HIGH DIMENSIONAL ANALYSIS OF GENETIC
DATA FOR THE CLASSIFICATION OF TYPE 2
DIABETES USING ADVANCED MACHINE
LEARNING ALGORITHMS

BasmaTaleb Abdulaimma

A thesis submitted in partial fulfilment of the requirements of Liverpool John

MooresUniversity for thedegreeof Doctor of Philosophy

February 2019



ABSTRACT

The prevalence di/pe 2 diabetes (T2D) has increased steadily ovda#tthirty years and
has now reached epidemic proportiohke secondary complications associated with T2D
have significant hdtn ard economic impastworldwide andit is now regarded as the
seventh leading cause of mortalitherdore, understanding the underlying cassé¢ T2D

is high on government agendas. Thadition is a multifactorial disorder with a complex
aetiology. This means that T2Demergesfrom the convergence between genetics, the
environment and dieand lifestyle choices. The genetic determinants retaegelyelusive,
with only a handful of idenfied candidate genes. Genowde association studies
(GWAS) have enlanced our understandingf geneticbaseddeterminantsin common
complex human diseases. To date, 120 single nucleotide polymorphisms (SNPs) for T2D
have been identified using GWAS. Standard statistical tests for single andatusdti
analysis, suclas logstic regression, have demonstratitie effect in unérstanding the
genetic architecture of complex human diseategistic regression can captuli@ear
interactions between SNPs and traits howévsgglects the ncetinear epistatic interactits
tha are often present within genetic da@omplex human ideases are caused by the
contributions made by many interacting genetic variaHtswever, detecting epistatic
interactions and understanding the underlying pathogenesis architecture of couméax

disorders remains a significacttallenge

This thesis presents a novel framework based on deep learning to reduce the high
dimensional space in GWAS and learn #ioiear epistatic interactions in T2D genetic data

for binary classificatiotasks Thisframework includes traditional GWAS quality control,
association analysis, deep learning stacked autoencoders, and a multilayer perceptron fo

classification.

Quality control procedures are conducted to exclude genetic variants and individiudds th

not meet a prepecified criterion. Logistic association analysis under an additive genetic



model adjusted for genomic control inflation factor is also conducted. SNPs generated with
a pvalue threshold op m are considered, resulting in 6609 SNR=satures), to remove
statistically improbable SNPs and help minimise the computational requirements needed tc
process all SNPs. The 6609 SNPs are used for epistatic analysis through progressivel
smaller hiddendyer units. Latent representations areawt¥d using stacked autoencoders

to initialise a multilayer feedforward network for binary classification. The classifier is fine
tuned to discriminate between cases and controls using T2D genetic data. Thagrexor

of a deep learning stacked autoencod®del is evaluated and benchmarked against a
multilayer perceptron and random forest learninglgorithm The findings show that the

best results were obtained using 2500 compressed hidden units (AUC=94.2i0é).elr

the classification accuracy whersing 300 compressed neurons remains reasonable with
(AUC=80.78%). The results are promisitgsing deep learing stacked autoencoders, it is
possible to reduce higtimensional features in T2D GWAS data and leaom-lmear
epistatic interactions between SNPs while enhancing overall model performance for binary

classification purposes
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Chapter 1 Introduction

1.1 Preamble

The pevalence of Type 2 Diabetes (TREhroughout the world haseachedepidemic
proportions.In 2012, the World Health Organization (WHQ)/orld Health Organization
2016) estimated that 1.5 million deathgere directly attributedo diabetes, and by 2030
diabetes will be the senth leading cause of mortality worldwifdathers & Loncar 2006)
T2D is the most predomiant formof diabetegWorld Health Organization 201&nd &
regarded asa multifactorial disorder,caused by theconvergence of geneticghe
environment, and sedentary lifestyl¢Lyssenko et al. 2008Y here isstrongevidence that
genetic factors play significantrole in T2D susceptibility(Prasad & Groop 2015Y2D is

a polygenetic disorder that caused by @omplex interaction among multiple genes. As
such,an indepthinvestigation imo the T2D pathogenetic architecturs neededto help

researchers and professionatglerstandhe aetiology ofT2D.

1.2 GenomeWide Association Studies (GWAS)

Genes influence all human diseases and yet the gématidationof many complex diseases
is still unknown. With the availability offeeape genotyping technologig€Behjati & Tarpey
2013) genomewide association studies (GWAS) have seeregjnlead use within genetic
research. In recent years, GWAS hawgecceededn identifying genetic variants that
demonstrate evidence of increased susceptibilitih wide range of complex diseases,
including Schzophrenia, Epilepsy, Obesity, Cardiovascll&gease, Hypertensiand T2D
(Guo et al. 2014; Bush & Moore 201Z3WAS have also been ustxdetectthe genetic
effects associatedith phenotypes (disease trait) in populatlmased studies using single
locus statistical testdn these studies each single nucleotide polymorphism (S8IP)
exploredseparately for association with particulasehses or trai{f€larke et al. 2011)'he

genetic variants identified so féwawe helped toexplain arelatively small proportion of



heritability, however, the question remaiabout how missing heritability can be better
explainedBlancoGome et al. 2016; Manolio et al. 2009jore importantly, it is generally
believed thattie underlying cause of complex human disedeesnot rely on single genetic
variations but insteadn acontribution ofmanyinteractiors betweergenetic lociMorris et

al. 2012; Robinson et al. 2014, Lee et al. 20iXerred to agpistasis.

In this thesis the ternpestasisrefers specifically tahe latentinteractiors between multiple
SNPsand their effectgWei et al. 2014) This is a topicstudiedin molecular biology
particularly geneticbiomolecules The primary goal is to understand thenderlying
pathogenesis architectulieked with common complex disorderSpistasis arises due to
nontlinear interactios between genetic varianf3etecting epistatic interactionségenetic
interactive effects, howeveemains a significant challenge in largeale GWAS data. This

is due to various factorthat include genetic heterogeneities, low penetrance, small
epidemiology sample siz polygenic inheritance, artielarge nunber of genetic variants

often considereth GWAS studies

Consequently, complexortlinear relationships between genotypes and the phenatgpe
not investigated in GWASStandard parametric misariable statistical approaches, such
as logistic regressip which is used in GWASare more suitedo capturinglinear
interactions between genotypes and phenatypmeuchsimpler diseases like cystic fibrosis

which is known to only have one assoath&\P(Cutting 2015)

Existing studies using GWAS data have focused on the use of data mining and machine
learning algorithmgBotta et al. 2014; Lépez et al. 2018; Nguyen et al. 2015; Chen et al.
2008) These techniquesave been used tmodel complex relationshépand interactions
between features (SNPand their associatiowith phenotype. Data reduction approael

like multifactor dimensionality reductiohave also been successfully applied to detect
putative interactions between loci for a wide variety of hordisease@Barma et al. 2018;

Andrew et al. 2008; Oh et al. 2012; R De et al. 20EGsemble methodsuch ashe random
2



forest algorithm have been broadly applied for genomic data analysis to detect SNP
correlations(Botta et al. 2014)disease risk gdiction (Lopez et al. 2018)and feature
selection(Nguyen et al. 208). Support Vector MachirsgSVMs) havebeen usedo detect
genegene interactiongChen et al. @08) and disease classificatiganitha et al. 2015)
Artificial Neural Networks (ANNs) have le@ utilized to detect SNP correlations as
demonstrated ifKoo et al. 2013; MotsingeReif et al. 2008) Although, these machine
learning algorithms areompetentn handling complex correlatisand interactioaamong

a small numbeof features, they do not scaleg@erylarger number of SNPs, whichafien
the casan GWAS (genotypes of almost one million SNPs and thousands of samiples).
particular,using nachine learning algorithnfsr epistatic analysis with few hundred loci
becomes computationallywery difficult. Furthermore traditional machine learning
algorithms suffer with multicollinearitf\WWaaijenborg & Zwinderman 200@nd the curse

of dimensionalitySharma & Saroha 2015)

Therefore, an alternative approagohmodel highdimensional GWAS data ardhndle non
linear epistatic interactions between SNPs is nedddtis thesis we investigate the use of
unsupervised deep learnifgL() since itcandeal with big data and the detection of complex
features and assiated nodinear interactiondMore speifically we explore the use afeep
learning stacked autoencodeas a way oflearring the epistatic interactionshat exist
between SNRsTo evaluate the approach, learned features are used to initialise thesweigh
of a fully connected multilayer percépn (MLP) before it is finetuned to classify

observations as either case or control ir2® TGWAS dataset.

1.3 Computational Biology

A fundamentalchallenge in molecular biology networksarticularly in genetics is to
identify and understand the underlyimgeractionsbetweengenetic variant§SNPs)and

how they contribute to human disease amanplex phenotypic traits. The main goal is to



pinpoint genetic markers that Cc amitob® us

developing a particular disorde

In largescale GW/ASdata, despite these of advancestatistical methods and computational
strategies to dete@NPsinteractionsthey cannot deal witkarge combinatorial analysis,
scalability, and low statigtal power. As advances in higdimensioml GWAS data
generatiorcontinues, it is becoming incresingly more important to develop mqgvewerful
methodologies to analyse and examapéstaticinteractiors in complex, unstructured, and

large datasets.

1.4 Scopeof Research

The research question is whet complex interactions between SNEpistasis) can be
learnt using deep learning stacked autoencoderdatssify T2D risk in humans. The
approach follows a traditional GWAS quality control and association asnahgthodology
wherethe most significanBNPs are seleadeand usedh subseqant analysisThis helps to
manage computational demands. Stacked autoencoders are implemented as a featu
extraction/learning technique to capture the salient relationshapxist between SNPs,

thus capturing eptatic interactions. The final setfefatureds used to initialise the weights

of a fully connected multilayer perceptron (ML®hich is therfine-tuned to classify case

and control GWAS observations.

1.5 Aims and Obgctives of the Thesis

The main aim of thg thesis is to investigate the aetimpyoof T2D through effective use of
bioinformatics and statef-the-art machine learning algorithm$he approachprovides a
robust framework foprocessindnigh-dimensional gertee datato modelandclassifycase
control individualsusing a GWASdataset More preciselythe framework allows uo

capturethe genetic architecture of episigin T2D genomic data antb investigateits



influencein diseasesusceptibility In orderto fulfil the research aims, several kayjectives

have been set:

1 Investigaé open source databases includihg Genotype and Phenotype (dbGap)
databasewhich contains genetic and clinical information for casatrol
individuals.

1 Identify and remog low quality genetic markers and samples toduce a reliable
subset for subsequent association analysis.

1 Apply Genomewide association analysis to test for associatioetween genetic
markers and 2D in a populationbased study.

1 Filter genetic markersSNP$ using asimple statistial approach t@elect a subset of
SNPs for subsequent interaction analySISPs are selected based on the strength of
independent effects amderanked using prspecified thresholds.

1 Perform noHdinear dimensionality reduicin to retainimportant SNPs angarnthe
cumulative nonrlinear epistatic interactions between them using deep learning
stacked autoencoder

1 Classify and evalua T2D high-dimensional genetic data using advanced machine
learning techniques.

1 Classify andevaluate genetic and nogenetic €nvironmeral, sociodemographic
and clinical) risk factors using linear and ndinear traditional machine learning
algorithms andexplore the contribution and the effects of these factorsT2D
susceptibility.

1 Designandimplement a framework for the proposed pobj® produce an effective

data analytic system to fulfil the aims of this study.

1.6 Novel Contributions

This thesis presents a novel framework fordimary classification of higldimensional 2D

usingcasecontrol GNVAS data.Using deep learningtackedautoencodes we canextract
5



SNPs andatentrelationships idarge scale biological data structarécting as a feature
learning stepfeatures are @sl to initialise the weights of a fully connecteulltilayer

feedfaward softmax classifier and firteneit to classifyT2D observationsTo the best of
our knowledge, this is the firstomprehensivestudy of its kind thatuses stacked

autoencoders to cape the epistatic interactions between SNPs in T2D GWAS data

Existing studies in the genomic field depelneavily on manual feature engineering using
labelled data. The greedy layeise learning algorithm solution perfoeu with stacked
autoencodexin this thesigs based on training the network lay®rlayer using ulabelled

data The results show that #is a very efficient way to convert higdimensionalGWAS

data into lowdimensional dat#o allow usto discoverthe nonlinear structurethat exist
betweenSNPs These reduced, compressed featartsasan abstct representation of the
original featue space. The ability to automatically extract latent representation of SNPs
related to T2D GWAS data enhances the qualitgxgerimental investigations, allowing

researchers to discover and investigate the patlesgearchitecture of T2D further

1.6.1Literaure Review

In this thesis, an up to date biomedild&rature review of current works in the field of T2D
GWAS study is collected from PubMetie United States National Library of Medicine and
the National Centefor Biotechnology Information (NCBI}hat provides resources for

genomic, genetic and biomedi research.

T2D with its aetiologyin addition to the application of GWAS 2D in different cohorts
and ethnic groups are reviewdthe stateof-the-artin madine learning approachesed to
predict risk susceptibility to T2D and to detect and explore SNPs correlatsoasso

presented.

Furthermoreparts of the materials and results presented in this thasecontributed to

the literature as shown ifAbdulaimma et al. 207; Abdulaimma et al. 2018yherean



association mapping approach wawvestigatedwith our dataseto identify potential
candidateSNP to T2D predispositionin addiion, the investigation is conducteih
(Abdulaimma et al. 2018 evaluate tb predictie capacity of several machitearning
algorithmsin discriminating between cases and controls in T2D GWAS [aabectively,
this review and our publications contribute current geneticresearchin T2D which

provides up to date informatiom the biomedical andbioinformatics reseach fields.

1.6.2Stacked Autoencoders

A stacked autoencodewrhich is an unsupervised learning pro¢césadopted in this thesis.
Stacked autoencoders offer @tmodto automatically learn features from unlabelled data.
This isan efficientmethod to reduce d@rcompreshigh-dimensional GWAS data, producing

an abstract representation of the original data space. Stacked autoencoders can discover t
nontlinear structuresn complex, large, unstriured data ass the casan GWAS. This
allowed us to extract thenontlinear epistatic interactions between SNPs whighan
importanttopic in understandinguissing heritability angbredispositionn many complex

disorders.

Our work has beerpublished in IEEE/ACM Transaction ono@putationalBiology and
Bioinformation, which demonstratestacked autoencodecsin beapplied successfully to

learn the abstract representation of SNP data and to study epistatic interactions betwee
SNPs(Fergus et al. 2018 heresults areencouragingnd show thastacked autoencoders

are an effective method for dealng with high-dimensional GWAS datand detedhg

epistatic interactins between SNPs

1.6.3Combined Framework

Quality control, logistic regressionassociation analysisand deep learningstacked
autoencoders were combineddonstitute the components of our proposed methodology.
Various stringent quality control assessment steps followed by logistic regression

association anasys adjustedor genomic control vere pefformed for singleSNP analysis.
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Statistically significant SNPs identified via associationstegre used asiput features for
deep learning stacked autoencod@itse outputfrom thestacked autoencodecemprised
an abstract representatiasf the input €atures \ich were in turn usetb initialise the
weights of a fully connected multilaydeedforward softmax classifiefine-tune it to

classify T2D observations.

1.6.4Decision Support Tool for Early Detection of T2DsSeptibility

Our GWAS classificatioometod couldbe considered aan early screening todbr the
identification of people with @enetic disposition t@2D. This wouldaid physiciango
identify prediabetic individuadwith high-risk of developing theonditionmuchearier thus

allowing appopriateactiors to be administered to mitigate lotegm effects

Early detectioncould reduce premature death anthe risk of developig secondary
complications associatedth the conditionA study conducted by éfman et.a{Herman et
al. 2015)investigatel the benefits of early screeningdiagnosisand treatment of T2 and
comparedthe resultswith those whohad no screening and late treatment usihg
ADDITION-Europepopulation.The study foundhat cardiovascular risk, which is one of
the commorcomplicationsassociatedvith T2D, can be reducedith earlyscreeningand
diagnosisin anotherstudy(Olafsdottir et al. 201&Isoreveaédthatcumulativeretinopathy

prevalence and severitpuld be reduced with early detextiof T2D

The current protocol used byhgsicians in hospitalandclinicsis based on a bloosugar
and/or oral glucose tolerance téamerican Diabetes Association 2018hysicians mise
their decision basedn plasma glucoseriteria even thouglthe test isiormal this may not
eliminate the possility of T2D. Thereforgadopting our GWAS classification systeould
act asan early screening interventioto provide physicians withan additional source of

informationalongside existing teste aid decision raking



1.7 Thesis Structure

The remaiderof this thesis is structured as follov@hapter 2 providea brief overview of
human genetic structsecomponents, mechanisms and functionalitiesliscussion on
T2D includingits aetiology andisk factorsare ato presentedncluding acomprehensive
discussion relatg to genomewide association stuels and associated quality control
proceduresised in T2D analysig his chapters concluded witra comprehensive literature

review of existing GWAS i 2D studies

Chapter 3 introduabioinformaticsand alvanced machine learning algorithriibechapter
begins witha discussion orepistass and its challengedpllowed by a comprehensive
literature relew of existing epistatic applicationisefore artificial neural néworks are
described This is followed bya discussion oithe stateof-the-art in deep learning. This
includes a brief overview on supervised and unsupervised learnatgosssix machine

learning algorithmsnd their use iff2D studies

Chapter 4ntroduces the frameworkandproposed methodologyhis includes a discussion
on data acquisition anddescriptionon thedata quality controprocedureand association
testingwith genetic variantsThe discussioemphasiesthe novel contributiom made irthe
proposed methodologglong with thetheordical aspects ofdeep learningand stacked
autoencodex Furthermore, this chapter exansrtbe clinicaland genetidactors on the
predictive discriminatory power of 2D modelling using machine learninginally, the

performancemetrics for each of the mhine learning models used aealuaed

Chapter 5 presesthe results for the various experiments conductettherinvestigation.
While chapter 6discusses the results and draws on conclusions and recommendations
derived from the study. The thesis isictuded inChapter hefore thefuture directions for

this gudyare presented



Chapter 2 Background

2.1 Introduction

This chapter begins with an overview louman geneticillowed by a discussion on T2D
including the diseases aetiology aassocatedrisk factors. This chapter also discusses
genomewide associationstudies and includesthe quality control steps needed and the
statistical methods usedhe chapter is finally concluded with review of genomavide

association studies iR2D.

2.2 Human Bology Background

In biology,genomei s d e f i n etotal geseticanforenatibifAlbests et al. 2015)A

cellis a fundamental and basic unit of l{fdberts et al. 2014)Living organisms are divide

into two types incluohg unicellular organisms and multicelul organisms. Multicellular
organisms, like humans, are made up of a large number of specialized cells that work
together to perform different functions. Human bodies are composed of milfioabsoand
eachoneent ai ns a compl et s geneticpinformatiorfAldants et al.d i v

2015)

In each cell, there are 23 pairs a@fromosomesand they are situated in the cell nucleus
(Alberts et al. 2015)The chromosome consists \@ry long strand of Deoxyribonucleic

Acid (DNA) along with the proteins respsible for folding and packaging the DNA string

into a compact structure. The DNA is a molecule that carries most of the genetic information
and is the hereditary materidund in all living organisms(Alberts et al. 2014)DNA is

made of four chemical monomers knowas nucleotides Each nucleotide contains
deoxyribose (sugar with phosphate) and a base. This base is adenine (A), guanine (G
cytosine (C), and thymine (T) and they are linked togethetanglinear sequence form

a DNA strand that is known aghe polynucleotide DNA molecules consist of two

antiparallel polynucleotides joined together through the process of complementary base
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pairing, whereA pairswith T and C pairswith G, to form the DNA double heliwhich
encodes all genetic informati¢Alberts etal. 2015) Figure 2.1 illustrates the human DNA

structure, fronthecell throughthe chromosome tthe DNA components.

Nucleus

T
A
G

cell Chromosome

g]

Nucleofide

Figure 2.1: Human DNA Structure. Cell, Chramsome, DNA

DNA molecules contain a lineaequence of many genes. Eggmeis a segmendf DNA

and represents a functional unit for the production of specific prqigiberts et al. 2015)
The human genome contains over 3 billion base pairs (nucleotidég)a ®@mall percentage

of the entire DNAis composed of genefnternational Human Genome Sequencing
Consortium 2004)There are over 21,000 genes in the entire human gefintemational
Human Genome Sequencing Consortium 208dyl these contain the information necessary
to produce proteing\n alternative form of a gene is knownasallele (Alberts et al. 2015)
Each gene contains two allelegj@ninant alleleand arecessive alleleEach allele pair is
located at a similar tus on homologous chromosomes (one chromosome comes from the
male paent and the other one comes from thedknparent). The dominant trait is expressed
if the gene is heterozygous, i.e. possesses both dominant and recessivd h#eteessive

trait is expressed if the gene is homozygous, i.e. both alleles are vecessi

The combination and pairing of allsldor a specific gene is referred to agenotype
(Alberts et al. 2015)A genotype is either homozygous or heterozygous as explained
previously. The genotype is respongsnthel e
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form of a phenotype(Alberts et al. 205). The phenotype focuses on a trait, which is

expressed as theagarance, behaviour or medical condition of an individual.

The central dogmia moleculabiologydefines the flow of genetic informationgellsfrom
Deoxyribonucleic Acid (DNA) througiRRibonucleic Acid(RNA) to proteingAlberts et al.
2015) This transforration process occurs thousands of times every second in all living cells.
This describes the mechanisms by which cells copy segments of DNA iptRiugh a
process called transcriptipfollowed by the synthesis of proteins from RNA through a

process alled translation as illustrated in Figure 2.2.

DNA RNA PROTEIN

Transcription Trandation

Replication

p.

Figure 2.2: The Central Dogma of Molecular Biajg

There are20,000 proteins made in hungand they aregesponsible for regulating the
structure of the cell and executing the majority of the functions cells pr(&iderts et al.
2015) Proteins determine the biological instructions contained in DNAdtetecessary

for building and maintainignan organism.

2.3 Human Genetic Variations

All humars have small variations in their genetic co@ddberts et al. 2014andit is not
possible for any two people to have the same genomic sequence. Since the completion of tr
Human Genome Project in 2003, researchenrgeheonfirmed that among the 3 billion base
pairs that comprise DNA, 99.9% are very sim{laternational Human Genome Sequencing

Consortium 2004)However, the remaining 0.1% makes each individual uni4loerts et
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al. 2014) More importantlythis variation explains the differencamong peopl@ndtheir

susceptibility to particular diseases.

Genetic variationsalso called mutationgan occur due to the substitution of a single base
pair (nucleotide) and this is termedSangle Nucleotide Plymorphism (SNP) Typically,

an SNP is déned as single baseair change in the genetic code (DNA sequence) and it is
the main cause of humanrgic variability(Durbin et al. 201Q)Figure 2.3 illustrates the
genetic variation in the same region of the genomé¢hi@e different individuals. Another
source of genetic variation can result from duplications, deletions and insertions of large
segments of th®NA molecule. These types of mutation are knownCapy Number
Variations (CNVs)(Alberts et al. 2015yvhich have ben implicated in several human traits,

including hypertension, and colour blindness.

SNP

Individual1 é ATGCGATCGATAC GATAACTCCCGA ...

Individual 3 é ATGCGATCGATAC GATAACTCCCGA ...

Figure 2.3: Genetic Variation (SN§ among Three Individuals

Most of these mutations areramon and have no functional significantleys they are
relatively harmlesgAlberts et al. 2015)However, there are single nucleotide changes that
can alter gene production and change regulatory DNA sequences. When this occurs it ca
have a profound effecinchuman health, behaviour, and physiolagy can be the cause of
serious diseas€Alberts et al. 2014)While there are a large number of variants, a relatively
small number affect uunctionally The challenge in human genetit®wever is to

discover those thiare harmful to us.

More importantly, tle genetic roots for common complex diseases is rdofieult to
understand(Mitchell 2012) Instead of a single allele or single gene, many complex

disorders, referretb as polygenetic conditions, stem fréime interactions and contributions
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of multiple SNPs or genes. For these types of conditions, which include Diabetes,
Schizophrenia, Epilepsy, Obesity, Cardiovascular DiseasklHypertensionynderstanding
SNP inteactions and environmental risk factoss fundamentally important. Typically,
environmentafactors have vital effects from the outset and/tignificantly influence the
severity of conditiongKorkiakangas et al. 2009; Cooper et al. 20B3) investigating the
effects of these multiple factors, it will help us to improve both medicine and our

understanding of human biology.

2.4 Diabetes

The World Health Organisation (WHO) reported that over the past few decades, both
Di abet esbd cases and preval enc@Vorlch lealth b e
Organization 2016)Diabetes is a serious, chronic disease that occurs either when the
pancreas does not produce enough insulin or when the body cannot effectively use the insuli
it produces. Accaling to the International Diabetes legation (IDF) the number of diabetic
people worldwide is expected to rise from 366 million in 2011 to 552 million by 2030
(Whiting etal. 2011) One in 11 adults had diates in 2015 with this figure expected to be

one in 10 adults by 2040.

Additionally, in 2015 Diabetes UK announced that there were 3.9 million people in the UK
living with diabetes. This figure shows that there wagpproximately 125,000 more adults
with diabetes compared with the previous year. This indicates that there is a dramatic
increase in diabetic sas. Diabetes is one of the leading causes of death (2.7%) worldwide.
In 2012,the WHO revealed that diabetedl&d 1.5 million people worldwidéNorld Health
Organization 2016)The main types of diabetes are typeardd type 2, andgestational

diabdes (GDM) However nine other subtypedo exist(World Health Organization 2016)

Ihttps://www.diabetes.org.uk/About us/News#3@lion-peoplenow-living-with-diabetes/
14



https://www.diabetes.org.uk/About_us/News/39-million-people-now-living-with-diabetes/

Type 2 diabetes is the most predominant form of diabetesnd the world and is the

category stdied in this thesis.

2.4.1Key Facts abouflype 2 Diabetes

According to the WHO, T2D accounts for the vast majority of people with diabetes
worldwide (World Health Organizatio 2016) It is estimated that people diagnosed with
T2D constitute 90% of all reported diabetic cases. Until recently, T2D was recognized only

in people over the age of 40 but have rfoundin youngchildren(Farsani et al. 2013)

T2D remains the leading cause of serious e health conditions. It is responsible fo
most cases dblindness (Diabetic retinopathy), kidney failure and lower limb amputation.
Moreover, high glucose levels (raised blood sugar levels) or Hyperglycaemia in the
bloodstream can damage blood vesselsclviimcrease the likelihood of atherosciesis
(cardiovasular disease) and stroke and can cause nerve ddinagechi et al2012) In

the UK, the annual direct cost of T2D to the National Health Service (NHS) in 2035 is

estimated to be £15 billiorthe indirect costs will be close to £2@ilion (Hex et al. 2012)

2.4.2Type 2 Diabetes Phenomena

T2D, which is known as insulin resistance, is a chronic disease that occurs when the pancrez
does not produce enough insulin or the insulinpreddc does not i nter a
cells(World Health Organization 20168Fonsequently, glucose remains in the blood and the
body cannotffectively use it for energy. Researchéelieved thal 2D is a multifactorial
disorder with a complex aetiolodyyssenko et al. 2008)'he condition is said to result

from the convergence of genetics, the environment, diet and lifestyle risk fégtesenko

et al. 2008) Theserisk factors include obesity andre&rweight (with a body masadex

(BMI) of 30 or more), family histry, old age (people over the age of 40), ethnicity, and

physical inactivity(Lewis et al. 2010)

Thereis a complementary role for conventional factors modulating the genetic predisposition

of such a complex diseasthat emerged from the National Health Service Diabetes
15



Prevention ProgramDPP) (Wise 2018) In a large radomized cohort of lifestyle
interventions including weight loss, exercise and dietary modification, 58% of the overweight
adults with mean BMI 31kg/frachieveda reduction in the incidence of T2(Tudies et al.

2012) In anotheistudyresults from lifestyle interventiorckootbased programs suggested
that the eduction in the prevalence of overweight and obesity among adolescents may

decrease the risk of childhomdiset of T2D(The HEALTHY StudyGroup 2010)

Twin studies have shown th#he concordance rate of T2D in monozygotic twins is
approximately 70% compared with 20% to 30% in dizygotic twMsdici et al. 1999)
Furthermore, the lifetime risk of developing the disease in indal&l if one parent is
affected is about 40%, whileiricreases to 70% if both parents areetd(Kobberling &

Tilli 1982). In addition, a study of parental transmission of0r8howed that the influence

of first-degree relatives in the risk of developing T2D is varied. The risk of developing the
disease in offspring who have one diabetic parent is aboil8.Bigherandis 6-fold higher

if both parents are affected compatedhe general population (offspring without parental
diabetesMeigs et al. 2000)However, these risk ratio figures vary in different cohort and
population studies. The studipeformed in(Al-Sinani et al. 2014; Medici et al. 1999;
Kobberling & Tillil 1982; Meigs et al. 2000)ndicate that there is consistent evidence to
show which genetic determinants are an impadrtactor in modifying an individual
predsposition to T2D. Thus, the potential influence of genetics on T2D risk is significant

with predicted heritability between 20 and 70 percent.

A relatively small proportion of diabetic cases occur due to a mutati@single gene.
These cases are classdias either monogenic diabetes, neonatal diabetes mellitus (NDM),
or maturityonset diabetes of the young (MODBhilippe et al. 215) T2D on the other
hand is known tde a polygenic disorder. This indicates that T2D occurs due to complex
interactions between multip@NPs omgenes. Over the past decade, advances in genotyping
technology have made it possible to discover the geoenhstituents associatedth T2D.
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Seveal loci, identified before the widespread usegehomewide association studies
(GWAYS), include calpain 100APN1Q and transcription factor 7 like ZCF7L2 - genes

that were discovered using linkage analy§lig|asad & Groop 2015 hese werehe only

two genes associated with T2D. Linkage analysis failed to detect genes involved in complex
polygenic disordersin candidate gene studies several gehage been found to be
associated with T2D including Redisome proliferatoactivated receptoragnma PPARQ,

Insulin receptor substrate 1IRS) and (RS2), potassium inwardly rectifying channel,
subfamily J, member 12 KCNJ11J), and Wolfram syndrome WFSJ (Ali 2013). These two
approaches hadetected a number of T2D risk geneswdwger, alternative techniques are

required to detect variants that candidate gerdinkage analysis cannot identify.

To date there are more than 120 susbéiy loci for T2D thathave been identified using
GWAS (Prasad & Groop 2015; Wang et2016) A review conducted by Prasad and Groop
(Prasad & Grop 2015) provides a complete list of2D risk SNPs. Genetic markers
identifiedin pre GWAS studies have also been confirmed by GWASF7L2 whichwas
proved to be associated with T2D Virsgkage studies, is the most significant and repeatedly
replicated gene discovered via GWASAli 2013). Several other genes have been
consistently identified among multiple populations as being adsdciaith T2D such as
Hematopoieticallyexpressed homeobokHEX), Solute carrier family 30 (zinc transpante
member 8 BLC30AS, Cyclin-Dependent Kinase Inhibitor 2A/EEDKN2A/B, and Insulin

like growth factor 2 mRNAbinding protein 2IGF2BP2 (Tudies et al. 2012)

The discovery of these genes has servedigst@us foundation to understand thgukation

of glucose metabolism and the development of T2D. lojged that these investigations
could yield a comprehensive understanding of the mechanisms that regulate insulin secretio
and action and help to uastand the changéisat cause an increed riskto T2D. These

findings may ultimately lead to improve draggtic testing, prevention of disease onset, and
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future treatments underpinned by advances in personalized meditiisecould help

mitigate the prgression of the disease and its compiarz.

2.5 GeneticAssociation Stu@s

Genetic association studies are used to detect genetic susceptibility (or susceptibility loci) to
specific medical disordefsewis & Knight 2012) There are severapproaches in genetic
associatiorstudies: linkage studig®tt et al. 2015)candidate gene (CG) studi@=oulkes

2009) and genomavide association study (GWA®Bush & Moore 2012)All approaches

are based on the goheritance of genetic markers associated wigkakse allele.

2.5.1Linkage Studies

Linkage stidies focus on identifying rareleles (variants) correlated with the phenotype of
interest within a pedigregOtt et al. 2015) The study design for this approach is family
based association whialsesgenotypeof candidate individuals ith his/her parents. This
type of study is more costly than other approaches and parents need to beheestualy

(Ott et al. 2015)Despite these limitations, familyased association studieg ammune to
popuktion stratification (SR allele frequencies vary among different population ancestry)
that occurs in other approaches. Farbfsed association studies can offer a method to

assess mendelian genetic errdmsare & Koref 2014)

2.5.2Candidate Gen8tudies

Candidate gene studies (CG) focus on identifying risk alleles associated with a particular
disease within population studi@atnala tal. 2013) The study design for this approach is
based on caseontrol subjects In casecontrol studies, the investigators compare DNA
samples of individuals who have a disease (cases) with individuals what tavethe
diseag (controls). The candade gene approach uses gepexviously identified and thus

this approach is initiated with prior knowledge of gene fundiRatnala et al. 2013)Vhile

CG has proved to be useful, it fails to diser new genes or combinations and interacting

genes(Amos et al. 2011)In addition, the fact that unrelated casmtrol samples are
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recruited makes the study more susceptible to population stratification issues that occur du

to variable ancestral backgroundsis can lead to false positive outcomes.

2.5.3GenomeWide Association Studies
With the completion of the Human Genome Project in 2@B&en et al. 2015nd the

International HapMap Project i@5(Gibbs et al. 2003; Manolio & Collins 20Q%enome
wide association studies are mavielely used in genetic studies. GWAS have been used in
a lroadrange of disease type studies to detect statistically signifiSNPs and investigate
the genetic afutecture of human disease in the entire gendBwesh & Moore 2012)
GWAS are a populatichased approactvhere the study design utilises unrelated €ase
control observations. In this thesis GWAS data is utilised, consequentyreimdepth

discussion on GWAS is preded below.

2.6 GenomeWide Association Studies Overview

The primary objective in GWAS is to idéfy genetic risk factors for common complex
diseasegBush & Moore 2012) Proponents claimed that GWAS would significantly
enhance our nderstanding of genetitased determinastfor common complex diseases,
such as, T2D, Schizophrenia, Epilepsy, Obesity, Cardiovasbigease, and Hypertension
(Bush & Moore 2012; Guo et al. 2014ore specifically, to determine if SNPs occur more
frequently in individuals affected with a particular disease, thamdividuals unafected by
the disease. In other words, G\ was developed to discovetirect and indirect
association between SNPsral specific diseaseBush & Moore 2012; Balding 2006)
Direct (causal) association refers to the SNP that directly influences the biological
configurations found to be statistically associated wiffhenotypé€Balding 2006) Indirect
(noncausal) association describes influelfBiBlPs that are not directly genotyp@hlding
2006) There are other SNPs known as tag Saiegenotyped and statically associated
to the trait, located ia region of highinkage disequilibrium (LD)with the influential SNB
(Bush & Moore 2012)LD is a norrancbm association between allelic variantsidferent
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loci on the same chromosome in a given population, typically the two adedesther
inherited or correlatefLewis & Knight 2012) Therefae, significant SNPs from GWAS are

not alwaysassumed to be causative variants but instead they may require further
investigation to map the actual location of influential SNPs. In other words, significant SNPs
in a genetic association study are more jikelbe indirect. Figure 2.4 illustrates diteand

indirect associations between SNPs and the disease phenotype.

Disease
Direct Association ,,--r""""{_{__ Phentyp 2 Indirect Association

Chromosome
T 7 ; Region of High LD -
Sl JE
<> Genotyped SNP (tag SNP) 7 J

’ Causal SNP (influential SNP)

Figure 2.4: Direct and Indirect Association

Since GWAS is a populatidmased method that coss of a large number of unrelated
sample (casecontrol), most GWAS are well developed to find associations with common
variants (>5%) and ledgsr detecing low allele frequency varian{Sebastiani & Solovieff

2011; Fadista et al. 2016Nhis highlights theommon diseasecommon variant (CBCV)
hypothesis(Shields 2011)indicating that common diseases are probably influenced by
genetic markers that are relativetpmmon in the population. Under this hypothesis,
phenotype assaaied alleles are more likely establishesing common genetic markers,
specifically SNPs that have been detected and compared with affected and unaffectec
samples. However, there is disagreatamong researchers as they suggested that common
diseases camn be caused by common alleles but rathey are influenced by rare variants

(Cirulli & Goldstein 2010)

Genotyping technology has facilitated rapid progress in gerwiche association studies.

These technologidsave been spédically designed to assay more than one million SNPs.
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However, t is now possible, to sequence the enhitanan genome within a single day
(Behjati & Tarpey 2013)The most recent DNA sequencing tedogy is Next Generation
Sequencing (NGS)Behjati & Tarpey 2013)which provides tools to sequence DNA and
RNA. NGS is cost effective vhtrapid performance compared to the poedy usedSanger
SequencingTechnology(Pareek et al. 2011; Xuan et al. 201@urrently, there are two
platforms utilized in GWAS the lllumina and Affymetrix platform@ush & Moore 2012)

Each techniqueffers a different approach to measurd datect genomic veation (alleles).

2.6.1Choice ofSignificanceTest

GWAS studies often test millions of independent SNPs for associations with particular
diseases. Thus, to find SNPs that are statistically signifayahto limit type | errors (false
positives) a very stringent statistical threshold is used v p 1 (Panagiotou &
loannidis 2012) This threshold is called a Bonferrezorrected genomwide sgnificance
threshold(Panagiotou & lannidis 2012amd it has become a standard in most GWA%e
Bonferroni correction offers a method to control familise error rates (FWERYeng et
al.2015) FWER is the probability of rejéing at least one null hypothesis when all the nulls
are correc{Zhang et al. 2012)An SNP is considered statistically significant if itvglue

is less than the Bonferreunbrrected genomwide signiicance level. Bonferroni correction

is aconservative thresholeng et al. 2015and it may be higly likely that none of the
SNPs under investigation reach such a small threshold. Therefore, as recommended i
Duggal 6@®uggaltet a.y2008p suggestive association threshald p p T

should be utilized. A suggestive threshold is less conservative, and it is generally used tc

detect SNPs for consideration in follayp studies.

2.6.2ChallengsAssociated to GWA®& pproach
Although, GWAS havesignificantly impacted the field of iiman genetics, there are still

challenges associated with computational and statistical methods. These challenges includ

scalability, missing markers and complex trétkang et al. 2012JUsually GWAS datasets
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contain millions of SNPs acroisousands of individual3.hereforeto perform GWAS, the
algorithms need to be extremely efficient and scalable to avoid issues with computational
resources ank minimise the time required to conduct GWAS. In addition, missing markers
need to be approptely handled. One approach to handle missing markers is to use
imputation (Howie et al. 2012jo impute unidentified markers ugiran accessible SNPs
database such as the 1000 Gen¢atam 2015xand International HapMap Proje¢Gibbs

et al. 2003)

Ancther major limitation with GWASs that while being successful at detect single
SNFPs relaing to phenotype traitsjts ability to find SNPs associated with complex
traits/diseasesComplex traits are more likely to be affected by multiple SNPs which
separately may have a weak association with the disease but civelylative a much more
important part to play in the developmentooimplex diseases. In this case it is extremely
difficult for an SNP with low marginal effects to be identified using sidAgleus methods.
Consequently, an alternative approach such as-oalis analysis needs to be conducted

(Bush & Moore 2012)

2.6.3HypothesisTesting for GWAS

In biomedical research the most popular tool for statistical analysigpisthesis testing
(Penrod & Moore 2014)Hypothesis testing is used to determine if the ewddhat is
available in the data is adequate to conclude that a particular condition (the question being
asked) is true fothat population(Taegr & Kuhnt 2014) There are two contrasting
hypotheses relating to the populatiotine null hypothesisand thealternative hypotlesis

The null hypothesis is testednd based on the outcomnig either acceptance or rejection.

The alternative hypothesisn the other hands the hypothesis that challenges the null

hypothesigTaeger & Kuhnt 2014)

Generally, significance testing, also known asvalpe, is conducted. Theyalue is defined

as the probability of seeing a value of a test statistegasl to or larger than the one that
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was observed in a dataset, assuming the null hypothesis iBtsle & Moore 2012) In
academic research the significance thresifold ) of 0.05 is widely
indicates that the analysis probably has a type I eate (false positive) of 5%. This in turn
means that there is a 5% chance of making an error in rejecting the null hypothesis when i
was in fact true. Maawhile, type Il errors (false negatives) also need to be measured to
calculate the probability oéccepting thenull hypothesis when it is in fact false. The
statistical power of the study is calculated using the formutsig@ Il error). In general, if

the power of the study is 80% or more, this indicates that the study is sufficiently powered.
More gecifically, saying that the power is 80%, means that 80%hetime the null

hypothesis will be rejected when it is fa{§enrod & Moore 2014)

For GWAS the null hypothesis represents a situation where th@o association between
the genotype and phenotype of interélte alternative hypothesis ohet other hand
indicates that there is at least a single SNP (genotype) associated with the disease of intere

in the given datas€Bush & Moore 2012)

2.6.4False Dscovery R&e in GWAS

The traditional multiple hypothesis testing based on FWER provides a strong conéisleon f
positives however it is too conservativeising very small gralue threshold. In GWAS
setting, the main goal is to identify as many true positive figslias possible, while
controlling against any single false positive occurring. The false discoatey(FDR)
method proposed by SoriSoric 1989)s designed to measure such typeéradeoff. FDR

is used to evaluate the statistical significance of multiple hypothesis tests based on the
proportion of false positives among the claimegctedhypothesegpositives) Storey and
Tibshirani(Storey & Tibshirani 2003proposed the -galue statistical method to estimate
FDR based measure of significance. They definedlge to be the minimum FDR at which

the particular test @alue) is cHed significant: 1 | ETOO™ where 0 is the

threshold and ab 1.
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The FDR and its related estimation methoevétpe) have been widely used in GWAS
analysigHind et al. 2017; Kotnik et al. 2018; LeBlanc et al. 2016; Heller & Yekutieli 2014)
in whicha number of individual hypothesis tests are perforsiediltaneouslyresulting in

combinations of true and false null hypotbgs

2.6.5Visual Presentation for GWAS

Data visualization tools in GWAS facilitate the interpretation of geroide association
study outcomes. Various visual tools for GWAS have been developed witlkiue

Manhattan and € plots(Turner 2018)

2.6.5.1Manhattan Plot

Manhattan plots are designed to visualize GWA significance levelal(es) by
chromosome position. This plot highlights any regions of significance. Manhattannglots a
geneated by plotting thealue in the vertical axis which represents the ¢ "Q@cale and

the physical position of the SNPs in each chromosome in the horizontal axis. This plot uses
a Bonferroni corrected genormngde significance threshold to hilight statistically

significant SNPs, which highlight potential dise@ssaiated SNPs.

2.6.5.2QuantileQuantilePlot

QuantileQuantile (QQ) plots are used to show the relationship between the expected
distribution of pvalues (null hypothesis) and the obserdgestribution of pvalues in test
statistics. QQ plots are typically useatdetect if there is any evidence of systematic bias
such as population stratification. Doing so is good practice in robust analysis that assures th
guality and the validity of th data used in the study-@plots are produced by plotting the
observed pralue obtained in test statistifChi-Squared statistic or logistic regression test)
against the theoretical expected values under the null hypothesis of no association. The plc
should go along the diagonal linearly with a slight deviation towards thdrt@ scenario
where there is evidence of population stratification the plot may deviate too early from the

diagonal.
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2.7 Quality Control and Filterinfor GWAS Data

Quality control (QC) is used in GWAS to identify and eliminate low quality DNA samples
and narkers prior to association analy$isaurie et al. 2010)QC is a critical element in
GWAS analysis, and it is essential to avoid spurious GWAS resuitsreTare two
fundamental areas of Q@hdividualBased Quality Control measures and MaiRased

Quality Control measurdg®errealt et al. 2013)as explained in the following sections.

2.7.1IndividualBasedQuality Control

Individualtbased QC is performed to select and discard subjects (individuals) who do not
meet specific criteria for GWAS analysis. There are four essential measquésd which
include Gender Ambiguity (inconsistency) check, Missingness Rate per Indilvid

Duplicated or Relatedness Individuals, and Population Stratification.

2.7.1.1Gender AmbiguityCheck

Gender ambiguity typically arises from sample handling errors. daggosity rate
calculation can be used to detect individuals, who have been reported dsmradés but
weretheir existing sex information does not match with genotype gender information. This
calculation is applied across alk¢hromosome markers feach individual in the study and
comparel to the expected homozygosity rate (less than 0.Zefmiale, more than 0.8 for

male)(Anderson et al. 21D).

2.7.1.2Missingness Rate per Individual

Missingness rate per individual also known as individual call rate or genotypng
efficiency per individualis an indicator of individual DNA quality. The call rate per
individual presentthe percentagef SNPsgenotypedn each sampléS. Turner et al. 2011)
A low genotypngcall rate describes an issue with a poor quality DNA sample ordowle
concentration. Samples with poor genotygpiefficiency need to be removedhe
recommended call rate threstia$ between 98 and $frcent(S. Turneret al. 2011) This

threshold is an approximation and the exact threshold depends on various factors (i.e
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genotying platform and DNA sample quality) and this may vary between different studies.
The call rate threshold depends on the objective of tetysivhereby a balance between

increasing genotypic efficiency and sample size is considered.

2.7.1.3IndividualsDuplicatedor Relatedness

Duplicated and sample relatedness is measured to examine the identity and pedigree integri
between individuals by comparingenomic data with seleported relationships among
subjects in the study. The family relationship between twoptesrcan be quantified by
estimating the degree of identiby-descent (IBD)- in other words the extent to which
alleles among relatives are sha(@dderson et al. 2010)BD is defined as the segments of

the genome thacome from the same ancestral sourtteey are copies of the same ancestral
chromosomgThompson 2013)Typically, the expected IBD sharinggree for a relad

pair is estimated based on their pedigree relationship. Thus, duplicated samples ot
monozygotic twins share two alleles, first degree relatives are morg fikshare half of

their alleles, second degree relatives share 0.25, thgceeaelatives share 0.125 and

unrelated samples share zero all¢l&gggirala et al. 2015; Browning & Browning 2012)

In population based cas®ntol association studies, independence between observations is
assume@Bush & Moore 2012)in other words the observed genotypes come from unrelated
samples. If duplicatedyr first or seconetlegree relatives are found then the distribution of

t he sampl e slbnotde appropyatelyepresanied withirthe population. This

over represeationof genotypesnay cause bias in the study and increase type | and type Il
errors. Therefore, the extent of relatedness in the entire population must be reduced to secor

degee relatives (0.25Anderson et al. 2010)

2.7.1.4Population Stratification

Population stratification occurs when casmtrol study samples contaimultiple groups of
individuals who do not share the same genetic anc&tiurner et al. 2011When this is

the case, studies carry different alldlequencies due to population diversity as each
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population has a unique genetic fingerprint. Thus, allele frequency diversity between
individuals is not necessarily associated with any specific diseassing purious
associations(Cardon & Palmer 2003)This is the major cause of confoundiragtors in
GWAS analysigAnderson et al. 2010Y herefore, in order to avoid introducing bias to the
study due to population stratification,i$ important to conduct the analysis using a dataset

from a relatively homogenous populati@ush & Moore 2012)

There are a number of methods to detect and characterise population stratification in GWAS
These include Genomic Contr(GC), Structured Association, dnPrinci@l Component
Analysis. TheGC (S. Turner et al. 201Ipethod is based on calculating and estimating an
inflation factor_ and dividing and adjtmg all of the test statistics downward by this
inflation factor. Inflation factor values greater than 1 indicate inflation, therefore population

stratificationexists,and correction is applied to bring the value closer to 1.

The structured associati@Bebastiani & Solowff 2011)method is a moddbased clustering
techniqe that groups samples into clusters using a subset of SNPs and performing
association tesamong each inferred group. The method can identify individuals that do not

cluster with the majority of samples and eliminate these individuals from the study.

Principal component analysis (PCAMHotelling 1933)is a multivariate statistical approach
used to summarise and produce priatgomponents of uncorrelated variables oladin

from a data matrix consisting of samples with a number of potentially correlated @ariabl
PCA is a widely used method in GWAS due to its computationally convenient manner
(Anderson et al. 2010Typically, a PCA model is constrgal using genotype data obtained
from populations of known ancestry such as the reference panel of HapMap phase Il date
which contains four different ancestral ptgdions including Europe, Asia (Chinese and
Japanese populations), and Africa. The metlsagsed to cluster samples from GWA data

in terms of ancestry alongside the HapMap samples to produce pliogipponent scores

for GWA samples.
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2.7.2Marker-BasedQuality Control

Markerbased quality control also consists of several key siepstifying SNPs with
excessive missing genotyp8NPs showing a significant deviation from Haieinberg
Equilibrium (HWE), and finally identifying markers with very low Minor Alle Frequency
(MAF). Removing SNPs from the study is critical as each SNP may cermitit disease
risk (Laurie et al. 2010)Therefore, caution needs to be taken when deciding what thresholds

to use to remove SNPs from the study.

2.7.2.1MissingnesfRatke Per Marker

Missingness rate per marker also known as marker genotgffingency or call rate isn
informative indicator oimarker quality. The call rate per marker represdmsproportion

of individuals with a genotype call for each SK\Reale 2010) Typically, this step is
conducted to remove SNiH#ghey are missing i large number acd&amples. This is a good
indicator for a poor quality marker that is more likely to induce false associations. The
authors in(Donaldson et al2016)indicate that the recommended threshold for removing
markers with low call rates is 989 percentageThis means that if the SNP is missing in
more than 1 or percentag®f samples, it will be removed from the study. However, this

recommended teshold may vary between studies.

2.7.2.2Minor Allele Frequency (MAF)

Minor allele Frequency refers to the frequency of the less common allele at a given SNP
(Bush & Moore 2012)More specifically, if a particular SNP (for example C) appears in
30% of a population that meanssiSNP is classified as a minor allele, while the more
common allele (major allele) can be found in 70% of the same popu(&tish & Moore

2012) Filtering SNPs based on MAF is an important step toward increasing statistical
power. Generally, the statistical power fare SNPs is considerably low therefore it has
been recommended to exclude any extremely rare 8NPkler et al. 2014)For instance,

if an SNP demonstrates variation in only 1 of the 82 samples, this proportion is inadequate

statistically and should be discadfrom the study.
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Furthermore, to removeN®s with MAF, the threshold limit is chosen by considering the
samples size in the study. In some instances, SNPs have been removed for which the MA
is less than 1% while other studies with a small sample setting a higher threshold such as

5% as a cubff pointis choser(Tabangin et al. 2009)

2.7.2.3HardyWeinberg Equilibrim (HWE)

Hardy-Weinberg Equilibrium assumes that, allele and genotype frequepni@s constant

from one generation to the next, time absence of other evolutionary influences such as
mutation, natural selection, migration, and associative mdiigginton et al. 2005)
Departure fromnthis equilibrium can indicatthe occurrence of potential genotyping errors,
and the existence of population stratificati@raffelman & Weir 2Q6). In studybased
casecontrol approaches, it is necessary to conduct HWE in controls separately as a departur
in cases can be indicative of true association to the trait umgestigation(Anderson et al.

2010) In the literature, various significance thresholds between M0@Caughan et al.
2013)anduvg p 1 (Burton et al. 2007)o identify markers in HWE have been reported.
However,values dovary between studiesChecking markers for HWE is the last step in
quality control analysis and is a common practice to remove SNPs that show deviation from

HWE.

Table 2.1 presents the commasidusedin PLINK (Purcell et al. 2007jo fulfil QC for
samples and markers prior to association analysis

Table 2.1: QC Command for Samples and Markers

Command Description of the Command

--checksex Check for sample identity problems
--genome Examine pedigree integrity

--missing - Check genotype efficiency for each sample

- Check genotype efficiency for eaotarker

--mind Remove samples with low call rate
--geno Remove markers with low calhte
--freq Report minor allele frequency for each marker
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--maf Remove extremely rare markers
--hardy Examire markesfor Hardy-WeinbergEquilibrium

--hwe Remoe markers showing departure froRardy
Weinberg Equilibrium

2.8 Association Analysis

Associatio analysis in caseontrol studies compas¢he frequency of alleles or genotypes

at genetic marker loci (SNP) between cases and contralgiven populatiotiClarke et al.
2011) This analysis is used to detect statistically significant differences in the frequency of
alleles between individuals in the study. These allelesdgtic markers) are used to test
associatios with the phenotype (disease traiQlarke et al. 2011)In other words
association analysis is a series of sifAglaus statistical tests, that explore each SNP

separately and their likely association with a particular phenotype.

Genetic association mapping can be performed usweral statistical methods including
Pearsa 6CGhi-Squared testdy) , Fi sherdés exact test , I i n
transmission/disequilibrium test (TDT{Tortes et al. 2013)The use of one of these tests
depends on the type and the size of a dataset where the dataset is eithevaaaailypr
populationbased(Zhang et al. 202). For exampl e, Fi sherds e
with small sample sizegZhang etal. 2012) o mp ar e d wiChi{squdtes testd§)o n 6 s
which is often used with much bigger sample sizes. Tl@dntana 2006js used in family

based association testing whereas, for populdigsed association (unrelated samples)

Pe ar €hi-Bgbased testingd) ) and linear/logistic regression are used.

2.8.1Statistical Methods od CaseControl Study

In a casecontrol study, the association between a single SNP and disease status can be bast
on standard contingency table tests for independéaieling 2006) Contingency tables
are widely used to disgy genetic markers (SNPs) in the format of genotype or allele

frequency by disease status (casatrol)(Clarke et al. 2011)
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The contingency table for case and control analyses using genatyd allelic genetic
models of penetrance is summarized in Tab® ®&here DF represents the degreés

freedom in genetic models and is calculated based on the (hnumber of rows in the contingenc

tablei 1) (number of columns in the contingency tablg) (Bland 2015)

Whereas) refers to the observed frequency of individuals in cases and coifbrelfers
to the row number an@epresents the column number. For example, in a genotypic model

testd refers to the observed frequency of indixads in cases when genotyapa&occurs.

Table 2.2: Contingency Table for Genetic Models

Test DF  Contingency table representation
aa Aa | AA
Genotypic test 2 Cases Ou1 [ Oz | Og3
Controls O | O | O
a A
Allelic test 1 Cases Ou | Owp
Controls 021 | Oz

2.8.2Association Analysis Method

The princi@l formulation for association testing is defined in Definition 1.

Definition 1. Let OB hd be a set of Y SNPs for0 individuals. Let phenotype
w B oy . Assume the genomic data for each SMBminor alleleyand major allelé.
To represent the homozygous major allel® heterozygous allelé ¢and homozygous

minor allele® ¢onumbers such as 0, 1, and 2 are used respectively. Conseqaently,

phc hp 6 ™Mp & 0.
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For casecontrol studies the phenotype can be represented as a binary variable, O referring tc
controls and 1 referring to cas@$ie association test with genetic data is to test for the

null hypothesis (no association between the SNP and phenotype of interest (disease status
in the cont i ng €m-Boyared edidd ) ean beRiged to st for@ssociation.
The pinciple of Chi-Squared tes{w ) is to compare the distributions of observed and
expected values with their contingency talfiésongxue Chen et al. 2014}hiSquarel test
summarises the differences betweit)e observed frequency values and the expected
frequency values at single genetic marker loci (SNP) across cases and controls. The

calculation of a ChBquared testd ) is formulated in Definition 2.

Definition 2. The standard CHsquarel test for tle independence of rows and columns in
the contingency table considering a genotypic model for assoc{aiofVang et al. 2016)

is defined as:

X U o 2.1
® O (2.1)

whereO is the expected frequency thfe allele or genotype in casand contrad and is

definedas
o U 55'58
0
where 0 g 0 (2.2)
and Og 0

where( refers to the observed frequency of individuals whbsequalstndd equalsQ

Following the calculation of a C{8quared test, the)-value for ChiSquare is determined
based on the dgeees of freedom used in the test. Formally, rihealue is defined as the
probability of seeing a value (CBguareal statistic test) as equal to or larger than the one
that was observed in a given dataset, assuming théypdthesis (no association)trsie
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(Bush & Moore 2012) More specifically, the)-value represents the degree of association

between the SNP and the phenotype across the entire sample set.

2.8.3Logistic Regression

Logistic regression(Cox 1958)is defined as a statistical method for predicting binary
outcomes. Logistic regression modelling can be used tiyznthe contingency table for
independence, where disease status is a binary trait (0/1) with O indiaatorgrol and 1
indicating a cas(Clarke et al. 2011)Let®dN Tdp be a binary variable for case and control
status and leb™ T1iply be agenotype at a particular SNP. Assuming that 0, 1, 2 represent
homozygous major allelé G heterozygous allelé wand homozygous minor allel® &

respectively. Logistic regression modelling is therefore giveXag/ang et al. 2016)

The conditional probability b pis

— 0 pW (2.3)

The logitfunction,which is the inverse of the sigmoidal logistic function, is represented as

a € "QQo | | — (2.9
The logit is given as a linear predicfanction as follows

8 £ QR T o 25
wherg repregnts the intercept afd denotes the regression coeffidien

Logistic regression modellings a predominant method fomvestigating each SNP
separately and to capture the linaasociationdetween SNPs and the phenotylpagistic
regressioncan be readily expandedto allow for covariates such as other SNPs,
sociodemographic and clinical facto@ther genetic models a¢tuding Allelic, Genotypic,

Dominant, and Recessive are availdide/everogistic regressiors the preferred approach.

2.8.40dds Raw of Disease for Casgontrol Study

In a casecontrol study, the strength of an association is measured by the odds ratio (OR)

(Clarke et al. 2011)OR is the ratio of the odds of disease in the exposed group (risk mark
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positives) compared with those the norexposed group (risk maikegatives)Clarke et
al. 2011) For example, based on the variables providdithble2.2, the allelic OR measure
for the association between disease and allele, is the odds of diseaseA (@tiajer allele)
is carried compared with the odds of disease if alkelgninor allele) is carried. The
following formula is used to estimate the allelic OR for alkelgi 2007).

€ QRIMQI QUIEOG & Qa Q
€ QRIMQI QuiEOa d Qo Q

(2.6)

Based on the variables the contingency tabléor an allelic test, the OR is estimatad

follows:
0 jo
oY —
U JU
(2.7)
O U
therefore Y —
0 U

The strength of the association for allales estimated based on the value of &FRexplained
in Table2.3. An OR p signifies that the condition under study appears equally in both
groups (case and control). However, an OR indicates that the conditooccurs in the
case group more than the control group. An OR p indicates thathe condition is more

likely in the control group.

Table 2.3: The Descriptiorof Odds Ratio Numerical Value

Odds Ratio Description of the OR Value

oY »p Indicates no association betwe
genotype and disease

0'Y »p Indicates that there is a ris
association between allela and
disease

0Y »p Indicates a protective associatit
for alleleA

2.9 The Application of GWAS into T2D

Recenty, several GWAS and metmalysis studies have been performed in different cohorts

and/or ethnic groups. The studies have described associations between genetic variants al
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T2Din di fferent p o p UQiwadt al.o201¢l)association @mnalysissvass t 1
performed in a caseontrol study tanvestgate the role of potassium inwarelgctifying-
channel, subfamilhd, member 11 (KCNJ11) variation particularly E23K polymorphism
(rs5219) in susceptibility to T2D. In this study, 56,349 T2D cases, 81,800 controls, and 483
family trios were collectedrom 48 published studies. The statistical methods used within
the approach included The Standardt@istic testandsubgroup analysis (ethnicity, sample
size, BMI, age and sex) to explore whether variation in these studies was due to
heterogeneity. Rthermae, the odds ratio with its 95% confidence interval of KCNJ11
E23K polymorphism was calculated to measure the association with T2D. Dominant and
Recessive genetic models were applied to examine the assotiatiween theKCNJ11

E23K polymorphism ash T2D lisk. The results suggest that the KCNJ11 E23K allele for
rs5219 (OR =1.123) p 1 ) was significantly associated with T2D risk. For heterozygous
and homozygous alleles with (OR=1.09p 1t )and (OR =1.26) p 1 ) respectively,

a significantincrease of T2D risk was observed. This study suggesteth#ératisa modest

but statisttally significant effect of the 23K allele athe rs5219 polymorphism in
susceptibility to T2D, particularly in East Asians and Caucasians. The contributionef thes
genetic variations to T2D in other ethnic populations (e.g. Indian, African, Americas, Jew
and Arabian) appear to be relatively lowsor Dominant and Recessive genetic models,

similar results were obtained.

Seven novel T2D susceptibility loci wererdeé i f i ed i n (WaHhajan 2814)0 s
using several published medaalysis GWAS. The studies contain 26,488eas and 83,964
controls of East Asian, South Asian, European, Mexican, and Mexican Amenicestry.

By combining GWAS across ancestry groups using Fedhsic netaanalysis, it was
possible to observe significant improvementhiadetecton of novel @mplex trait loci for

the disease. Furthermore, with this approach, there was an enhancement inrttag pivey
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resolution of causal variants by leveraging differes in local linkage disequilibrium

structure between ethnic groups.

I n P ha n(Pléasi etslt 201d}khe authors performed a casmntol study using 400

T2D cases and controls from a South Indian population to analyse and outline the associatio
of Potassium inwardly rectifying channel, subfamily J, member 11 (KCNgEtigs and the

risk of T2D. The study conducted a systematic revied aretaanalysis for KCNJ11
(rs5219) polymorphism in 3,831 cases and 3,543 controls that were aggregated from &
published reports from South Asian and East Asian populations. Inab&©R was used

as a measure of association of KCNJ11 polymorphisms 18525215, rs41282930,
rs1800467) and T2D with its corresponding 95% Confidence Interval (Cl). Moreover,
Coc hr arf étatistic® werd utilized to assess heterogeneity within andebetithe
eligible studies. The resulting evidence therefore showedkiGat)11 rs5215, €-C-C
haplotype and two loci (rs5219 vs rs1800467) had a significant association with T2D.
However, Copy Number Variations (CNV) analysis did not show significant ti@ria
between T2D case and control subjects. Furthermore;anelgsisof the study suggested

that KCNJ11 (rs5219) polymorphism is associated wigrisk of T2D in East Asian and

Global populatios butnotin the South Asian population.

In Ch e e ma(Geemar etrak 2015he authors performed a casentrol study to
investigate the differences in the association of peroxisome proliferaigat®ct receptor,
gamma, coactivator 1 alpha (PPARGC1A) genes and T2D risk among populations from
African origins. The study includes adults aged >30 years old from African Americeses(c

= 124, controls = 122) and Haitian Americans (cases = 110, tortil6). The statistical
methods used within this study included standard summary statistics such as$qe&ad
goodnesdit test that was employed to check genotype counts fon &\P for Hardy
Weinberg Equilibrium. Furthermore, theédst was used to compare demographics (age, sex,

BMI, smoking status) between cases amhtrols, andclinical information. Logistic
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regression was also used to calculate adjusted and unadjusteith@5% CI. Tl results
indicated that SNP rs7656250 (OR = 0.22gpue = 0.005) and rs4235308 (OR =0.42, p
value = 0.026) showed protective association with T2D in Haitian Americans using adjusted
logistic regression. While in African Americans, SK§2235308 (OR = .83, pvalue =
0.028) showed significant risk association with T2D. Furthermore, the study concluded that
the differences in genetic associations of PPARGC1A with T2D among Haitian Americans

and African Americans were due to the contribatof differencesn ancestry (Black race).

The reproducibility of previously identified single SNP associations in-casgol studies

of T2D among the Singapore Chi ne s(#anghugp ul e
Chen et al. 2014)The study contained 2338 T2D cases and 2339 controls with 507,509
genotyped SNPs. The statistical methods employed included two satesgig to compare

the mean differences for variables with natrdistributionsthe Wilcoxon rank sum test to
compare median differences for variables with skewed distributionsPané r <Lhi-n 6 s
Squared testf ) to test the different frequency distributions for categorial variables between
T2D cases and contsol Furthermore, thauthors interrogated the combined effects of
several loci on disease risk using the National Human Genome Research Institute (NHGRI)
GWAS Catalog to identify SNPs associated with T2D. Among the 55 indexed SNPs
obtained from the NHGRI GWS Catalog,15 SNPswere replicated (at-palue < 0.05).
Moreover, Conditional finenapping analysis was used to search regions near GWAS alleles
for additional and new disease associations. SNPs in regipns kb around each index

SNP werdnterrogatedor associations wht T2D. The results highlight two SNPs located in
linkage disequilibrium close to rs10923931 and 5 new candidate SNPs located close tc
rs10965250 and rs1111875. Nonetheless, these SNPs only explain a small proportion (2.3%

of the diseas risk in the Singapore population.

In another work conducted by [Li et al. 2013) the authors performed a casentrol

GWAS and replication study in the CkeseHans population. Td study comrised three
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stage GWAS independent sample sets. In the first GWAS, 1999 T2D case and 1976
nondiabetic control subjects of Chinese Hans from Shanghai and Beijing ethnic populations
were included in the study with 657,366 genotyped SNPs. Irettend studya replication

study was conducted using 96 SNPs selected from the first GWAS analysissi three,

an independent Chinese Hans population from Beijing, Guizhou, and Hubei with 6570 T2D
cases and 6947 controls subjects were usethe las stage, 1Gandidate SNPs selected
based on the findings of a largeale GWAS that combined the first and second phase
analysis were used for a second replication study. The study contained 3410 T2D cases ar
3412 controls of Chinese Hans from Shanghaadditionto 6952 T2D cases and 11865
controls from an East Asian population. The initial association analysis was implemented
using logistic regression under an additive genetic model adjusted for age, sex, BMI, and the
first two principal components ilPCA analyss. Genomic control inflation factor to adjust

for potential population stratification was performed. The SNP selection for the remaining
analysis was based on the smallesajues and a set of SNPs in linkage disequilibrium at

r> 0.1 with tre most associated SNPs. In addition, the Cochran Q statistic was used to
assess the heterogeneity across studies. Two novel T2D loci were identified in this study
including rs10886471 in the -@roteincoupled receptor kinase SRK5 gene withp-
valuexx® p 1T and rs7403531 in the RAS guanyl releasing proteRASGRPLgene

with p-value=o® p 1 . The authors further confirmed seven established T2D loci and
they concluded that their study not only contributes to the pathophysiology diUi2bay

emphasise and highlight the ethnic differences in T2D susceptibility.

Twonov el T2D susceptibility v@saietah208)Thee r e
authors conducted a twstage genomwide association analysis in a Han Chinese
population, in which 995 T2D cases and 894 controls @i6737genotyped SNPs were
used in GWAS analysis. For the replication stage, 1803 T2D cases and 1473 controls with ¢

set of SNPs identified by the initial GWAS analysis/gdue p 11 ) were considered. T2D
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association analysis was carried out using various genabidels including genotypic,
allelic, trend, dominant, and recessive. The study chose the most significant test statistic
attained from the five genetic models and the SMith p-value ¢ p 1T were
considered to be statistically significant. The study@al appl i ed Fi sher
combine pvalues for joint analysis. The first significant new variant was found for
rs17584499 located in and around protein tyrosihesphatase receptor type D gene
(PTPRD with (pvalue y® t pmt , OR p& x wvu bconfidence interval [CI]

p® @ pd ¢. The second significant variant was rs3913004jue o8t p 1, OR

P& Yw L konfidence interval [CI] p® Y p& o The results suggpt that identifying two

novel T2D susceptibility variants ithe Han Chinese population may lead to a better

understanding of the ethnic differences in the molecular pathogenesis of T2D.

Despite the success of GWAS in revealing genatr@ants that aressociated with complex
disorders in populatia GWAS s still in its infancy and further studies to explore the

genetic components of complex diseasmeseeded.

2.10 Summary

T2D has reached epidemic proportions. Therefore, understanaginghtterlying caussof

T2D is of significant importanceA strong body of evidenchassuggested that genetic
factors contribute significantlyo the predisposition of T2DGWAS havesucceededn
identifying genetic variants that show evidence of increased susceptibiliBXphowever
GWAS is more suitable for capturing linear interactions between genetic variants ignoring
the nonlinear interactiongepistatic interactior)s of multiple genéc variantsthatexist in

polygenetic disorderigke T2D.

This chapter presentedh averview of T2D aetiology andssociatedisk factors. This is
followed by a discussion on genom&de association analysis and its contributiom &

studies. The next chapter will proeid comprehensive review of epistatic interactions and
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the approehes use for detecting epistasis in the context of GWAS. Furthermore, artificial
neural networkswhich is theadoptedapproactposited in this thes to detect epistasis in

T2D GWAS will be discussed.
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Chapter 3 Computational Biology

3.1 Introduction

In computationabiology, the accumulation of biological data and the need for its storage,
analysis, annotation, interpretation, visualization, systematization, and integration into
database management systems and biological netwotlks nsain reasorbioinformatics
emepged. Bioinformatics is a rapidly evolving, multidisciplinary field that provides
applications, analysis tools, and methods to explore and understand biological data (i.e
genomicandproteomic)(Abdurakhmonov 2016; Gauthier et al. 2018; Bartlett et al. 2017)
Bioinformatics brings expertise from different fields, such adolgly, chemistryphysics,
mathematics, computer science, statistics and engineering to develop theoretical models fc

biological data analysé€an 2014; Searls 2010)

Nowadays there is a movement from traditional biostatistical appesémivards a more
integratedapproach that prades advanced methods to handle the complexity of biological
data analysis as well as the structural interactions between biomolecules. The application o
bioinformatics in biomedical research has become fundamentally important to advance

research withithe genomic domaifAbdurakhmonov 2016)

In biomedical research, understanding the aetiology of complex diseases is complicated. |
has been thought that complex diseases involve multiple genetic constructs and the
interactions that occur between thgiwang et & 2014) Gengic factors do not act
independently but rather iwonjunctionwith other factors such as the environmental and
sociodemographicdMoore et.allMoore et al. 2010)suggested that traditional parametric
statistical approaches, such as lineadelling framework (i.e. logistic regression), have
limited power for modelling the complexity of ndimear interactions betweeB8NPs or
genes. Yet, these ndimear interactions are necessary to discover the aetiology of complex

diseases. More specifibg the linear modelling framework exanes each SNP
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independently to discover associations with the phenotygele ignoring epistatic
interactions $NRSNP interactions) and environmental exposure. Consequently, the
challenges associated with tradinapproaches have led talternative methods,

particularly those that incorporate machine learning techniques.

Advances in machine learning algorithms have es@bfurther development and
improvement in the genomic research domain. Using advanced méadnmag techniques
allows us to model the ndmear interaction between genetic variants, the environmental
and clinical factorsThus,enhancing our understand of molecular biologyand complex

disease susceptibility.

In this chapter, we introduceeltoncept of epistatic interactions which is one of our main
featuresconsidered in this thesis. This is followed by the theoretisgiussioron artificial

neural networks, more specifically the statehe-art in deep learning which is the adopted
appoach posited in this thesis for detecting epistatic interactions between SNPs. The chapte
also presents a discussion on six traditional macheaening algorithmsused in our
methodology as a comparison to discover the contribofioen-genetic risk fatorsto help

explain diseassusceptibility

3.2 Understanding Epistasis

The genetic architectura complex diseases is not caused by an individual allele or gene. It
is increasingly apparent that in order to underst#wedyenetic contributiongn complex
disorders, the interactions betweBNPs andjenes must be considered. This typéatént
interadion between genetic markerscalledepistasis Epistdic analysis has beaeported

in the literature since it was first coined by William Bateson in 1(@2eson 1909)Since

then, there has beew clear explanatin on t he me a fnienaaion® fwh ihceh

varies between scientists in the field of biology and statistics. Consequently, the two most
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common ways talescribeepistasis idiological epistasisand statistical epistasi§Evans

2011)

Biological epistasisvas deined originally byBateson to describe the masking effect one
gene has on another. This means a variant at one locus masks the phenotypic expressi
generated by another locus. A simple example is the coat colour of a dog. Assume that ther
are two primanryoci that controlthe coat colour of a dogblack/brown locus (B/b) and a
white locus (W/w)(Cordell 2002) The blak allele is dominat to a brown allele therefore

if the dog possesses heterozygous genotype (Bb) at this locus the dog will have a black co:e
colour. However, the phenotype expression at the black/brown locus is also controlled by
the genotype at the whitecus. If the dogpossesses a homozygous recessive genotype for
the allele Awo at the white | ocus, the d
genotype at another locus. This implies that the homozygous recessive genotype of the whit
locusmasks the effectfaheblack/brown locus. In other words, the white locus is said to be

epistatic to the effect at the black/brown genotype.

Satistical epistasisvas defined by Ronald Fisher in 19E8sher 1918jo describe the joint
effect of risk alleles at both loci in which the effect is much larger or smaller than implied
by their individual singldocus additive effect. This simply means any statistical departure
from the additive combined effeof two lod. For example, consider two genes G1 and G2
that cause increased body weight. The contribution of each gene separatelpasirad 1
increase in body weight. Suppose that there is an individual carrying bothvgemsisows

a 2pound increase.his meansriteraction between the two genes does not exist. In addition,
the effect of both genes on the phenotype implies a normal additive model of inheritance.
However, if the joint effect of both genes on an individual showega@uBd weight gain or

even weightloss we could conclude that eptstanteraction must exist.

Phillips (Phillips 2008)reviewed the essential role of gene interactions in the structure and

evolution of genetic systems. In his review three different forms were highlighted to describe
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the concept of epistia interactions- functional epistasis, compositional epistasis, and
statistical epistasis. Functional epistasis addresses molecular interactions such atprotein
protein interactionsCompositional epistasisefers to what William Bateson origimgl
definedas biologichepistasis Statistical epistasisasattributed tahedefinition byRonald
Fisher. Rillips suggested that compositional and statistical epistasis are complementary to
one anothe(Phillips 2008) When two genes interact statistically it is more likely that they
also interact physicallfVanderWeele 2010)The physical molecutainteractions occur
between various gend¥anderWeele 2010)Therefore, statisticagpistasiscan provide

uselll information in the biological understanding of genetic architectures that ienderl

complex disease.

While genome scans have helped to unravel and identify the genetic risk fiaxtbred in
common and complex human dise@gesscher et al. 2012passociation studies have used
statisticalmethoddo analyse and explore individual SBlBneat a time. Consequently, they

do not consider possible interactions present between genetic markers. GWAS have bee
unsuccessful at detecting epistasis as they commonly focus on identifying the main geneti
associgions with additive effect. However, it has been hypothesized that thadubtive
effects between genegarticularly epistac interactions, could contribute toour
understanohg of the underlying genetic architecture of phenotypic variatitinllips 2008)
Current attempts to study suicheractons in complex human disorders have focused on the
interactions between pidentified genes that exist in candidate regi{Rshika De et al.
2015; Rose & Bell 2012)This is an important area of research given thats ben
suggested that epistasis might account for the remaining unexplained heritability within
many common complex disorddidanolio et al. 2009)In particular, MahefMaher 208)

describe such epistatic interactions as A

could be concealed.
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3.3 Epistasis Challenges

It is difficult to detect epistasis 0 BNPR-SNP interactions in largscale genomavide
settings, for three furainental easons as outlined by Ritchigitchie 2013) In particular,
variable selection, model building, and model interpretation in the context of human biology

have been the primary focus in many research initiatives.

Identifying appropriate SNPs and evating increasingly highesrder combinations from

very highdimensional data (of which GWAS is) is computationatlifficult. The
International HapMap Consortium reported that to capture most of the relevant genetic
markers acrosthe human genome, they eded approximately 300,000 carefully selected
SNPs (Olivier 2005) Under this assumption, GilbdBiamond and Moore(Gilbert
Diamond & Moore 2011highlighted that with 300,000 SNRbe generated pairwise
combinations of SNPs would be® p 1. This exhaustive evaluation without high
performance computing resources would be computationally infeasislesuch, a
computational algorithm to filter thgenomewide datasetsnto smaller gbsets is often

needed.

The second challenge is model buildinghis involves the development of robust
computational and statistical methods to model the relationship betweenrtdgfhSNP
combinations and disease susceptibility. Traditional parardsiged statistical approlaes,

such as logistic and linear regression, are ineffective at dealing with the problem of
exponentially increased dimensionality associated with ruodtis testing. The
epidemiological sample in the study must be exponentiatlyetato allow for enougy
subjects to be tested with the generated genotype combination for the genetic effects to b
accurately detected. Therefore, qmarametric approaches more specifically data mining
and machine learning methods such Msltifactor Dimensionality Reduction Neural

Networks Random ForesandSupport Vector Machindsave proven to be more powerful

45



approaches than parametric statidtamaproaches. Nonetheless, they are not without their

own limitations

The third challenge is the interpretation of epistastiels and their biological context.
Making biological inferences from computational statistical models can be more challenging
than detecting and characterizing egist interactions. Cordel{Cordell 2009)suggested

that inferring biological mechanisms from statistical model results is complex and limited.
Corddl argues that statistical interaction does not necessarily reflect interaction on a cellular
level and that it is possible fdiological epistasis to arise in the absence of statistical
epistasis. The relationship between statistical and biologicabsgidtas been discussed in
detail by Moore and WilliamgMoore & Williams 2005) They proposed two significant
questionsi Fi r st , when does statistical evi den
underling biomolecular interactions in the aetiology of disease? Second, when do
biomolecular interactions produce patterns of statisdi | epistasi s i n hu
They concluded that the relationship between biological and statistical epistasigustdiff

to comprehend.

Yet, interpreting statistical epistasis results at a biomolecular level in the context of human
health andliseases will help provide a central framework for employing genetic information

to improve diagnosis, prevention, and treatnstrategies.

3.4 Strategies for Detecting Epistasis in Genaiiele Association Studies

Despite the spectacular effort in developstatistical methods and computational strategies
to detectSNPinteractions in large GWAS data, epistasis analysis in GWAS renaiits
infancy. Perhaps one of the reasons is the logistical difficulties associated with large
combinatorial analysis in higorder SNP interactions. This is in addition to the low
statistical power caused by small sample sizes in GWAS coft@otslell 2009) Various
statistical methods have been developedethaustively search pairwise or highder

interactions between SNPs to detect episeffects in genomavide casecontrol studies.
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The pairwise method of interaction involves two loci while hogHer interactions require
three or more loci that intectjointly (Cordell 2009; Tglor & Ehrenreich 2015)These
methods employ different searching strategies that include exhaustive (€&andail 2009)
search based on probabiltyPr a b hu & , damdidlaterregide@alc Rishika Deet

al. 2015) and search based on the filter{Bgng 2014)of interesting SNPs selected through

a priori knowledge. Moreover, these statistical methods vary in the way they select

biomolecule units to test for interactions, such as SNPs, genes, and/or proteins.

3.4.1Exhaustive Search of Pairwise Interaction

Pairwise interaction is arguably one of the simplest ougho performwhen detecting
interactions in genomw&ide data(Cordell 2009) This method is used to test all possible
pairs of loci across the genome and implement interaction testsedsch twelocus
combination. Although, pairwise search is computationally feasible, it is in practice; an un
scalable and timeonsuming process. Given the number of genetic markers routinely
geneated in genomavide studies (anything between 500,000 amdillion SNPSs), it is clear

to see this approach has limited utility, particularly in complex diseases where many
interacting SNPs are the route cause. Therefore, performing such a large nustdiestictl

tests may suffer from low statistical powgordell 2009) However,the evolution and
availability of parallel processing fadiks i.e. banks of Graphical Processing Wrf{EPUs)

will make such tasks possible within a reasoeainhe framgChatelain et al. 2018; Hemani

et al. 2011)

3.4.2Exhaustive Search of High€rder Interaction

In the context of genomeide data implementing an exhaustive search over higirder
interactions i.e.third andfourth-order, poses a significant challen¢@ailer & Harms 2017)

There are an enormous number of multipls generated and these are proportional to order
level interactions. Consequently, the number of comparisons required increases

exponentially andhusthe time required to perform such analy§isylor & Ehrenreich
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2015) In addition, the fact that high@rder interaction analysis requires many degjae
freedom will potentially reduce statistical power in studi€srdell 2009) It has been
suggested that in order to mitigate such issues sstage procedure should be employed
(Faye & Bull 2011; Nguyemt al. 2015) The first stage focuses on a subset of loci identified
through singldocusthreshold analysis, and the second stage, using this subset to perform
the exhaustive search of all possible interactions between these loci. There is a debate fc
selecting loci at the first stage. This concern is that while some loci are truly assocthted wi
the phenotype, they are often discarded due to threshold selection. This is particularly true
for loci with no marginal effects. The selection process a@f lmsed of singkocus
threshold could be altered to select loci based on a priori knowleddrotogy, genetic
impact and pathway information, but this would discount the hypothesisnature of

genomewide analysigHerold et al. 2009)

3.4.3ComputationbStatistical Approaches for Epistasis Detection

It is critical to model complex interactions leten genetic markers if epistasis is to be
detected. The challenge of identifying epistanteractions in largscale GWAS case
control data has attractedyreat deal ofesearch interest. Up to now, there are almost one
hundred computational softwareots designed and developed for epistasis detection. The
omictools website provides a full list of tools to be used with GWAS data analysis
(https://lomictoolom/epistasisletectioncategory). In this section the focus will be on
software methods that hawecome popular and showarticular promise for identifying

epistasis in genomeide casecontrol studies using the statistical epistasis definition.

Zhang ad Liu (Zhang & Liu 2007)developed Bayesian Epistasis Association Mapping
(BEAM), which uses @ayesian pditioning model to model diseassssociated markers
and their interactions. BEAM computes thetgo®r probability that each individual marker
set is related with the disease via Markov chain Monte Carlo. ZtaaldZhang et al. 2010)

proposed Tre®ased EpistasiAssociation MappingTEAM ), using an exhaustive search
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pairwise algorithm for fast detection of SMFNP interactions in GWAS settings. This
program utilizes permutation tests over the common Bonferroni correction adjustment
method to control famikwvise error and false discovery rates. In addition, TEAM applies
minimum spanning tree structures that significantly increase the performancatetate

the process of epistasis detection in GWAS data. &/ah (Wan et al. 20109leveloped the
BOolean Operatiovased Screening and TestingQOST) software tool, which is a
computationally andtatistically feasible and fast program for the detection of all pairwise
epistdic interactions. BOOST was designed based on a Boolearsespaéion of genotype

data that uses fast logic operations (bitwise) to generate contingency tables that promot:
space and CPU efficiency. In addition, this program was developed usingstagesearch
method; screening and testing. The selected SNBgiscreening stage are forwarded to

the testing stage to measure the interaction effects of SNP pairs by emgheyikelihood

ratio statistic and lo¢jnear model. To further improve computation time, a Gkided
version of BOOST was introduced calle@OOST (Yung et al. 2011)Wanget al.(M. H.

Wang et al. 2016)ntroduced a fast and powial W-test for identifying pairwise epidia
interactions. The test is particularly powerful when using low feegy variants, in which

MAF is between 1 and 5 percent in GWAS data. The test is advantageous over alternative
methods. First, it is moddtee such that no assumptions are made abowgetheticeffect

model. Second it incorporates a €3guared distribubn that has datadaptive degrees of
freedom, allowing for robust association testing in genome scans. HgraldHerold et

al. 2009) introduced theINTERSNP tool for genomewide intgaction analysis that
considers two and threwarkers for associatioests. INTERSNP selects combinations of
SNPs for interaction analysis based on a priori information including statistical evidence for
singlemarker association, genetic relevance of j¢Romic location, and the biologic
relevance of SNP function andathway information. The authors concluded that the
proposed tool can help elucidate the actual relevance of gene interactions in complex

diseases and demonstrate the potential and féysithicompleting threemarker interaction
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analysis. Recently, Fangt al. (Fang et al. 2017¢leveloped a technique based on high
dimensional grouped variable selection, called IStage Grouped Sure Independence
Screening TS-GSIS) for detectig SNRSNP interactions with or without marginal effects

as well as idntifying causal SNP effects within a certain gene and their corresponding SNP
SNP interaction effects. Moreover, Lasso regression is used with HB&STSapproach to
select important SRs in candidate genes to reduce the dimension of data by determin
the size of candidate genes in models. This is a powerful characteristic to balance mode

complexity and predictive performance.

Teradaet al. (Terada et al. 201§)ropo®d a software tool namddAMPLINK for the
detection of statistically significant highrder interactions from genonvade casecontrol

data. The authors incorporate Limitless Arity Mukpesting Procedure (LAMR)Terada

et al. 2013) a statistical method to list statistlly significant combinatorial effects that
consist of three or more SNPs in each combination using PI(NKcell et al. 2007)o
perform association analysis for GWAS. LAMPLINK is limited to dominant and recessive
models neglectinght additive genetic model which might provide new insights into the
missing heritability problemln terns of time performane, LAMPLINK outperforms
existing traditional techniques such as logistic regression and multifactor dimensionality

reduction when @rforming combinatorial interaction analysis.

Although, these abowvementioned techniques have been widely used for the oetent
SNPR-SNP interactions they are often criticised for their inability to deal with -high
dimensional data. Consequently, theppraaches are not scalable and will likely become

redundant as the number of SNPs sequenced significantly increases over time

3.4.4DataMining and Machine Learning Approaches for Epistasis Detection

A variety of datamining approaches, including data reductard data recognition, have
been used to detect interactions between genes indaade genetic studies. Data reduction

approaches involve the transformation of data to a lower dimensional(ffeluaan et al.
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2016) There are several examples of data reduction approaches including the restrictec
partition method (RPM)Culverhouse 201Q)Combinatorial partitioning method (CMP)
(Nelson 2001)set associatiofOtt & Hoh 20@), and multifactor dimensionality rediien

(MDR) (Ritchie et al. 2001)Advances have also been made in pattern recognition studies,
where patterns and regularities in the data camskd to classify and discriminate between
groups using higidecisional data sets, such as GWARBNdy & Padariy2016) This has

been achieved using several traditional machine learning algorithms that include support

vector machines (SVH), artificial neural networks (ANNs), and random forests (RF).

3.4.4.1Data Reduction Appro&c

Multifactor dimensionality reduction (MDRhas been successfully applied to detect
common interactions between loci for a wide variety of human diseases including T2D
(Barna et al. 2018Bladder CancefAndrew et al. 2008)Bipolar DisordefOh et al. 2012)
Alzheimer (Martin etal. 2006) Obesity(R De et al. 2015)and Sporadic Amyotrophic

Lateral SclerosigGreene et al. 2010)

MDR is a feature or attribute netructive induction algorithrMoore 2007 that performs

data reductioiby converting higkdimensional data, e.g., multici data, into onalimension

with two levels: high and low risk. The process of attribute construction is performed by
pooling a new single attribute from multiple variables, e.g., a single SNP from m@t#s

so that a new attribute acts as a functiotwaf or more other attribut€Moore 2007) MDR

was developed to detectémactions between loci in the absence of margirietts. In 2001
(Ritchie et al. 2001)MDR became a breakthrough approach and an alternative solution to
parametric regression paradigsuch as logistic regression where interactions greosed

exclusively among loci that exhibit statistically significant effects.

MDR was one of the earliest approaches developed to facilitate the detection,
characterization, and interpretation of epistanteractions in genetic studies of human

diseaseThis approach was evaluated using Sporadic Breast Cancer in popbkdeuh
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studies (Ritchie et al. 2001) The study revealed statistity si g ni y c-ardet h i
interactions among four ponorphisms from three different Estrogktetabolism genes.
This was the first report of such interactions associated with a common complex multifactor

human disordefRitchie et al. 2001)

The popularity associated with the use of MDR in epistasis analysis was found due to the
fact thatthe model is a neparametric approacfMoore & Andrews 2015)n which no
hypothesis about the value of a statistical parameter is ntadea gemtic modelfree
approachiMoore & Andrews 2015)that assumes no particular inheritanceded. This is
particularly useful for complex diseases in which the mode of inheritance is obscure and
complex. MDR also uses a highly constructive induction algorithm to deteelinsam
interactons amongdiscrete genetic attribute$his is achieved bgelecting two or more
SNPs and reducing them to a single feature thus permitting interaction effects to be detectec
Moreover, the integration of crosslidation resampling with MDR adds additain
charactestics to the model. This is specifically impant to avoid overfitting and minimize

the falsepositive rate in GWAS settings.

MDR provides a comprehensive and powerful data mining approach for detecting,
characterizing, and interpreting ntinear episdtic interactions by combining attribute
selecton, attribute construction, classification, creséidation and visualization, but it does
come with its own limitations. The main limitation is scalabi(iBush et al. 2006)it does

not scale up when a large number of predictor variables are used. In the case of GWAS
analysis, the number of genetic markers (predictors) can be betwe@0®add Imillion

and in some cases much higher. By perniiog pairwise search using MDR for GWAS
settings this would seem impractical. MDR on more than a few hundred loci will be
computationally difficult(Bush et al. 2006)Therefore, to apply MDR on GWAS data, the

predictor variables need to be reducédriables for MDR analysiare ofterselected from

52



candidate gene studies or extracted fromarge setof genetic markers using one of the

filtering approachegRitchie 2013)

Furthermore MDR does not distinguistbvetweenmarginal effects from pure interaction
effects and this can make it difficult to interpigtore importantly model poweis reduce

significantly when 50% genetic heterogenegtyresen{Upstill-Goddard et al. 2013)

Over the last two decades numerous extensiofdDR have emergedo improve and
overcome some of the limitationsvident in the original model. Extended MDR
implementations include methods to handatbalanced datasef¥ang et al. 2013; Velez e
al. 2007) missing datdNamkung et al. 2009kovariate adjustmeii€Calle et al 2008) and
modetbased MDR in the presence of nof€attaert et al. 2011Additionally, others were
developed to make larggeale anlysis of epistasis tractahlee. MDR-based solutions that
utilise GPUs(Greene et al. @L0)to accelerate epistasis analy&snnottArmstrong et al.
2009) Unified nodelbased MDR approachesMJMDR) (Yu et al. 2016have alsdelped

to overcome the limitation of evaluating the significancenotti-locus modelsEmpirical
Fuzzy MDR (EFMDR) (Leem & Park 2017was developed to avoithe difficulty in
reflecting the uncertainty dfigh-risk and lowrisk in binary classification settingalthough
significant advances have been made, MDRitnariants are considered computationally
prohibitive.

3.4.4.2Filtering Approach

Because the searspace in multivariate models of genomic dataisdtgge due to the large
number of features (SNPs) considered, dete@pigtaticinteractiors remains asignificant
challenge. Thus, filtering approaches have seen widespread use to select impoatalesvari
prior to epistasis analysis to improveie#ncy in data mining and machine learning studies.
Various methods have been proposed to perform featurdisele©ne such approach is
ReliefF (Greene et al. 2009; RobrtkSi k o nj a k& 2063pwhixmig an attribute

quality estimabr. ReliefF is based on detecting conditional dependencies between attributes
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and searching for nearest neighbours. In addition to its natural interpretation, the algorithm
is effectively scaled up to includelargenumber of examples and features. Howetee
algorithm can be sensitive to a large number of variants that are irrelevant to the
classification of the trait. Mckinnegt al. (McKinney et al. 2007proposed anleernative
approach named Evaporative Cooling (EC) for feature selection that overcomes ReliefF
limitations.

Recently, Vermat al.(Verma et al. 2018)roposed a colldive feature selection approach

to select true positive epistatic variables using various parametrigarametric, and data
mining methods. Using this approach proves to be effective for selecting featiline

epstdic effects in the presence of inoplete penetrance, and polygenic inheritance.

3.4.4.3Pattern Recognition Approach

As elucidated previously, pattern recognition is a complex process that deals with real anc
noisy data and recognizing patterns aedutarites that can be used to classify and
discriminate between groups using the full dimensionality of the @e. of the popular

and appropriatepattern recognition approaghfor largescale genomic data analysis is

random forest.

Random forest (RF}p one of the nomparametric machine learninggarithms that is based
onarandomized decision tree ensem{@eeiman 2001)It exhibits the poterdil to capture
epistatic interactions through the process of variable sahe(Chen & Ishwaran 2012;
Kawaguchi 2012)It ranks variables using variable importance meas(Besiman 2001)
anddetects interactions between faag(Strobl et al. 2008)The major limitation with RFs,
however, is that the detection of gégene interactions depends or ghresence of main
effects(Kim et al. 2009) Thus, epistatic interéions with no marginal effects are often left

undiscovered when RF analysis is performed.

Another limitation with the RF algorithm that was designed to analyse data with no more

than a few thousands featsr (SNPs) on a standard mach{@®@ 2012) Scwarzet al.
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(Schwarzet al. 2010developed a Random Jungle (RJ) algorithm based on an extension to
RF. The RJ is a computational, and memory efficient method designed to handkckdege
GWAS datasets with hundreds and thands of samples and SNPs. RBased on variabl
backward elimination while maintaining all other options provided by the origiial
particularly the permutation importance measure. In addition, it uses multithreading and a
MessagePassing Interface (MPlacross processes that can bmplemented on nitiple
CPUs simultaneously. A real GWAS dat aset
cases and 515 controls with 317,503 genotyped SNPs was used to implement RJ. Analysin
GWAS data using RJ seentslie feasible with respect torte and memory esumption

and the results show that the RJ is a promising method fordmggnsional GWAS data.

The application of RJ to GWAS may help to identify interacting SNPs that were not found

using traditional paragtric statistical approaches.

Another extensioto RF is SNPInterForeg¥oshida & Koike 2011) SNPInterForest was

built based on a modification to the RF construction framework, which allows for either a
combination of SNPs or a single SNP when chagps split variable at each nodghis
preventghe important scores of SNPs with no marginal effects from being underestimated.
Furthermore, the interaction score measurement is introduced to discover interacting SNF
combinations. Thus, if a certain SNBnebination appears frequently @ branch, the
interaction strength is calculated based on the number of simultaneous appearances of SN
combinations in each branch of each tree. Accordingly, it is more likely that these SNPs for
the corresponding SNP comhtions can identify interactns between them.
SNPInterForest has been evaluated on a real Rheumatoid Arthritis GWAS dataset from The
Wellcome Trust Case Control Consortium (WTCCC), which contains 500,000 genotype
SNPs and 3499 cases and cont(¥lgshida & Koike 2011) The evaluabn revealed tha
SNPInterForest achieved considerable improvements in detecting pure epistatic interaction:

in comparison to an RF ensemble learning algoritiiarthermore, SNPInterForest
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outperformed existing methods based exhaustive search strategieghich include
BOOST (Wan et al. 2010and SNPHarvestgYang et al. 209). However,computational
burden is considedeone of the main limitations of SNPInterForest implementation, as is the

case with many other similar approaches.

In addition to RF, Neural Networks (NMNand Support Vector Machines (S\$Mhave
shown excednt power indentifying epistatic interactionsn complex human traits. Neural
Networks with a feedforwar@ndbackpropagation architectuage capable of dealing with
large datasets (e.g. largeale GWAS datalNN algorithms with advanced characteusti
can sufficieitly detect epistatic interactisnincluding genetic heterogeneities, incomplete

penetrance (high effect size), and polygenic inheritance.

While SVM algorithms are as robust as NNs and demonstrate significant power when usec
to detect epists in comparson to MDR, Cheret al. (Chen et al. 208) conducted an
experiment ina casecontrol Prostate Cancer study population employing SVM and MDR.
The authors revealed that an SVM outperformed MDR under all the scenarios particularly
in the presence of 5% genotyping error, 5% mggsiata, or a aobination of both under
different pairwise epistasis models with a variety of allele frequencies. The following

sections discuss these approaches in more detail.

3.5 Artificial Neural Networks

An artificial neural network (ANN) is a machine learg technique that is inspired by the
way biolagical nervous systems (human brain) process informdtiaykin 1994) The

brain is a highly complex, nelinear, parallel computer system composed of milliarfis
highly interconnected neurons organized to perform computaignpatern recognition,
vehicle control, and human vision. Typically, these neurons have the ability to transmit and
receive information {gnals) and process inputs to produce any nurabeéifferent outputs.

In the human brain, connections between neut@msmit signals between interconnected

neurons. The direction of these signals can be unidirectional or bidirectional. The learning
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proaess in the human brain is based on experieramifig).Learning in biological systems
is achieved by making small comatory adjustments to connections that exist between

the neurons (tuneable weights) as well as changing neuron activation thresholds.

ANN is a crude simulation that attempts to nurthie behaviour of our bra{iaykin 1994)

Neural networks constructed from a group of interconnected neurensrganised into
layers. Input, hidden, and quuit layersvhencombined describe the structure of the network.
Theinput layer is the first layer, and its neurons receive information signals from external
sourcesThe output layer is the last layer in thetwork, and its neurons present their output

to the outside world. The middle layers are referred to as the hitidens, and they are
located between the input and output layers. The hidden neurons receive their inputs ant
transmit their outputs inteatly in the network. Every neuron in the netw@la processing

unit thattakes an input signal with its weight apdrforms a fixed mathematical operation
using an activation function. The activation function defines the output of the neuron and
the sca based on predefined thresholds. In order éoral networks to learn and produce

the desired output, the weiglaee adjusted during the learning or training process.

Based on the theoretical definition of ANNs (Anthony & Bartlett 1999) the basic
computational units in neural networks are neurons, each neuron¢akgsit values

o Fe /8 @, and a bias intercept term representet” py(not included in the inputwhich

is a constant term used to overcome the problem with input patterns that are zero. The
network outputs a hypothesQ ; & wherew and®are weight and bias parameters that

can be learned from input data,The nairon output is defineds:
T QW e ¢ e d (3.1)

where'@g ™ a represents #activation function. Figure 3.1 illustrates a basic example of

a neuron.
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hwp(X) = f (i Wixi + b)

Figure 3.1: Single Neuron

There are various types of activation function; sigmoid function, hyperbolic tangent, rectifier
linear wit, and maxoufAnthony & Bartlett 1999; Candel et 2018) The formal definition

of the® activation functions are as follows:

1 Sigmoid Activation Function:

Sigmoid is the noilinear activationfunction that corresponds to the infutput
mapping defined in logistic regression. Sigmoid isusedto fitade neur ond s
to a range of [0,1]The sigmoid function is represented as

P (3.2)

"6
@ o Q

where @ denotes the input to the neuron. Figure 3.2 (a) presents the graphical

representation ad sigmoidfunction

1 Hyperbolic Tangent Activation Function:

The Hyperbolic Tangentdhh) activation function is another common +ioear
activation function and useto scale the output betweeii [L]. Hence, the tanh
function is a rescaled version of the sigmoid function mainly used for classification.

The tanh function is formulated:as

Q (3.3)

“Q‘ AAT\‘
w OAIlwE 9 a

where @ denotes the input to the neuron. Figure 3.2 (b) presents the graphical

representation ad tanhfunction
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1 Redctifier linear unit Activation Ruction:

The rectifier linear unit (ReLU) is a very populartlinear activation function in

deep neural networks. The main reason is that not all the neurons are activated at th
same time, allowing sparsity to be added to the network, which helps reduce
computatiomal overheads. It is used to scale the output between [0 and infinity]. This

activation function has a zero threshold &given as follows:

Q6 1 A @ (34)
Hence,
Qe LE® T (3:5)
WQE M T

wherewdenotes the input to the neuron. Figure 3.2 (c) provides a graphical regtiesent

of the ReLU function

I Maxout Activation Function:

The maxout activation function is a generalized version of ReLU. It is the max of
two inputs. Maxout does not suffer from dying neurons (transferring negative inputs
to the ReLU function as zero). Thimeans the gradient is zero and the neurons can
neverbe activated in this region. Maxout is used to scale the output betvietmify

and infinity]. The maxout activation function is defthas follows:

WD LD o O w6 (3.6)

wherewdenotes the input to the neuron.

a. Sigmoid b. Tanh c. ReLU
Figure 3.2: Activation Furctions Graphical Representation
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It is often difficult to determine which activation function to adopt for your data; as each
may outperform the other in different scenar{@ndel et al. 2018)Thus, grid search
modelsareoften used to compare activation functions and select the one that is best for your

data.

3.5.1Characteristics of Artificial Netal Networks

Using ANN offers various useful properties and capabilfitesykin 1994)

- A neural network is aon-linear mode| where each neuron in the network is basically
a nonlinear unit. Neurons are used to construct the network-liMearity isa highly
important characteristic in neunagtworks particularly if underlying datasets are non
linear. Moreover, notinearity dfers additional flexibility to the neural network in
modelling realworld complex relationships.

- Input-output mappingsallow neural networks to learn using a supervised learning
paradigm (labelled training data that corresponds to target responsesaifiing bf the
network is performedteratively,and the weights modified until the network reaches a
steady ste.

- Neural networks are considerathta driven seHadaptive algorithms that can be
effectively adapted to given datasets. Taesdesigned toeject ambiguous patterns that
arise in classification tasks and provide confidence values for decisions made.

- ANNSs are described amiversal approximation functionghat can approximate any
complex nodinear function with arbitrary accuracy.

- Neural netwrks aremassively parallel systesn similar to the parallel distributed
structure of the brain, and have thodity to capture truly complekehaviaur in a highly
hierarchical fashion. This feature makes ANNs appealing for solving-taae and

complexrealworld applications.
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3.5.2Structure of Artificial Neural Networks

In ANN the communication links (connections) between neurons are responsible for
information propagadin (Haykin 1994) There are two common types of ANN atelture
widely used for classification and prediction problems. These are feedforward neural
networks and recurrent neural networks. In the former type, information is transmitted in a
forward direction through the network layers, on a ldygfayer basisstarting from the

input layer through to the output laydn the later type, the structure of the network
integrates feedback loop connectiamgach neuron ithe hidden layeto provide dynamic
behaviour in the neurons. In this thesis only feedfodweaural networks are considered, in

particular multilayeiperceptrons

3.5.3Multilayer Feedforward Neural Networks

Multilayer feedforward neural networks are also known as multilayer percegiviiriy).

MLPs are distinguished by the presence of one or moreshitil/ers intheir structure
(Haykin 1994) Each hidden layer contains a number of hiddenameurThe function of
hidden neurons is to interconnect input and output neLiftilese hidden neurons enable the
neural network to learn neimear complex tasks by extracting meaningful features.
Extracting higher order features is particularly valuableem the input vector is large
(Haykin 1994) The neurons in MLPs exhibit a high degree of connectivity, as the output of
one neuron is the input to all otherunens in the adjacent forward layer. The number of
hidden layers and the number of the hidden neurons in each diggermines the
performance of neural network@leabn 2008) Therefore, different neural network
structures generate different outcomes limited number of hidden neurons are ugads

can lead to underfittingHeaton 2008)where themodel is unable to extract and learn the
nontlinear structure in complex higiimensional datasets. On the othand, using too
many hidden neurons can lead to overfittjrigaton 2008)wherethe network is tuned to

the traning data resulting in a network that cannot generalise using unseen datassample

(Haykin 1994)
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The backpropagation algorithm provides a computationally efficient method for training
MLPs for supervisglearning. The learning process mina®@s a cost function in accordance
with an errorcorrection rulgHaykin 1994) If the responsef the network generates output
not closdothe desired respoagtarget), the weights of the network are adjusted to minimize

the error (cost function).

3.5.4Backpropagation Algorithm

BackpropagatiofWerbos 1982; Rumelhart et al. 1986; Werbos 1974; LeCun et al. i5998)

a learning algorithm for implementing gradient degan weight space for neural networks
and is widely used for training multilayer feedf@md networks. The intuition behind this
technique is to efficiently compute gradient vectors (partial derivatives) of the cost function,
to minimize the overall co$tinction with respect to weights and bias. The backpropagation
process contains two passbsough the different layers of the network (forward pass and a
backward passfHaykin 1994) During the forward pass, the input vector is fed forward
throughthe networklayer by layerto produce a set of outputs. The error term, which is the
difference between the actual response from the network and the desiredegsaaet),

is calculated. In the backward pass, the error term is propagated backwie prtevious
layers through the network to adjust the weights between the units. During this training stage
the weights of the network are adjusted iteratively gigimadient descent optimizatido

minimise cost function errors, i.e. the actual resptyesemes closer to the desired response.

3.6 DeeplLearning

Deep learning (DL) is an efficient fagtowing class of machine learning that has its
foundation in artificialneural networks. Early deep learning networks were built using
ANNSs in the 1980gFukushima 1980)However, the popularity of DL was not se&h
breakthroughs by Hinton began to appear in 20di6ton & Salakhutdinov 2006)Since

then, DL has been used across many domaiokiding image recognitio(Krizhevsky et
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al. 2012) speechrecognition(Hinton et al. 2012)natural language processi(@ollobert et

al. 2011) and pharmaceutical formulation analyd&ins 2016)

The basic structure of DL networks is an ANN with many hidden layers andmsgur
typically more than three hidden layers. This offers better capacity for feature learning and
extraction. DlIs are known as representatiaatning methods that consume raw data and
automatically discovedeep abstract representations to learn comipliestions(LeCun et

al. 2015) A key aspect of deep leargins its ability to automatically learn features from
data and the interactions between data points usingesesgation learning proceduidin

et al. 2017)This characteristic of DL has helped to make major advansedving big data
problems. However, ANNs with many hidden layers can cause grdzhsat training of

randonty initiali sed weights in deep neural networks to get stugkahocal minimum.

Consequently, Hinton arshlakhutdinoHinton & Sal&hutdinov 2006proposed a greedy
layer-wise pretrained deep autoencoder tatialise the weights of networks layby-layer
and learn reduced representatiémmsn raw data. This algorithm offers a good solution to
the localminimum problem. In additigrthis algorithm allows nofinear structures between

features to be discovered and extracted in complex anddaale datags.

3.6.1Deep Learning Architecture
The basic architecture in deep learning is a neural network architecture with many hidden

layers ad neurons. Different architectures have been proposed and many have beer
successfully used in various domains. Convolutioealral networks propose deep learning
structureghat are inspired by models of the human visual cortex, which have been widely
utilised in image recognitiorfKrizhevsky et al. 2012and natual language processing
(Collobert et al. 2011While recurrent auralnetworks, that build dynamic behaviour into

the neurons, have become the primary method for time serig&dates et al. 2(). Other
architectures based on restricted Boltzmann machines (REBvWsjensky 1986).e. deep

belief networks (DBNs)Hinton et al. 2006)and deep autoencodepecifically stacked
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autoencodex have also gained popularity in dimensionality reductionfan@re-training
deep networkgHinton & Salakhutdinov 2006)Table 3.1 presents some common DL

approaches.

The learning process in deep learnis split into three main categories:

-Networks for supervised learningthis type of learning process is designed to train
networks using labelled data. It is mostly used for classification tasks.

-Networks for unsupervised learninglesigned to traingtworks with unlabelled data. This
offers an efficient metho automatically learimg features and capturing higinder feature
interactions.

-Networks for semisupervised learning designed to train networks using labelled and
unlabelled data. The unlalled data is used to initialise the weights of a fully connected

network forclassification tasks using labelled data.
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Table 3.1; Different Architecture of DL

Architecture Description
Deep Neural Networks 91 Deep framework with fully connected inpottput and multiple hidden layers.
1 Used for classification and regression tasks.
1 Automatically learn deep nelimear abstract representations from raw data.
StackedAutoencoder 1 Consists of multiple layers of gjle autoencoders. Aims teconstruct the input vector.
1 Used for dimensionality reduction (feature extraction) anetraiaing deep networks.
9 Mainly for unsupervised learning.
9 Training process based on a greedy layise learning strategy to initiaé the weights of fully
conneted networksThenfine-tuned using backpropagation for classification tasks.
Deep Belief Networks 1 Appliedto supervised and unsupervised learning.
1 Consists of a composition of restricted Boltzmann machines. Each subnetwork lagde is
connected to the visible layer of the next RBMs.
1 The top two layers have undirected connections and directed connections to the lower layt
1 Training process based on a greedy layise learning strategy to initiak the network using
unlabéled data, bllowed by finetuned training for classification tasks.
Convolutional Neural Networks 1 Consists of a sequence of convolutional and subsampling layers followed by a fully connect
for classification.
1 Used for feature extraction in two atideedimensional data such as images.
1 Unsupervised and Supervised learning process.
Recurrent Neural Networks 9 Contains cyclic connection in hidden neurons to perform recurrent computation.
91 Includes two sources of input to hidden neurons: theipsmation stored in the hidden unit ar
the present input.
1 RNN hasmemory therefore it is used in sequential applications where outputs depend on pr

input computations.
9 Unlike other DL architectures, RNNs share the same weights in its forwarditaiiap
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3.6.2Autoencoder

An autoencoder (AE) is an artificilalarméaur
AEs automatically Illear (datea L zsNd r @il Iu)n
application i(sHiimt anat& Seeldaukdiaiwaehv exro,v R D6
found that autoencode#rg adain dlee puse8danagd oan
al . 2007, Erhan et .alAn 2AultOo e nkcrohdaenr ecto nasl
| ayer s: an mmhemutofl ayeddem hayer s, and an
shad loor si mple structured autoencodersi s
the original data (input values)t hoar i o mm@
data) teamoapgrhog@erss which is i n tapproxp pma
the originaldedapa og drees u2gdhlsSe) aa Islhyd Ell e@aa n

lwdi mensi onal representati on ssismciolfdprt htes |
pirnci pal compone,ntwhiodh tihse ti meg udp tdiamaal b a
reducRiigounr.e 3.3 present <€, aiblogteatindgehn

decoding steps.

Input Layer Output Layer

Encoder Decoder

Figure 3.3: Autoencoder

This is a singldéayer autoencoder procedui2L architecturefavebettercapabilities when
several autoencoders are stackBengio et al. @13). The following section explairs

stacked autoencodearsmore details.
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3.6.3Stacked Autoencoders
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I n rmdernre&kefser to Figure 4.11 for thetreanitniirn

and supetvuinsedg Sitmages) .

This greedy layewise learning algorithm based on training the netwasler-by-layer is
nonetheless a very efficient way to convegh-dimensional data into losdimensional data,
allowing highly abstract ncehnear structure between featurds be discovered
Furthermorethis layerby-layer greedy learning strategy allowsightsto beinitialised in
regiors nearto a good local miimum, bringing better optimisation and generalisation

(Bengio et al. 2007)

In this thesis we use this greedy laygse learning algorithm t@xtract the nolinear
epistatic interactions between SNPs in T2D GWdaand to initialse the weights of a
fully connected multilayer perceptron softmax classifier befordinéstuned for the binary

classification of T2D as either case or control.

3.6.4Deep Learning Hyperparametégptimisation

In order to improve and adegate the performance of neural networks and to achieve better
generalization, varial studies and investigations have been conducted to optimise the
learning process in NNs. One of the primary elements is regularization, wiaiskradegy

used to avoidbverfitting and enhance performance. For example, dropout regularization
(Srivastava et al. 2014)andomly removes hidden nems from the network durinthe
training processOther researchers have developed different techniques to imfireve
training processes in NNs, such &ming the leaning rate and momentum term
(Schmidhube2015) A complete description afining hypeparameters used to improve the

training stagen neural networks in this thesis is provided in Table 3.2.
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Table 3.2: Definition of Tuning Parameters used witleural Networks

Tuning Para Description of Tuning |
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Sopping metrils used to determine the metri

St o i tolels used to set the -basadi seop
PP 9 training when i mppbeeabuoée. is |

-

I s usedatnimsdopf trhe tdpetisotnopg

stopping FOUT 4o ats ni mprogspetofietleval ue for

s a function of the differenc

I
val(uttep size of wei glgt)B atcok purpodpa:
used to correct the loaurtgpat| eaar |
Learning rateto oscillatory traps in the
mini mum. While a small l ear nin
|l ocal miedarmmuimng rate control s
mo d e | | ealreem. t he prob
Rate annealinls used tloaremisrug er dthee does not
Rate decay Il s used to control the change
Momet um start I s used to control thegamaumtg
Momentum staktls used to control the amount.
Il s used to control the final

Moment um r amg . .
rmp training samples

I s a maximum sum of t he signgdrue
Ma x w2 It is useful when the activat
stability when the Rectifier i
Are reguéahnizatésnctosmoéliuhgtthb
L1 (Lasso), Lcost. gphriesv ehnetl pover fitting and

3.7 Traditional Machine Learning Algorithms

Technically machine learning algorithms are developed to either model dinean-linear
effects.In this thesisthe linear learning algorithm used is the Generalized Linear Model
(GLM). The nortlinear learning is based on decision trees (i.e. RecuPavetioning and
Regression Trees (RPART)), Random Forest (RF), Stochastic Gradient Boosting €aBM)

Support Vector Machines (SV@/lwith Radial Basis Function Kernel.

3.7.1Generalized Linear Models

Generalized linear models are statistical methods thanéi@ear modelling frameworks

that allow for response variables that are not normally distribiNetter & Wedderburn
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1972) GLM is commonly used to model binary data and consists of three components:
random component, linear predictor, and the link fundfiax 2008) A random component
specifies the probability distribution of the response variables. There are sewiesttaita
distributions referred to as an exponential family of distribitiwhich include: Gaussian
(normal),binomial, Poisson, gamma, and multinonfigkelder & Wedderburn 1972)n a
binary classification modebinomial (Bernoulli distribution) is commonly used where the

output is either 1 or O.

The linear predictor asewes a linear mapping between independent variables and the
response variables (outcomes) through a link function. The link function describes the
relationship between the linear predictor and the mean (expectation of the response
variables) of the probalty distribution (Nelder & Wedderburn 1972)n GLM, to fit a
dataset the maximum likelihood method &d. This method provides an estimate of the
model parameters through an iteratively reweighted {s@sares IRLS) procedure to
minimize the loss function (errowyith respect to the weights of the independent variables

(Fox 2008)

In this thesis, logistic regression which is desatilees a GLM is utilized for binary
classification tasks. A detailed explanation of logistic regression has already been provided

in Chapter 2 whediscussing association analysis in GWAS (section 2.8.3).

3.7.2Decision Trees

A decision tree is a recursive paditing algorithm that can be used in classification and
regression task@reiman 1984) The algorithm adopts a tree representation to create a
training model to predict target variables (class) by learning decision rules inferred from
training data.The decisiortree constructérom; a root node, internal nodes, and terminal
nodes or le@es The tree has a single root node assigned to the whoteng data, and each
internal node corresponds to an attribiEach terminal node corresponds to a class label

(Berk 2016)
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Technially, the tree is grown by splitting the source data into subsets (left and right
branches) based on the attribute value test followisglitting rule, starting from the root
node. This process is repeated in a binary recursive partitioning mannerancebes
particularly internal nodes. The tree continues to grow until no additional splits can be

created. Figure 3.4 illustrates araexple decision tree workflow.

. . |:| Footnode
Training
Data C] Internal node
i ) (::} Terminal node

SNP1 SNP2 SNPi  Attribute
o 1.0 Case, Control
SNP2 SNP4 @ SNP3

© ©© ® © ©

Figure 3.4: Decision Tree Classifier

Theprimary challenge in the construction of decision trees is to identify which attributes are
required during the splitting process at each node and where the split should be imposec
This is defined using splitting rulgBuntine & Niblett 1992)in which node impurity is
minimized and homogeneity is maximized using spiecicriteria. There are several
commonly used splitting criteria for classification trees including information gain also
known as entropy index, Gini index, and towifih 1999) For example, during the

splitting process the attribute with the highest information gain measure is selected.

Another challenge in the construction of decision trees is treetlgrgvoisen 2008)
Essntially the growing process is stmgrl when no further splits can be enforced due to a
lack of data at a node. This means that the tree continues to go deeper and deeper almost
the point where it fits the training data perfectly, resulting in over§tand poor accuracy

on unseen dat®ne way to solve this problem and obtain the optimal size of the tree is to

use a pruning algorithifEsposito et al. 1997Pruning involves reducing the size of a tree
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to the optimal size by removing splits that generate two terminal nodes which in turn do not

improve the performance of the treetest data.

Overall, decision trees, offer a simplified method for the interpretation of complex tree
results and are capable of handling missing values and outliers i(Rdédach & Maimon

2005)

3.7.3Random Forests

The random forest algorithm is a randomized decisionliesed ensemble developed for
classification and regressioasks(Breiman 2001)RF uses a collection of trees rather than
a single tree. These trea® typically growrfrom thousands of trees and each tree is grown
using a bootstrap aggregation or bagging technique. Baggnegnan 1996)s one of the
ensemble techniques that builds many independent models or tarakbow trees to gno
independentlyThe classification results each tree producescambinal using a voting
technique. Bagging is an ideal technique for highiance d&a with low-bias(Hastie et al.

2009)wherenoisy models are averaged, which removes biases and reducese&aria

The random forest is constructed by generating several bootstrap samples using the origine
data. ler each bootstrap sample, the tree is grown, and a random subset of pvadiabbes

is selected to split the tree node. The best split is calculetied) these randomly selected
candidate variables. This process is continued until the tree is falyngwithout pruning,
resulting inaforest of decision trees. Each tree is trained on a particular bootstrap sample of
observationsObservations not ¢widered in a specific bootstrap are used asobhbag

(OOB) observations. The OOB samples are used test dataset to estimate error and
permutatioAbased variable importance measurenienvariable selectionThe prediction

of unseen dats basedn majority voting for classification.

Given an"Ofeature set from the original dat@consist of Q0 8 "Q¢, wheret represents

the number of predictor features in the given dataset. The random forest starts by selectin
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several bootstrap samples from the original data. A random splitfr®mital data,’Y into
several decision tree$YRHYH RY using bootstrap samples is performed to construct the
forest as illustrated in Figure 3.5. The classification result is obtained using a vote system tc

identify the most populara@sses.

Training Training
Features Class

fAr fBy fC .. fDi G
T=Iﬂj{2 fﬂ?z fffz fD.;z ?2
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Figure 3.5: Random Forest Workflow

The RF classifier model is a highly recommended algorithm for-digiensional data such
as GWAS(Chen & Ishwaran 2012; Qi 2012) has been successfully used in many genetic
studies(Botta et al. 2014; Lopez et al. 2018; Schwarz et al. 2010; Kursa .2Z0hi) is
because the algorithis highly data adaptive armhn handle correlations and interactions
between features and can also rank variables wsingble importance measur@hen &
Ishwaran 2012)In addition,deeptrees prmote low bias, while bootstrap aggregation
improves the performance of the final model bycderelating trees and reducing variance

(Chen & Ishwaran 2012)

3.7.4Stochastic Gradient Boosting

Gradient boosting is another ensemble-tvased methodased on the combination of two
powerful techniques including gradieoased optimization and boostifigastieet al. 2009)
Gradientbased optimization computes the gradi
training data. Boosting algorithnf{gearns 1988sequentially add new weak, badsarner

models to the ensemble to create a strong learning systdmlitains better performance
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than a single model for edictive tasks. A weak learner is a learner whose error rate is only
slightly better than random guessififpdie et al. 2009)A weak learner is represented by a

decision tree model.

The learning procedure of gradient boosting starts by additively fitting weak learners (new
models) to obtain a more accwgastimate of the response variable. The results in a new
model being trained based on an error from previous models in the ensemble, are traine
during each iteration. The algorithm allocates weights to each resulting model and applies ¢
weighted averagé& produce the final classification result. Figure 3l@strates gradient

boosting workflow.

Model-1 Model-2 Model-3

Training Data Reweighted Data Reweighted Data
a L, 0t - o' B Iy ., A s
4 a . o A A ' i .
L a D Error, el L At Error, €2 L P Minimizing Error
- A - A £l a

Weighted Average

e =N, we

Figure 3.6: Gradient Boosting Workflow

GBM is subjected to overfitting where generalization capadslare decreased. This is a
situation where new decision tree netxlare added to the ensemble until the training data is
completely overfitted. There are a number of different approaches to pteecGBM
modebs overfitting.The technique adopted in thisesis is regularization through shrinkage
(Natekin & Knoll 2013) Shrinkage also known as the leiag rate is used to reduce the

i mpact of each new model added to the en
during one of the boosted iterations, its negative impact on the ensemble model can be
corrected insubsequensteps. Setting shrinkage a small value can improve theo d e | 6 s

ability to generalise on new data but at the cost of convergence speed.

The Stochastic gradient boosting-riedman 20R) algorithm is adopted in the

implementation of this research work which is one of the gradient boosting reethod
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developed to incorporate randomneg® the fitting procedure. Specifically, a randomly
selected subsample of the training data is usdil the basdearner model instebof the
full training data. The subsampling procedure improves generalization and reduces

computational burde(Natekin & Knoll 2013)

3.7.5Support Vector Machirge

Support vector machise(SVMs) are a supervised discriminative classifier formally
developed to fid decision boundaries representgdhyperplanes in andimensional space
(where n refers to the number of features) that classifies the data points samples (attribute
to different classes). The original SMMapnik & Lerner 1963js a nonprobabilistic binary

linear separation that for a giveset of training samples each point in space is marked as
belonging to one of two classes. Typically, SVM chooses the optimal hyperplane with the
maximum margin distance to the closest tragndata points (support vectors) of any class

instances. In genal, the generalisation error of the model improves with larger margin.

For nonlinear separation probleifCortes & Vapnik1995) SVM uses a technique called
kernel. In kernel methofMercer 1909; Aizerman et al. 196#)e data is transformed into
another dimension, mapped into a higher dimensional fatpace, that has a clear
separating margin between the data {goof different instances. This mapping is attained
by using one of the kernel functigrise. hyperbolic tangent, polynomial, and radial basis
function. For SVM algorithm to output the op@nhyperplane that possesses maximum
margin, gradient decent optisation along with the regularisation parameters are used to
adjust the weights of the cost function and thus minimise the classification error on unseen
data.Although SVM can be used to @d the difficulties of using linear functions in the
high-dimensonal feature space by means of the kernel transformation, it lacks the
transparency of model results and does not directly provide probability estiFigtes3.7
demonstrates an exampldé a separable problem in features space with the optimal

hyperplane and the maximum margin to the nearest support vectors of the two categories.
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Figure 3.7: Support Vector MachinExample

3.8 FeatureSelection

Feature Selection is a technique designed to find an optimaétsob features from the
original datasetSaeys et al. 2007This is in contrast to other dimensionality reduction and
compression technigues where the original representation of the variables is abstracted an
altered (Veerabhadrappa & Lalitha 2010feature selection has become a necessity in
several application domains, offering manifold advantages. These advantages include
providing less computationally intensive models, avoiding overfitting, optimized model
performance, and model interpretatifDe Silva & Leong 2015)There are various types of
feature selection techniques and each diffarfiow they integrate the featurelection

search in the model hypothesis space.

Feature selection techniques can be arranged into three catdgdites, wrapper and
embedded method€handrashekar & Sahin 2014jlter methods are based on calculating

the feature relevance score and removing the ones that have the lowest scores. The search
the feature subset space is considered separately from the search in the hypothesis spa
ignoring the interaction with & model selection and feature dependencies (redundant
features may be nominated). In contrast, the wrapper methods incorporate the mode
hypothesis search within the feature subset search, allowing for the generation anc
evaluation of various subsets ofteres in addition to accounting for feature dependencies.

Embedded methods are similar to wrapper methods as they are specific to a given learnin
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model with the advantage of dealing with computational complexity bétser wrapper

methods.

In this thess the Recursive Feature Elimination algorithm (RFE) is ud2ang et al. 2015)

RFE is a wrapper method that recursively evaluates models by adding or removing feature:
to search for an optimal combination of variables that improve andnmseximodel
performance. The procatk is initiated by fitting an initial model to the training set using

all features. During the process of feature selection, each feature is ranked using its
importance to the model where the top ranked features areamatht The model is reféd

and ts performance reassessed using this subset of top ranked features. To better estima
the performance of the model10-fold crossvalidation resampling can be used. Although
resampling methods are computationally busdene, incorporating them with RFEan
advance the probabilistic assessment of feature importance and provide better performanc

estimation than using a single fixed dataset.

3.9 The Application of Machine Learning into T2D

Machine learning has already been cmssfully applied to a wide rangse# medical
applications to discover SNP interactions and investigate the discriminative capabilities of
risk susceptibility to T2D. Zhat al.(Zhu et al. 2013ronsideredhegeneralized multifactor
dimensionality reduction (GMD®5PU) approach for detecting gegene interaction The

study identified 24 core SNPs that appear to be important for W2dget al. (Wang et al.

2014) investigated gengene interaction usindghe lassemultiple regression (LMR)
approach. Researchers found that the SNPs from genes CDKN2BAS and KCNJ11 are
significantly associated to T2D. Random forest afidrdes (TTYor T2D GWAS have been
implemented in(Botta et al. 2014for exploiting SNP correlations. The investigation
suggested thahe T-Trees methodvasable to recover most of the loci already rgpd in

the literature.Furthermore, the -TTrees method outperformed RF wighclassification

prediction rate of 83.4% and 75.8% respectively.
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Banet al. (Ban et al. 2010ronducted a study usiran SVM to identify combinations of
SNPs for the prediction of indiheibesuSNPs 0
combinationausing14 SNPs selected from possible candidate SNPs (ME&)Svasused

as features for the classification of disease risk. This work obtai6&db% classification
prediction rate with 56.7%, and 73.9%r sensitivity and specifity respectively.
Furthermore, the authors investigated subpopulation datasetermer using similar
technique and found different SNP combinations. The results yielded slightly better
accuracy rates of 70.9% (Sens = 71.4%, Spec = 70.4%) and 70.680=3&r5%, Spec =
69.6%) for men and woen datasets respectively. The authors codetl that
epidemiological evidender sex differences exisin T2D. In the study conducted lhppez

et al (Lopez et al. 2018)Random ForesGupport Vector Machine and Logistic regression
algorithms were applied for learning predictive models for T2D, first using SNRodbta
and secondising SNP data combined with clinical data. Using SNP datg, dhe results
revealed thathe RF producedan AUC = 85.3%which outperformedthe LR and SVM
methods with AUC = 83.5%, and AUC = 82.5% respectively. However, adding clinical data
including sex, Body Mass Index and age the results suggested that théyaredidity of

the models improved. The AUfr RF, LR increased to 89%, 84.4% respectively. The
authors concluded thalhe RF is a useful technique for SNP data that cedel feature
interactions andeal effectively withoverfitting and missing valuén the study conducted

by Gill et al.(GUL et al. 2014)the authors used binary logistic regression (LR) to investigate
missing heritability and early risk prediction for T2D in twaparate studies thabnsideed
genetic data only fedwed by genetic and clinicalataanalysis.The authors revealed that
using 798 SNPs, the classification predictive rate of genotype analysis achieved 96.5%.
However the additive contribution of clinical data to the analysmissulted in 98%

classificaton accuracy.
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Kim et al.(Kim et al. 2018}ested deep neural network (DNNsing several subsets of SNPs
extracted through Fpesalized l6gstic eegression. Theerestlts a
demonstrated that using 678 SNPs in male samples, it was possibleeeea93.1% and
85.7% predictive accuracy for DNN and LR respecyivelsing the female datasets samples,
DNN and LR achieved 92.8% and 90.2% respectively. While adding clinical data to the
analysis, the results showed improversantthe predictive accuracy dhe DNN with

94.8% for males and 94.6%for females. LR producel 84.7% and 83.3%or males and
females respectively. Malovinet al. (Malovini et al. 2012)proposed a Hierarchical Naive
Bayes (HNB) for the classification of T2D genetic datae HNB modelwasdesigne to
account for SNPs in linkage disequilibrium. The results showed that HNB classificatio
performancavashigher than those obtainedingstandard Naive Bayes (NB) with 92% and

90% respectively. Table 3.3 summarised the previous studies in T2D.
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Table 3.3: Previous Works in T2D

Author Year Model AUC Sens Spec Features Analysis
0.653-Total 0.567 0.739
Banet al. 2010 SVM 0.709-Male 0.714 0.704 Genetic Classification
0.706-Female 0.715 0.696
RF 0.853
LR 0.835 Genetic
L SVM 0.825 L
Lépezet al. 2018 RE 0.89 Classification
LR 0.844 Genetic and Clinical
SVM 0.825
. HNB 0.92 0.89 0.93 . L
Malovini et al. 2012 NB 0.90 089 092 Genetic Classification
DNN 0.931 Genetic
LR 0.857
DNN 0.948 Il Genetic and Clinical
. LR 0.847 L
Kim et al. 2018 DNN 0928 Genetic Classification
LR 0.902 _Ferrale _ N
DNN 0.946 Genetic and Clinical
LR 0.833
.. 0.965 Genetic L
Gl et al. 2014 LR 0.980 Genetic and Clinical Classification
Zhuet al. 2013 GMDR-GPU Genetic GeneGene Interactions
Wanget al. 2014 LMR Genetic GeneGene Interactions
RF 0.758 . )
Bottaet al. 2014 T 0.834 Genetic GeneGenelnteractions
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3.10 Summary

One of the challenges in computational biology is how to explore, understand and interpret
complex, large biological data. Mospecifically, how to extraégimportant information from

the raw dataand use it to explain the underlying cause of complex diseases. This chapter
presented and discussed deep learning and its effectiveness in convertidgraghkional

data to lowdimensional data while maintainiagd extracting important information. Deep
learning is adopted in this thesis to explore T2D GWAS data. The next chaptaisoukbs

the methodlogy usedin this thesigo explore epistatic interactions in T2D GWAS using

deep learning stacked autoencader
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Chapter 4 Proposed Methodology

4.1 Introduction

This Chapter discusses the proposed methodology. This includes the datasatighori
process and a descriptiontofh e NWde asletsh St udy and t he-Hea

up Study in T2D obtabheGehobowmptebeabdt Rbhar

contr ol prodedomensledthee alessauul t s are repor
removielgi abonre i nformation (individuals a
perform | ogiasitdi asse®ghi @as s iomn a nkad syesdcscrdtsyao |
study design is presented.

Further more, this chapter proesddretds itnhe hp
di scusses the use of deep +seal rmiaBGyVAasSt faec &
extraction mercits@anansum ttiol apyreer per ceqgtomam o
cl assi f i dletlassifitatidn arg levaluation performafmea random forest and
multilayer perceptron classifiere presented. This witle utilised in the results chapter to

provide a set obaseline results for comparison with the proposed novel framework

The study investigaes genotypic risk factorsalong with otherrisk factorsthat include
clinical, environmental exposure, and sociodgraphic factors for the classification of T2D
in casecontrol cohorts. The classification and evaluation performémcéve traditional

supervised machine learning algorithms are presented.

4.2 Data Acquisition

The dedd iunitthis res$edlt olwi aagls aaocbcteasrsn etdo t
of Genotypes and( Prhyekategtp dale.OCHBnOGIsdR.) St udy
and t he Heal t h Rip8t edgi qmHPIFSS) Falnl oWw2 D ¢
phs00009n1nevesed)t@a@a demonstrate the applic

in this thesis. The NHS and HPFS cohort s
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Studies initiativeneGBNEVAY. orgp-NFHw@®mg s
Envi rnotnmeand Health Initiative (GEHOgptHAh
descrofpatilondat aset s.

4.2.1Data Description

The NMNS oKBesl t hw&sueg) abli shed in 10HG, a
participants include d22lagdgédd bemademp@i
reside within 11 U.S states. HPFS partici
bet ween 40 and 75 yé&BHS &ndmHBaEStUp & esst pad n
a questionnaire rreduaesetdi ntgo i tnl eirmamiedn c
characteristics. -ySianmrc ec ytcheen,, coonhoa t2 meob
provi de di etary i nf or metuiar i tuastiinvge e gviad ¢
guestionnaires. Parttoi cprpoawmitde welroceo da | ssaompa
members of the NHS and 18,225 members of
participants were selected fromtthbhopanwh:
identified as thoese twhobea epfoffrd etded hleynse2 L
a medical record validation questionnair e
di abetes. The DNA of ¢ aseen oatnydp ecdo nattr otlh ep aB
Genotyping @@@E@A)Anasiysg st he -Wifdfey mdu ma x &.e
(Affymetrix is a DNA microarray technol oc¢

bi ol ogical systems atelt)he cell, protein,

A total of 6041 NHS and HPFS casentrol subjectsvith genotype information across
909622 SNPs successfully passed the initial quality control artelECGA andv e used

i n finahwersion of the dataset The NHS subjects consi st
control s,coanthda HBFE2®Hnd as@884 control s. Pa
dat aset were i dentHifsipadi &s akldtlopaamiec bar 6

categories nfWwbrteamomAf O har ) . Participant
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White @adndspaonc ©O&pHdahentNdiSaps€Ehe HPFS pal
bel ong to one of the f ouAmerraicciamoly c@astheagro)r.i
were predvhhmiteamtelpy esbat HRBFS 9 B&bsluemnatlh e e s
NHS and HPFShsubjethsiandyt

Table4.1: NHSandHPFS Subj ect 6s Ethnicity

Racial Category NHS HPFS
Case  Control Case Control
White 1551 1779 1184 1283
African-American 17 13 12 14
Asian 6 11 12 14
Other 7 7 24 27

TheHS and HPFS datasets include clinikcal
age, gender , Body Mass simbkaxg( BMIa)t,usal @
height, weight, family history odddpradseg
hi gh bl ood chol estiemtodk e ,porhmayamessfitiwbnr agt reitdrat
and gl Yyoadmases demboakteatied. i A comprehensi
GENEVA NHS and HPFS datguaasleittsyl ccaoenptiore t f o mn d
NHS and HPFS Type (Zh®i atheeasletsh pStoydeyct 200 €

Professi edpal8 diyo.[21000v® )

Table 4.2: The Clinical Datdor the GENEVA NHSHPFS [Cataset

Variable Description Codedvalues
idg GENEVA identification number
age Agein years
bmi BMI in kg/m2

: . . - 1= Hispanic
hisp Hispanicethnicity 2= NotHispanic

0= Control

case Diabetescase status 1= Case of T2D

2= Uncertain diabetaype
alcohol Alcohol intake

1= Nevercigarette smoker
smk Cigarette smoking 2= Pastigarette smoker

3= Current cigarettsmoker
act Total physical activity
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1= White
2= African American

race Racevariable forNHS 3= American Indian
4= Asian
5= Hawaiian
woman Sex LS T
2= Man
1= White
race2 Racevariable forHPFS 2: Other
3= Asian
4= African American
ht Heightin meters
Wit Weightin kg at timeof blood draw
f Family history ofdiabetes among 1= Yes
amdb . : _
first degreaelatives 0= No
hbp Reportechigh bloodpressure 1= With a history ofhypertension
at/beforeblood draw 0= Nohistoryof hypertension
chol Reportechigh blood cholesterol 1= With a history ofhigh cholesterol
at/beforeblood draw 0= Nohistoryof high cholesterol
pufa Polyunsaturated fantake
magn Magnesium intake
ceraf Cerealfibre intake
gl Glycaemicload

4.2.2DataFormat
Both the NHS andHPFSdatasets are in PLINK formatechnically, files in the standard

PLINK format are very large and computationally challenging. As such, convexiyg
large files to binary format is recommended and often performed using the PLINK v1.
toolset. Binary formatted files considerabducethe file size and significantly enhanc

computational efficiency.

Standard flat files in the PLINK format includiee ped and map files. Thaed file contains
information about each individual in the study including Family ID (Fam ID), Individual ID
(Ind ID), Paternal ID (Pat ID), Maternal ID (Mat ID), Sex, Phenotype (Pheno), and the
complete genotyped data. The ggped data is representedR$Ps. Each SNP is-allelic,
meaning it contains only two nucleotides coded as A, T, C, or GnEmefile contains
information about SNPs and associated rsNusf®NP), Chromosome (Chr), and the
corresponding BasPRair coordhate (physical position of SP to chromosomal positioms

well as Genetic Distance (Gen Di¢the meaure ofgeneticdifference between species or
between populations within a species, zero means no diffejemeéte 43 and Table 4.4

show examplesf standard flat filegorresponding to ped and map files
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Table 4.3: Ped File

Fam ID IndID PatlD MatID Sex Pheno rsl rs2 rs3 €
FAM_T2D 60444 0 0 1 -9 CC GG TT ¢é
FAM_T2D 166692 0 0 2 -9 GG GG TT e
FAM_T2D 167773 0 0 1 -9 GC GG TT é
FAM_T2D 167362 0 0 2 -9 CC GG TT ¢é
FAM_T2D 166960 0 0 2 -9 GC GG TT é
Table 4.4: Map File

Chr SNP Gen Dist BasePair

2  SNP_A1820282 0 24049

2  SNP_A2056638 0 43652

2 SNP_A1792446 0 49698

2  SNP_A2063286 0 64387

2  SNP_A2260913 0 76644

Binary files include bim, bed, and fam files. The bim file contains information similar to that
in the map file in addition to Allelel and Allele2 for each SNP in the ped file. The fam file
contains the identification information for each participant. ftiermation in the fam file

is similar to the columns described in the ped file excluding the genotype data. The bed file
is the largest file of the thrae this binary set of files and caibhs a binary genotype data.
This file contains all the SNPs usadthe study as well as the genotype for each SNP in
each participant. Table 5. Table 4.6, and Table 4pfovide examples of corresponding
binary filesof fam, bim, and bed files respedly.

Table 4.5: Fam File
Fam ID IndID PatID MatID Sex Pheno

FAM_T2D 60444 0 0 1 -9
FAM_T2D 166692 O 0 2 -9
FAM_T2D 167773 O 0 1 -9
FAM_T2D 167362 O 0 2 -9
FAM_T2D 166960 O 0 2 -9
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Table 4.6: Bim File

Chr SNP Gen Dist BasePair Allelel Allele2
2  SNP_A1820282 0 24049 G C
2  SNP_A2056638 0 43652 G A
2  SNP_A1792446 0 49698 T C
2  SNP_A2063286 0 64387 G G
2  SNP_A2260913 0 76644 C A

Table 4.7: Bed File
01101100 00011011 00000001

00011101 00011100 10010001
11111111 00111110 00011100
11100001 00011000 00101100

11001100 00000001 00110000

4.3 Data Quality Control

Data quality control (QC) and preliminary anat/ss performed using PLINK v1.07 and
v1.9 (Purcell et al. 2007jor Windows. PLINK is also used to merge the NHS and HPFS
datasets (NHS and HPFS participants were genotyped using thaeifix GenomeNide
Human 6.0 arrgyandsubsequet filtering procedures. Before QC, the 0 Chromosavas
removed,andnonT2D participants, i.e. other types of diabetes (65 NHS, 68 HPFS), the
HapMap controls (44 NHS, 29 HPFS), and those belonging tocdthoiher than white (61

NHS, 103 HPFS)were ale® excludedfrom the study. This study is restricted to white
ancestry to reduce potential bias due to population stratification. The dataset was subjecte
to preestablished quality control protocols as mooended ifAnderson et al. 2010)n
addition quality control parameters are tuned to meet the requirements of the analysis
presented in thistudy. Quality control assessments for individuand genetic datare

conductedseparately.
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4.3.1Individual QC
Individualsthat met any of the following criteri@erediscardedrom the analysisSamples

with discordant sex information were identified using thehXomosome homozygosity rate
calculation. he expected homozygosity ratasless than 0.2 for female, more than 0.8 for
male resulting in 14 samples being removed from the datégete4.1 representshe X-

chromosome homozygosity rate for female and reateples

Histogram of Female Samples
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I

Frequency of Female

50

o =N O

I 1 1 1 1 1 1
0.4 0.3 0.2 0.1 0.0 0.1 0.2

X Chromosome Homozygozity Estimate

Histogram of Male Samples

1500 2000

Frequency of Male
1000

500
l

0

[ I I I 1
0.80 0.85 0.90 0.95 1.00

X Chromosome Homozygozity Estimate

Figure 4.1: X-ChromosomeédomozygosityRate forFemaleand Male

Il ndi vidual s with elevated missi amgloutlyiag a
heterozygosity rate (heterozygosity rate +3 standard deviations from the mean) we
identified resulting in 131 individualbeing discardedrom the analysis. Figure.2
demonstrates the proportion of missing SNPs with respect to the heterozygosidashtd

lines indicate quality control thresholds and thesdepresent the obsexd samples.
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Figure 4.2: Genotype Failure Rate vs. Heterozygosity Rate

Duplicatedor related individualgvere identified by estimatiniglentity-by-descentor shared
alleles We have chosen to remoaaindividual from each pair with an IBD > 0.18&hich

is halfway between the IBD for third and secatefjree relatives. Eight samples were found
and excluded from the dataset. Figurgrépresents a histogram for the mean pairwise IBD
distribution between afplairs of samples in the dataset. Vertatashed lines indicate quality

control thresholds (IBD >0.185).
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Figure 4.3: Histogram Showing the Distribution of Mean Pairwise IBD

To visualize the degree of ridainess between a pair of individuals the proportion of loci
sharing one allele IBD (pareohild pairs), represented by Z1 is compared with the
proportion of loci sharing zero allele IBD (unrelated), presented by A@eigenome file.

Each point on thplot represents the relationship type between a pair of individuals as shown

in Figure 44. This figure shows that many individuals identified are unrelated (black points).
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Blue points describe second, third, fourth, &ifith degree relatives while the ggn points
represent duplicated and fadégree relatives that have subsequently been discarded from

the dataset.
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Figure 4.4: Degree of Relatedness

Individuals withdivergentancestry were identified ugilPCA. PCA is constructed using
pruned genomeide genotype data from a reference pamkeHapMap phase Il data
consisting of four diverse ancestral populations including Europe (CEU), Asia (Chinese
(CHB) and JapaneqJPT) populations), and Africa (YR he fact that there is larggeale
genetic diversity between the four ancestral populatimesinst is possible to use the first

two principal components to separate and cluster samples from within the four gfaups.
identify samples witldivergentancestryin our dataset, these samples are clustered alongside
the HapMap individuals. Using prin@pcomponent scores, 51 individuals with 28
principal component scoref less tharD.061wereremoved Figure 45 shows the princigl
component analysis gléor our dataset usingapMap phase Il data for ancestry clustering.
The black dots represent our dataset, CEU (red), CHB and JPT (purple) and YRI (green)
The grey dashed line is the prinaigomponent scoreof identifying samples for removal.

Furthemore,101 individualsvere removedue to missing genotype data rate of 0.05.
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Figure 4.5: Principal Component Analysis
4.3.2Genetic Marker QC
SNPs withexcessiely different (p < 0.00001nissing data ratelsetveen case and control

samplesvere identifiedand removedesulting in 29 SNPeing excludedrom the analysis
Figure 46 shows a histogram of the missing genotype rate to specify the threshold used to
elevategenotype failure rate3.he dashed line indates the quality control threshold used

for genotype failurerate® 0.. 0 5

All SNPs
100K -
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s
o
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z
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Fraction of missing data

Figure 4.6: Histogram of the Missing Genotype Rate

In this analysis, SNPs that show extensive departure from HWE in control samples were
excluded as these can be indicative of genotyping error.sigmficance threshold for
identifying markers in HWE is set toyalue < 0.001. This resulted #248 variantdeing

removed from the dataset.
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All SNPs with a MAF threshold of <0.05 were identified in the dataset resultihgd004
variants being exclutl. Whereasmarkers with low genotypg efficiency (call rate) were
identified using a missing genotype rate of 0.01 resultiridlB863 variantbeing excluded

from the dataset.

This concludes QC analysis. The final dataset used for subsequent araiysiset’5393
individuals (2481 case2912 controls)ith 608342 markergach Figure 4.7 summarises

the quality control proceduresed withthe NHSHPFSdataset to obtain a subset of reliable

markers and sampéor subsequent association analysis.

GENEVA NHS-HPFS Dataset

Pre QC
Remove CHR 0,
non-T2D, HapMap,
non-White Ethnicity

Individual QC

Sex Inconsistencies check

Call Rate = 0.05 and
Heterozygosity

Individual Relatedness
IBD =>0.185

Population Stratification
PCA

Remove poor
quality
Individuals

After Filtering Processes
5393 Individuals
608342 SNPs
remained in the study

GENEVA NHS-HPFS is ready for
Association Analysis

Marker QC

Markers with Missing
Data Rate P = 0.00001

MAF = 0.05
HWE
P-value < 0.001

Marker Genotyping Call
Rate = 0.01

Remove poor
quality
Markers

Figure 4.7: Quality Control Workflow for NHSHPFS Dataset

92



4.4 AssociationAnalysisusing Quality Controlled2D Dataset

In this section, populatichased association mapping is presentedtandard caseontrol
association analysis is conducted in an unrelated, white racial subpopulation to compare the
frequency of genotypes at genetic marker loci (SNP) between cases and controls contained |
the Geneva NHS and HPH2D datasets. Associaim analysis using logistiregression is
performed with PLINK v1.9. This is a widely used approach within GWAS studies, under an
additive genetic model to assess the association of all SNPs within the study with diseast
binary traits (0/1) for case and d¢ovl subjects. Other motefor disease penetrance are
available including multiplicative, dominant and recessive models. However, additive models
are the most commonly used in genetic association testing when the underlying genetic mode
is unknown and tre are a large number wficharacterised SNPs and outcorf@sarke et

al. 20L1). Disease penetrae@ssociated with a given variant (genotype) is defined as the risk
of disease in individuals carrying that variant. In an additive genetic model of disease
penetrance, an additive effect indicates that the risk of disease is incréakkefbygenotype

0 aand 2yfold for genotyped 0(Clarke et al. 2011)

Furthermore, logitic association testing is adjusted using Genomic Control (GC) to control
population structure, ang-values are considered based on a GC inflation factdn
addition, to detect statistically significant SNPs tBenferronicorreced genomavide
significance threshold v p T is usedashighlightedin (Dudbridge & Gusnanto 2008)
Odds ratio with a 95% confidence interval (95% CI) was measured to evdleattength

of associatns between SNPs and T2D and determineif there is risk association, no
association or protective association betwae&IdP and the phenotype of inter@st this
instance T2D)To report the context of the SNPs identified,database of single nuciede
polymorphism (dbSNP) was us@heeler et al. 2007 his tool is developed and provided

by the Natimal Center for Biotechrogy Information(NCBI) in collaboration with the
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National Human GenomBResearch Institute (NHGRI) and it contains genetic background

information for all identified genetic variatis\Wheeler et al. 2007)

4.5 Classification for HigkDimensional T2D GWA®ata

For Classification tasks using T2D GWAS data, stdtthe-art algorithms in machine
learning including random forest and multiday perceptron classifiers are used and
benchmarked against a deep learning stacked autoencoder. The performance of thes
advarced machine learning methosevaluated to assess their discrimimgtcapabilities

when classifying observations with T2D (css@and without T2D (controls) using the
GENEVA NHSHPFS GWAS datasethe analyss were conducted using R Studidizing

the H20O packagdAiello et al. 2018; Candel et al. 201&)igure 48 shows the proposed

methodological framework for the approach posited inttiesis.

Logistic Feature Selection Using P-value
Ganetic +  Qc » Clean > Association - Threshold:

Data Data Analysis 5X10°%, 10%, 105, 10, 103, 102
Stepl: Pre-processing
¥
Data Partition Models Training & Tuning Feature Extraction via 4 SAEs Model Training & Tuning
upe| !

Train Valid Test Supervised Unsupervised

% % 5% MLP RF H
70% 15% 15 i SAE

Step2: Training & Tuning

v
~, / \ Evaluate & Compare Models
Classification Classification Performance
Results of | Results of
Softmax

MLP RF e A MLP & RE ’,' Softmax MLP AUC, Sen.s,lSpet‘Loglnss_‘
P Gini, MSE

Models Validation

Step3: Models Evaluating

Figure 4.8: MethodologyFramework forHigh-Dimensional Data

The following sections presetite experimental configuratioasidour methodology in more

detail.

4.5.1Extracting Groups of Features from Association Analysis

Logistic regression association analysis is employed to assess the associateenbatw
SNPs and the T2D phenotype. Most GWAS genayween 500,000 and one million

SNPsandin some studies significantly more. Using such a large number of genetic variables
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to train classification models is computationally difficult. One simplecamdmon approach
is to filter a subset of genotype SNPs to remove less useful inform(8tish & Moore
2012) This can be achieved by selecting a set of SNPs resulting from logistic association

for single SNP analysis with different significance thresholds.

In this stuly several pvalue thresholds are considered includingp mt,p m, p 1T,
p1,p 1,andp T resulting in 7, 13, 23, 103, 766, and 6609 SNPs respectively. These
subsets of SNPsr@ used to exhaustively evaluate the -ioear epistatianteractions in
each subset and assess the predictive capacity of advanced machine l@arning

discriminating between cases and controls in T2D GWAS.

4.5.2Classification using/ultilayer Perceptron

A multilayer perceptronMLP) that is trained with gradient descent optimization using the
backpropagatiofearning algorithm is implemented in this analysis for binarysifi@ation

tasks based on theheoreticaldefinitions in(LeCun et al. 2015; Candel et al. 2018; Ng
2011) The MLP isconstructed usopinput, hidden, and output layers containing a-pre
defined number of units (neurgri depending othe evaluationLet& denote the number

of layers in the network whexes a layer and is a particular layer. Thus, is the input

layer andD is the output layer in the network. Fitsie input vector is transmitted to the
input neurons in the input layer and then the outputs from the input neurons are passed t
the hidden neurons in the hidden layer, which is du®sd laye This process is continued

until the last layer of the hidden layers is reached. Then, the outputs of this last hidden laye!
are sent to the output neurons in the output ldpeaddition to the layers and neurons, the

neural network consistd severaparameters including the weight and bias. The parameters

whd ® Mo o O wherew denotes the weight of the connection between

unitGn layerd and unit®n layerd  p. Additionally, the bias unid , associated with unit

“0n layera p is used with otput value equal tc p. The number of units in layaxis
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represented bly , andabias unit® whichis not counted with . The output value of unit
“(n layerais given by an activation vectds which is equal to theotal weighted sum of

inputs (including the bias term), denoteddby. Thus,® "Qa  whered isgivenas
a AR (4.1)

Given a fixed setting of parametepdtothe neural network hypothesis is definedag ®
which gives the real number output as

Qp o O Q4 (4.2)
where @ M A repesents the activation function. Basically, there are various types of
activation functionwhich include thesigmoid function, hyperbolic tangent, rectifier linear
unit, and maxoutlt is challengingto choosewhich activation function to adopt for our

dataset, thus we let the network model select whidh@&de activation functiorisest fis our

dataset.

Following the forward pass calculation of all the activations in layey , and so on up to

the output layed to compute the output value throughout the network, including the output
value of the hypothesi®  w, the error term for each unn previous layers is computed
usingthe backpropagatio algorithm. The weights of the network énenadjusted through

iterative updates using gradientsdent.

Given a fixed trainingset ® ho Mho o of & training samples, parametér
is avectorcortaining theinput feduresfor a sample andthe outcome, the neural network

can be trained using gradient descent optimization

The overall cost functiowhen usinghe mean squareatror cost functiors defined agNg

2011)
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Valll

(4.3)

all|

And in case olusing thecrossentropycost function, the overall cost function is defireesd

allll

1o p o 118 Qfd (4.4)

alll

In cost functiond @ fry, The second term is a weight decay term which is a regularization
term that penalizes large weight®ie weight decay terifL.2 regularization penaltyy used

to addapenalty to the error functiom teducethe magnitude of the weightEhis makes the
weight values to decay towards zero (but not exactly zrdxhus prevent overfitting. The
weight decay parameter, is used to control the relative importance of the first and second
terms of the ast fundion. Typical valuesof _ range between 0 and OQ(Kuhn & Johnson
2013) Too small of a_can leado overfiting the data, while totarge values of canlead

to underfiting the dataTherefore, grid search is used to choose the optimisatlie.

To train the neural network mogeandom initialsation of parameteo  andeache to

avalue close to zero is applied. This step is essential to stop hiddenégdearning the
same function of thimput More specifically, if all the parametais andc areinitialise

using thesame valuesactivationsandoutput valuedor all units will be the samex(

» E) for any inputc
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The gradient descent optimization algorithm is used to updates paramétees define

below:

(4.5)

® Do |
wherel represents the learning rate.

The partial derivatives of the cost functi@me computel using the backprogation

algorithm (see Algorithm 1). Algorithm tlescribeshow backpropagation computes the

partial derivatives— 0 ¢ FoI i and— 0 ¢ Fed o for the cost functiom ¢ Fod P
for a single exampleato .

The backpropagtion algorithm first performs a feedforward pass to compute all the
activations®d and the output value ¢C ;; @ in the network. An error term s
calculated for each nod@n layerato measure the contribah of this node to any errmein

the output. For hidden nodes, the error termis computed using a weighted average

of the error terms of the nodes that dse as an input. Foan output node, the error term

1 (wheree i s the output | ayer) signifies the

and the true target value. Then, the error termis propagated backwastb the previous

layers through the network to adjust the weights &mhenodéCn layera

Algorithm 1 Backpropagation Algorithm

1: Perform a feedforward pass and compute the activations for
0 Mh (¢ isthe output layer)
for each output unitin layer¢ , do

) no 0 8P4

fora & piB fghdo
for each nod&in layerg do
1 B P
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8: end for
9: endfor
10: Compute the desired partial derivatives:

| .
11: ——Vohipw ]

Tw

12: T—Mohd N AT

Tw

Once thepartial derivatives of the cost function with respect to a single ebearijio have

been computedhe derivativdor the overall cost function & fto can be calculated as:

L s 2 1 sormi o
Tw a Tw
(4.6)
1 oo 2 I oorm
Tw a Tw

Thereaftergradient descent is used to train the neural network as described in Algorithm 2.
Y& is a matrix with dinensiorssimilartoc , andY® is a vector of similar dimension

tow . Algorithm 2 describgone iteration of gradient descent as follow

Algorithm 2 Gradient Descent Algorithm
1: SetYo h mfY®d h m(matrix/vector of zeros) for aft
2: for 'Q piB hi hdo o
Use backpropagation to compute U w hudpdw and
0o .

4:  SetYo h Yo 0o .
5. SetYo h YO n 0w,
6: end for
7: Update the parameters:
8 o ha | Vo 6

a
. W pv~,~
99 w hw | =Y

a

The stepsgaken in thegradient descent optimization algorithm can be repeatedly applied to

minimize the overall @st functiond & ho .
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Momentum training and learning rate annealing are advanced optimization tuning
parameters that are used to modify backpropagation to allovopsaterations to influence

the current version. The velocity vector is defined asvadlto

v | D —
4.7
— — U
where—denotes the parameters ¢ ¢ &BThe momentum coefficient is represented by

and the learning rate|is

Training the BaselineMLP Classifier

The MLP is trained using a training set of labelled observata, 3« )wherew N a ,
extracted from the T2D cas®ntrol GWAS da and used for supervised learnifigne
parameterm is a vector of input fedaresobtained from thedraining samplesvhich are
extracted as described in section 4.5.1 (Extracting Groups of Features from Association
Analysis). Six feature input vectorsonsisting of7, 13, 23, 103, 766, and 6609 SNPs
respectively were used to trasix separate MLP models. The outpmvas useddr target
outcomes g sample vith T2D anda sample without T2Despectively) among observations

in the study. The network parametersandoware randomly initialisedlose to zerdefore
trainingis performedThe cost function is set to cegentropy for binarynputs as defined

in equation(4.4).

Hyperparameters Configuration of MLP

All MLP models are trained with several different layer and neuron configurations.
addition,parameters including L{Lasso) and L2 (Ridge) regularizationnadties, learning
rate, rate_annealing, momentum_start, momentum_stable, input_dropout_ratio, and earl

stopping criteria are configured for model optimisation.

Finding optimal hyperparameters is challenging, yed&mentally important for model
accuracy.Therefore, Random Grid Search (RGBgrgstra & Yoshua 20123 widely used

to overcane this issueThe mndom grid search lalvs us to test various hyperparameter
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combinations and choose configurations that maximise model acBexgstra & Yoshua
2012) For RGS, a set of hyperparameters and search criteria must be specified. Eacl
hyperparameter is defined with a range of possible values. Search criteria with
stopping_metric, stopping_toleranead stopping aunds are specified for early stopping t
prevent model overfitting. Based on grid search results, the best model is séfestede
cases, the model with the lowest mean square error or lbwgkiss is considered the best

option.While in another casthe highest AUC is considered.

In thisanalysis, RGS with a range of hyperparameter values is implemented to evaluate mode
accuracy. Figure 89.andFigure 4.10present the R codenipped usetb build random and
automated search for differemétwork configurationsThe activation function cdkcient is

given several options including Rectifier, Tanh, Maxout, RectifierWithDropout,
TanhWithDropout, and MaxoutWithDropout. Two hidden layer configurations are
considered three and four hidden lays. The number of neurons in each layer is s&fro

fifty, and a hundred. The remaining hyperparameters L1 andeg@larization, dropout,
learning rate, and momentum training are given several possible vebuegid overfitting,

early stopping is sed to decide when théLP is optimized and suffieintly accurate. There

are several parameters to control early stopping including stopping metric, stopping rounds
and stopping toleranoghich are set ta.ogloss, 5, and.e-2 respectively The network is

finally trained using 100 epochs.

Figure 4.9: R Codei Hyperparametergsed with RGSn MLP
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