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Abstract
Photogrammetry (PH) is relatively cheap, easy to use, flexible and portable but its power and limitations have not been fully 
explored for studies of small animals. Here we assessed the accuracy of PH for the reconstruction of 3D digital models of 
bat skulls by evaluating its potential for evolutionary morphology studies at interspecific (19 species) level. Its reliability 
was assessed against the performance of micro CT scan (µCT) and laser scan techniques (LS). We used 3D geometric mor-
phometrics and comparative methods to quantify the amount of size and shape variation due to the scanning technique and 
assess the strength of the biological signal in relation to both the technique error and phylogenetic uncertainty. We found 
only minor variation among techniques. Levels of random error (repeatability and procrustes variance) were similar in all 
techniques and no systematic error was observed (as evidenced from principal component analysis). Similar levels of phy-
logenetic signal, allometries and correlations with ecological variables (frequency of maximum energy and bite force) were 
detected among techniques. Phylogenetic uncertainty interacted with technique error but without affecting the biological 
conclusions driven by the evolutionary analyses. Our study confirms the accuracy of PH for the reconstruction of challenging 
specimens. These results encourage the use of PH as a reliable and highly accessible tool for the study of macro evolutionary 
processes of small mammals.

Keywords  3D reconstruction · Geometric morphometrics · Measurement error · Technique comparison

Introduction

The use of digital 3D models in morphological studies is 
increasing in many scientific disciplines, including palae-
ontology and evolutionary biology. The digitalization of 
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an object not only facilitates detailed analysis of the size 
and shape of fragile specimens but also helps investigation 
of diverse evolutionary questions (e.g. Cardini et al. 2015; 
Cornette et al. 2013).

The use of close-range photogrammetry (PH) has grown 
in many fields because it is economical, portable, easy to 
apply and accurately reproduces the geometry and colour 
pattern of real and complex objects (Falkingham 2012). For 
this reason, it has become widely employed in a variety of 
disciplines such as biology (Evin et al. 2016), palaeontology 
(Bates et al. 2010), anthropology (Katz and Friess 2014) and 
medicine (Ege et al. 2004), among others.

In analyses of shape and size of objects (as in biological 
studies), the 3D models are often integrated with geometric 
morphometric methods (GMM). This approach has proved 
particularly useful in bats, where, for example, GMM has 
provided additional information on divergence of cryp-
tic species (Sztencel-Jabłonka et al. 2009). Nevertheless, 
acquiring landmarks on bone sutures of bat skulls, particu-
larly for Microchiroptera sensu Simmons and Geisler (1998), 
is quite difficult due to early suture ossification and their 
small size. This challenge often forces researchers to employ 
extremely precise equipment at considerable cost. However, 
no studies have addressed the utility of PH for this group and 
other similar sized mammals.

Katz and Friess (2014) and Evin et al. (2016) demon-
strated the accuracy of close-range PH for large skulls 
(humans and wolves, respectively) relative to laser scan 
models. Fahlke and Autenrieth (2016) compared PH per-
formance relative to µCT scan models for a vertebrate fos-
sil skull (condyle-basal length = 37.5 cm) and similarly 
found high similarity. Very few studies have attempted to 
apply it to smaller specimens although Muñoz-Muñoz et al. 
(2016) and assessed the repeatability of PH for mice skulls 
(length = 45 mm) and suggested it might be appropriate for 
small mammals. Durão et al. (2018) suggested a protocol 
for 3D reconstruction of vole humerii by mean of PH. Nev-
ertheless, no tests were conducted to assess its performance 
against more established 3D reconstruction techniques (e.g. 
µCT scan). High measurement error (random error, in par-
ticular) is well-known in small specimens and largely arises 
due to difficulties in landmark identification (Badawi-Fayad 
and Cabanis 2007; Cramon-Taubadel et al. 2007; Fourie 
et al. 2011; Marcy et al. 2018; Muñoz-Muñoz et al. 2016). 
The extent of biological variation is of paramount impor-
tance when considering the impact of technique-based error 
on the results (Marcy et al. 2018).

An additional incentive for analysing differences between 
techniques is that it may lead to an understanding of when 
it is feasible to combine data acquired using different tech-
niques. The introduction of random and systematic errors 
intrinsic to each technique is known to create unreal patterns 

and/or obscure biological variation (Fruciano et al. 2017; 
Marcy et al. 2018; Robinson and Terhune 2017).

This study was motivated by the need to assess PH as a 
tool for reliable analysis of bat skull morphology and assess 
its performance relative to µCT scan and surface laser scan 
(LS). We used GMM to assess the relative accuracy of PH 
models for quantifying size and shape via anatomical land-
marks. Phylogenetic comparative methods (Cornwell and 
Nakagawa 2017) were used to assess the strength of bio-
logical signal against the technique error and the phyloge-
netic uncertainty. Our aims were to quantify the extent of 
measurement error introduced by the PH/GMM approach 
and assess the reliability of combining data extracted from 
different reconstruction techniques (PH, µCT, LS).

Materials and Methods

Sample

GMM and phylogenetic comparative methods were used to 
examine the reliability of PH for the digital reconstruction 
of bat skulls and assess its performance in interspecific (19 
species) evolutionary analyses.

Crania from nineteen different bat species from the Natu-
ral History Museum of Paris (MNHN) were reconstructed in 
3D using three different techniques: PH, LS and µCT scan-
ning. The specimens were selected to represent bat species 
of small and medium size, with an average skull length of 
15.62 mm (Table S1).

Data Acquisition and Model Landmarking

The 3D models have been reconstructed with three different 
techniques (PH, LS, CT).

The PH 3D models were obtained employing a digital 
SLR Nikon D5300 camera attached to a Nikkor 60 mm 
macro lens. The general camera lighting settings and posi-
tioning, specimen arrangement and number of pictures per 
specimen were adapted from Falkingham (2012) and Mal-
lison and Wings (2014). Average mesh size was ~ 3,000,000 
faces.

For the LS models, we employed a Breuckmann Laser 
Scan, model SmartSCAN R5/C5 5.0 MegaPixel housed at 
the MNHN of Paris. We used the field of view S-030 which 
is optimal for very small objects (240 mm length) and can 
achieve a maximum resolution of 10 µm.

To obtain the CT models we used a phoenix v|tome|x 
s housed at the MNHN of Paris. Scans resolution ranged 
between 18 and 28 µm (average 23 µm) in voxel.

Detailed information on devices and workflow are avail-
able in the supplementary material.
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The open source software Landmark Editor (Wiley et al. 
2005) was used to place 24 unilateral landmarks on the 
dorsal, lateral and ventral side of the cranium (Fig. 1a and 
Table S2). See Supplementary material for details on land-
marks acquisition and coordinates transformation procedure 
(Procrustes Shape Coordinates).

For the interspecific study (19 species), we assessed the 
landmarking error by recording coordinates three times on a 
subsample of nine species, selected to represent the morpho-
logical variation within our sample (Carolia perspicillata, 
Desmodus rotundus, Glossophaga soricina, Myotis emar-
ginatus, Myotis capaccinii, Nyctalus noctula, Rhinolophus 
hipposideros, Rhinolophus ferrumequinum and Tadarida 
teniiotis) for each technique (LS, PH, µCT). Some species 
were morphologically very divergent, as assessed from prin-
cipal component scores (see later) (e.g. D. rotundus and G. 
soricina) while others were very similar (e.g. R. hipposi-
deros and R. ferrumequinum).

Measurement error evaluation

Mesh Distances

The average distances between the 19 paired models were 
calculated in R software (R Core Team 2018) using the 

meshDist function in the “Morpho” package (Schlager 
2013). This distance is defined as an average of the shortest 
distances between every triangle of a mesh and the closest 
triangle of the other (Bærentzen and Henrik 2002). It returns 
the average distance and a coloured scale model that visu-
ally represents the differences between each pair of meshes.

Shape Visualization

The preliminary visual analysis of the shape differences 
between the specimens was achieved using a Principal 
Component Analysis (PCA) for the interspecific dataset. 
We used the variance–covariance matrix of the Procrustes 
coordinates to extract orthogonal vectors (PCs) that sum-
marise variation within our sample. Shape changes in 3D 
skulls were visualised by warping the 3D coordinates along 
the PC axes. This was achieved applying a Thin-Plate-Spline 
(Bookstein 1989) algorithm on the mean shape of the mor-
phospace. The 3D bat skull with lowest deviation from the 
mean shape was chosen for the visualisation. This model 
was warped along the positive and the negative sides of PC 
axes to display the shape variation in the sample (Drake and 
Klingenberg 2010).

Fig. 1   a Landmark configuration used in the study. Species: R. fer-
rumequinum. Anatomical definition in Table  S1. b Visualization of 
mesh distances on dorsal and ventral views between (a) PH and µCT; 

(b) PH and LS; (c) µCT and LS. The colour represents the distances 
in mm. Species: R. ferrumequinum (skull length: 18.78 mm)
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Error in Geometric Morphometrics

Pearson and Mantel tests were employed to assess the simi-
larity between the centroid size vectors produced by each 
technique, and their shape coordinates matrices, respectively 
(Cardini 2014). Procrustes and standard ANOVAs were used 
to quantify the variance explained by the different techniques 
for shape and size, respectively. Nested ANOVAs were used 
to analyse replicate measurements to assess the landmarking 
error in a subsample of the data (nine species, see above), 
with repeatability computed using the intraclass correla-
tion coefficient, i.e., among individual-variance divided 
by within-individual variance components (see Fruciano 
2016). The variability of Procrustes variance computed for 
each triplet of replicate was used as a further indicator of 
random measurement error within each technique (Marcy 
et al. 2018). The Procrustes variance, also known as mor-
phological disparity, measures the magnitude of morpho-
logical variation for each triplet by technique (Zelditch et al. 
2012). Kruskal–Wallis tests were used to compare median 
Procrustes variances between techniques (greater variation 
suggests lower precision in landmark identification). Pearson 
correlation tests between Procrustes variance and centroid 
size assessed whether errors in landmark identification were 
greater for smaller specimens.

Error in Evolutionary Analysis

Additional analyses were performed on the interspecific 
dataset to assess the use of PH-generated data in evolution-
ary studies.

Phylogenetic trees for the 19 selected species were 
inferred by Bayesian inference, as implemented in MrBayes 
version 3.2 (Huelsenbeck and Ronquist 2001). Input data 
consisted of an alignment of 20,364 base pairs of nuclear 
and mitochondrial DNA from Shi and Rabosky (2015). The 
alignment was divided into 29 partitions (for details see Shi 
and Rabosky 2015) to allow for evolutionary differences 
between partitions. The GTR + G model was applied to each 
partition. The MCMC chain was run for 5 million genera-
tions, with trees saved every 500 generations and the first 
5 × 103 trees discarded as burn-in. The remaining posterior 
sample of 1000 trees and the 50% majority rule consensus 
tree was used for subsequent analyses.

The R packages “ape” (Paradis et al. 2004) and “geo-
morph” (Adams and Otárola-Castillo 2013) were used to 
test for the presence of evolutionary allometry (Cardini and 
Polly 2013) in the three datasets using the log10 transformed 
centroid size as the independent variable and Procrustes 
shape coordinates as the dependent variable. Phylogenetic 
generalised least squares (PGLS) analyses with 999 permu-
tations was employed on the three datasets separately to test 
for the presence of evolutionary allometry after taking the 

phylogenetic variance–covariance matrix into account, with 
the phylogeny represented by the Bayesian consensus tree 
(Adams and Collyer 2015; Rohlf 2007).

The presence of phylogenetic signal (quantified by the 
K statistic, Blomberg et al. 2003) in the three datasets and 
the degree of congruence for size and shape (Adams 2014) 
were also analysed using the consensus tree. The K statistic 
reflects the degree of congruence between phenotypic data 
and the phylogeny (Blomberg et al. 2003). Statistical signifi-
cance of K and its multivariate extension Kmultiv was assessed 
using randomization (Adams 2014).

To examine whether the same evolutionary conclu-
sions were obtained using different techniques, we com-
puted a series of ANOVAs with morphological data (log10 
transformed centroid size and shape coordinates) as the 
dependent variable and ecological data (log10 transformed 
frequency peak and log10 transformed bite force) as the 
independent variable for all species in the study except Pip-
istrellus nathusii (no data on bite force were available for the 
species). Frequency peak data were extracted from the lit-
erature (Brinkløv et al. 2011; Kalko et al. 1998; Rodríguez-
San Pedro and Allendes 2017; Russo and Jones 2002; Siem-
ers et al. 2001; Siemers and Schnitzler 2004). We obtained 
unpublished (collected by AH) and published bite force data 
(Aguirre et al. 2002) for these analyses. The same analyses 
were repeated under a phylogenetic comparative approach 
using PGLS.

To assess whether the same results were obtained from 
mixed datasets acquired from the three different 3D recon-
struction techniques, we constructed 1000 morphological 
datasets in which data for each of the nineteen species were 
randomly selected from one of the three techniques (PH, 
µCT, LS). Allometry, phylogenetic signal and correlation 
with bite force and frequency peak (assessed as previously 
described) were analysed for each dataset using standard and 
phylogenetic comparative approaches. The mean, standard 
deviation, minimum and maximum of the parameter dis-
tributions were used as statistical descriptors of the vari-
ables distributions and were compared to the original results 
obtained with singular-technique datasets (PH, µCT, LS).

Fruciano et al.’s (2017) approach was used to assess the 
error due to phylogenetic uncertainty in the evolutionary 
analyses. The 1000 posterior trees represented the phyloge-
netic uncertainty in these analyses. Three common evolu-
tionary analyses were performed: assessment of phylogenetic 
signal, relation between peak frequency and morphological 
data, relation between bite force and morphological data. 
For each technique-tree combination we performed the three 
analyses for both size and shape obtaining a distribution of 
1000 estimates for each analysis. ANOVAs were performed 
on each distribution to assess the variance explained by the 
both phylogenetic uncertainty and reconstruction technique.
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Results

The nineteen models were reconstructed in 3D with the three 
different technique and the photogrammetric 3D model of 
Rhinolophus ferrumequinum (MNHN-ZM-MO-1977-58) 
can be downloaded as an example from Morphosource 
(model ID = M30222; https​://www.morph​osour​ce.org).

Mesh Distances

Visual examination of the meshes revealed strong general 
similarity between the three data sets except in certain spe-
cific areas (Fig. S1). There were small distances between 
the surfaces of the models as shown for Rhinolophus fer-
rumequinum (Fig. 1b). The average distance between PH 
and LS models was 0.041 mm, in agreement with that found 
by Evin et al. (2016) for 5 wolf skulls (0.088 mm) (Table 1). 
The average distance between the PH and µCT models was 
0.054 mm. Finally, the µCT and LS models were extremely 
similar with an average distance of 0.015 mm (Table 1).

Shape Visualization

The morphospace of the 111 specimens (i.e., 57 mod-
els plus 54 replicates) displays the shape variability in 
the sample (Fig. 2). The first principal component (PC1) 

explains 40.26% of the total variance while PC2 explains 
20.26%. PC1 shows shape variation mainly related to the 
length of the supra-occipital bone, while PC2 represents 
variation in palate length (warped skulls in Fig. 2). Sam-
ples clearly cluster according to the species/individuals 
and not to the technique employed. Replicates were also 
tightly clustered, except for M. capaccinii (which had 
some cartilage tissue still attached to the bone making 
landmark identification difficult). Replicate clusters indi-
cated no evidence of explicit random or systematic (i.e., 
bias) errors: none of the technique showed greater vari-
ability relative to the others nor was there evidence of dif-
ferences in mean positioning due to replicate/technique.

Error in Geometric Morphometrics

Correlations between centroid size vectors obtained from 
the different models provided coefficients greater than 
0.99 for all combinations (PH-LS: R = 0.997, p < 0.001; 
µCT-PH: R = 0.996, p < 0.001; LS-µCT: R = 0.998, 

Table 1   Average distances (mm) between the surface of the models

PH photogrammetry, LS laser scan, µCT micro CT scan

Specimen PH-LS µCT-PH LS-µCT

Carollia perspicillata 0.070 0.090 0.001
Desmodus rotundus 0.007 0.013 0.012
Eptesicus serotinus 0.028 0.035 0.020
Glossophaga soricina 0.051 0.071 0.023
Hypugo savii 0.032 0.034 0.004
Myotis daubentonii 0.058 0.092 0.016
Miniopterus schreibersi 0.040 0.039 0.002
Myotis capaccinii 0.173 0.188 0.012
Myotis emarginatus 0.069 0.065 0.000
Myotis nigricans 0.040 0.083 0.029
Myotis dasycneme 0.026 0.046 0.060
Noctilio albiventris 0.001 0.002 0.003
Nyctalus noctula 0.004 0.058 0.043
Pipistrells pipistrellus 0.027 0.037 0.016
Pipistrellus nathusii 0.036 0.042 0.012
Plecotus austriacus 0.075 0.076 0.002
Rhinolophus ferrumequinum 0.001 0.007 0.004
Rhinolophus hipposideros 0.030 0.021 0.011
Tadarida teniotis 0.016 0.033 0.015
Mean 0.041 0.054 0.015
SD 0.039 0.042 0.015

Fig. 2   PCA of 57 models (19 specimens × 3 techniques) and 54 
replicas (9 specimens × 2 replicas × 3 techniques). Each skull was 
reconstructed with three different techniques (filled circle LS, filled 
square PH and filled triangle µCT). For nine specimens we recorded 
the landmarks three times (1,2,3 inside the symbols): C.pers, Drotu, 
G.sori, M.emar, M.capa, N.noct, R.hipp, R.ferr and T.teni. The four 
skull images on the two axes represent the extreme shapes of the 
morphospace for PC1 and PC2 (species used as reference model for 
the warping: Plecotus austriacus). Carolia perspicillata (C.pers), 
Desmodus rotundus (D.rotu), Eptesicus serotinus (E.sero), Glos-
sophaga soricina (G.sori), Hypsugo savii (H.savi), Miniopterus 
schreibersi (M.schr), Myotis daubentonii (M.daub), Myotis dasyc-
name (M.dasy), Myotis emarginatus (M.emar), Myotis capaccinii 
(M.capa), Myotis nigricans (M.nigr), Noctilio albiventris (N.albi), 
Nyctalus noctula (N.noct), Pipistrellus nathusii (P.nath), Pipistrellus 
pipistrellus (P.pipi), Plecotus austriacus (P.aust), Rhinolophus hippo-
sideros (R.hipp), Rhinolophus ferrumequinum (R.ferr) and Tadarida 
teniotis (T.teni)

https://www.morphosource.org
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p < 0.001). Similarly, high associations were obtained from 
Mantel matrix correlations on the Procrustes distances 
between individual specimens across the techniques (PH-
LS: R = 0.988, p < 0.001; µCT-PH: R = 0.988, p < 0.001; 
LS-µCT: R = 0.992, p < 0.001). Furthermore, the ANOVA 
test on size showed that 99.67% (p = 0.001) of the vari-
ance can be explained by biological differences between 
specimens, with only 0.14% attributable to the technique 
(p = 0.001) (Table 2). In terms of shape, 94.52% (p < 0.001) 
of the shape variance was explained by the specimen differ-
ences while only the 0.26% was represented by the different 
techniques (p = 0.001).

The landmarking error represented a small portion of the 
variance in both size (between-replicate variance: 0.02%, 
p = 0.999) and shape (between-replicate variance: 2.03%, 
p = 0.001). The repeatability was 0.99 for size and 0.97 for 
shape (Table 3a-b).

The mean Procrustes variance was not statistically dif-
ferent between techniques (p = 0.979) suggesting difficulty 
in landmark identification is similar between the techniques 
(Fig. 3a). Correlations between Procrustes variances (for 
each technique) and centroid size showed no significant 

associations (PH: R = 0.16, p = 0.683; CT: R = 0.48, 
p = 0.187; LS: R = 0.052, p = 0.894).

Table 2   (A) ANOVA on size and (B) Procrustes ANOVA on shape for 57 models (19 specimens × 3 techniques) and 54 replicas (9 speci-
mens × 2 replicas × 3 techniques)

(A) Size Df SS MS Rsq F Z Pr(> F)

Species 18 4016.129 223.118 0.997 2632.394 17.688 0.001
Technique 2 5.744 2.872 0.001 33.887 7.539 0.001
Residuals 90 7.628 0.085 0.002
Total 110 4029.502

(B) Shape Df SS MS Rsq F Z Pr(> F)

Species 18 2.117 0.118 0.945 90.535 20.517 0.001
Technique 2 0.006 0.003 0.003 2.274 13.769 0.001
Residuals 90 0.117 0.001 0.052
Total 110 2.240

Table 3   Landmarking error and repeatability for replicas only. (A) ANOVA on size and (B) Procrustes ANOVA on shape for 81 models (9 
specimens × 3 replicas × 3 techniques)

(A) Size Df SS MS Rsq F Z Pr(> F) Repeatability

Species 8 2645.123 330.640 0.939 12,842.461 10.497 0.001 0.99
Species:Replicas 18 0.463 0.026 0.000 0.008 − 6.129 0.999
Residuals 54 170.862 3.164 0.061
Total 80 2816.449

(B) Shape Df SS MS Rsq F Z Pr(> F) Repeatability

Species 8 1.688 0.211 0.941 104.374 7.384 0.001 0.97
Species:Replicas 18 0.036 0.002 0.020 1.553 23.080 0.001
Residuals 54 0.070 0.001 0.039
Total 80 1.795

Fig. 3   Procrustes variation computed for replicates/technique for the 
interspecific dataset
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Error in Evolutionary Analysis

Comparisons between the three different scanning tech-
niques for all 19 species identified consistent (although non-
significant) evolutionary allometry patterns (Table 4). These 
were validated by PGLS analyses (Table 4). When testing 
for phylogenetic signal across the three datasets using the 
consensus tree, we obtained Kmultiv values that were highly 
significant and close to one (Table 4). The signal was less 
strong for size but equally significant regardless of the tech-
nique (Table 4). The results for the association between mor-
phological data and ecological data (peak frequency and bite 
force) are reported in Table 4 for each technique, with and 
without phylogenetic correction, and show a high degree of 
concordance between techniques.

Comparisons of parameter values obtained with the 
single-techniques (PH, µCT, LS) against our 1000 mixed 
datasets revealed similar means and standard deviations. 
Nevertheless, in most of the cases standard deviations were 
slightly greater for multi-technique datasets (Table S3).

When testing for variation due to the phylogenetic uncer-
tainty and technique error the distributions of parameters 
estimates displayed similar shapes between techniques but 
in some cases the technique caused a shift in their location 
(i.e., allometry, phylogenetic signal for shape and correlation 
between shape and bite force) (Fig. S2). In particular, means 
of R2 distributions for allometry differed between each tech-
nique (PH = 0.098; µCT = 0.105; LS = 0.099) but standard 
deviations did not (PH = µCT = LS = 0.004). A similar pat-
tern is observed for the Kmultiv of shape (mean: PH = 0.916, 
µCT = 0.936, LS = 0.969; standard deviation: PH = 0.024, 
µCT = 0.026 LS = 0.025) and R2 for correlations between 
shape and bite force (mean: PH = 0.100, µCT = 0.105, 
LS = 0.107; standard deviation PH = µCT = LS = 0.004). 
Nevertheless, the p-values for Kmultiv of shape were smaller 
than 0.001 for all combinations of trees/techniques. P-values 
for allometry and shape correlation with bite force equally 
resulted in coherent non-significant patterns (p > 0.15 in all 
cases). The ANOVA on the allometry estimates revealed 
that 36.35% (p < 0.001) of the variance in allometry was 

Table 4   Results of Kmultiv phylogenetic signal and R2 for allometry and correlation with ecological variables for the interspecific dataset

Results are computed by technique with (with-Phy) and without (no-Phy) phylogenetic correction
PS phylogenetic signal, BF bite force, FP frequency peak

PS size PS shape Allometry

no-Phy with-Phy

Kmultiv pvalue Kmultiv pvalue Rsq pvalue Rsq pvalue

PH 0.818 0.027 0.919 0.001 PH 0.062 0.297 0.098 0.160
CT 0.857 0.019 0.938 0.001 µCT 0.068 0.226 0.105 0.124
LS 0.868 0.018 0.972 0.001 LS 0.072 0.196 0.099 0.145
Mean 0.848 0.021 0.943 0.001 Mean 0.067 0.240 0.101 0.143
SD 0.021 0.004 0.022 0.000 SD 0.004 0.042 0.003 0.015

Size ~ BF Shape ~ BF

no-Phy with-Phy no-Phy with-Phy

Rsq pvalue Rsq pvalue Rsq pvalue Rsq pvalue

PH 0.780 0.001 0.846 0.001 PH 0.080 0.196 0.037 0.724
µCT 0.771 0.001 0.826 0.001 µCT 0.082 0.18 0.039 0.801
LS 0.774 0.001 0.835 0.001 LS 0.097 0.103 0.051 0.577
Mean 0.775 0.001 0.836 0.001 Mean 0.087 0.160 0.042 0.701
SD 0.004 0.000 0.008 0.000 SD 0.008 0.041 0.006 0.093

Size ~ FP Shape ~ FP

no-Phy with-Phy no-Phy with-Phy

Rsq pvalue Rsq pvalue Rsq pvalue Rsq pvalue

PH 0.012 0.680 0.316 0.004 PH 0.152 0.013 0.093 0.051
µCT 0.013 0.672 0.331 0.001 µCT 0.156 0.014 0.093 0.052
LS 0.012 0.681 0.329 0.002 LS 0.158 0.013 0.092 0.056
Mean 0.012 0.678 0.325 0.002 Mean 0.155 0.013 0.092 0.053
SD 0.000 0.004 0.007 0.001 SD 0.002 0.000 0.001 0.002
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explained by the technique employed, while 62.54% 
(p < 0.001) by the phylogenetic uncertainty. The ANOVA 
on the phylogenetic signal for size demonstrated that the 
majority of the variance was due to the phylogenetic uncer-
tainty in the dataset (Table 5). The phylogenetic signal vari-
ance for shape is still mainly represented by the phylogenetic 
uncertainty (55.75%, p < 0.001) but a significant portion 
of the variance is due to the different technique employed 
(43.75%, p < 0.001). When the correlation between mor-
phological data and frequency peak is computed the vari-
ance due to the technique error is significant but small (size: 
1.15%, p < 0.001; shape: 2.04%, p < 0.001). Similar results 
were obtained for the correlation between bite force and size 
(0.35%, p < 0.001). Nevertheless, 37.00% of the correlation 
between bite force and shape was explained by the tech-
nique (p < 0.001) and 61.65% was explained by phylogenetic 
uncertainty (p < 0.001) (Table 5).

Discussion

Performance of Photogrammetry Technique

Analyses of mesh distances, shape visualisation (i.e., PCA 
graphs) and geometric morphometric error in the interspe-
cific dataset demonstrated that PH, µCT and LS provide 
comparable raw material (i.e., centroid size and Procrustes 
coordinates) for GMM analyses. This was supported by high 
correlation coefficients for centroid size and Procrustes coor-
dinates between the techniques and low proportion of vari-
ance explained by the techniques for both size and shape. 
This was in accordance with previous studies of much larger 
skulls, for example humans (Katz and Friess 2014) and 
wolves (Evin et al. 2016).

High intraclass correlation coefficients indicated high 
repeatability and reflected low random measurement error, 
which suggested that landmarking error was not important 
for our interspecific dataset. These coefficients (0.97–0.99) 
were similar to values previously obtained for human skulls 
(0.99; Badawi-Fayad and Cabanis 2007), kangaroo-size 
skulls (0.95; Fruciano et al. 2017) and small rodent skulls 
(0.75; Marcy et al. 2018). No technique-related differences 
in landmarking difficulties were found, based on Procrustes 
variance, which contrasts Marcy et al. (2018) finding of sys-
tematically better µCT relative to laser scans. This difference 
might be due to their use of a fast data collection scheme 
(10 min/sample) without employing additional measures to 
ensure quality of the models. Alternatively it could be linked 
to intrinsic differences in the LS and PH devices that were 
employed.

Experience plays an important role in identification 
and placement of landmarks (Osis et al. 2015; Sholts et al. 
2011) and different approaches can induce different levels of Ta
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systematic error (Marcy et al. 2018). In the current study, we 
did not specifically test for operator bias as previous studies 
reported inter-operator error being similar across different 
techniques (Robinson and Terhune 2017).

We also showed that centroid size and Procrustes coordi-
nates extracted from PH models are suitable for subsequent 
macro-evolutionary analyses such as size-shape correlations 
(allometry), calculation of phylogenetic signal and correla-
tion between morphological (size and shape) and ecological 
(frequency peak and bite force) data: parameters estimates 
were similar among techniques even when accounted for 
phylogenetic relatedness. All methods lead to the same bio-
logical interpretation, further confirming that PH provides 
suitable raw data for evolutionary analysis.

PH has several advantages in addition to being afford-
able and easy to use. It is particularly suitable when access 
to more expensive equipment is limited, where specimens 
cannot easily be transported, and/or where data collection 
has to take place in a remote location. Nevertheless, a sig-
nificant down-side was the lack of detail achieved for teeth 
reconstruction and difficulties in reproducing thin structures 
(such as the zygomatic arch). Future studies may explore 
the use of focused stacking techniques in order to achieve 
a greater level of detail (Brecko et al. 2014; Nguyen et al. 
2014; Santella and Milner 2017).

Mixed Data from Different Reconstruction 
Techniques

Our examination of multi-technique datasets revealed 
increases in standard deviations for allometry, phylogenetic 
signal and correlation with ecological variables compared 
with single-technique datasets, although this had no impact 
on the biological interpretation of the results. This suggests 
that multi-technique datasets could be potentially used (with 
caution and following exploratory studies), at least for inter-
specific analysis as long as the use of different techniques 
was relatively balanced across different groups (such as spe-
cies, populations or sex). Mixing data from different devices 
is not recommended when researchers suspect a relatively 
small portion of biological variance in the sample (e.g. in 
populational studies).

When the same analyses were performed using the set 
of posterior trees, the interaction between phylogenetic 
uncertainty and technique became significant. However, 
the amount of parameter variation was relatively small and 
mainly due to the phylogenetic variation rather than tech-
nique error. Also, the general biological conclusions are 
essentially the same for almost all analyses (i.e., degrees 
of allometry and phylogenetic signal for size and variance 
explained by ecological variables). For instance, under the 
different techniques, bite force predicts between 8.85 and 
11.94% of the shape variance supporting the inference that 

bite force moderately influences the shape evolution in bats. 
Fruciano et al. (2017) has pointed out that the phylogenetic 
signal in shape (as reflected by K statistics) is strongly influ-
enced by both phylogenetic uncertainty and technique. In 
our sample, Kmultiv varies from 0.85 to 1.05 between tech-
niques which would lead to different evolutionary conclu-
sions (Adams 2014; Blomberg et al. 2003), but the signifi-
cance of K is unaffected. Revell et al. (2008) noted that K 
is indicative of statistical dependence between traits and 
phylogenetic relatedness but no inference on evolutionary 
rate and mode of evolution should be drawn from its value 
alone. Therefore, while we suggest that researchers should 
be cautious about inferring biological meaning from the 
magnitude of K for shape on mixed technique datasets, its 
significance can provide a reliable indicator of the presence 
of phylogenetic signal.

In conclusion, combining data acquired from model 
reconstructed with different techniques inevitably intro-
duces an additional source of error. Its impact needs to be 
assessed according to whether it has an effect on the biologi-
cal conclusions. Phylogenetic uncertainty can interact with 
other source of error (e.g. technique employed) suggesting 
preliminary test on phylogenetic comparative analysis are 
essential to identify possible not negligible source of error.
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