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Abstract—Lead zirconate titanate (PZT) based piezoelectric 

micromachined ultrasonic transducers (PMUTs) for particle 

manipulation applications were designed, fabricated, characterized 

and tested. The PMUTs had a diaphragm diameter of 60 µm, a 

resonant frequency of ~ 8 MHz and an operational bandwidth of 

62.5%.  Acoustic pressure output in water was 9.5 kPa at 7.5 mm 

distance from a PMUT element excited with a unipolar waveform at 

5 Vpp. The element consisted of 20 diaphragms connected electrically 

in parallel. Particle trapping of 4 µm silica beads was shown to be 

possible with 5 Vpp unipolar excitation.  Trapping of multiple beads 

by a single element and deterministic control of particles via 

acoustophoresis without the assistance of microfluidic flow were 

demonstrated. It was found that the particles move towards 

diaphragm areas of highest pressure, in agreement with literature 

and simulations. Unique bead patterns were generated at different 

driving frequencies and were formed at frequencies up to 60 MHz, 

much higher than the operational bandwidth. Levitation planes 

were generated above 30 MHz driving frequency.  

 
Index Terms—Acoustic tweezing, arrays, MEMS, particle 

manipulation, PMUT, ultrasound transducers 

I. INTRODUCTION 

HERE is growing interest in devices to independently and 

deterministically manipulate microscale objects, 

particularly in the biological sciences. Various contact and non-

contact technologies have been developed to meet this demand. 

Non-contact methods are strongly preferred in biology as they 

maintain the integrity of cells and minimize interference with 

intercellular and intracellular processes [1, 2]. 

 Of the reported non-contact methods, optical tweezers, 

dielectrophoresis, magnetophoresis, and acoustophoresis have 

been used for particle manipulation. Acoustophoresis is 

particularly attractive for biological applications as it does not 

require labelling, has no known toxic effects, and can maintain 

cell integrity during operation [3, 4, 5, 6, 7]. 

 Many ultrasonic transducer designs have been explored for 

acoustic tweezing, as shown in Fig. 1. Unlike transducers for 

imaging, these are required only to transmit energy not to act 

additionally as receivers. Conventional transducers based on 

bulk piezoelectric materials or piezocomposites with front and 

back electrodes, Fig. 1(a), often have a matching layer to 

enhance energy transfer between the high acoustic impedance 

of the device and the low acoustic impedance of the medium. A 

backing layer may also be used to dampen ringing or reflect 

acoustic energy back to the front surface. However, 

conventional transducer structures constrain the geometry and 

hence operating frequencies and electrical impedance matching 

of the small elements in two dimensional arrays for particle 

manipulation applications.  

In contrast, micromachined ultrasonic transducers (MUTs) 

prepared using microelectromechanical systems (MEMS) 

fabrication techniques allow ultrasonic arrays to be configured 

flexibly, with high spatial resolution, from many small 

diaphragms. They also offer intrinsically good acoustic 

matching and operating bandwidth and the potential for 

excellent electrical impedance matching. Two distinct platform 

technologies have emerged: capacitive micromachined 

ultrasonic transducers (CMUTs) and piezoelectric 

micromachined ultrasonic transducers (PMUTs). 

 
Fig. 1.  Typical architectures of (a) a bulk piezoelectric transducer, (b) a 

capacitive micromachined ultrasonic transducer and (c) a piezoelectric 

micromachined ultrasonic transducer (after [8]). 
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 CMUTs are based on flexural vibrations of a membrane 

caused by varying electrostatic attraction to a substrate. They 

can generate adequate acoustic pressures for medical imaging 

and particle trapping [9, 10]. They also integrate well with 

silicon electronics for voltage amplification and detection. 

However, they need high DC bias voltages (30 - 100 V) to 

operate, often near the collapse voltage, [11, 12] and this has 

led to interest in devices that do not require biasing. PMUTs, 

which accomplish membrane deflection through lateral strain 

induced by the piezoelectric effect, meet this need. Generally, 

they have higher capacitances than CMUTs and thus lower 

electrical impedance, facilitating impedance matching to 

electrical circuitry. In addition, unlike in bulk piezoelectric 

transducers, the resonant frequency of a PMUT is not 

dependent solely on the thickness of the piezoelectric layer but 

is defined by a range of parameters including density, flexural 

rigidity, diaphragm radius and shape of the membrane [8, 13, 

14, 15]. Therefore, PMUTs offer significant freedom in their 

design. 

Particle manipulation and trapping via acoustophoresis has 

been achieved in a variety of platforms, including transducers 

with interdigitated electrodes that use surface acoustic waves 

(SAW) to trap particles in the pressure wave antinodes [7, 16, 

17], transducers that use standing bulk acoustic waves in a 

channel for droplet sorting [18], and single beam acoustic 

transducers (SBAT) for particle and cell manipulation [19, 20]. 

These techniques have demonstrated high efficiency in particle 

sorting and trapping. SAW-based devices and SBAT often 

require higher voltage input or a power amplifier during 

operation (> 10 Vpp operation) [20, 21], and the manipulation is 

often confined to a few wavelengths away from the substrate. 

Similarly, SBAT requires higher voltage operations and are 

difficult to fabricate in arrays, and thus may not have the 

manipulation precision and design freedom of PMUTs. While 

particle trapping has recently been shown to be possible with 

CMUTs [9, 10], to date, it has not been extensively 

demonstrated with PMUTs. In addition, demonstrations of the 

important task of bulk manipulation of particles from element 

to element in an array has been demonstrated with MUTs only 

with heavy reliance on microfluidic flow, although there have 

been such demonstrations in bulk and thick film transducers 

[22, 23, 24, 25, 26]. Further, particles have been reported to 

agglomerate towards the center of MUT diaphragms when the 

MUT is excited at the fundamental resonant frequency [9, 10]. 

While this fundamental mode thus enables particle trapping, use 

of higher frequencies has not been extensively explored. If 

adequate pressures can be generated at higher modes, particles 

may be systematically manipulated in correspondence with the 

vibration mode of the diaphragm, allowing dynamic patterning 

with a single element.  

 In this paper, one-dimensional (1D) PMUT arrays of multiple 

elements, each comprising many diaphragms connected 

electrically in parallel, are demonstrated through their 

manipulation of 4 µm SiO2 particles via acoustophoresis 

without the assistance of microfluidic flow. It is also shown that 

bead patterns can be formed outside the operating bandwidth of 

the devices, with formation of bead patterns taking place over a 

wide frequency range.  

II. DESIGN, FABRICATION, AND EXPERIMENTAL SETUP 

A. Design 

The resonant frequency (fundamental mode) of a PMUT, f, 

with a circular clamped diaphragm is given by: [13, 14, 15] 

 

                              𝑓 = 𝛼2

𝑎2⁄ √
𝐷𝑒

∑ 𝜌𝑖ℎ𝑖𝑖
⁄   (1) 

 

where 𝛼, a, De, 𝜌𝑖, and ℎ𝑖 are the frequency parameter constant 

(equal to ~ 3.196 for a clamped circular diaphragm), the radius 

of the PMUT, flexural rigidity of the diaphragm, density of the 

ith material in the stack forming the diaphragm, and thickness of 

the ith material, respectively. Based on (1) and the material stack 

described in Section II.B, a diaphragm diameter of 60 µm was 

chosen to achieve a fundamental resonant frequency, 

ffr = 10 MHz. 10 MHz was selected due to half the wavelength 

of the fundamental frequency in water, λfr/2 ≈ 75 µm, is at least 

Fig. 2. PMUT fabrication process, with cross-sectional and top-view of the fabricated PMUT 
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on the order of or larger than the dimensions of most cells, 

bacteria, and enzymes [27, 28, 29]. This increases the 

possibility of successful acoustophoretic manipulation. The 

diaphragms were separated by a 15 µm gap with a pitch of 75 

µm, corresponding to λfr/2. The top electrode diameter was set 

to 65% of the diaphragm diameter to increase deflection [30, 

31, 32]. 

B. Fabrication 

The full fabrication process for a PMUT is shown in Fig. 2. 

The base substrate was a silicon on insulator (SOI) wafer with 

a 2 µm Si thickness and a 2 µm buried thermal oxide layer 

(Ultrasil Corporation, Hayward, California, USA). An SiO2 

passive elastic layer ~0.16 µm thick was grown on both sides 

of the wafer by wet oxidation. Then 30 nm of Ti was sputtered 

on the device side, followed by rapid thermal annealing with 10 

sccm of oxygen flow for 15 minutes at 700 °C to form TiO2. 

This generates a well oriented 100 nm bottom electrode layer 

when Pt is sputtered at > 500 °C [33].  

To achieve the highly oriented (001) PZT films needed for 

optimal functional performance in applications, a thin 

Pb(Zr0.52Ti0.48)O3 sol-gel solution with 2% Nb and 20 mol% 

excess Pb (Mitsubishi Materials Corporation, Hyogo, Japan) 

was first spun on the wafer at 6000 rpm for 30 s as the seed 

layer [34, 35] . The seed layer was then pyrolyzed at 200 °C for 

150 s before crystallization via rapid thermal annealing in a Pb-

rich environment at 700 °C for 1 min. For the functional thin 

film PZT layer, 14 mol% lead excess Pb(Zr0.52Ti0.48)O3 solution 

doped with 2% Nb (Mitsubishi Materials Corporation, Hyogo, 

Japan) was spun on at 2750 rpm for 45 sec. The film was then 

pyrolyzed at 100 °C for 1 min and 300 °C for 4 min, followed 

by crystallization in a lead-rich rapid thermal annealer for 1 min 

at 700 °C. This process was repeated until a total thickness of 

1.9 µm was achieved. Typically, 20 repeats were needed. 

Afterwards, a thin PbO capping layer was deposited at 6000 

rpm for 45 sec with the same pyrolysis and crystallization steps 

as the PZT layers to remove pyrochlore from the surface of the 

film.  

The top electrode was formed by sputtering 2 nm Ti as an 

adhesion layer followed by 50 nm of Pt without breaking 

vacuum. The top electrode was annealed at 600 °C for 1 min 

before an additional 500 nm of Au was deposited and patterned 

to complete the top electrode. Access to the bottom electrode in 

areas not covered by the top electrode was gained by ion 

milling. An insulation layer was created by spinning and curing 

0.9 µm thick bis(benzocyclobutene) to reduce parasitic 

capacitance over the areas defining the fan out and bonding 

pads. These were subsequently patterned via liftoff and ~30 nm 

Ti and 500 nm Au was sputtered without breaking vacuum. The 

devices were then released via silicon deep reactive ion etching 

(DRIE).  

The wafer was diced into individual PMUT dies. These were 

mounted in the cavity of a pin grid array (PGA) (Spectrum 

Semiconductor Materials, San Jose, California, USA) with 

silver paste to prevent water leakage from the backside. 

Electrical connections were made with wire bonding and coated 

conformally with ~4 µm of parylene for waterproofing. An 

equipotential plane was formed to eliminate dielectrophoresis 

in the particle manipulation experiments by depositing a 

100 nm thin film of Au with e-beam evaporation. A second 

protective layer of parylene (~ 2 µm) was then coated onto the 

device. Prior to characterization of the PMUT and the particle 

manipulation experiments, the array elements were poled at 

twice the coercive field of the PZT films for 15 min at room 

temperature.  

 

C. Experimental Setup 

For particle manipulation experiments, two linear types of 

PMUT arrays were tested: a 1D array in which each element 

comprised one single diaphragm (referred to here as E1) and a 

1D array in which each element consisting of twenty 

diaphragms (referred to here as E20). In each case, the PGA 

cavity was filled with distilled water with varying 

concentrations of 4 µm SiO2 beads (Sigma Aldrich, St. Louis, 

Missouri, USA). SiO2 beads with 4 µm diameter were chosen 

as they were readily available. The water/air interface at the top 

of the cavity served as an acoustic reflector to generate standing 

waves. The PMUT elements were driven with continuous 

sinusoidal waves of amplitude 5 Vpp and a 2.5 V DC offset 

unless otherwise stated.  

III. SIMULATIONS  

It has been reported that acoustic tweezing with a single 

beam CMUT source is based on gradient forces arising from the 

fluctuation of the generated pressure field when the source is 

activated. The gradient forces move particles to local/global 

acoustic pressure maxima or minima, depending on the 

properties of the particle [9, 10]. When a PMUT diaphragm is 

excited at resonance, the first mode results in the highest 

diaphragm deflection and highest pressure in the acoustic 

medium at the center and the least deflection and pressure at the 

periphery of the diaphragm. Therefore, the maximum acoustic 

potential gradient arises between the center and edge of the 

diaphragm.  

To describe how the particles should move in a pressure field, 

the acoustic potential can be related to the acoustic radiation 

force, 𝐹𝑟𝑎𝑑, via Gor’kov’s model  

 

                Frad= -V*[
f1

2
β
m

∇<p
s
2>-

3f2

4
ρ
m

∇<vs
2>],  (2) 

 

where V is the volume of the particle and the terms in the 

brackets relate to the acoustic potential, βm is the 

compressibility of the medium in which the particle is 

suspended, ρm is the density of the medium, vs is the acoustic 

velocity, and ps is the pressure on the particle [9, 10, 36, 37, 38]. 

The terms f1 and f2 are coefficients given by  

 

                                   f
1
=1-

βs

βm
,                                           (3) 

 

f
2
=

2(ρs-ρm)

2ρs+ρm
,                                          (4) 
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where βs and ρs are the compressibility and density of the 

particle, respectively [9, 10, 37, 38]. Equations (2) – (4) were 

defined in COMSOL Multiphysics (COMSOL Inc., Burlington, 

MA, USA) for a single PMUT diaphragm, with 4 µm SiO2 

beads as the particles to be manipulated.  

The results in Fig. 3 show that when a diaphragm is excited, 

particles agglomerate at the center and close to the surface of 

the diaphragm, in areas of high acoustic pressure. Similar 

behavior is reported in the literature but with CMUTs as the 

ultrasound source [9, 10]. Fig. 4 shows the pressure fields 

generated by a pair of diaphragms, simulated with COMSOL. 

It can be seen that the pressure fields generated by individual 

diaphragms overlap with adjacent diaphragms. Also, the 

particle movement caused by one diaphragm in Fig. 3 draws 

particles as far as 200 µm from a diaphragm center. It was 

calculated from COMSOL that close to the PMUT surface, the 

acoustic force was approximately ~10 pN and the effect of 

gravity force is two orders of magnitude lower (~ 0.4 pN). At 

approximately 50 µm away from the PMUT surface, the 

acoustic force is on the same order of magnitude as the gravity 

force. Thus, the particles were expected to move very close to 

the PMUT surface. In addition, if the pressure field is 

sufficiently large in extent and the distance between elements is 

sufficiently close, beads can potentially move from one element 

to another without assistance from microfluidic flow. This 

possibility was deliberately increased by designing the PMUT 

elements with a pitch of 75 µm, corresponding to λfr/2 at 

10 MHz in water.  

 

 
Fig. 3.  Pressure fields generated by a single 60 µm diaphragm and particle 

movement for (b, c) fundamental mode and (d) second harmonic (0,2) mode.  

The arrows indicate the direction of SiO2 beads particle movement. The colored 

arrows in (c, d) indicate the acoustophoretic force exerted on the particle. The 

length of the arrows corresponds to the relative force. The simulations were 

done for an axisymmetric model; only 1/2 of the diaphragm is shown, with the 

center at the origin as indicated by the black arrows. A point of reference is 

shown in (a). Note the model used was a planar simulation with symmetry along 

the out-of-plane axis. This X-Z view is also used for Fig. 4. A physically-

matched layer was used at 200 µm distance from the membrane surface to 

prevent excitation of standing waves. An animation is presented in the 

Supplemental Materials. 

 

In addition to those generated by the fundamental mode, 

patterns generated by different modes could potentially be 

useful. From the results shown in Fig. 3 and 4, different 

vibrational modes should generate different bead patterns based 

on the resultant pressure field. For example, the (0, 2) mode 

would occur at a frequency approximately 3.89 times the 

fundamental (0, 1) mode frequency of a clamped circular plate 

[39]. For the (0, 2) mode, the pressure field is shown in Fig. 3 

(d) and 4 (d). This suggests there would be two areas where the 

beads could agglomerate: at the center of the diaphragm and in 

a circular node around the center of the diaphragm.  

Figs. 3 and 4 were produced with a physically-matched layer 

positioned at 200 µm vertically from the membrane surface to 

prevent excitation of standing waves. If this is removed, 

allowing reflection, and the distance between the PMUT and 

the reflecting surface is multiple half-wavelengths, large 

pressure fields can be generated and correspondingly higher 

acoustic field amplitudes that can cause particles to move to 

levitation planes at the acoustical nodes [40]. The positions of 

the levitation planes (LPs) normal to the acoustic source 

direction can be expressed as  

 

                              LP = n∙ λ/4, (5) 

 

where n, and λ are a whole integer and the acoustic wavelength, 

respectively. The depth of the water in the PGA cavity was not 

controlled systematically in this study; however, levitation 

planes can be more readily formed if the cavity height is a 

multiple of the driving wavelength. Such planes increase in 

 
Fig. 4.  (a) Individual pressure fields generated by two 60 µm diaphragms 

with 75 µm pitch, with each diaphragm excited individually and their 

individual pressure fields overlaid, (b) pressure field generated by two 

diaphragms excited in unison at resonance, (c) pressure field generated by 

two diaphragms excited in unison at 40% above the resonant frequency, and 

(d) pressure field generated by a single diaphragm excited at the second 

harmonic mode. The black arrows indicate the center of the diaphragms. The 

pressure fields overlapping in (a) and (b) indicate the potential for particles to 

move from one diaphragm to another. A physically-matched layer was used 

at 200 µm distance from the membrane surface to prevent excitation of 

standing waves 
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number if the driving frequency is high, as the number of nodal 

planes in a fixed distance increases with driving frequency.  

IV. PMUT CHARACTERIZATION 

For a high quality PMUT, the PZT quality needs to be high. 

X-ray diffraction (XRD) and field-emission scanning electron 

microscopy (FESEM) were used to confirm that the PZT films 

were phase-pure perovskites and highly (001) oriented as 

shown in Fig. 5. The relative permittivity, ɛr, and loss tangent, 

tan δ, were measured for twenty different elements in an array 

to test for the uniformity after the entire process was completed. 

Hysteresis loops were also measured to confirm the quality of 

the PZT. The electrical measurements are also presented in Fig. 

5. At 95% confidence interval at 1 kHz, ɛr = 1487 ± 8 and tan 

δ = 1.40 ± 0.06 %, respectively, indicating high uniformity 

between elements. The remanent polarization, Pr, was ≈ 24 

µC/cm2, and the coercive field, EC, was ≈ 50 kV/cm. 

 

 
Fig. 5.  Results of structural analysis of PZT via (a) X-Ray Diffraction and (b) 

Field Emission Scanning Electron Microscopy. Phase-pure perovskite was 

achieved with chemical solution deposition. No visible pyrochlore or secondary 

phases were found. The asterisks (*) denote substrate peaks. Measurements of 

(c) dielectric permittivity, loss tangent and (d) hysteresis loops indicate 

permittivity > 1400, loss tangent < 3%, remanent polarization ~24 μC/cm2, and 

coercive field ~ 50 kV/cm. 

 

Laser doppler vibrometry (LDV) was used to evaluate ffr and 

the field-induced deflection of the fabricated device. The results 

are shown in Fig. 6. It was found that, for PMUTs on the same 

wafer, 6 < ffr < 8 MHz, due primarily to the footing effect in the 

DRIE process which changes the diaphragm diameter. Within 

a given die, the values of ffr were well-matched, with larger 

variations observed across the 4” wafer.  Higher modes can also 

be seen at 13.0 MHz and 19.8 MHz, which correspond to the 

(1, 1) and (0, 2) modes, respectively [39]. The LDV instrument 

(Polytec GmbH, Walbronn, Germany) could record a maximum 

deflection signal of only 79 nm, hence, for higher driving 

voltages, the center deflections seen in Fig. 6(b) were 

extrapolated from the deflections near the diaphragm periphery, 

where motion is more strongly clamped. Using this technique, 

the deflection profiles indicate that in air, high deflections (~ 40 

nm/V) can be achieved for low driving voltages for both the E1 

and E20 array.  

The pressure output, P, and bandwidth, BW, were evaluated 

for the E20 array. The array was placed in an acrylic water-tank 

and operated in transmit mode while a hydrophone (HGL-0085, 

Onda Inc., Sunnyvale, California, USA) acted as a receiver at 

7.5 mm distance from the surface of the transducer. One 

element was excited with a 5 Vpp unipolar sinusoidal burst of 

5 cycles to measure P. For BW, the same unipolar voltage 

excitation was used but with a single cycle sinusoid at the 

resonant frequency, and a total of 59 dB gain was used to 

amplify the signal. A Fourier transform was then used to 

calculate BW at -6 dB. The results are shown in Fig. 7. An 

element of 20 diaphragms (E20) yielded an output pressure of 

~ 9.5 kPa at 7.5 mm and the bandwidth at -6 dB was 

approximately 62.5%. The underwater resonance frequency 

was found to be ~ 8 MHz.  

 
Fig. 6.  LDV measurements in air showing center deflection spectra (a) over 

a wide frequency range at 0.5 – 3.0 Vpp driving voltage via laser chirp 

measurement and (b) close to resonance via peak hold measurement. Higher 

frequency modes are seen in (a) at 13 MHz and 19.5 MHz. The measurements 

here were from the same batch of devices used in later experiments. 
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V. PARTICLE MANIPULATION 

For particle manipulation experiments, the PMUT elements 

were excited below ffr with a unipolar signal at 5 Vpp with a 

function generator, with a low concentration of 4 µm SiO2 

beads in the water medium. Results are shown in Fig. 8. The 

lower frequency was used because, when an element is excited 

very close to the resonant frequency, as presented in Fig. 8 (a) 

and (b), cross-coupling excited neighboring elements. At 

driving frequencies ~ 18% below ffr, the cross-coupling was 

much less severe.  

It was observed that the bead clusters became more tightly 

packed, as seen in Fig. 8 (c) and (d), as the applied unipolar 

voltage increased from 1 Vpp to 5 Vpp with f ≈ ffr. Furthermore, 

the velocity of the beads towards the axis of the diaphragm 

increased as the excitation voltage increased and when ffr was 

approached. This is reasonable [9, 10] as higher deflections 

result in larger pressure outputs, generating larger pressure 

gradients and thus larger acoustic forces. The phenomenon of 

bead agglomeration towards the center of the diaphragm as the 

driving frequency approaches the resonant frequency 

corresponds with what has been reported for CMUTs [9, 10]. 

PMUTs which were not released by back side etching yielded 

no movement of the particles, showing that the particle 

manipulation arises from acoustophoresis. 

In order to test control of particle motion in 1D, individual 

and adjacent elements of the E1 PMUT array were excited and 

non-excited to facilitate particles moving to the generated local 

acoustic potential minimum. A similar excitation pattern was 

used on the E20 PMUT array to investigate whether particle 

trapping is possible over multiple diaphragms simultaneously 

when one array element was excited. The results are presented 

in Fig. 9. 

When an element is turned on, nearby beads cluster over the 

center of the diaphragm and, when the element is turned off, the 

bead cluster disperses and moves toward neighboring elements 

that remain activated, due to the gradient in acoustic pressure, 

in agreement with the simulations presented in Figs. 3 and 4. 

 
Fig. 9.  Manipulation of 4 µm silica beads using two elements from the E1 

(a) – (d) and E20 (e) – (h) PMUT designs. The images show the SiO2 beads 

when (a) elements are off, (b) both elements are turned on, (c) when the 

left element is switched off and the right element remains on, and (d) when 

the right element is switched off and the left element is switched on. Beads 

move from the element that is turned off to the element that is turned on. 

This technique was used when manipulating the beads with the E20 design, 

where beads were trapped and moved from element 1 to element 4. The 

white arrows indicate the direction of particle movement. Note the 

scalebars are consistent between (a) – (d) and (e) – (h). 

 
Fig. 7.  Acoustic characterization of E20 array. (a) Time and 

frequency characteristics with single cycle sinusoidal excitation (with 

59 dB total gain), and (b) hydrophone output at ffr with 5 cycle 

sinusoidal excitation. The response was ~0.46 µV which corresponds 

to ~9.5 kPa at 5 Vpp unipolar excitation at 7.5 mm distance from the 

PMUT. The bandwidth at -6dB was ~ 62.5% from the Fourier 

transformation of the signal response, with a center frequency of 8 

MHz.  

 
Fig. 8.  SiO2 bead patterns generated when the E20 array was excited at (a) 

~6 MHz, (b) ~ 4.9 MHz. Cross-coupling is less severe below resonance, 

indicated by the much heavier clustering of particles at the excited element. 

Generally, the beads agglomerated most effectively with f in the range 

5 – 6 MHz. Higher density particle clustering was observed for (c) 5 Vpp 

excitation than for (d) 1 Vpp excitation; higher voltages caused tighter 

conglomeration of the beads than lower voltages. The white arrows 

indicate the direction that as voltage is decreased, the bead cluster relaxed 

and the diameter of the cluster decreased from (c) to (d) from ~ 60 µm to 

~54 µm, respectively. 
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This behavior was observed for both the E1 and E20 arrays. 

Because the pressure gradient increases between the center of a 

diaphragm and its periphery as f approaches ffr [9, 10], the beads 

can be moved from one element to another by tuning the driving 

frequency. The relationship between frequency and wavelength 

and particle movement is complex; changing frequency results 

in changing deflection, which changes output pressure as well 

as potential crosstalk, further complicating the acoustic 

potential gradient. In addition, changing frequency also changes 

wavelength, and thus also changes the acoustic potential 

gradient. However, based on Fig. 4 (c), when two diaphragms 

are excited above the resonant frequency, the area of highest 

pressure is between two diaphragms rather than directly over 

the diaphragms. By exciting the transducers at a frequency 

above resonance, the beads move to the highest areas of 

pressure, and thus move to the areas between the two 

diaphragms. Then, the driving frequency can be changed to the 

resonant frequency, and thus the beads move to areas over the 

diaphragm easier due to closer proximity to the generated 

highest-pressure zone, as was observed in the experiments. 

The effects of different excitation frequencies on bead 

patterns and behavior over diaphragms in the E1 and E20 arrays 

are illustrated in Figs. 10 and 11, respectively. For the E1 array, 

again the beads agglomerate at the center of the diaphragm at 

ffr. The beads remain at the center of the diaphragm until 

f ≈ 17 MHz, where they begin to form an annulus. As f 

approaches 23 MHz, two beads move towards the center of the 

diaphragm, while most stay in the nodal torus formed 

previously. The pattern in which the torus appears matches the 

simulated pressure field generated by the (0,2) mode shown in 

Fig. 4 (d). If the resonant frequency is taken to be ~ 6 MHz (at 

which frequency the beads tended to agglomerate most 

effectively), 23 MHz is approximately 3.9 times ffr, again 

matching theory [39]. The (1,1) mode was not seen via bead 

excitation. The in-plane stress in the piezoelectric layer induced 

by the electric field produces a uniform bending moment along 

the periphery of the top electrode. This favors radial modes 

instead of non-radial modes; hence, the amplitude of the (1,1) 

mode may be too low to cause acoustophoretic motion of beads 

[15, 39]. 

 
Fig. 10.  Particle behavior stimulated by driving one element at frequencies (a) 

5 MHz, (b) 13 MHz, (c) 17 MHz, and (d) 23 MHz. The scalebar applies to all 

of (a) – (d). 

 

For the E20 device, similar patterns emerged; beads 

agglomerated at the center of each diaphragm when resonance 

was approached, and torus shapes were seen at approximately 

f ≈ 3.9ffr. However, several unique behaviors were seen in 

elements with 20 diaphragms compared to elements with only 

1 diaphragm, as shown in Fig. 11. Beads moved away from the 

excited diaphragm at 7 MHz, and returned at 8 MHz. This 

behavior was also seen when transitioning from 9 MHz to 

13 MHz. One possible explanation can be drawn from the 

simulation illustrated in Fig. 4 (c), where above ffr, an acoustic 

potential well can encourage beads to move away from the 

diaphragm. When the elements are excited together, depending 

on the separation distance between elements and the excitation 

frequency, larger acoustic pressures may be generated between 

diaphragms, with the resulting gradient pushing the beads 

towards the higher-pressure regions. Crosstalk from 

neighboring, non-electrically excited elements may thus be the 

cause of behaviors seen in Fig. 11 (c)-(d), (e)-(f), and (g)-(h).  

At higher driving frequencies, even without precise control 

over the height of the chamber, levitation planes were also 

observed, as shown in Fig. 12, with the heights of the levitation 

planes indicated in Table I.  

 
Fig. 11.  Silica bead patterns generated using E20 with driving frequencies at 

(a) 1 MHz, (b) 3 – 6 MHz, (c) 7 MHz, (d) 8 MHz, (e) 9 MHz, (f) 13 MHz, (g) 

17 MHz, (h) 18 MHz, (i) 22 MHz. Arrows indicate directions of particle motion 

before the particles settle into their observed position. The scalebar applies to 

(a) – (i). 

 

 
Fig. 12.  Levitation plane of 4 µm SiO2 beads when PMUTs E1 were excited at 

(a) 30 MHz and (b) 50 MHz. The levitation planes are identified in Table I. The 

levitation planes are evident due to the need to defocus the microscope from the 

PMUT surface and focus on areas above it. The scalebar applies to (a) and (b). 

 

In some cases, multiple levitation planes were observed. The 

levitation planes form at heights that correspond approximately 

with nλ/4 as predicted by Equation (5). While the beads are 

trapped in the levitation plane, they have little motion in the X 

and Y directions. It is noteworthy that these effects were 

observed far beyond the limits of the measured BW of 62.5%.  
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VI. CONCLUSIONS  

PMUT arrays were successfully fabricated with high quality 

(001) oriented PZT that produced ~ 9.5 kPa at 7.5 mm distance 

and 40 nm/V deflection in air at 6 – 8 MHz resonant frequency. 

The arrays were shown to have the ability to control the location 

of SiO2 beads and bead agglomerations in 1D (laterally) by 

selecting which PMUTs were excited. At higher excitation 

frequencies, different bead patterns were observed, with the 

potential for use for patterning cells and particles in ways other 

than the agglomeration at the diaphragm center demonstrated 

previously with CMUTs [9, 10]. Even well above the -6 dB 

bandwidth of the fundamental resonant mode, levitation planes 

and bead patterning were observed, demonstrating generation 

of sufficient pressure to realize these effects at frequencies as 

high as 60 MHz.  

This work opens a pathway towards 2D manipulation of 

particles via PMUT arrays. Of particular interest would be to 

assess whether asymmetric nanorods, cells, and proteins / 

enzymes can be manipulated with PMUTs. While preliminary 

data shows that biological cells move upon activation of the 

PMUT, it was difficult to deterministically manipulate the cells 

from element to element. This was attributed to the acoustic 

impedance mismatch between the medium (distilled water) and 

cells being much lower compared to distilled water and silica 

beads, and is thus difficult to manipulate with the current 

pressure outputs. In the future, this can be circumvented by 

either increasing the drive voltages, improving PMUT pressure 

output, or by manipulating bubbles in conjunction with the 

cells, which has been demonstrated in literature [41]. In 

addition, PMUTs integrated into device apparatuses for 

imaging will also be explored in the future. 

APPENDIX 

Videos of particle manipulation are available online.  
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