep in mind that the beak shapes tested 418 here are likely also under selection for other behaviors, including bite force, burrow 419 excavation, or territorial defense. Additionally, morphological variables not 420 measured here likely contribute to aquatic diving performance, including beak 421 surface structure (40) and position of the nares.

423 In conclusion, we showed that diving kingfishers have narrower beaks, and a 424 tendency toward longer and more shallow beaks once phylogeny is accounted for 425 when comparing to terrestrial species. Our physical simulations show that diving 426 species beak shapes experience markedly less deceleration when entering the 427 water, corroborated by CFD models. This repeated evolution of functionally and 428 morphologically more hydrodynamic beaks across the kingfisher phylogeny 429 suggests convergence on morphology to improve foraging success in diving birds. 430 Our work may help further inspire engineering solutions, including robotics 431 working at the air-water interface.

1 ว		
2 3	436	AUTHOR'S CONTRIBUTIONS
4	437	
5	438	KEC conceived of the study. KEC. ROH, and PLF contributed to the design of the
7	439	study and drafting the manuscript. KEC and ROH acquired the data for the physical
, 8	440	tests and performed statistical analyses. PLF carried out computational fluid
9	110	dynamics analyses. All authors gave final approval for publication and agree to be
10	441	held accountable for all accounts of the work
11	442	neiù accountable for an aspects of the work.
12	443	
13	444	
14	445	ACKNOWLEDGEMENTS
15	446	
16	447	The authors extend a sincere thank you to Chris Cooney, Gavin Thomas, and the
1/	448	MarkMyBird.org team at Sheffield University for the generous access to the digital
18	449	3D models of most of the birds used in this study. We subsequently thank the
20	450	Manchester Museum, Brambell Museum at Bangor University, and the Natural
21	451	History Museum at Tring for access to original specimens. We also thank the
22	452	FabLab Pontio Innovation Centre at Bangor University for training assistance and
23	453	access to laser scanning and 3D printing technologies: Wyn Griffith John Story and
24	155	Sara Roberts. This manuscript was improved thanks to discussions at the 2018
25	454	London regional SICP DVM mosting with Dr. Jim Usherwood (who suggested
26	455	London regional SICD DVM meeting with Dr. Jim Osher wood (who suggested
27	456	modelling buoyancy) and Dr Sam van wassenbergn at the 2019 SILB annual
28	457	meeting. PLF would like to thank Dr Pernille Troelsen for useful discussions
29	458	regarding CFD software. The authors also wish to thank Charlotte Cannon for
30 31	459	assistance with experiments, and Charles Bishop and Tom Brekke for helpful
37	460	discussions.
33	461	
34	462	DATA ACCESSIBILITY
35	463	
36	464	Data is available as a supplemental file.
37	465	
38	466	FUNDING STATEMENT
39	467	
40	468	KEC is funded by a Leverbulme Farly Career Fellowshin
41 42	400	REC is funded by a Levernume Early Career renowship.
42 43	409	
44	470	
45	4.54	
46	471	REFERENCES
47		
48	472	1. Wolpert H. Engineered Biomimicry: The World's Top Olympians: Elsevier
49	473	Inc. Chapters; 2013.
50	474	2. Foo CT, Omar B, Taib I, editors. Shape Optimization of High-Speed Rail by
51	475	Biomimetic. MATEC Web of Conferences; 2017: EDP Sciences.
52 52	476	3. Ropert-Coudert Y, Grémillet D, Ryan P, Kato A, Naito Y, Le Maho Y. Between
53 54	477	air and water: the plunge dive of the Cape Gannet <i>Morus capensis</i> . Ibis.
55	478	2004:146(2):281-90.
56	1.0	
57		
58		
59		2
60		nttp://mc.manuscriptcentral.com/jrsi

1			
2	470	4	Stanhangen D. Diving an angetige in lagger group (Authutg affinis Exten)
4	4/9	4.	Stephenson R. Diving energetics in lesser scaup (<i>Aytnyta ajjinis</i> , Eyton).
5	480	-	Journal of Experimental Biology, 1994;190(1):155-78.
6	481	5.	Lovvorn JR, Jones DR. Effects of body size, body fat, and change in pressure
7	482		with depth on buoyancy and costs of diving in ducks (<i>Aythya spp.</i>).
8	483	-	Canadian Journal of Zoology. 1991;69(11):2879-87.
9 10	484	6.	Stephenson R, Lovvorn J, Heieis M, Jones D, Blake R. A hydromechanical
10	485		estimate of the power requirements of diving and surface swimming in
12	486		lesser scaup (<i>Aythya affinis</i>). Journal of Experimental biology.
13	487		1989;147(1):507-18.
14	488	7.	Hedenstrom A, Liechti F. Field estimates of body drag coefficient on the
15	489		basis of dives in passerine birds. Journal of Experimental Biology.
16	490		2001;204(6):1167-75.
17	491	8.	Feldkamp SD. Swimming in the California sea lion: morphometrics, drag
18	492		and energetics. Journal of Experimental Biology, 1987:131(1):117-35.
19	493	9	Bannasch R. Drag minimisation on bodies of revolution in nature and
20	494		engineering 1993
21	495	10	Bannasch R. Hydrodynamics of penguins an experimental approach
23	495	10.	1995: Advances in Ponguin Biology: 1/1-76
24	407	11	Louvern L Ligging CA Perstad MH Calical SM Mildelson L Hydrodynamic
25	497	11.	drag of diving hirds, offosta of hody size, hody shape and fosthere at stoody
26	498		urag of diving birds: effects of body size, body shape and feathers at steady
27	499	4.0	speeds. Journal of Experimental Biology. 2001;204(9):1547-57.
28	500	12.	Chang B, Croson M, Straker L, Gart S, Dove C, Gerwin J, et al. How seabirds
29	501		plunge-dive without injuries. Proceedings of the National Academy of
30 31	502		Sciences. 2016;113(43):12006-11.
32	503	13.	Katzir G, Camhi JM. Escape response of black mollies (<i>Poecilia sphenops</i>) to
33	504		predatory dives of a pied kingfisher (<i>Ceryle rudis</i>). Copeia.
34	505		1993;1993(2):549-53.
35	506	14.	Vincent L, Xiao T, Yohann D, Jung S, Kanso E. Dynamics of water entry.
36	507		Journal of Fluid Mechanics. 2018;846:508-35.
37	508	15.	Fry CH, Fry K. Kingfishers, bee-eaters and rollers: A&C Black; 2010.
38	509	16.	Cooney CR. Bright IA. Capp EI. Chira AM. Hughes EC. Moody CI. Mega-
39	510	-	evolutionary dynamics of the adaptive radiation of birds. Nature.
40 41	511		2017:542(7641):344
41	512	17	Dunning Ir IB CRC handbook of avian body masses: CRC press: 2007
43	512	17. 1Q	del Hovo I Filiot & Sargatal I Christia D de Juana F. Handbook of the Birde
44	515	10.	of the World Alive Barcelona: Lyny Edicions: 2019
45	514 515	10	Anderson MI MaCullough IM Mausle III MM Smith DT Maula DC A
46	515 F16	19.	Anuersen MJ, MCCullough JM, Mauck III WM, Silliun BT, Moyle KG. A
47	516		phylogeny of kingfishers reveals an indomalayan origin and elevated rates
48	517		of diversification on oceanic islands. Journal of Biogeography.
49	518		2018;45(2):269-81.
50 51	519	20.	Jetz W, Thomas G, Joy J, Hartmann K, Mooers A. The global diversity of birds
57	520		in space and time. Nature. 2012;491(7424):444.
53	521	21.	Grafen A. The phylogenetic regression. Phil Trans R Soc Lond B.
54	522		1989;326(1233):119-57.
55			
56			
57			
58			
59			http://mc.manuscriptcontrol.com/irci
60			http://me.manuscriptcentral.com/jisi

2			
3	523	22.	Garland Jr T, Dickerman AW, Janis CM, Jones JA. Phylogenetic analysis of
4	524		covariance by computer simulation. Systematic Biology, 1993:42(3):265-
5	525		92.
7	526	23.	Revell LI. phytools: an R package for phylogenetic comparative biology
8	527		(and other things). Methods in Ecology & Evolution. 2012:3(2):217-23.
9	528	24.	Jakob W. Tarini M. Panozzo D. Sorkine-Hornung O. Instant field-aligned
10	529		meshes, ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia
11	530		2015). 2015:34(6):189:1-:15.
12	531	25	Troelsen P. Wilkinson D. Seddighi M. Allanson D. Falkingham P. Functional
13 1/1	532	20.	morphology and hydrodynamics of plesiosaur necks: Does size matter?
14	532		Journal of Vertebrate Paleontology in press
16	534	26	Holm S. A simple sequentially rejective multiple test procedure
17	525	20.	Scandinavian journal of statistics 1070:65-70
18	526	27	Van Wassenhardt S. Procke I. Aarts D. Stauten I. Vanhausden C. Comme A. et
19	550	27.	vali wassenbergii S, brecko J, Aerts P, Stouten I, valineusuen G, Camps A, et
20	557		al. Hydrodynamic constraints on prey-capture performance in forward-
21	538	20	Striking snakes. Journal of the Royal Society Interface. 2009:151120090385.
22	539	28.	Herrei A, vincent S, Alfaro M, van wassenbergn S, vannooydonck B,
23	540		Irschick D. Morphological convergence as a consequence of extreme
25	541		functional demands: examples from the feeding system of natricine snakes.
26	542		Journal of evolutionary biology. 2008;21(5):1438-48.
27	543	29.	Labinger Z, Katzir G, Benjamini Y. Prey size choice by captive pied
28	544		kingfishers, Ceryle rudis L. Animal behaviour. 1991;42(6):969-75.
29	545	30.	Vilches A, Miranda R, Arizaga J. Fish prey selection by the Common
30 21	546		Kingfisher Alcedo atthis in Northern Iberia. Acta ornithologica.
31 32	547		2012;47(2):167-75.
33	548	31.	Vilches A, Arizaga J, Salvo I, Miranda R. An experimental evaluation of the
34	549		influence of water depth and bottom color on the common kingfisher's
35	550		foraging performance. Behavioural processes. 2013;98:25-30.
36	551	32.	Katzir G, Lotem A, Intrator N. Stationary underwater prey missed by reef
37	552		herons, <i>Egretta gularis</i> : head position and light refraction at the moment of
38	553		strike. Journal of Comparative Physiology A. 1989;165(4):573-6.
39 40	554	33.	Dove CJ, Agreda A. Differences in plumulaceous feather characters of
41	555		dabbling and diving ducks. Condor. 2007:192-9.
42	556	34.	Lovvorn JR, Jones DR. Biomechanical conflicts between adaptations for
43	557		diving and aerial flight in estuarine birds. Estuaries, 1994:17(1):62.
44	558	35.	Sato K. Naito Y. Kato A. Niizuma Y. Watanuki Y. Charrassin I. et al. Buovancy
45	559		and maximal diving depth in penguins: do they control inhaling air volume?
46	560		Iournal of Experimental Biology, 2002:205(9):1189-97.
47 48	561	36	Ribak G Weihs D Arad Z How do cormorants counter buoyancy during
49	562	00.	submerged swimming? Journal of Experimental Biology
50	563		2004·207(12)·2101-14
51	564	37	Clifton GT Riewener AA Foot-propelled swimming kinematics and turning
52	565	57.	strategies in common loops, Journal of Experimental Biology
53	505		2019.221(10), $b16021$
54 57	500	20	Oleon AM Fooding acology is the primary driver of healy shape
55 56	507	30.	diversification in waterfeul Eunetional Ecology 2017.21(10).1005 OF
57	200		uiversincation in wateriowi. runctional Ecology. 2017;31(10):1985-95.
58			
59			2

1		
2		
3	569	39. Herrel A, Podos J, Vanhooydonck B, Hendry A. Force–velocity trade-off in
4	570	Darwin's finch jaw function: a biomechanical basis for ecological
5	571	speciation? Functional Ecology. 2009;23(1):119-25.
7	572	40. Martin S, Bhushan B. Discovery of riblets in a bird beak (Rynchops) for low
8	573	fluid drag. J Phil Trans R Soc A. 2016:374(2073):20160134.
9	574	
10	0,1	
11	575	
12	576	FIGURE LEGENDS
13 14	577	
15	578	Figure 1 . The phylogeny of 71 kingfishers (Alcedinidae) used for morphometric
16	579	analysis in this study constructed as a sub-sample of Anderson et al. (2018)
17	580	Coloured circles represent classified foraging group: blue are aquatic foraging
18	581	(diving) species grey are mixed (aquatic and terrestrial) and green are terrestrially
19	582	for aging species. See text for details
20	582	Toraging species. See text for details.
21	503	Figure 2. Morphometric variables collected for each species on the Common
23	504	Figure 2. Morpholitetric variables confected for each species on the common Kingfisher Alcode atthis (A) Lateral view (B) Dereal view Boals Longth
24	202	magurements were scaled to 0 cm in all 2D models to standardize for body size
25	500 507	See tout for additional dataila
26	207 207	see text for additional details.
27	200	Figure 2. Development of 21 opening of lingfichers used for performance testing
28	589	Figure 3: Phylogeny of 31 species of kinglishers used for performance testing,
29 30	590	subsampled from the phylogeny in figure (1) (Anderson et al. 2018). Coloured
31	591	circles represent classified foraging group: blue are aquatic foraging (diving)
32	592	species, grey are mixed (aquatic and terrestrial), and green are terrestrially foraging
33	593	species.
34	594	
35	595	Figure 4: (A) Diagram of diving tank set up. Dive tank was 60 cm tall with an
30 37	596	opening of 25 cm. The dive body consists of a 50 ml falcon tube containing the
38	597	accelerometer and additional weights as needed. The accelerometer was mounted
39	598	with the negative x-axis aligned with gravity, and the positive z axis oriented
40	599	perpendicular to the bird dorsally. The falcon tube was fitted with plastic drinking
41	600	straws on either side, and the straws were threaded along fishing line to maintain
42	601	the dive orientation perpendicular to the water surface. (B) Exemplar
43	602	accelerometer data from three representative species: <i>Ceryle rudis</i> (pied kingfisher),
44 45	603	Dacelo novaeguineae (Laughing Kookaburra), and Ceyx erithaca (Black backed
46	604	kingfisher). Data is smoothed by taking a running average for 3 points, and is
47	605	truncated before cavitation.
48	606	
49	607	Figure 5: Kingfisher beak models and CFD domain. (A) Original scan data (above),
50	608	and cleaned, smoothed, and scaled model (below) of <i>Ceryle</i> presented in lateral and
51	609	posterior-lateral views. Models were cropped at the posterior most portion of the
53	610	beak, then holes were filled, surfaces extruded, and final model then smoothed. (B)
54	611	Original and cleaned meshes for <i>Ceyx, Ceryle</i> , and <i>Dacelo</i> , left to right. Grid
55	612	represents 1 cm squares. (C) Meshed CFD domain.
56	613	
57		
58 50		
55		

2		
3	614	Figure 6: (A-C) Residuals of morphological characters regressed against body mass,
4	615	resulting in size-corrected beak morphometrics for kingfisher species classified as
5	616	aquatic foragers (blue), mixed foragers (grey), and terrestrial foragers (green), (D -
6 7	617	F) Uncorrected measurements for mornhological characters (in mm) Size-
/ Q	610	corrected (A) head length (B) head denth and (C) head width are all statistically
0	010	corrected (A) beak length, (B), beak depth, and (C) beak which are an statistically
9 10	619	significantly different between foraging guilds (ANUVA $F_{2,68}$ =48.97, p < 0.001). Once
11	620	phylogeny is accounted for, only beak width (C) remains significantly different
12	621	between size-corrected aquatic and terrestrial species (phylogenetically corrected p
13	622	< 0.001).
14	623	
15	624	Figure 7: Average peak deceleration values measured for 3D printed scaled models
16	625	of kingfisher beaks classified as aquatic foragers (blue), mixed foragers (grey), and
17	626	terrestrial foragers (green). Aquatic and terrestrially foraging species dive
18	627	deceleration are significantly different (ANOVA $F_{20,2}=7.645$ n=0.002. Tukey HSD
19	628	n=0.002). This result is not affected by phylogenetic relatedness (phylogenetic
20	620	p=0.002 J. This result is not affected by phylogenetic relatedness (phylogenetic ANOVA E=7.64 p=0.047)
21	029	ANOVA, $F = 7.64$, $p = 0.047$ J.
22	630	
23	631	Figure 8: Water velocity in the anterior-posterior direction in front of the head of
25	632	(A) Ceryle, (B) Ceyx, and (C) Dacelo. Velocity scale is truncated to illustrate areas of
26	633	high and low velocity. Note the much larger bow wave in front of the highly
27	634	terrestrial Dacelo. Bottom: Static pressure around (D) Ceryle, (E) Ceyx, and (F)
28	635	Dacelo.
29	636	
30		
31		
32		
33		
34 25		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
40		
47 78		
40		
50		
51		
52		
53		
54		
55		
56		
5/		
50 50		
60		http://mc.manuscriptcentral.com/jrsi

Figure 4: (A) Diagram of diving tank set up. Dive tank was 60 cm tall with an opening of 25 cm. The dive body consists of a 50 ml falcon tube containing the accelerometer and additional weights as needed. The accelerometer was mounted with the negative x-axis aligned with gravity, and the positive z axis oriented perpendicular to the bird dorsally. The falcon tube was fitted with plastic drinking straws on either side, and the straws were threaded along fishing line to maintain the dive orientation perpendicular to the water surface. (B) Exemplar accelerometer data from three representative species: Ceryle rudis (pied kingfisher), Dacelo novaeguineae (Laughing Kookaburra), and Ceyx erithaca (Black backed kingfisher). Data is smoothed by taking a running average for 3 points, and is truncated before cavitation.

275x279mm (300 x 300 DPI)

Figure 5: Kingfisher beak models and CFD domain. (A) Original scan data (above), and cleaned, smoothed, and scaled model (below) of Ceryle presented in lateral and posterior-lateral views. Models were cropped at the posterior most portion of the beak, then holes were filled, surfaces extruded, and final model then smoothed. (B) Original and cleaned meshes for Ceyx, Ceryle, and Dacelo, left to right. Grid represents 1 cm squares. (C) Meshed CFD domain.

Figure 7: Average peak deceleration values measured for 3D printed scaled models of kingfisher beaks classified as aquatic foragers (blue), mixed foragers (grey), and terrestrial foragers (green). Aquatic and terrestrially foraging species dive deceleration are significantly different (ANOVA F28,2=7.645, p=0.002, Tukey HSD, p=0.002). This result is not affected by phylogenetic relatedness (phylogenetic ANOVA, F=7.64, p=0.047).

177x177mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/jrsi

Figure 8: Water velocity in the anterior-posterior direction in front of the head of (A) Ceryle, (B) Ceyx, and (C) Dacelo. Velocity scale is truncated to illustrate areas of high and low velocity. Note the much larger bow wave in front of the highly terrestrial Dacelo. Bottom: Static pressure around (D) Ceryle, (E) Ceyx, and (F) Dacelo.