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Spatial statistical modelling of 
capillary non-perfusion in the retina
Ian J. C. MacCormick  �w�á�x�á�y�á�����ƒ�Ž�‹�•��Zheng�w�á�}�á�����‹�Ž�˜�‡�•�–�‡�”��Czanner�z�á�����‹�–�‹�ƒ�•��Zhao�{�á�w�á�����‡�–�‡�”����ä��Diggle�|�á��
���‹�•�‘�•�����ä��Harding�w�á�} & Gabriela Czanner�w�á�}�á�~

���ƒ�•�—�ƒ�Ž���‰�”�ƒ�†�‹�•�‰���‘�ˆ���Ž�‡�•�‹�‘�•�•���‹�•���”�‡�–�‹�•�ƒ�Ž���‹�•�ƒ�‰�‡�•���‹�•���”�‡�Ž�‡�˜�ƒ�•�–���–�‘���…�Ž�‹�•�‹�…�ƒ�Ž���•�ƒ�•�ƒ�‰�‡�•�‡�•�–���ƒ�•�†���…�Ž�‹�•�‹�…�ƒ�Ž���–�”�‹�ƒ�Ž�•�á���„�—�–���‹�–��
�‹�•���–�‹�•�‡�æ�…�‘�•�•�—�•�‹�•�‰���ƒ�•�†���‡�š�’�‡�•�•�‹�˜�‡�ä���	�—�”�–�Š�‡�”�•�‘�”�‡�á���‹�–���…�‘�Ž�Ž�‡�…�–�•���‘�•�Ž�›���Ž�‹�•�‹�–�‡�†���‹�•�ˆ�‘�”�•�ƒ�–�‹�‘�•���æ���•�—�…�Š���ƒ�•���Ž�‡�•�‹�‘�•���•�‹�œ�‡��
�‘�”���ˆ�”�‡�“�—�‡�•�…�›�ä�����Š�‡���•�’�ƒ�–�‹�ƒ�Ž���†�‹�•�–�”�‹�„�—�–�‹�‘�•���‘�ˆ���Ž�‡�•�‹�‘�•�•���‹�•���‹�‰�•�‘�”�‡�†�á���‡�˜�‡�•���–�Š�‘�—�‰�Š���‹�–���•�ƒ�›���…�‘�•�–�”�‹�„�—�–�‡���–�‘���–�Š�‡���‘�˜�‡�”�ƒ�Ž�Ž��
�…�Ž�‹�•�‹�…�ƒ�Ž���ƒ�•�•�‡�•�•�•�‡�•�–���‘�ˆ���†�‹�•�‡�ƒ�•�‡���•�‡�˜�‡�”�‹�–�›�á���ƒ�•�†���…�‘�”�”�‡�•�’�‘�•�†���–�‘���•�‹�…�”�‘�˜�ƒ�•�…�—�Ž�ƒ�”���ƒ�•�†���’�Š�›�•�‹�‘�Ž�‘�‰�‹�…�ƒ�Ž���–�‘�’�‘�‰�”�ƒ�’�Š�›�ä��
���ƒ�’�‹�Ž�Ž�ƒ�”�›���•�‘�•�æ�’�‡�”�ˆ�—�•�‹�‘�•���������������Ž�‡�•�‹�‘�•�•���ƒ�”�‡���…�‡�•�–�”�ƒ�Ž���–�‘���–�Š�‡���’�ƒ�–�Š�‘�‰�‡�•�‡�•�‹�•���‘�ˆ���•�ƒ�Œ�‘�”���…�ƒ�—�•�‡�•���‘�ˆ���˜�‹�•�‹�‘�•���Ž�‘�•�•�ä��
���‡�”�‡���™�‡���’�”�‘�’�‘�•�‡���ƒ���•�‘�˜�‡�Ž���•�‡�–�Š�‘�†���–�‘���ƒ�•�ƒ�Ž�›�•�‡�����������—�•�‹�•�‰���•�’�ƒ�–�‹�ƒ�Ž���•�–�ƒ�–�‹�•�–�‹�…�ƒ�Ž���•�‘�†�‡�Ž�Ž�‹�•�‰�ä�����Š�‹�•���“�—�ƒ�•�–�‹�¤�‡�•��
�–�Š�‡���’�‡�”�…�‡�•�–�ƒ�‰�‡���‘�ˆ���������æ�’�‹�š�‡�Ž�•���‹�•���‡�ƒ�…�Š���‘�ˆ���z�~���•�‡�…�–�‘�”�•���ƒ�•�†���–�Š�‡�•���…�Š�ƒ�”�ƒ�…�–�‡�”�‹�•�‡�•���–�Š�‡���•�’�ƒ�–�‹�ƒ�Ž���†�‹�•�–�”�‹�„�—�–�‹�‘�•���™�‹�–�Š��
goniometric functions. We applied our spatial approach to a set of images from patients with malarial 
�”�‡�–�‹�•�‘�’�ƒ�–�Š�›�á���ƒ�•�†���ˆ�‘�—�•�†���‹�–���…�‘�•�’�ƒ�”�‡�•���ˆ�ƒ�˜�‘�—�”�ƒ�„�Ž�›���™�‹�–�Š���–�Š�‡���”�ƒ�™���’�‡�”�…�‡�•�–�ƒ�‰�‡���‘�ˆ���������æ�’�‹�š�‡�Ž�•���ƒ�•�†���ƒ�Ž�•�‘���™�‹�–�Š��
�•�ƒ�•�—�ƒ�Ž���‰�”�ƒ�†�‹�•�‰�ä���	�—�”�–�Š�‡�”�•�‘�”�‡�á���™�‡���™�‡�”�‡���ƒ�„�Ž�‡���–�‘���“�—�ƒ�•�–�‹�ˆ�›���ƒ���„�‹�‘�Ž�‘�‰�‹�…�ƒ�Ž���…�Š�ƒ�”�ƒ�…�–�‡�”�‹�•�–�‹�…���‘�ˆ���•�ƒ�…�—�Ž�ƒ�”����������
�‹�•���•�ƒ�Ž�ƒ�”�‹�ƒ���–�Š�ƒ�–���Š�ƒ�†���’�”�‡�˜�‹�‘�—�•�Ž�›���‘�•�Ž�›���„�‡�‡�•���†�‡�•�…�”�‹�„�‡�†���•�—�„�Œ�‡�…�–�‹�˜�‡�Ž�›�ã���…�Ž�—�•�–�‡�”�‹�•�‰���ƒ�–���–�Š�‡���–�‡�•�’�‘�”�ƒ�Ž���”�ƒ�’�Š�‡�ä��
���‹�…�”�‘�˜�ƒ�•�…�—�Ž�ƒ�”���Ž�‘�…�ƒ�–�‹�‘�•���‹�•���Ž�‹�•�‡�Ž�›���–�‘���„�‡���„�‹�‘�Ž�‘�‰�‹�…�ƒ�Ž�Ž�›���”�‡�Ž�‡�˜�ƒ�•�–���–�‘���•�ƒ�•�›���†�‹�•�‡�ƒ�•�‡�•�á���ƒ�•�†���•�‘���‘�—�”���•�’�ƒ�–�‹�ƒ�Ž���ƒ�’�’�”�‘�ƒ�…�Š��
�•�ƒ�›���„�‡���ƒ�’�’�Ž�‹�…�ƒ�„�Ž�‡���–�‘���ƒ���†�‹�˜�‡�”�•�‡���”�ƒ�•�‰�‡���‘�ˆ���’�ƒ�–�Š�‘�Ž�‘�‰�‹�…�ƒ�Ž���ˆ�‡�ƒ�–�—�”�‡�•���‹�•���–�Š�‡���”�‡�–�‹�•�ƒ���ƒ�•�†���‘�–�Š�‡�”���‘�”�‰�ƒ�•�•�ä

�e retinal microcirculation is exquisitely accessible to clinical observation, and unlike other organs, the retinal 
vasculature is arranged perpendicular to an optical axis. Consequently alterations to small vessel �ow can be eas-
ily mapped using techniques such as �uorescein angiography (FA) and optical coherence tomography angiogra-
phy (OCT-A). Capillary non- perfusion (CNP) appears as distinctive dark areas with geographic boundaries, and 
develops when blood fails to reach areas of the capillary bed (Fig.�1a–c). It is a feature of several major causes of 
blindness including diabetic maculopathy, retinal vein occlusion, and retinal artery occlusion1. CNP also occurs 
in malarial retinopathy, and can be graded manually according to a validated scheme2. Malarial retinopathy is 
seen in children and adults with cerebral malaria, which has a high mortality rate. �e retina and brain sustain 
similar damage in cerebral malaria, and several retinal signs are associated with death (reviewed in3).

As with grading schemes for retinal vein occlusion4,5 the malarial retinopathy grading scheme assesses the 
overall area of CNP in various large retinal regions. Manual grading is necessarily semi-quantitative, time con-
suming and costly. �ese and other constraints mean that manual grading is impractical for large image datasets, 
and at best captures only a tiny fraction of the biological information contained in a retinal image.

Beyond lesion type, frequency, and area, spatial characteristics may be a particularly relevant aspect of a ret-
inal image. �is is because the retinal microvasculature is not homogenous but rather composed of regions with 
di�erent vascular topology, geometry, and corresponding haemorheology and physiology. For example, the foveal 
avascular zone is a unique region where the retina is supplied solely from the underlying choriocapillaris. �e 
perifoveal region has one capillary layer, which forms an oxygen di�usion watershed with the choriocapillaris. 
�e temporal macula and horizontal raphe contain a further watershed between superior and inferior temporal 
arcades3. �erefore, the biological meaning of CNP in one sub-region of the macula may be di�erent from that of 
a lesion of similar size in an adjacent region. Current grading techniques are too coarse to allow such distinctions.

�w���‡�’�ƒ�”�–�•�‡�•�–���‘�ˆ�����›�‡���¬�����‹�•�‹�‘�•�����…�‹�‡�•�…�‡�á�����•�•�–�‹�–�—�–�‡���‘�ˆ�����‰�‡�‹�•�‰���ƒ�•�†�����Š�”�‘�•�‹�…�����‹�•�‡�ƒ�•�‡�á�����•�‹�˜�‡�”�•�‹�–�›���‘�ˆ�����‹�˜�‡�”�’�‘�‘�Ž�á���|�����‡�•�–��
���‡�”�„�›�����–�”�‡�‡�–�á�����‹�˜�‡�”�’�‘�‘�Ž�á�����}���~�����á�����•�‹�–�‡�†�����‹�•�‰�†�‘�•�ä���x���ƒ�Ž�ƒ�™�‹�æ���‹�˜�‡�”�’�‘�‘�Ž�����‡�Ž�Ž�…�‘�•�‡�����”�—�•�–�����Ž�‹�•�‹�…�ƒ�Ž�����‡�•�‡�ƒ�”�…�Š�����”�‘�‰�”�ƒ�•�•�‡�á��
���—�‡�‡�•�����Ž�‹�œ�ƒ�„�‡�–�Š�����‡�•�–�”�ƒ�Ž�����‘�•�’�‹�–�ƒ�Ž�á�����Ž�ƒ�•�–�›�”�‡�á�����ƒ�Ž�ƒ�™�‹�ä���yCentre for Clinical Brain Sciences, University of Edinburgh, 
���†�‹�•�„�—�”�‰�Š�á�����•�‹�–�‡�†�����‹�•�‰�†�‘�•�ä���z���…�Š�‘�‘�Ž���‘�ˆ�����‘�•�’�—�–�‹�•�‰�á�����ƒ�–�Š�‡�•�ƒ�–�‹�…�•���ƒ�•�†�����‹�‰�‹�–�ƒ�Ž�����‡�…�Š�•�‘�Ž�‘�‰�›�á���	�ƒ�…�—�Ž�–�›���‘�ˆ�����…�‹�‡�•�…�‡��
�ƒ�•�†�����•�‰�‹�•�‡�‡�”�‹�•�‰�á�����ƒ�•�…�Š�‡�•�–�‡�”�����‡�–�”�‘�’�‘�Ž�‹�–�ƒ�•�����•�‹�˜�‡�”�•�‹�–�›�á�����ƒ�•�…�Š�‡�•�–�‡�”�á�����w���{�
���á�����•�‹�–�‡�†�����‹�•�‰�†�‘�•�ä���{Cixi Institute of 
���‹�‘�•�‡�†�‹�…�ƒ�Ž�����•�‰�‹�•�‡�‡�”�‹�•�‰�á�����‹�•�‰�„�‘�����•�•�–�‹�–�—�–�‡���‘�ˆ�����•�†�—�•�–�”�‹�ƒ�Ž�����‡�…�Š�•�‘�Ž�‘�‰�›�á�����Š�‹�•�‡�•�‡�����…�ƒ�†�‡�•�›���‘�ˆ�����…�‹�‡�•�…�‡�•�á�����‹�•�‰�„�‘�á�����Š�‹�•�ƒ�ä��
�|�������������á�����ƒ�•�…�ƒ�•�–�‡�”�����‡�†�‹�…�ƒ�Ž�����…�Š�‘�‘�Ž�á�����ƒ�•�…�ƒ�•�–�‡�”�����•�‹�˜�‡�”�•�‹�–�›�á�����ƒ�•�…�ƒ�•�–�‡�”�á�������w���z�����á�����•�‹�–�‡�†�����‹�•�‰�†�‘�•�ä���}���–�����ƒ�—�Ž�ï�•�����›�‡�����•�‹�–�á��
���‘�›�ƒ�Ž�����‹�˜�‡�”�’�‘�‘�Ž�����•�‹�˜�‡�”�•�‹�–�›�����‘�•�’�‹�–�ƒ�Ž�á�����‹�˜�‡�”�’�‘�‘�Ž�á�����}���~�����á�����•�‹�–�‡�†�����‹�•�‰�†�‘�•�ä���~Department of Biostatistics, Institute 
�‘�ˆ�����”�ƒ�•�•�Ž�ƒ�–�‹�‘�•�ƒ�Ž�����‡�†�‹�…�‹�•�‡�á�����•�‹�˜�‡�”�•�‹�–�›���‘�ˆ�����‹�˜�‡�”�’�‘�‘�Ž�á���w�æ�{�����”�‘�™�•�Ž�‘�™�����–�”�‡�‡�–�á�����‹�˜�‡�”�’�‘�‘�Ž�á�����|�•���y�
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�ere are several automated methods for segmenting areas of CNP from retinal images6,7, including one devel-
oped by our group and applied to a subset of manually-graded images from children with malarial retinopathy2,8. 
Automated segmentation provides the user with CNP metrics, such as the proportion of CNP-pixels in a given 
area, and has advantages over manual grading in terms of cost and reproducibility. However, as with the Likert 
scales of manual grading schemes, the raw metrics produced by automated segmentation may not necessarily 
describe lesions in the most biologically relevant way. �erefore, we need new analytical tools to re�ne image 
segmentation data into biologically meaningful information. Such information would have uses as an outcome 
measure in clinical trials for diabetic maculopathy and retinal vein occlusions, as well as clinical practice.

A spatial statistical model could be a good candidate for this data-information interface. A�er all, a retinal 
image is not unlike an areal photograph of geographical features such as roads, buildings, or rivers – and spatial 
models have been successfully applied to geographical problems9. However, the standard concept of geograph-
ical spatial modelling cannot be directly applied to analyses of medical images, because biological tissue has 
an implicit biological structure that must be respected. In the case of retinal angiography this structure can be 
regarded as two-dimensional. Retinal OCT provides three-dimensional information, as does MRI of other organs 
such as the brain10. An ideal spatial model must account for the biological topography of the tissue, and must be 
�exible to be adapted to speci�c problems of the image acquisition.

One approach is to analyse the distribution of pixels within the whole image. However, pixels do not neces-
sarily form the basis for clinical interpretation, and this may miss the underlying anatomical and physiological 
context11. Instead, a sector-wise approach can be used based on clinically meaningful sub-regions. For example, 
Bowman and Waller11 developed model for the heart based around a physiological model of the le� ventricle con-
taining 20 distinct sectors. Similarly George et al.12 proposed a model of 16 sectors for the le� ventricle. Lange13 
proposed a linear model with patterned correlated errors. Bowman and Kilts14 proposed correlation maps to 
display distribution of correlation across the brain, but this does not allow for varying qualities of images, and 

Figure 1. Analysis of an FA image. (a) �e original FA image, (b) Enhanced image with improved contrast, 
(c) Texture-based segmentation was applied to detect CNP, (d) A grid imposed over the image allowed the 
proportion of CNP in each area to be calculated.
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for missing parts of an image. To the best of our knowledge there are very few spatial methods for analysing the 
output of retinal segmentation algorithms in terms of microvascular location, such as by Gadde et al.15.

In this paper, we present a new spatial model of CNP based on a linear mixed e�ect framework. It enables 
robust, accurate, and fast characterisation of segmentation data. We have applied this analytical approach to a 
cohort of images of malarial retinopathy since these have abundant macular CNP and have both corresponding 
manual grading data and automated segmentation.

Methods
���˜�‡�”�˜�‹�‡�™���‘�ˆ���‘�—�”���ˆ�”�ƒ�•�‡�™�‘�”�•�ä��A standard way to study CNP from a retinal angiogram is to divide it into 
gradable regions. A 50 degree retinal angiogram image of the posterior pole usually captures the macula as well 
as a consistent area of surrounding retina. CNP can therefore be graded within two regions: an inner circle (the 
macula), and an outer ring that includes the disc, temporal vascular arcades, and temporal raphe. A human grader 
typically evaluates the extent of CNP by giving a score on ordinal scale from 0 to 4.

To re�ne this approach, we: (i) extend this approach into a spatially re�ned grid on the retinal images; (ii) 
automatically create a spatially resolved CNP pro�le for each image; (iii) �nd the best statistical model that char-
acterises the spatially resolved pro�les and their association with clinical outcome. �en to demonstrate the utility 
of our spatially resolved approach we compare it with simple overall CNP index.

Image dataset. To illustrate our spatial framework, we analysed CNP in retinal images from study of cere-
bral malaria. �e study includes patients within an ongoing survey of severe malaria in the Paediatric Research 
Ward (PRW) of Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi16. Informed consent was given by 
the parents or guardians of all patients. �is research adhered to the tenets of the Declaration of Helsinki, and was 
approved by the ethics committee at the University of Malawi College of Medicine and at collaborating academic 
institutions (Michigan State University or the Liverpool School of Tropical Medicine).

A sequence of 50-degree images were taken a�er pupil dilation with Tropicamide 1% and Phenylephrine 
2.5%, using a Topcon 50-EX optical unit (Topcon, Tokyo, Japan) and Nikon E1-H digital camera. �e image size 
is 3008 �  1960 pixels. For each patient we have intentionally chosen a single image of the study eye (le� eye unless 
data non-available) to create this dataset. We included all patients with malaria from 2006 to 2010 who had a 50 
degree FA image obtained at the time of admission (Supplementary Figure�1), except for cases where images were 
of poor quality. Manual grading involved dual grading with adjudication, by professional graders masked to clin-
ical information and the other grader’s scores. A third expert adjudicated score discrepancies. Graders evaluated 
the�quality of each image (poor, fair, good, excellent) according to the visibility of capillaries around the foveal 
avascular zone (Supplementary Figure�2). �ey graded the extent of macular CNP on ordinal scale (0, 1, 2, 3, 4) 
according to pre-de�ned standard images. Further details of image acquisition and manual grading are in ref.2. 
�e unit of analysis for manual grading is the retina. For automated analysis we selected the best quality image of 
the macula for all eligible subjects, and we consider only one retinal image per patient.

Image pre-processing and segmentation. �is was done in a series of steps. First, the centres of the 
optic disc and the fovea were manually localised by professional graders by following a protocol for manual grad-
ing of retinal features in cerebral malaria8. �e distance between these structures was assumed to be 2.5 optic disc 
diameters (ODD), and the optic disc (OD) was assumed to have a diameter of 1,800 um. �en, CNP regions were 
automatically segmented by a selective segmentation method8 (Fig.�1c). In brief, the �eld of view of the image 
under consideration was detected by using the Otsu thresholding technique and morphological operators, the 
image was then enhanced by a top hat �lter for better contract. A new texture based variational segmentation 
model was applied to the enhanced image to produce CNP candidate regions. �e �nal CNP segmentation was 
achieved by applying a pre-trained Adaboost classi�er to the candidate CNP regions. �is automatic segmenta-
tion technique has been evaluated against expert ophthalmologists’ manual annotations on both malarial retin-
opathy and diabetic retinopathy datasets with good performance (8). A�er the automatic segmentation step, each 
pixel Each FA image of about 106 pixels in an FA image will be deemed as either CNP pixel or not.

���”�‡�ƒ�–�‹�•�‰���•�’�ƒ�–�‹�ƒ�Ž�Ž�›���”�‡�•�‘�Ž�˜�‡�†�����������’�”�‘�¤�Ž�‡�•�ä��For each segmented image we created a spatially resolved 
CNP pro�le. To characterise each CNP segmented image, we superimposed a grid of 48 sectors (Figs�2, 1c) onto 
each segmented image of retina (Fig.�1d). In order to obtain consistent segment arrangement for the le� and 
right eye, the segment was indexed in clockwise order for the le� eye while in anti-clockwise order for the right 
eye. �e inner circle corresponds to the anatomical region of macula, de�ned as a circle centred on the foveola 
with a radius equal to the distance between the foveola and the temporal edge of the optic disc. �e macula has 
radius 20�0.1�OD �  2� 1,800 �  3.6 mm. �e outer ring corresponds to radius of 20�0.1�1,800 um � 3.6 mm to 
30�0.1�1,800 um � 5.4 mm, and extends approximately 1.8 mm beyond the inner circle. �en for each CNP seg-
mented image we calculated the proportion of CNP-pixels for each of 48 sectors, leading to a vector of 48 values 
on a continuous scale from 0 to 100. �is is the automated spatially resolved CNP damage pro�le.

For comparison we also calculated automated overall CNP index as the simple proportion of CNP-pixels sepa-
rately for the inner circle and outer ring (continuous scale 0 to 100%). We compared the manual CNP grade of the 
inner circle, which is just one number measured on an ordinal scale (1, 2 or 3), with the automated overall CNP 
index of the inner circle, which is one number (on scale of 0 to 100%) via means (two-sample t-test), medians 
(Mann-Whitney U test) and consistency (Intraclass Correlation Coe�cient, ICC).

���Š�‡���•�’�ƒ�–�‹�ƒ�Ž���•�–�ƒ�–�‹�•�–�‹�…�ƒ�Ž���•�‘�†�‡�Ž���ˆ�‘�”���•�’�ƒ�–�‹�ƒ�Ž�Ž�›���”�‡�•�‘�Ž�˜�‡�†�����������’�”�‘�¤�Ž�‡�•�ä�� �e spatially resolved CNP pro-
�les are 48-dimensional vectors. �erefore to compare them e�ectively across the two outcome groups we built 
a mixed e�ect model with spatial correlations. �e model describes the spatial distribution of CNP across the 
retina by specifying the mean CNP in each of 48 sectors. �e inclusion of spatial correlation in the calculation for 
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each sector results in a smoother spatial mean CNP pro�le, which in turn leads to smaller standard errors and 
increased power of statistical comparisons than would be obtained by treating the mean CNP values as 48 free 
parameters. To assure the continuity between sectors we chose sine and cosine harmonic functions as basis func-
tions because they are naturally de�ned on a circular system. We begin here by introducing the general model for 
the i th image and then use it to formulate the model for all images collectively.

�e model is based on following assumptions

�t�� One eye per patient, and one time point only, one image per eye (i.e. no replications), indexed by � �i I1, , ;
�t�� Images have varying qualities: excellent, good, or fair, and indexed by �q 1, 2;
�t�� Some parts of the images may be missing;
�t�� Data from retina may have a�complex correlation structure that must be taken into account in the model;
�t�� Each image has 24 directions (Fig.�1d). �e directions in image are indexed by � �d 1, , 24;
�t�� Each image has two rings. �e rings are indexed by �r 1, 2, where �r 1 is for inner circle and �r 2 is for 

outer ring;
�t�� �e outcome group values are indexed by �g 1, 2; where �g 1is for survival with full recovery or with 

sequelae and �g 2 is for death.

�en the general form of the linear mixed e�ect model assumes that the variability seen in the individual 
sectors is due to three e�ects: variation common to all retinas, variation speci�c to the retina (hence subject) and 
random variation. If we denote the CNP for retina i, direction d, ring r as Yidr then Yi (48 �  1) represents the vector 
of CNP pathological damage pro�le for image (retina or subject) i. �en the linear mixed e�ect model can be 
written as

�� � �Y X Z w ef ( , ) (1)i i i i i

where � �(2k 1) is the �xed e�ects parameter vector, �X (48 2k)i  is the design matrix for �xed e�ects, f(.) are 
basis functions (sine and cosine), �Z q(48 2 )i  is the�design matrix for random e�ects. �e �xed e�ects, �Xf ( , )i , 
in Eq.�1 describe the values of CNP on the level of all subjects (i.e. the between subject di�erences), the random 
e�ects, Z wi i , describe the values of CNP at the level of individual subjects (i.e. the within-subject di�erences).

We modelled the�spatial correlation between measurements from di�erent sectors for a given image. In�gen-
eral spatial covariance model the magnitude of correlation is�inversely related to the distance between sectors. We 
calculated distances in the 48-sectors (Figs�1d or 2) by assuming that the 24 sectors of the�inner circle have radii 
equal to 1.8 mm (� 3.6/2) and the 24 sectors of the outer ring have radii equal to 2.75 mm (� 5.4/2). To calculate 
distances between any two sectors, we used reference locations of each sector with polar coordinates �m( , ), 
where

�t�� for sectors 1–24, � �m 1 8 and � � �� 2 /24, 4 /24, �6 /24, �, �24 /24,
�t�� for sectors 1–24, � �m 2 75 and � � �� 2 /24, 4 /24, �6 /24, �, � �24 /24

Figure 2. �e division of the macula into segments, illustrated on a drawing of the le� eye. �e macula is 
divided into two circular areas (an inner circle and an outer ring), and each of these is further divided into 24, 
thus producing 48 sectors. �e inner circle contains sectors 1 to 24, and the outer ring contains sectors 25 to 
48. Sectors are numbered upwards from the disc, starting with the inner circle. �us sectors 1,2,3 and 22,23 24 
represent the nasal quadrant; sectors 4–9 and 28–33 represent the superior quadrant; sectors 10–15 and 34–39 
temporal quadrant, and sectors 16–21 and 40–45 the inferior quadrant. �e orientation for a right eye is just the 
mirror image - with sectors 1 and 25 on the right of the panel, instead of the le� of the panel, so that they still 
overlap the optic disc.
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Next, we performed a model selection procedure to �nd the speci�c form of the linear mixed e�ect model 
that gives the best �t to the imaging CNP data. We applied a stepwise method to �t the model: the �rst step was to 
choose the �xed e�ects �rst on the basis of the Akaike Information Criterion (AIC), the second step was to add 
the random e�ects via analysis of variance, and the third step was to select the spatial correlation structure. �e �t 
was �nally con�rmed using standard goodness-of-�t residual analysis. �e �nal chosen covariance model was a 
Gaussian spatial correlation model as the suitable correlation structure for the spatial sectors, related inversely to 
the distance between sectors. �e best selected model is:
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where � g is the intercept for group g, Ig is an indicator function for group g, Igrd is an indicator function for group 
g, ring r and direction d. In total 10 goniometric functions were considered but the �rst �ve had�the best AIC so 
others were dropped. �e values wgi in Eq.�2 represents random intercepts for two disease outcome groups and it 
has a�diagonal variance covariance matrix. �e vector of random errors �e (48 1)i  follows a multivariate normal 
distribution with autocorrelation structure with common correlation coe�cient and with the variance modelled 
as depending on the quality of the image: we allow di�erent variability for excellent, good and fair quality images; 
and these variabilities are free parameters estimated with the model by maximising the likelihood.

�e model was �tted using the restricted maximisation likelihood in the R statistical package (function lme). 
�ere are several challenges when �tting this model to the CNP segmented images. Firstly, some parts of images 
were missing due to the nature of the FA. We used the best macular FA images taken on the patients. Such images 
may show only the beginning of the periphery, and the image may not be perfectly centred. Both characteristics 
can lead to missing CNP values at the image boundaries. Conveniently, the mixed e�ect model has the advantage 
of utilizing all CNP data from all available areas of retina. Such an�analysis assumes that the parts of image are 
missing at random and using all available data from all subjects.

���ƒ�–�ƒ���ƒ�˜�ƒ�‹�Ž�ƒ�„�‹�Ž�‹�–�›���•�–�ƒ�–�‡�•�‡�•�–�ä���e data that support the �ndings of this study are available from the�MRet 
study investigators�but restrictions apply to the availability of these data, which were used under license for the 
current study, and so are not publicly available. Data are however available from the authors upon reasonable 
request and with permission of co-author SPH.

Results
���ƒ�–�‹�‡�•�–�•�ä��Between 2006 and 2010, 161 patients with malarial retinopathy had admission FA. Of these, we 
excluded 29 from the analysis because image quality was graded as poor. Our dataset therefore includes images 
from 132 eyes in 132 patients (Supplementary Figure�1).

���Š�‡���ƒ�—�–�‘�•�ƒ�–�‡�†���‘�˜�‡�”�ƒ�Ž�Ž�����������‹�•�†�‡�š���…�‘�”�”�‡�Ž�ƒ�–�‡�•���™�‹�–�Š���•�ƒ�•�—�ƒ�Ž�Ž�›���‰�”�ƒ�†�‡�†���������ä�� Manual grading is an 
imperfect reference standard, yet it is important to directly compare our automatic quanti�cation of lesions with 
manual evaluation. We made two comparisons. Firstly, in all 132 images, the inner circle (i.e. macula) auto-
mated overall CNP was found to be positively associated with manual grading of macular CNP (Supplementary 
Figure�3a, p �  0.11 two-sample t-test, p �  0.05 Mann-Whitney U test, n �  87 and 45) and gave excellent consist-
ency (ICC � 0.88, p � 0.01). Secondly, in excellent quality images, the inner circle automatic CNP score was pos-
itively correlated with the inner circle manual CNP (Supplementary Figure�3b, p-value �  0.02 two-sample t-test 
and 0.03 Mann-Whitney U test, n � 24 and 21) and gave excellent consistency (ICC � 0.89, p � 0.01).

���Š�‡���ƒ�—�–�‘�•�ƒ�–�‡�†���‘�˜�‡�”�ƒ�Ž�Ž�����������‹�•�†�‡�š���‹�•�…�”�‡�ƒ�•�‡�†���™�‹�–�Š���†�‡�ƒ�–�Š���‹�•���‘�—�”���…�‘�Š�‘�”�–�á���„�—�–���•�‘�–���•�‹�‰�•�‹�¤�…�ƒ�•�–�Ž�›�ä�� In 
images with fair to excellent quality the automatically calculated inner circle�CNP is 19.8% and 20.2% in the sur-
vived and death group, respectively, but this di�erence is not signi�cant (p �  0.65, two-sample t-test, Table�1). �e 
outer-ring simple automatic CNP is 8.8% and 8.9% in the survived and death group, respectively, which is again 
not signi�cant (p �  0.88, two-sample t-test, Table�1). In excellent images, the inner circle�simple automatic CNP 
is 18.9% and 19.3% in the survived and death group (p �  0.72, two-sample t-test, Supplementary Table�2). For the 
outer ring, in excellent images, the CNP is 7.2% and 8.2% in the survived and death group respectively�(p � 0.27, 
two-sample t-test, Supplementary Table�2).

���’�ƒ�–�‹�ƒ�Ž�Ž�›���”�‡�•�‘�Ž�˜�‡�†�����������’�”�‘�¤�Ž�‡�•���•�Š�‘�™���†�‹�”�‡�…�–�‹�‘�•�ƒ�Ž���†�‹�•�–�”�‹�„�—�–�‹�‘�•���‘�ˆ�����������‹�•���‹�•�ƒ�‰�‡�•�ä�� We found that 
CNP was more severe in the temporal macula compared to other segments (Table�2, Direction e�ect, p � 0.001). 
�is trend is supported by raw means (without spatial smoothing, Fig.�3). Such can be also seen in multiple t-test 
comparisons (Fig.�3c,d, green colour). �is is consistent with agreement between spatial CNP and previously 
unquanti�able subjective clinical observations about CNP3.
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We further investigated which directional segments were most important by using the mixed e�ect model 
to estimate the mean directional CNP pro�les with 95%CI (Fig.�4). We �rst examined variation arising from 
spatial location and clinical outcome (Table�2), and found that the amount of CNP depends on the distance 
from the fovea and also on the direction from the fovea (Table�2, main e�ect of direction and ring, both 
p �  0.001). �en we found that the directional pro�les have a similar shape, but the temporal segments are ele-
vated in subjects who died (Fig.�4a,b). In both the inner and outer rings the temporal segments have the high-
est di�erences in CNP between outcome groups (respectively: 27% to 32%, p �  0.014; 14% to 20%, p �  0.003 
Table�2; see also Fig.�4c,d).

Overall, our spatial analysis points to the horizontal raphe (corresponding to the temporal segments of the 
inner and outer rings) as an especially important biological site for severe CNP.

���Š�‡���•�’�ƒ�–�‹�ƒ�Ž�Ž�›���”�‡�•�‘�Ž�˜�‡�†�����������’�”�‘�¤�Ž�‡�•���ƒ�”�‡���ƒ�•�•�‘�…�‹�ƒ�–�‡�†���™�‹�–�Š���†�‡�ƒ�–�Š�ä��Using the mixed e�ect model with 
spatial correlations, we found that CNP di�ers between subjects who live and die (overall group e�ect: p �  0.02, 
Table�2). �is is in contrast with the simple overall automatic inner-ring CNP was slightly increased in death 
in our cohort but not signi�cantly. �is is not surprising since there is a large amount of noise in sectors with 
very subtle signal in the�temporal direction that gets lost when averaging the CNP across all directions (Fig.�3). 
Spatially resolved CNP provides a stronger basis for inference compared to a simple proportion of CNP over the 
whole region.

���Š�‡���˜�ƒ�”�‹�ƒ�„�‹�Ž�‹�–�›���‘�ˆ���–�Š�‡���•�’�ƒ�–�‹�ƒ�Ž�Ž�›���”�‡�•�‘�Ž�˜�‡�†�����������’�”�‘�ˆ�‹�Ž�‡���‹�•�…�”�‡�ƒ�•�‡�•���™�‹�–�Š���Ž�‘�™�‡�”���‹�•�ƒ�‰�‡���“�—�ƒ�Ž�‹�–�›�ä�� 
Spatially resolved CNP does appear to also contain important information about image quality. We found that 
some pro�les vary more (over their own mean CNP) than others. We investigated if this variability correlates with 
the image quality which was manually assessed by human graders. We found that the variability of the CNP val-
ues increases with decreasing quality of the image in the inner circle (Supplementary Figure�4a, p-value �  0.001 
ANOVA, n � 132) and also in the outer ring (Supplementary Figure�4b, p � 0.012 ANOVA, n � 132). �is is con-
sistent with increasing estimated variability of CNP between sectors. Within the mixed e�ect model we estimated 

Overall CNP index in images of 
excellent, good or fair quality (n � 132)

Automatic grading: Total percentage of CNP damaged pixels: One 
number for inner circle and one number for outer ring

Continuous scale, % p-value

Inner circle
Survived Mean � 19.8 SD � 4.3 p � 0.73 (Logistic regression) 

p � 0.65 (2-sample t-test)Died Mean � 20.2 SD � 2.8

Outer ring
Survived Mean � 8.8 SD � 3.5 p � 0.86 (Logistic regression) 

p � 0.88 (2-sample t-test)Died Mean � 8.9 SD � 3.3

Table 1. Associations of simple overall CNP measures vs death using images of excellent, good and fair quality 
(n � 132).

Associations using all images and using spatially 
detailed model of retinal CNP damage

Num 
df

Den 
df F-statistic P-valueSource of variation

Fixed e�ects

Intercept 1 5743 2588.0175 �0.001

Direction 9 5743 124.7424 �0.001

Overall group e�ect 1 152 36.66 0.026

Group e�ect in inner circle 1 152 135.15 �0.001

Group e�ect in outer ring 1 152 132.44 �0.001

Ring 1 5743 1064.2291 �0.001

Direction�Group 9 5734 1.9585 0.030

Direction�Ring 9 5743 10.0754 �0.001

Group�Ring 1 5743 2.6297 0.105

Direction�Group�Ring 9 5743 1.0979 0.360

Random e�ect Retina (Between subject 
variation), SD 2.849

Random term Within subject variation, SD 6.621

Spatial correlation Gaussian, Range 0.520

Image quality

1 Excellent 1.000

2 Good 1.212 (multiple of SD)

3 Fair 1.350

Table 2. Sources of CNP variations across disease groups and space in mixed e�ect model with spatial 
correlation. �e e�ect of direction was modelled via 5 sine and cosine functions as a �xed e�ect. �e ring and 
group are dichotomous�(ring is either inner cirle or outer ring), hence there were 10 parameters estimated for 
each combination of the levels of the factors.
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the standard deviation of CNP in good and fair quality images to be 1.212 and 1.350 multiple of the SD in excel-
lent quality image (Table�2). �is suggests that the variability of a damage pro�le can be potentially used to 
develop an automated quality measure CNP images.

Discussion
Evaluating macular CNP is an important step in clinical practice and research into new treatments for serious 
retinal diseases. Manual grading has several limitations: it is costly in terms of money and time, it is subjective, 
and it extracts only limited information from retinal images.

In this paper we propose a paradigm that brings two innovations: it replaces manual scores with automatic 
scores, and it interprets these within a spatially resolved pro�le of 48 sub-regions. �is incorporates some of 
the biological structure of the macula into image analysis. We illustrate this spatial approach in the analysis of 
macular CNP in a study of 132 children with malarial retinopathy, and we show that: (i) automatically calcu-
lated CNP scores correlate with manually graded CNP (p �  0.03), (ii) in malarial retinopathy CNP generally 
occurs around the temporal macula (inner circle)�and temporal raphe (outer ring) (p �  0.001) with 5% di�erence 
between survived and died groups (p � 0.001), (iii) using spatial information improves the power of our analysis 
when compared to non-topographical automatic grading and manual grading. �erefore, our framework o�ers 
an important improvement over manual grading. Our statistical spatial model can be computed using a mixed 
modelling framework (also called multilevel or hierarchical modelling), e.g.17,18, and public domain so�ware for 
mixed-e�ect modelling that is readily available (e.g. R package nlme at https://cran.r-project.org/). We are prepar-
ing a dedicated so�ware package that will be available on our webpage and plan to make it part of the R library.

Spatially resolved CNP gives improved statistical power to estimate associations with clinical outcome in pae-
diatric CM. Furthermore, we were able to quantify a biological characteristic of macular CNP that had previously 
only been described subjectively: in malarial retinopathy macular CNP clusters around the temporal macula and 
temporal outer ring - an important watershed zone. �is approach is likely to be useful for ongoing research into 
treatments for ischaemic retinal diseases, since it improves the accessibility and power of CNP as an outcome 
measure. It may also provide new information about relationships between the microanatomical location of CNP 
and various ischaemic disease processes in the retina, by providing spatial resolution that has previously been 
unavailable to investigators. For example, using our approach the spatial pro�les of CNP in diabetic maculopathy 
and malaria could be compared, and interpreted according to vessel topology and sub-regional physiology.

�e pro�le of 48�automated scores captures more information about lesions than the two simple automated 
scores or than traditional manual grading, as was seen in signi�cant and stronger associations with outcome. 
As such, the pro�le of 48 scores�better approximates what a clinician sees when looking at a retinal image, by 
including information about lesion size, frequency and also location. Manual grading for a given subject has the 
advantage that it includes information from a whole series of FA images, while automated techniques typically 
analyse only one image per patient. Our approach performs well despite this handicap. Extension to analyse a 
series of FA images is likely to improve performance further.

We illustrated our approach on data from malarial retinopathy, since this has a characteristic spatial distribution 
within the macula, and allowed us to compare our new approach to manual grading as a reference standard2 as well 
as an unambiguous outcome variable. Manual grading is o�en time consuming, is prone to inter-observer variation, 
and may not adequately capture important details such as the precise location of CNP lesions and their size. By 
overcoming some of the limitations of manual grading, automated detection of CNP can aid in more precise anal-
yses of retinal disease and may potentially provide a more pragmatic option for assessment in clinical trials. While 
automated detection of CNP is well described8, to the best of our knowledge spatial interpretation of these data has 
not yet been attempted. We present a framework for automated interpretation of CNP, with the aim of quantifying 
an important retinal feature linked to fundamental disease processes in several retinal and systemic conditions.

Figure 3. Values of CNP in 132 images in the inner circle and outer ring. Mean values were calculated using 
LOESS �ts (span � 0.25, Cleveland, 1979) and 95% con�dence intervals were calculated using bootstrap for 
those who survived (blue) and died (red).
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�ere are limitations to our approach. �ese promising results largely rely on good CNP segmentation. �is 
approach is not based on counting individual lesions. We decided to divide the macula into ‘pie-slice’ shaped 
sub-regions for pragmatic reasons, and because we were particularly interested in the temporal macula com-
pared to the other macular sub-regions. Other sub-region shapes (for example, hexagons) may yield di�erent 
results, and may be more suitable for studying other conditions. We evaluated our approach in a set of images 
from patients with malarial retinopathy. Future work could assess the pattern of CNP in other diseases, such as 
diabetic maculopathy. We compare our spatial approach to manual grading of retinal images. Manual grading is 
the result of a human viewing a whole series of images, while the spatial model is only applied to a single image. 
Furthermore, a human observer can assess image quality and select the most appropriate images during grad-
ing, while most automated techniques require image quality to be assessed prior to analysis. Future work could 
address these limitations by developing automated methods to select good quality macular images, and then 
apply the spatial model to the resulting series of images.

CNP is an important feature of several common retinal diseases and, importantly, a key outcome variable for 
randomised clinical trials. Our spatial technique is also relevant to other medical images, since the analytical lim-
itations inherent in simply counting the type, number, and size of lesions apply to images in general, where such 
images contain a wealth of additional spatial information that is relevant to the disease in question.

We present a novel method for evaluating macular CNP based on the spatial distribution and extent of CNP. 
Spatial distribution is important because it is likely to contain information about regional variation in microvas-
cular anatomy and physiology within the macula. Our analysis provides a way to interpret CNP segmentation 
data from automated algorithms while taking account of the topographical structure. Consequently, it can quan-
tify topographical features of CNP noted subjectively by clinicians. Such a technique may also allow more pow-
erful analyses of associations between macular CNP and clinical outcomes in basic research and clinical trials.
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