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ABSTRACT

We present 25 new eclipse times of the white dwarf binary NNt&en with the high-speed
camera ULTRACAM on the WHT and NTT, the RISE camera on the igeel Telescope,
and HAWK-I on the VLT to test the two-planet model proposeckplain variations in its
eclipse times measured over the last 25 years. The plane@adgl survives the test with
flying colours, correctly predicting a progressive lag itigese times of 36 seconds that has
set in since 2010 compared to the previous 8 years of pranigs.tAllowing both orbits to
be eccentric, we find orbital periods /9 + 0.5yr and15.3 4 0.3 yr, and masses d¢f.3 +
0.5Mjand7.3+ 0.3 Mj. We also find dynamically long-lived orbits consistent wittle data,
associated with 2:1 and 5:2 period ratios. The data scatt@F seconds relative to the best-
fit model, by some margin the most precise of any of the praghespsing compact object
planet hosts. Despite the high precision, degeneracy irothi¢ fits prevents a significant
measurement of a period change of the binary anl dfody effects. Finally, we point out a
major flaw with a previous dynamical stability analysis of €r, and by extension, with a
number of analyses of similar systems.

Key words: (stars:) binaries (including multiple:) close — (starsrjavies: eclipsing — (stars:)
white dwarfs — (stars:) planetary systems

1 INTRODUCTION [Potter et all_2011). In all the cases cited one of the binanypmm
nents is evolved which helps observationally because thivey
star is hot and relatively small, leading to sharply-defingeep
edges in eclipse light curves which make for precise times.

The discovery of hundreds of planets around stars other tthen
Sun has alerted researchers to the possible influence adtplan
a wide variety of circumstances. Amongst these are the apect

ular Kepler discoveries of planets transiting across btanssof Planets discovered through timing complement those found
the tighter binary systems around which they orbit (Doylel=t in radial velocity and transit surveys as they are easieisooger

[2011: Welsh et jl@hz)_ The transits in these systems Ileave the larger (and thus longer period) their orbits are. Theterce
doubt as to the existence of planets in so-called “P-typeiter ~ of planets around evolved stars raises interesting quessts to
(Dvorak/1985) around binaries. Even before the Kepler gisco ~ Whether the planets are primordial and managed to surveveto-
ies there was evidence for planets around binaries fronmgrab- lution of the host binary, or whether they instead formedtfroate-
servations of a variety of systems where the presence obfsian  rial ejected during the course of stellar evolution (Beusmmet al.
is indicated through light travel time (LTT) induced vaitats in [2011; Veras & Tolit 2012; Mustill et &l. 2013), and may alsapla
the times of eclipses. This method has led to claims of pfaget ~ unusual constraints upon the binary’s evolutibn_(Portegieart
and/or sub-stellar companions around hot subdwarf/M dbarf )-
naries (Lee et al. 2009: Qian ef al. 2009b), white dwarf/M dwa The Kepler discoveries prove that circumbinary planetstexi
binaries [(Qian et al._2009a. 2010; Beuermann etal. 1201G), an pt when it comes to those discovered through timing, thityea
cataclysmic variables_(Beuermann etlal. 2011: Qianletall20  of the planets is not clear-cut. The history of the field is et
couraging in this respect. For instance, the orbits meddorethe
white dwarf/M dwarf binaries NN Ser and QS Vir m al.
* Partly based on observations collected at the Europeam&wou®bser- (12_0_0_9_5) an@_Q@ng_t_hL_(ZﬂlO) were both ruled out as soonvas ne
vatory, La Silla and Paranal, Chile (programmes 087.D-0598.D-0277 data were acquired (Parsons et al. 2010b), as were the awepl
and 091.D-0444) orbits proposed MMOQ) for the sdB+dM binary HW V
+ E-mail: t.r.marsh@warwick.ac.uk (Beuermann et al. 2012). Likewise, some multiple planetesys
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claimed from timing studie$ (Qian et/al. 2011) have had woisi
with long-term dynamical stability (Horner etlal. 2011; éet al.
[2012;| Potter et al. 201L1). These are serious issues bedaerse t
is no independent evidence yet for the existence of the wario
third-bodies suggested by timing, while the mere fact thmaing
variations can be fitted by planetary models is not entirelsspa-
sive, since with enough extra bodies the process is akintitogfia
Fourier series, and any set of data can be matched. At prékent
main rival model for the period changes is one in which they ar
caused by fluctuations in the gravitational quadrupolar e
of one or both star 92). In some cases thisaeppe
to fail on energetic grounds_(Brinkworth et al. 2006), ancthet
moment this constitutes the only, rather indirect, indeleen sup-
port for the planetary hypothesis for the eclipse timingations

of compact binary stars, although artefacts of measurensenh
as wavelength-dependent eclipse timings, are a posskle i

the case of accreting systerhs (Gozdziewski et al.|2012).

Useful scientific hypotheses have predictive power. Safar t
planetary explanation of LTT variations has fared poorlytiois
basis. In this paper we present new observations of the myste
NN Ser which is currently the most convincing example of aiLT
discovered planetary system around a close binary staraiuis
to see whether the planetary model develope et
M) can withstand the test of new data. NN Ser is a white
dwarf/M dwarf binary with an orbital perio@ = 3.1 hours which
was discovered to eclipse 989). The combinatia
hot white dwarf and low mass M dwarf.(11 M, [Parsons et al.
), allows the white dwarf to dominate its optical fluxnco
pletely, giving very deep, sharply-defined eclipses whiethdypre-
cise times. The very low mass of the M dwarf is an important
feature since its low luminosity greatly restricts the effieeness
0f2)’s period change mechanism, as pointed o
by [Brinkworth et al. [(2006), who first detected period chanige
NN Ser! Brinkworth et dl. interpreted the period changes sigm@
of angular momentum loss, but Beuermann ét al. (2010) rgsecl
an early observation of NN Ser from the VLT and were able to
show that the orbital period was not simply changing in omeddi
tion but had shown episodes of lengthening as well as shingen
They showed that the timing variations could be well expdiif
there were two objects of minimum maé91 M; and 2.28 M5
in orbit around the binary. This nicely solved the probleratttine
period changes appeared to be much larger than expected ba-th
sis of the angular momentum mechanisms thought to driveryina

evolution (Brinkworth et al. 2006; Parsons ef al. 2010a).

Of all the planets discovered through timing around birgrie
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2 OBSERVATIONS AND THEIR REDUCTION

We observed 25 eclipses of NN Ser, over the period 25 February
2011 to 26 July 2013, extending the baseline of the timespted
in Beuermann et &l[ (2010) byyears (Tablg]l). The majority of
data were acquired with the high-speed cameras ULTRACAM
.[2007) and RISE (Steele ef al. 2008; Gibsorllet a
M). These employ frame transfer CCDs so that deadtime be-
tween images is reduced to less ttads seconds. ULTRACAM,
a visitor instrument, was mounted either at a Nasmyth fodus o
the 3.5m New Technology Telescope (NTT) in La Silla or the
Cassegrain focus of the 4.2m William Herschel Telescope T)VH
in La Palma, while RISE is permanently mounted on the rolsatic
Liverpool Telescope (LT). The robotic nature of the LT alkws
to spread the observations, while ULTRACAM provides thehhig
est precision data. We used and g’ filters in the blue and green
channels of ULTRACAM and-’ or <’ in the red arm, as listed in
Table[d1. RISE operates with a single fixed filter spanningithe
and R bands. We also observed NN Ser with the infrared imager
HAWK-I installed at the Nasmyth focus of VLT-UT4 at Paranal
(Kissler-Patig et al. 2008) in March and April 2013. We uskd t
fast photometry mode which allowed us to window the detsctor
and achieve a negligible dead time between frames. Obgmrsat
were performed using thé-band filter; the white dwarf contributes
~60% of the overall light in this band meaning that the eclijzse
still deep and suitable for timing.

All data were flat-fielded and extracted using aperture pho-
tometry within the ULTRACAM reduction pipelin
). We fitted the resulting light curves using the lightveu
model developed in our previous analysis of NN $er (Parsbak e
). Holding all parameters fixed except the eclipse tede
to the measurements listed in Table 1, with the uncertairdie
rived from the covariance matrix returned from the Levegber
Marquardt minimisation used. In each case we scaled thetainte
ties on the data to ensured per degree of freedom equal to one.
We estimate uncertainties on our data by propagation ofbphartd
readout noise through the data reduction. In good conditibase
give realistic estimates of the true scatter in the data thedcal-
ing therefore makes little difference. In poor conditiohs scatter
can be larger than the error propagation suggests in whightte
scaling returns larger, more realistic uncertaintiess ithanges in
the observing conditions, as well as the instruments, drgely
account for the variation in the uncertainties listed inl&&h with
the addition of pickup noise that affected ULTRACAM in Janua
2012 owing to a faulty data cable. In the case of the ULTRACAM
data, we combined the times from the three independent afms o
ULTRACAM, weighting inversely with variance to arrive ateth
times listed. The first two times listed in Talple 1 represetaties

those around NN Ser are arguably the most compelling becauseof times listed i Beuermann etlal. (2010) which were baseshup

the data quality is so high with the best times having unowrés

< 0.1 sec, because it is a well-detached binary with an extremely
dim main-sequence component, and since the two planet rfitdel
the eclipse times almost perfectly (Beuermann &t al.|204R)Ser
thus provides us with a chance to see if the planet model isbtap

of predicting eclipse arrival times in detail. This was thetivation
behind this study.

Shortly after submitting this paper, another paper présgnt

the g’-arm of ULTRACAM only; the remainder of the times we
used are as listed In Beuermann etlal. (2010). Adding our tdata
those of Beuermann etlal. (2010) gives a total of 76 times. One
eclipse listed in Tablgl1, that of cycle 66905, was very badty
fected by cloud on both ingress and egres9(0% and~ 50% loss

of light). During egress, the cloud was thinning, leading tdsing
trend in throughput which weights the flux towards the seduatfl

of each exposure, and can be expected to delay the measueed ti
Consistent with this, the time for this eclipse is signifitare-

echpse times of NN Ser appeard_d_(_&e_uﬂtm_ann_lél_a]‘_l 2013) Welayed W|th I’espect to the best flt and |nC|Ud|ng it in the fisla

have elected not to update our paper with their times to reade
comparison with their results more independent. We havediecl
such a comparison in sectibnB.7.

14.5 to x2. We therefore decided to exclude it from the analysis of
the paper, but list it in Tablg 1 for completeness.

For timing, precision is largely a matter of telescope aper-

© 2012 RAS, MNRASD00,[TH14
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Table 1. New eclipse times of NN Ser

Cycle BMJD(TDB) Error (o) Sampling Tel/Inst Comments
(days) (seconds) (seconds) Transparency, seeing, etc.
61219 55307.4003018 0.084 3.0 NTT/UCAM Update of time isteBeuermann et al. (2010).
61579  55354.2291437 0.064 2.6 NTT/UCAM Update of time tisteBeuermann et al. (2010).
63601 55617.2511773 0.341 6.0 LT/RISE Clear, seisg
63816  55645.2184078 0.500 6.0 LT/RISE Cledr,
64032 55673.3157097 0.132 3.0 NTT/UCAM Clen”, bright Moon; v/, ¢’, r'.
64054 55676.1774753 0.402 6.0 LT/RISE Cledr,
64322  55711.0389457 0.397 6.0 LT/RISE Cledr,
64330 55712.0795926 0.057 2.3 NTT/UCAM Cleag”; v/, g',r'.
64575  55743.9492287 0.369 6.0 LT/RISE Cledr,
64836 55777.9001514 0.347 5.0 LT/RISE Cledr,
65992  55928.2728113 1.134 5.0 LT/RISE Varialdle,
66069  55938.2889870 0.256 3.4 WHT/UCAM  Cloud, bright Moon, twilight; v/, ¢’, r’.
66092 55941.2808293 0.062 2.0 WHT/UCAM  Clebs”; v/, ¢/, 7.
66545 56000.2071543 0.425 5.0 LT/RISE Clear].8".
66868 56042.2230409 0.035 2.0 WHT/UCAM  Cleat, v/, ¢/, .
66905 56047.0360108 0.080 2.0 WHT/UCAM  Clouds on ingreskegmess2”. Caution! See text.
67581 56134.9702132 0.421 5.0 LT/RISE Cledr,
67903 56176.8560256 0.034 2.0 WHT/UCAM  CleH, twilight; v/, ¢/, r'.
67934 56180.8885102 0.044 2.1 WHT/UCAM  Cleztt, v/, ¢/, r'.
69067 56328.2693666 0.536 5.0 LT/RISE Cleap”
69291 56357.4073373 0.657 7.0 VLT/HAWK-I  Clear, 1", twhig
69298 56358.3178846 0.245 7.0 VLT/HAWK-I  Cle@rs”.
69336 56363.2609298 0.506 5.0 LT/RISE Cloutly”
69597 56397.2118717 0.491 7.0 VLT/HAWK-I  Cleat,
69598  56397.3419520 0.392 7.0 VLT/HAWK-I  Cle8rg”.
70287 56486.9672059 0.037 24 WHT/UCAM  Clea®’; u/, g’,".
70387  56499.9752252 0.041 2.1 WHT/UCAM  Clean”; v/, ¢/, 7.

ture and noise control; accuracy is down to the data acoprisit |6), an insignificant error compared to thésst
system and the corrections needed to place the times onté a un tical uncertainties of our observations. We quote the timebe
form scale. Significant timing errors have been found in i@ df form of modified Julian dates, wheMJD = JD — 2400000.5,
MO) for UZ For, and in the datat@ll because this is how we store times for increased precisiane®
for HU Aqr (Potter et all. 2011; Gozdziewski etlal. 2012), dnese upon a TDB timescale this becomes MJD(TDB), and it takes-its fi
are just ones that have been spotted from independent wark, t  nal form BMJD(TDB) when corrected to the barycentre of thaiso
attention must always be paid to the absolute timing acguoéc system.

instruments in such work. For ULTRACAM we have measured the

absolute timing to be good ta 0.001 sec; RISE is measured to be

good to better thaf.1 sec (Pollacco, priv. comm.). While this up-

per limit potentially allows systematic errors which arggler than 3 ANALYSIS AND RESULTS

the smallest uncertainties from ULTRACAM timing of NN Setiisi

below the uncertainties of times based upon RISE itself A We begin our presentation of the results with two sectiorindug

I's fast photometry mode data is collected in blocks of expes. the analysis methods we used. The second of these concerns th
There is an overhead between blocks of 1-2 seconds as the datumerical aspects of fitting models to data, while we stath i

are written to disk. Only the first exposure of each blockrisets- discussion of the physical models adopted.

tamped (to an accuracy ef10 milliseconds) therefore we used a

small block size of 30 exposures in order to reduce the tirmimg

certainties on the subsequent exposures within a blockeShe 3.1 Description of the orbits

dead time between exposures within a block is negligibleesre

timate that the timing accuracy of HAWK-I is better than Oets We assume the binary acts as a clock which moves relativeeto th

onds, smaller than the uncertainties on the eclipse timesuned observer under the influence of unseen bodies, hereaftnéfd”,
with HAWK-. in bound orbits around the binary. Labelling the binary viittiex

0 and the planets with indicels 2, ... N, we need to describe the

The times were placed on a TDB (Barycentric Dynamical orbits of N + 1 bodies. The most direct method is to specify the
Time) timescale corrected for light travel effects to theyban- Cartesian coordinates and velocities of ffiei- 1 bodies at a given
tre of the solar system to eliminate the effect of the motién o time, 6(N + 1) parameters in all. By working in the barycentric
Earth (sed_Eastman et al. (2010) for more details of time sys- (centre-of-mass) frame, this can be reducedXowithout loss of
tems). We carried out these corrections with a code based upo generality. We use th6 N parameters to specify the barycentric
SLALIB, which we have found to be accurate at a levebofmi- positionsR; and velocitiesV;, i = 1... N, of the NV planets at
croseconds when compared to the pulsar timing package TEMPO a specific time, with the binary’s position and velocity detaed

© 2012 RAS, MNRASD00,[THI2
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through the reflex condition

N
moRo = _ZmiRi7 1)
i=1

wheremo andm; are the masses of the objects, with a similar

condition on the velocity. This is how we initialise oW-body
integrations, which we will describe later.

For two-body orbits it is more usual to characterise orhits i
terms of six Keplerian orbital elements, ¢, 4, 2, w, Ty, to be de-
fined later) together with Kepler’'s third law which gives trbital

angular frequency in terms of the masses of the bodies and sem

major axis of the orbit. For two-body orbits, Keplerian ekts are
time-independent, unlike the Cartesian vectors. In trymgxtend
them to the case of more than one plan®t & 1), we face two
problems. First, when there are more than two bodies, Kigpler
orbits are only an approximation to the true, hereafter [davan,
orbits and we need to determine whether the degree of appasxi
tion is significant. Second, there is more than one way torpara
terise the orbits in terms of Keplerian motion, and eachediffin
terms of how well it approximates the Newtonian paths.

We consider three alternative orbit parameterisations.fiFst
two have already appeared in the literature, while the thiftich

has not been presented before as far as we are aware, patforme

better than the other two. The three parameterisationsrdiffhow

closer to Keplerian in these coordinates than they do imesitric
coordinate 03); this was first pointed oupfan-
ets around white dwarf binaries by Gozdziewski étlal. (J0¥2e
use Jacobi coordinates for the second and third paranwtteris
as we now discuss.

Jacobi coordinates, which we indicate with lowercase latin
letter », are defined as follows: vectet, points from the system
barycentre to the binaryr; points from the binary to the first
planet;r, points from the centre of mass of the binary and first
planet towards the second planet, and so on, with each newrvec
pointing from the centre of mass of the combined set of objapt
to that point to the next object. These coordinates diff@mfthe as-
trocentric seriegy, p,, ps, . .., only from the third term onwards,
and are therefore no different in the two body case. It carhbe/s
) that in Jacobi coordinates the kinetic gngrart

of the Hamiltonian takes the simple form

1 N
_ § 52
Hig = 3 - Wi, (6)

wherey; is the reduced mass of plarien orbit with a single object
consisting of the binary and all planets up to number1:

1 1 1
Y
i Zj:o m;

@)

mi'

we define the vectors which undergo Keplerian motion andén th  For three bodies the overall Hamiltonian can then be wriiten

precise forms of Kepler’s third law that we use.

We call our first parameterisation “astrocentric”. The cbor
nates of each planet are referenced relative to the binadywe
assume that each astrocentric vector follows its own Kepldéwo-
body orbit, with angular frequencies given by

nZad = G(mo + my), 2)

fori = 1,...,N. These are the coordinates used when fitting

eclipse times by most researchers to date. In astrocertoidic

nates each planet is placed upon the same footing, and isdras.
if the other planets were not there. Denoting astrocenaitars by
the lowercase greek lettgr the position vectop,, points from the
barycentre of all the bodies to the binary, and then the vegip
point from the binary to the planets. In astrocentric couatis the
reflex condition EJ.]1 becomes

N
Po = — Z kip;, (3)
i=1

wherek; = m; /M, whereM = Zj\’:o m; is the total mass. We
will encounter these parameters in slightly modified formtfte
other two parameterisations. A typical procedure is tot stéth
N sets of Keplerian elements from which thé vectorsp,, i =
1,..., N can be calculated. The binary vecggythen follows from
Eq.[3, and the equivalent barycentric vectors follow from

R; =p, + py- (4)

Despite their simplicity, astrocentric coordinates arattrac-
tive from a theoretical point of view. If one transforms from
barycentric to astrocentric coordinates, the kinetic gngrart of
the Hamiltonian, which in barycentric coordinates is

1 al )
Hi = 5 ;miRm (5)
develops cross-terms such asp,. This problem can be avoided
using Jacobi coordinat @93), and orbits ptovee

H=— /1 ., Gmom; o 8
= Z 5#2‘7‘2' - + i, (8)
i=1

where

H' = Gmoms (i Grmyme , (9)

1
re  |ro+ /€'17‘1|) |ra — (1 — k{)r1]
and k} is one of a series of factors related to the centre-of-mass
sequence:
m;

Z;:o mj

Sincek] = m1/(mo+ma), both terms in EQ.9 are of ordet;m»
). If the planet masses are very small conaptre
mo, we can neglect’ with respect to the terms of the summation,
and the problem simplifies to two Kepler orbits in the Jacalure

dinates for each planet; andrs, with orbital angular frequencies
n1 andns given by

ki = , i=1,2,...N. (10)

niai = G mo_ _ G(mo + m1), (12)
1—k;
25 mo . mo(mo+mi1 +ma)
NoGo = Gl — k;é = G mo n m . (12)

The factorsk, are analogous to thk; introduced for astrocentric
coordinates, and appear in the following relations thatespond

to EqL3 andl4:

N
ro=—> kiri, (13)
=1
and
N
Ri =T, — Z k}'l‘j. (14)
Jj=1

Eq.[12 relating the orbital frequeney to the semi-major axis
a2, is slightly unexpected. The form of the reduced massug-
gests that this should represent a composite object cimusist

© 2012 RAS, MNRASD00,[TH14



the binary and first planet with total mass, + m, in orbit with

the second planet of mass,. Hence one might have guessed that
Eq.[12 would simply read:(mo + m1 + m2) on the right-hand
side. This is the motivation behind our third and final setawrcli-
nates, which, for want of a better term, we name “modified Baco
coordinates”. The only change we make for the modified Jacob
coordinates is to alter EQ. 112 to read

2

ngag = G(mo + m1 + ma2). (15)

This choice corresponds to a slightly different partitigniof the
Hamiltonian in which the perturbation Hamiltonian takestbe
modified form

1 1
o = G e
oz <r2 |r2+k‘1r1|> +
1 1
Gmimg | — — —m8 ). 16
! 2<7“2 |7‘2—(1—k‘1)7‘1|) (16)

Just as forf{’, both terms are of ordenm2, but H" is better for
a truly hierarchical set of orbits sincesif < r2, the second term
is much smaller than it is i’

In contrast to the astrocentric case, the two planets are not
treated symmetrically by Jacobi coordinates and thus tindaring
matters. Consideringl”’, the order-of-magnitude of both terms is
Gm1m2r1/r§, thus the correct choice is to label the planets so
thatrs > r1, i.e. planet 1 should be the closest to the binary. This
reduces the size df”’ by the ratio of the semi-major axes squared,
~ (a1/a2)?, relative to the reverse choice. Hence in the rest of
the paper, we number the planets in ascending order of thii-s
major axes, with planet 1 the innermost.

We have emphasised that Keplerian orbits are an approxima-
tion for N > 1. However, Keplerian elements can simply be re-
garded as a set of generalised coordinates which vary with ti
for N > 1. Such “osculating” elements precisely specify the paths
of the bodies, although the way in which the elements evolide w
time must be determined through numeri¢atbody integration.
Each of the three parameterisations can be used in this wayela
as in the Keplerian approximation with all elements fixed.dto
so one starts from a set of elements at a particular time, hwhic
are then translated into barycentric Cartesian coordin@ae then
proceeds usingV-body integration thereafter. The translation step
varies with the parameterisation in use, so identi€abody paths
correspond to slightly different sets of elements accagrdanthe
chosen parameterisation, but used in this way the orbitexaet
within numerical error, which allows us to judge the degréam
proximation involved in the Keplerian approximation.

We wrote a numericalN-body integrator in C++ based upon
the Burlisch-Stoer method as implementedm @020
which we ran from within a Python wrapper. We verified our in-
tegrator on the Kepler 2-body problem, an equal-mass syrmet
three-body problem, against an entirely independent cattéew
by one of us (MB), and against the Burlisch-Stoer option efdh
bit integrator, MERCURY6 (Chambérs 1999). For each of thegh
parameterisations we computd@body-integrated paths to equiv-
alent Keplerian approximated orbits. We selediédD = 54500,
which corresponds to Feb 4, 2008 as the reference epochisince
is weighted towards the era when the bulk of high qualitypesdi
times have been taken. We verified the significance of theeplan
ordering for the two forms of Jacobi coordinates, finding the
correct choice was better than the reverse by of order arfat®
in terms of RMS difference versus Newtonian models.

Fig.[ compares the difference between Keplerian and Newto-
nian predictions for the three parameterisations for ait typical

© 2012 RAS, MNRASD00,[THI4
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Delay time difference (seconds)

10 15 20
Time (years)

25

,
5

Figure 1. The difference in the planet-induced light-travel-timé&{l) de-
lays of Keplerian versus Newtonian models for a typical planet fit
for NN Ser. Three cases are shown: astrocentric (dashéedjlotiacobi
(dashed) and modified Jacobi (solid). TREID = 54500 reference time
corresponds to the time around 19 years in when all mode&eagor ref-
erence the LTT variations in NN Ser have a rangetdf0 seconds. The
Newtonian comparison orbits are calculated separatelgdoh of the three
coordinate systems.

of NN Ser. The ordering seen here with astrocentric cootdia
worst, and our modified version of Jacobi coordinates bgsees
with what we found looking at a much broader range of orbit fits
The differences in Fid.]1 range from a few tenths of a second to
more than one second, which given the timing precision of BN S
can be expected to have a noticeable effect upon paraméktene
are instances where deviations as large as 5 seconds gpica/ly

on dynamically very unstable orbits. We will see that theseltave

a quantitative effect upon the parameters, meaning thakekiap
models, whatever the coordinate parameterisation, aredeafuate
for fitting the NN Ser times. In consequence, the majorityhaf t
orbit fits in this paper, were undertaken using Newtoniody
integrations, without Keplerian approximation. We emgldythe
modified Jacobi representation to translate from orbithents to
initial position and velocity vectors to initialise thesgdgrations,
because, as Fifl] 1 shows, they are the best of the three watiinve
gated. We make one exception where we compare the resutts fro
N-body integrated and equivalent Keplerian models, basedéh
case upon the modified Jacobi prescription. When we neectn sp
ify exactly what system we are using, we will use expresssuth

as “astrocentric Keplerian” and “Newtonian modified Jatobhe
first means orbits in which two astrocentric vectors exetlatgler
ellipses, i.e. an approximation; the second means thabieoor-
dinates are used to initialise the orbits, using our modiiedion

of angular frequency, but thereafter the paths are compugatd)
N-body integration with no approximation beyond numerical u
certainties.

3.2 Model fitting approach

Sometimes-sparse coverage, and often-long orbital periméan
that timing work on circum-binary planets is plagued by dege
eracies amongst fit parameters. This can cause problemb/smimp
locating best-fit models, and even more so in the deternoinatf
uncertainties. For instance the widely-used Levenberggtardt
method often fails to locate the minimum in such circumsgsnc
and the covariance matrix it generates can be far from dapttive
complexity of very non-quadratic, and possibly multiplenmia. A
widely-used method that can overcome these difficulties;hvwve
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Figure 2. Eleven years of eclipse times of NN Ser, starting in May 200% dashed line marks the end of 2010; the data before thig p@ those listed

in IO), including the two updates ligteBable[1. The times are plotted relative to the ephen@Ns]D(TDB) = 47344.0258547 +
0.1300801135F, where E is the cycle number. This was chosen to give a flat trend ingifmam 2002 to 2010. The light-grey smooth curves show 50
Newtonian orbit fits to the pre-2011 data only, generatedM@MC iteration, corresponding to the models of the lowdtpanel of Fig[%; the models were
picked from the final 100 models of the MCMC chain. The timesra2010 are from this paper and were not used to create tharfidsyet they match the

predicted trend well. For clarity, only data with uncertaa < 2 sec are shown.

adopt here, is the Markov Chain Monte Carlo (MCMC) method.
The aim of MCMC analysis is to obtain a set of possible mod-
els distributed over model parameter space with the Baygsia-
terior probability distribution defined by the data. Thisaiscom-
plished by stochastic jumping of the model parametersyiat by
selection or rejection according to the posterior prolighdf the
model M given the dataD, P(M|D). This process results in long
chains of models, which, if long enough to be well-mixed,dthe
desired probability distribution. By Bayes’ theorem thestgoior
probability is proportional to the product of the prior peddility of

the model,P(M), and the likelihood P(D|M ), which in our case

is determined by the factetxp(—x?/2), wherex? is the standard
goodness-of-fit parameter.

For the prior probabilities, we adopted uniform priors fdr a
temporal zero-points, the eccentricities (0 to 1), and theraents
of periapsis £ 180° to+180°). We used Jeffreys priors (a, 1/m)
for the semi-major axes and masses. Some care is neededhever t
eccentricitye and the argument of periapsis which sets the ori-
entation of the ellipse in its own plane, becausbecomes poorly
constrained as — 0. This can cause difficulties if one iterates us-
ing e andw directly. We therefore transformed 0 = /e cos w
andy = +/esinw, which since the Jacobidtd(z,y)/d(e,w)|| is
constant, maintains uniform priors inandw, but causes no diffi-
culties for small values of. The choice of priors has a small but
non-negligible effect upon the results. For instance wedipidnif-
icant range of semi-major axes in some models, and thereasly|
a difference between a uniform prior ahda. Although the priors
can have a quantitative effect upon results in such caseghtwe
no qualitative impact upon the conclusions of this paper.

Armed with the MCMC runs, we are in a position to compute
uncertainties, and correlations between parameters. TG&®
method is useful in cases of high dimensionality such as we fa
here (the models we present require from 10 to 13 fit parasjeter

and can give a good feel for the regions of parameter space sup
ported by the data. Requiring no derivative informatiois highly
robust, a significant point for the Newtonian models where cem
generate trial orbits which do not even last the span of tiseved
data. These cause difficulties for derivative-based matisadh as
Levenburg-Marquardt for example. Generation of model# wie
correct posterior probability distribution is also ideat $ubsequent
dynamical analysis where one wants to tests models thatoare ¢
sistent with the data.

The main disadvantage of the MCMC method is the
sometimes-large computation time needed to achieve wigldn
and converged chains. The way in which the models are jumped
during the iterations is important. Small jumps lead to slow
random-walk behaviour with long correlation times, whitde
jumps lead to a high chance of rejection for proposed models
and long correlation times once more. Ideally one jumps ith
distribution that reflects the correlations between pataragbut
it is not always easy to work out how to do this, and there is
no magic bullet to solve this in all cases. For instance if -mul
tiple minima are separated by high enough “mountains”, a
chain may never jump between them. In this paper we adopted
the affine-invariant method implemented in the Python pgeka
emcee (Foreman-Mackey et al. 2013). This adapts its jumps to the
developing distribution of models, which is a great advgetaver
having to estimate this at the start, but even so, the probiehis
case turned out to be one of the most difficult we have encoethte
and in several cases we required.0° orbits to reach near-ergodic
behaviour. We computed the autocorrelation functions ofipe-
ters as one means of assessing convergence, but our maiodneth
and the one we trust above any other, was visual, by makirtg plo
of the mean and root-mean-square (RMS) values of paransers
function of update cycle number along the chains. Initiairfizin”
sections are obvious on such plots, as are long-term tr&hése is

© 2012 RAS, MNRASD00,[TH12
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Figure 3. This plot is identical to Fig]2 but now the orbital fits are &ds
upon all data, incorporating the new times, and it includgsoa of the
residuals relative to the best of the orbits shown. For tgladnly points
with uncertainties< 0.5 sec are shown.

no way to be absolutely certain that convergence has beehega

in MCMC because there can be regions of parameter space that[

barely mix with each other. Even if one compute@!® models,
there would be no guarantee that a new region of viable models
would not show up aftet0'2. From the very many computations
we have carried out, including large numbers of false stestsbe-
lieve that we have explored parameter space very fully, hacet

are no undiscovered continents of lowgr. However, as we will
describe later, we did encounter one case that convergesiawty

to give reliable results. This is fundamentally an issueeagaher-

acy and it should improve greatly with further coverage.

3.3 Predicting the future

We start our analysis with our primary objective: how weledahe

two-planet model developed by Beuermann ét al. (2010) féwerw

[Beuermann et all (2010)'s assumption of zero eccentricitytte
outer orbit, which is largely responsible for the very tigtdefined
fit. The dispersion increases once this constraint is liftedepen-
dent of whether Newtonian or Keplerian models are adopted).

3.4 Comparison with[Beuermann et al.[(2010)

The fits plotted in FigEl2 arid 3 were based upon allowing thessam
parameters to vary as used in Beuermannlet al. (2010)'s rieafel
(their best one), so in this section we look at the effect that
new data has upon the parameters. We also consider the- differ
ence made by using integrated Newtonian models comparee-to K
plerian orbits; in all subsequent sections we use Newtomad-
els only. For reference, in their (astrocentric Kepleriamgdel 2a,
Beuermann et al. (20110) allowed a total of 10 parameters freke
which were the zero-point and period of the binary’'s ephémer
the period, semi-major axis and reference epoch of the pldaeet,
and the period, semi-major axis, reference epoch, ecceptand
argument of periastron of inner and lower mass planet. Thi¢ afr
he outer planet was assumed to be circular.
[Beuermann et all (2010) give a detailed description of their
fits in terms of the periodsP.” and “P,;” of the two planets (cor-
responding to ou?, and P;), so we first focus upon this. Figl 4
shows the range aP,—P» space supported under either the Kep-
lerian or Newtonian interpretations, and making use ofegithe
data used by Beuermann et al. (2010) only, or the full setiinl
our new times. The top-left panel is equwalerm
-) and indeed matches the range of models they locdted, a
though the MCMC results show that the supported region issmor
complex than their division into just two models perhapsgasgs.
The top-right panel shows a significant shrinkage with thaitash
of new data and supports_Beuermann etlal. (2010)’s seleofion
their model 2a. While some shrinkage is expected, the eafahe
change is notable, given that we have have only increasdzhdes

confronted with new data? Fifll 2 shows the most recent eleven line of coverage by around 15%. We believe this is a comhbnati
years of data on NN Ser, dating back to May 2002 when we first of degeneracy when fitting to pre-2011 data alone, combingd w
started to monitor it with ULTRACAM. The vertical dasheddin our having turned the corner of another orbit of the outengta
at the end of 2010 marks the boundary between the times listed (planet 2), as shown by Fifgl 2. Beuermann ét al. (2010) fohat t

in Beuermann et al[ (2010) and the new times of this paper. The
grey curves are a sub-set of 50 MCMC-generated Newtoniar mod
elsbased upoh Beuermann ef al. (2010)'s times aldMighout the
new times or orbit fits to guide the eye, one might have guessed
that the new times would perhaps rangedin- C around=+3 sec
on this plot. However earlier data, which are included in fite
but off the left-hand side of the plot windows (
M) and Fid.B later in this paper), cause the planet rrtoctarb-
dict a sharp upturn since 2010, corresponding to delayedsecl
times as the binary moves away from us relative to its mean mo-
tion during the previous 8 years. In the planetary modelyfitarn
is primarily the result of th& M; outermost planet. Our new data
are in remarkably good agreement with this (remarkabledath
thors at least). While this is not a proof of the planetary sipoid
has nevertheless passed the test well. We can't say forlzairalt
ternative models such as thosel of Appleghate (1992) dont lav
similarly precise “memory” of the past, but neither is italghat
they do, whereas it is a key prediction of the clockwork psieri
of Newtonian dynamics.

Including the new times when generating the fits, gives a
much tighter set of possible orbits illustrated in [Ei. 3 evhalso

there is little to choose between their two models in terngoofd-
ness of fit, although their model 2a was marginally favouridds
is confirmed by the stripe of viable models connecting thaia@d
2b in the top-left panel of Fig]4.

The lower panels show that, even though our choice of coor-
dinates was motivated by the desire to generate Kepleribitsor
which matched Newtonian orbits as closely as possibleethes
nonetheless regions of parameter space considerablyteaifey
three-body effects. In particular, the kink in the loweit-lpanel
located in the region where the period ratio is closer than@m-
pared to its relatively simple Keplerian counterpart in thpper-
left panel, is evidence of this. Here deviations betweenldt&m
and Newtonian orbits amount to several seconds, highlyfgignt
given the precision of the NN Ser times, and the favouredmeara
ter distribution is distorted as a result. The effects aretmamaller
above the 2:1 line, and show that the modified Jacobi coaelina
can work well. Strangely enough, as we remarked earli¢rpath
three-body effects are significant, the data are not goodginto
prove that they operate (which could provide compellingejmeh-
dent support for the planet model) because there is suffidien
generacy for either Keplerian or Newtonian models to fit thtad

shows residuals between the data and the best of the fits shownequally well, albeit with differing sets of orbital elementObvi-

It should be noted however that at this point we are following

© 2012 RAS, MNRASD00,[THI4

ously, if there are planets orbiting the binary in NN Ser,wreght
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Figure 4. Regions of P;—P» space supported by the data, shown in each case using 20@snsadhpled from MCMC chains. The top-left panel is our

equivalent o

10), i.e. we use only dektant before 2011 and assume Keplerian orbits (althoughamabd formalism leads to a very

small change in position). The top-right panel shows Keémtemodels based upon all of the data; the lower panels shevediresponding results for
Newtonian orbit integrations. The grey dashed lines matk(ght-hand) and 5:2 (left-hand) period ratios, while tmesses mark the models “2a” (lower
right) and “2b” (upper left) froni Beuermann et 10)aat (grey) points delineate models which last either massil than 1 million years, the post-

common-envelope age of NN Ser.

of 300 years of classical mechanics favours Newtonian nsotat
it will be some time before this can be proved from the dateddly.

3.5 Dynamical stability

As discussed earlier, some proposed circum-binary orlstse h
been shown to be unstable on short timescales, and if naultipl
planetary orbits are proposed, a check on their stabiligssen-
tial. Having said this, all the data needed for this are ndiand
since we don’t know the mutual orientations of the planetbits.
Therefore, in the absence of evidence to the contrary, weness
along with previous researchers, that the orbits are caplémad-
dition we assume that, like the binary itself, we see the gitay
orbits edge-on and for simplicity we set the orbital inctioas pre-
cisely to90°. This minimises the masses of the planets relative to
the binary, which will usually tend to promote stability. NSer
emerged from its common envelope phase around one milliarsye
ago, and prior to this phase would have been significantfgraift,

so we checked for stability by integrating backwards in tifoe
just 2 million years. To a certain extent stability is alngéutluded
within the Newtonian MCMC runs (lower panels of Fig. 4) since
some proposed orbits generated by MCMC jumps lead to anilsi
within the span of the data and are rejected. It would have bee
easy to extend this so that all long-term unstable orbitevsen-
ilarly thrown out, however, the CPU time penalty is far toeajr

to allow this approach. Instead, our approach during the NOCM
runs was simply to integrate for the 25 year baseline of tleeeb
vations, leaving the longer-term dynamical stability cart@pions
to the small fraction of models retained (of order 11t') as we
waited for the MCMC chains to reach a stable state.

The differently shaded symbols in FId. 4 distinguish betwee
“stable” orbits which last for> 1 million years (black) from the
“unstable” ones which do not (grey). In the upper-left pandbits
are mostly unstable below the 2:1 line (i.e. less extremie)ras
one might expect. They are stabilised near the 2:1 and 5e3 lin
and there is a mixed set of unstable and stable models in batwe
The pattern of stability and instability is broadly coneist with
[Beuermann et all (20110)’s results, although our models gedra
more stable between the 2:1 and 5:2 lines than their demeript
suggests. The topology of stable and unstable regionsvesrthe
distorting influence of Newtonian effects in the lower-jgdinel. Of
order 50% of these models proved to be stable. Once the new dat
are included (right-hand panels), the supported modelsanfned
to the largely unstable region lying below the 2:1 line in.fdY
Unsurprisingly therefore, very few of these models turn toube
stable — around 1 in 6000. Although one could argue that just o
stable model consistent with the data is all that is requivezlaim
potential stability, the reduction in the fraction of stlphodels is
a worry for the planet model of NN Ser, because it looks pdssib
that with yet more data, we are likely to be left with no lomget

© 2012 RAS, MNRASD00,[TH12
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Figure 5. Regions ofP;—P» space supported by the data, showing the change as the moelglisen greater freedom. The left-most panel is the cainsil
model 2 (“B” for short) frolO) for refiace (i.e. it is identical to the lower-right panel of Hij). #)the centre panel, the eccentricity of
the outermost planet is allowed to be non-zero, while thietnigost panel allows the binary’s period to change in additEach panel shows 2000 Newtonian
models based upon all of the data. As before, the grey dastesdrhark 2:1 (top) and 5:2 (bottom) period ratios, and bkwk grey points indicate stable and
unstable models. From left-to-right, 0.02%, 0.7% and 15%hefmodels last more than 1 million years.

models at all. Thus we now turn to look at the consequences of when there was no constraint at all, but cuts off an extendad w

freeing up the orbit fits by allowing non-zero eccentricitythe
outermost planetary orbit and changes in the orbital pesfatie
binary itself.

3.6 Eccentricity and binary orbital period variation

We have so far followed Beuermann et al. (2010)’s applicatd
Ockham'’s razor by choosing the most restrictive model ctest
with the data. This helps the fitting process because of adggen
cies, ad Beuermann et al. (2010) suggest, but it gives arlyover
optimistic view of how well constrained NN Ser is. In follaug
Beuermann et all (2010)’s model 2, we are making the question
able assumptions that the outer planet has a circular anbitteat
NN Ser acts as a perfect clock. While we don’t need to deviata f
these in order to find good fits to the data, it would come deg litt
surprise if they were not entirely accurate, so it is of iagtito ex-
amine the effect relaxing these restrictions has upon theehypma-
rameters, and also upon the issue of stability, which, asave just
seen, is looking marginal in the light of the new data. Weefae
carried out MCMC runs with the outermost planet’s orbit akal

to be eccentric (two extra free parameters, making 12), hed t
with the addition of “clock drift” in the form of a quadratietm

B in the binary ephemeris, bringing the number of free paramet
to 13. We found that the MCMC chain of the last case never con-
verged owing to a strong degeneracy between the quadratic te
and the orbit of the outer planet which alloweg to range up to
values> 12 AU compared to a value: 5.4 AU when no quadratic
term was included. In order to force convergence upon a reaso
able timescale, we therefore applied a gaussian prig#,omhere
the latter is defined by its appearance in the ephemerisaelat

T =Ty, + PE + BE?, (17)

with E the eclipse cycle number arifl the time in days. The
prior we applied wasP(3) o« exp(—(8/05)?/2), with o4
7.5x 1071 days, 25 times the magnitude expected for gravitational
wave losses (see later). This allows significant extra freedvith-

out suffering the convergence issues of the unconstrairsten
The constraint org allows the majority of the values we found

© 2012 RAS, MNRASD00,[THI4

that reaches values as highs= 1.5 x 10712 days.

Fig.[d shows the change in th&—-P> MCMC projection as
the orbital models are given these greater freedoms. Thegelsa
are large, showing that parameter degeneracy remaingisagni
The orbital parameters are consequently much more uncehizn
the constrained model 2 lof Beuermann étlal. (2010) suggesist
is no longer even clear whether their model 2a (near 2:1y@iieed
over 2b (5:2) as we see islands of stability correspondinigoth
solutions. Perhaps most importantly however, the inctasadel
freedom allows access to long-lived parts of parameterespeith
significant regions of stability, somewhat allaying the wyasf the
previous section over the likely complete disappearaneaypsuch
models. This is particularly the case once the binary'squers
allowed to vary.

The means and standard deviations of the orbital parameters
of models plotted in Fidg.]5 are listed in Talile 2, along witke th
values corresponding to the lower-left panel of Eig. 4. Mufsthe
parameters have an obvious meaning, but it should be nogd th
the epochdl; andTx refer to the time when the respective planet
reaches the ascending node of its orbit, not the more usuial pe
astron, as the latter is poorly defined for small ecceniggitThe
eccentricity of the outer planet and the quadratic term in the bi-
nary ephemerig} are consistent with zero, although, as we have
just seen, dynamical stability seems to suggest ¢hat- 0, and
it would not be surprising were this the case. Hffevalues listed
are the minimum of any models of the MCMC chains. The MCMC
method does not aspire to find the absolute minimyfmand tests
we have made suggest that the values listed in the table arderf
0.5 — 1.5 above the absolute minimum. The improvemeny fnas
more parameters are added is marginal, so a circular out&ri®r
fine for fitting the data. It is the requirement of dynamicalbsiity
which leads us to favour the model with eccentricity. In gsihe
numbers of Tablg]2, it should be realised that the mean valoes
not need to correspond to any viable model: for instancemiien
of a spherical shell distribution lies outside the disttibn itself.

The quadratic term produced by a rate of angular momentum
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Table 2. The first three columns list the means and standard deviatibthe orbital parameters of the models shown in [Hig. 5. Theehof the left-hand
letal ‘@ot@)el 2, hence the “B”, with the next two adding the exteetfoms indicated. The right-
hand column is the same as the left-hand one except only ¢a2(drl data were used. The reference eclipse for the bipasneeris, marked by, is shifted

column uses the same fit parameter

forward by 43042 cycles relative to the usual ephemeris ofS¢Nto reduce the otherwise-strong correlation betvigeand P.

Parameter

B
all

B +2
all

B+ex+p
all

B
pre-2011

Th — 52942.9338 (MJD)

P — 0.13008014 (d)

(9.540.1) x 1075
(2.440.1) x 1079

(8.4+2.8) x107°
(2.34£0.3) x 107°

(5.34+4.4) x 1073
(2.740.5) x 1079

(9.240.8) x 1073
(1.842.6) x 1079

B (1012 d) — — 0.04 £ 0.05 —

a1 (AU) 3.488 4 0.012 3.43 £0.14 3.37+0.15 3.28 +0.22
Py (yr) 8.09 + 0.04 79405 7.74£0.5 7.4+0.8
m1 (My) 2.688 4 0.036 2.3+0.5 2.2+0.5 2.240.9
T; (MJD) 58205 =+ 22 58106 4 228 58043 4 250 57826 4 378
el 0.163 4 0.007 0.19 £ 0.05 0.19 + 0.04 0.21 +0.04
w1 (°) —107.44+2.7 —111+13 —118+15 —105+8
as (AU) 5.313 4 0.005 5.35 + 0.06 5.47 +0.15 5.51 £0.18
Py (yr) 15.125 4 0.021 15.27 £ 0.28 15.8 £ 0.7 16.0 £ 0.8
ma (My) 7.46 + 0.05 7.33+£0.31 7.29 +0.32 6.9+1.4
T, (MJD) 53973.3 £ 1.5 54016 4 106 54096 + 133 54008 + 58
es — 0.08 £ 0.05 0.09 + 0.05 —

ws (°) — 434+ 119 62495 —

X2, Ngoy 62.8, 66 62.6, 64 62.5, 63 31.8,32

changeJ is given by

3P° J

=T (18)
whereP is the orbital period and is the angular momentum. For
the parameters of NN SlOa), gravitdtizave
radiation alone gives /.J = —1.36 x 107 *® sec™!, and therefore
B8 = —3.0 x 10715 days. Over the entire baseline of observations
of NN Ser, thes E? term would then amount tb.5 sec. Although
in principle this is detectable, at present, because of ltreeps (or
whatever is causing the timing variability), there is sggategener-
acy in the fits once a quadratic term is allowed and we are dan fr
being able to measure a term this small. In fact, as we remdarke
earlier, the degeneracy betwegrand the outermost planet’s or-
bital parameters is so strong thats only weakly constrained by
our data and the uncertainty listed f6rin Table[2 largely reflects
the prior restriction we placed upon it. The GWR predictisnhe

They fitted their data through Levenberg-Marquardt minatian
of x2, which, apart from the absence of prior probability factors
finds the region of highest posterior probability, but does ex-
plore the shape of region of parameter space supported luathe
as MCMC does. They imposed conditions of dynamical stabilit
which makes a direct comparison with our results tricky sine
adopted the strategy of first seeing what parameter spaceupas
ported by the data and only then testing dynamical stabilitey
found stable orbits close to the 2:1 resonance if they alibthe
orbit of the outermost planet to be eccentric. This is cdestswvith
what we find: there are almost no long-lived orbits if the ooest
orbit is forced to be circular, but some appear near the geldnce
eccentricity is allowed. We refer {o Beuermann étlal. (20b8)a
detailed discussion of the nature of the stable solutioas tthey
find, in particular a demonstration that they are in meanionaes-
onancel_Beuermann et al. (2013) did not consider any perdd v

ation of the binary or explore the much wider range of orhiis t

minimum expected angular momentum loss, as one also expectsallows. Thus they did not uncover any of the stable modelsthea

some loss from magnetic stellar wind braking. The secondeaty

in NN Ser has a mass 6f111 M, making it comparable to short-
period (P =~ 90 mins) cataclysmic variables for which there is ev-
idence for angular momentum loss at aro@slx the GWR rate

at the same short periods (Knigge €f al. 2011), but thislisrtich
smaller than we can measure at present. We expect a sulktanti
improvement in this constraint over the next few years agthie
rameter degeneracy is lifted. Given the current lack of tairs
upong from the data, at present we favour the model in witida
fixed to zero.

3.7 Comparison with Beuermann et al.|(2013)

As mentioned earlier, shortly after the first submissionhis pa-

per,Beuermann et al. (2013) presented new eclipse times siad
bility analysis of NN Ser. In this section we compare our sHts

5:2 ratio which are permitted by the data once period vaniais
included, and therefore, although we agree that the 2:Ihasse
is favoured, we feel that their exclusion of the 5:2 resoraat
“99.3% confidence” is premature.

[Beuermann et all (2011.3) present a plot of the dynamical life-
time as a function of the eccentricities of the two planetsand
e2 (their figure 3). This provides us with an opportunity to com-
pare the constraints set by our two sets of data, althougheslst
remarked the differences between our two approaches make ex
comparison difficult. For instance, we reject the implicatof the
right-hand two panels of their figure 3 that the dynamicatiihe
is a single-valued function af; ande-; instead, once one allows
for the distribution of other parameters, there must be #ilis
tion of lifetimes at any given values afi andez; we discuss a
similar issue at length in the next section. However, a coiapa

can still be made accepting that Beuermann et al. (2013)sdig

results which are based upon the same set of data prior tq 2011 shows the lifetime of the most probable orbits, since foheaees

but independent sets of new data thereafter, i.e. we do ecans
of their new data. Beuermann et al. (2013) consider only fisode

equivalent to our B + e>” models of the middle panel of Fifl 5.

point they re-optimised the other 10 parameters. Our neegesv-
alent to their plot is shown in Fid.l 6 for which we extended our
dynamical integrations to 100 million years to delineatgions

(© 2012 RAS, MNRASD00 [TH14
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Figure 6. The projection onto thes—e; plane of the MCMC chain al-
lowing for eccentricity in both orbits but not binary perictiange, i.e. the
models shown in the central panel of Hig. 5. The contours skegions en-
compassings.3, 95.4 and99.7% of the orbits supported by the data, with
no restriction on stability. Small grey dots mark the orltitat last between
108 and50 x 108 years; large blue dots mark those that last for more than
50 x 109 years. The contours are comparable to the left panel of figure
from13), while the locations of the {iwed models

are comparable to the other two panels of their figure.

of greatest long-term stability. The figure compares wethwig-

ure 3 of_ Beuermann et al. (2013) with many similar features. W
see the same tight definition ef at low values of-, but spread-
ing out ase, increases. The main island of stable models found by

[Beuermann et all (2013) coincides with the island of stabibits
that have highes values seen in Fif] 6.

There are a few differences as well. Our data support a smalle
region of parameter space, owing to a higher overall pragisi
which more than compensates for a smaller number of eclipse t
measurements. In particular, a spur of large/ low e; allowed
by[Beuermann et all (2013)'s data is eliminated by ours, harkt
is general exclusion of high. values leading to the large area of
white space on the right-hand side of the plot for which weseho
the same axis limits as Beuermann €tlal. (2013). We ascrémeth
differences to signal-to-noise rather than anything monglémen-
tal. The other most notable difference is that we find an tlain
stability for ez = 0.01 — 0.04 as well. Although there are signs
of the same region in_Beuermann et al. (2013)'s figure, it is no
as marked as we find. This may be the result of the difference in
approaches, with Beuermann et al. (2013) tracing the higieb-
ability region for eache;—e2 value, versus our exploration of the
larger region of supported parameter space.

The planets around NN Ser: still there 11

highest quality eclipse times with a weighted RMS scatteuad

the best fit orbit o = 0.07 sec, where

2 _X/(N-V)

(22 1/e2) N (19)

[

with N the number of datdy the number of variable parameters,

ando; the individual uncertainties on the eclipse times. Theestar
rival in this respect as far as we can determine is HU Agr foictvh

|Gozdziewski et &l (2012) quote a scatter0df sec, and this after

significant pruning of discrepant points. Our typical biestalues
of x? are around 63 with 76 points and 10 — 13 fit parameters. The
expected value of? is thus 63 to 66+11, so there are as yet no
signs of systematics in the data.

We have shown that the range of orbits consistent with

Beuermann et all (20110)’s data leads to a good predictiothior

location in theO — C' diagram of the new data, so the planet model
has predictive power. Moreover, allowing a non-zero egtsty

of the outer planet’s orbit, we find stable solutions. Theelatesult

is interesting, and perhaps counter-intuitive at firstsi@ime might
expect if the outer planet’s orbit is allowed to be eccentrén it is
more likely to de-stabilise the orbit of the lighter inneapét. This

is what Horner et al[ (2012b) found, but we believe their gsialto
suffer from significant technical flaws. Some of these arernom

to other papers from the same authors, as we now discuss.

4.1 Previous dynamical stability analyses of NN Ser and
related systems

Beuermann et al| (2010) carried out a limited stability gsial of

NN Ser’s putative planetary system usit@),000 yr-long integra-
tions and identified stable regions of parameter space,hathiey
tentatively associated with 2:1 and 5:2 mean-motion rascesm

Horner et al.[(2012b) pointed out thah® yr was too short to as-

sess long-term stability, and also criticised the restnicto circu-
lar orbits for the outer planet. They too found significaratodity
when the outer planet was held in a circular orbit, but whey #i-
lowed its eccentricity to vary and re-fitted the orbits, tifiynd that
the solution lay within a broad region of very short-livedits, al-
though uncertainties were sufficient to allow for some loagtihg
ones too. They concluded this from an examination of théirife
of the system as a function of the inner-planet's semi-majas
a1 and eccentricitye; (their figure 5), and ascribed it to the sig-
nificant eccentricity > = 0.22) they found for the outer planet’s
orbit. Our results do not agree with theirs, and this is noipty to
do with the new data, because we still find significant numbérs
stable solutions when we restrict our analysis to the piet2iata
used by Beuermann etlal. (2010) and Horner et al. (2012b).
Instead, we believe that the work presentewet al.
) suffers from a series of flaws, the last of which resde

These differences are small, and overall we conclude that we largely irrelevant to the question of stability of NN Ser.eTsame

are in substantial agreement with Beuermann let al. (20183.i%
of course to be hoped for given that we use the same data,wath t
small corrections, up to 2011.

4 DISCUSSION

The two-planet model for the variations in eclipse times df Sker
has survived both new precise data and an updated dynartéeal s
bility analysis. It is the first compact eclipsing binary apgntly
hosting planets for which this can be said. It also delivgriabthe

© 2012 RAS, MNRASD00,[THI4

problem affects a series of similar papers from the sameoesjth
and thus we devote this section to where we think this work has
gone awry.

We start with minor issues. First of all, NN Ser is not, and
never has been, a cataclysmic variable, and, since its \atitef
is hot (I.; y =~ 60,000 K, Wood & Marsh (1991)), it only emerged
from its common envelope around one million years ago. Téris r
ders most of Horner ethl.’s 100 million year-long integoat su-
perfluous since the system was undoubtedly very differéat py
the common envelope in a way that cannot be modelled with the
Newtonian dynamics of a few, constant point masses. Stil$, t




12

does not altef Horner etlal.’s claim of instability sinceythmace
NN Ser within a zone where orbits typically survive onrly3000
years. Another minor issue is that they used a total massNoB&r
of 0.69 M, from|Haefner et all (2004) rather than the more recent
determination of).646 M, from|Parsons et al. (2010a) which was
used by Beuermann etldl. (2010), thus they were not selfistens
since they started from Beuermann €t al. (2010)'s solutiGmee
more however, this probably does not affect their esseci@ains.
Their use of astrocentric Keplerian fits, both fr.
M) and of their own devising, are further drawbacksahbee,
as discussed earlier, no Keplerian model is accurate entugh
match the precision of the NN Ser times, and astrocentric-coo
dinates perform worst of the three coordinate parametaisawe
examined. However, our calculations indicate that thisukhaot
have made a qualitative difference to Horner ét al.’s wothesi
This brings us to what we believis the major problem with
[Horner et al.[(2012b)'s analysis, a problem which appliasaéiy
to the series of papers from the same group analysing $yabili
in related systems. The figures upon which Horner et al, (P12
base their conclusions show cuts through parameter spad@céh
dynamical lifetime is plotted as a function of two orbitalrame-
ters perturbed by:30 in a grid around their best-fit values, vari-
ously the semi-major axis, eccentricity and argument oiggéion
of the inner planet. The problem with all of them is that ttdzy
not represent orbits consistent with the ddéiecause in each case
the remaining 10 free parameters have not been adjusteckl&or
tions between orbital parameters aighly significant. Rather than
slices through parameter space which very rapidly fall duhe
region supported by the data, what should be plotted arefthe |
times of theprojectionof models consistent with the data. In gen-
eral, as we indicated earlier when discussing Elg. 6, theltrés
not even a single-valued function of position in a 2D pramct
and it is quite possible to have very short- and very longdiv
models right on top of each other, an impossibilit
)'s presentation. The MCMC method delivers just wkat
needed through its generation of models which follow thetgaos
rior probability distribution implied by the data. F[g. 7sgiays all
possible two-parameter projections of our MCMC models &f th
pre-2011 data and shows complex and high-degree coretatie
tween all parameters. If anything, this figure undersebgttoblem
since projections from high- to low-dimensionality smeat cor-
relations (imagine projecting a spherical shell distiitmfrom 3D
to 2D for instance). Failing to account for these correlatics a
serious error of methodology, and we believe it is this whegh
plains the difference between our results and those of Hetral.
(2012b); Fig[¥ also makes it clear that covariance matriseun
tainties based upon a quadratic approximation to the mimingd
can under some circumstances be extremely mis-leading.
Fig.[8 presents a schematic illustration of the problem with
.1(2012b)'s approach. It compare8s range in X
of a set of points correlated iX andY with the much smaller
zone where these points intersect tkieaxis. Under this analogy,
[Horner et al.[(2012b)'s method is the equivalent of choosiegt of
models that run along th& -axis over thet30 range, as we show
with the regularly-spaced points in Fid. 8. These barelydarthe
region of the correlated points; the problem can be expetied
worsen with more dimensions. To assess the scale of thegondhl
the specific case of NN Ser, we calculated the size of the 28-int
section in a plot analogousito Horner et al. (2012b)’s figusdaieh

coverst3o ranges on the inner planet’s semi-major axis and eccen-
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Figure 7. Scatter plots of the 10 parameters used during the MCMC runs
shown in the lower-left panel of Fifil 4. These are based upempte-2011
data alone, with the outer planet held in a circular orbit Arthody effects
accounted for.

o

Figure 8. A schematic illustration of a serious problem wiith Horneakt
)’s stability analyses. The outermost vertical dimeark the+3o
range inX of the correlated set of points. This range is much larger tha
range covering the intersection of these points withXkexis, as indicated
by the innermost pair of vertical lines. The regularly-sggh@oints along
the X-axis which span thet3c range largely fall outside the region of
the correlated points. The equivalenthre the 2D
grids over which they compute dynamical lifetimes; in themthese grids
represent orbits which are incompatible with the data.

intersection as the region for whigtt — x2,;,, < 13.8 (99.9% two
parameter, joint-confidence). We found that the interactimss-
section occupies just 1 part 0" of the total area plotted. In other
words99.99% of the area plotted by Horner et al. (2012b) in their
figure 5 is outside the region of 10-dimensional parametacep
supported by the data, just as the regularly-spaced pairfgyi[8

tricity, a1 ande;. When just these two parameters are perturbed, we are by-and-large outside the 2D distribution of points.

find that thex? minimum is nearly quadratic. We thus defined the

The problem with Horner et Al. (2012b)’s analysis of NN Ser

© 2012 RAS, MNRASD00,[TH14
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4.3 The planet hypothesis of eclipse timing variations

40

Rather to our surprise, the new eclipse times of NN Ser pteden
in this paper are in good agreement with predictions based up
Beuermann et al. (20110)’'s model in which two planets orhitin
the binary cause the timing variations. We say to our sugpris
because if all eclipse timing variations of compact binatyrs
are caused by planets, circum-binary planets must be common
since when looked at in detail the majority show timing véoias
(Zorotovic & Schreiber 2013). We have long worried, and oure
RN R 7 to worry, that the planet models are a glorified form of Fausieal-

L L L ysis, capable of fitting a large variety of smooth variatiofe may
simply have been lucky so far with NN Ser that the “orbits” re-
Cycle number turned have been stable, so, although our results are iwlthehe
planet model, we do not regard the question as to the redlityeo
planets to be settled yet. Currently the main obstacle tdinitiee
answer is the still-considerable degeneracy in the orbit@ontin-

20

0-C (secs)

—20

—40
T

n 1 n n n
0 2x10* 4x10* 6x10* 8x10*

Figure 9. 50 orbit fits to NN Ser allowing for eccentricity in the outer
planet’s orbit diverge in the near future. Darker lines gt those models
which are stable for more than a million years. The referaptemeris for

this plot isBMJD(TDB) = 47344.0243673 + 0.1300801417162. The ~ U&d monitoring will cure this. However, it is notable thaistdle-
plot extends until July 2020. Vertical lines at the bottomtiué plot show generacy survives even with our mean t_|m|n9_ precision ofiiago
the time sampling. Only points with uncertainties0.5 sec are shown. 0.07 secs. Since one would need200 eclipse times of sec pre-

cision to match a single time ©f07 sec precision, we require not
just extended coverage, but extended precision coverdgeulti-
mate goal should be to remove this degeneracy and, beyasd thi

is of wide impact since a very similar approach was ap detectlV-body effects.

The planet model for NN Ser also survives the test of dynam-
lied to HU Agr by[Horner etal.[ (2011) arld Wittenmyer et a
?‘m) NSVS ?4252/6825 er_)ei 1. (2013), HW Vir by ical stability which has cut down so many other claims. Altgb

Horner et al.[(2012a) and, most recently, to QS Vir by Hornel we have challenged the methodology of many of these tests, we
). In some cases these authors have averaged the m&mit suspect that the general implication of implausibly unstalbits

other parameters such as the mean anomaly and argument of pefound for many systems will prove to be correct. This is net¢ase

riastron of the particular planet orbit they perturb, b, far as for NN Ser yet, although it perhaps might be when further data
we can determine, in no case do they allow for simultaneotis va  2cduired, because the addition of new data has consistent it
ations of all other fit parameters as is essential (and sirapdy- harder to locate long-lived solutions. Around 5_0% pf viabibits
aging over other parameters fails to account for the waighte- f'Fted tothe data.deeue.rw MlO) ,(W'th circulaeoor-
quired to reflect the constraints of the data in any case). dile ¢ Pits) were long-lived. With our new data, this dropped)t02%,
clude that the issue of stability or instability in theseteyss needs P“’mpt'_”g us to allow for fecgentrlc outer orbits. Even altuy/for
re-opening. It may well turn out that the conclusions of #gsies eccentricity, we found a S|mllar drop from6% to 0.7% when we
of papers, which have for the most part found that proposet-mu ~ added the two ULTRACAM points from July 2013.

planet orbits around binaries are not dynamically viabl#, ne-

main unchanged (we think it highly likely that the orbits posed

for QS Vir are unstable for instance), but some work is now re-

quired to be sure that this is the case. This problem doesppdy a 5 CONCLUSIONS

to the recent study of NN Ser by Beuermann et al. (2013) becaus e have presented 25 new high precision eclipse times ofdse c
although their lifetime versus;—- plots are superficially similar white dwarf binary, NN Ser. The new times impressively folline
to[Horner et dll[(2012b)’s plots, Beuermann €t al.’s optitis of increasing delay predicted according to the two planet inoae
the other parameters ensures that they stayed in regiorsarhp- sented by Beuermann et dl. (2010). Moreover, some of the Isode
ter space supported by the data. supported by the full set of data are dynamically stable. tumd
during our analysis that the difference between Keplerrahgmop-
erly integrated Newtonian models is significant compareth&
data uncertainties and must be accounted for during fittiagjust
in follow-up dynamical analysis.

The new data substantially reduce the degree of degeneracy
Since we have shown that the expected period change of the bi-in the planet model fits, but much still remains, especidilthe
nary is much less than our current measurement uncertaiuty, models are given complete freedom with eccentricity in lwothits
favoured model for NN Ser is one in which we allow the outer and orbital period change of the inner binary allowed. Sueb-f
planet’s orbit to be eccentric, but do not allow for any cheaigbi- dom may even be necessary as with the new data, very few of the
nary period, i.e. the middle set from Fig. 5. Using this sehoflels, orbits with the outer planet constrained to have a circutbit are
Fig.[3 shows all of the eclipse times of NN Ser with unceriamt stable. With eccentricity allowed for both orbits we find itabpe-
less than 0.5 seconds, and projects a few years into theefule riods of 7.9 0.5 yr and15.3 £ 0.3 yr, and masses &3+ 0.5 M;
are still paying the price for the poor coverage of the 1980sthe and7.3 £+ 0.3 My, with stable orbits having close to 2:1 and 5:2

4.2 The immediate future of NN Ser

next few years should see a great tightening of the conssrdin period ratios. At present, if a quadratic term is allowedtia bi-
appears from this plot that a sampling interval of order a yea nary ephemeris, degeneracy between it and the outermasitisla
two should suffice. orbit precludes an astrophysically significant measuréréthe

© 2012 RAS, MNRASD00,[THI2
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period change of the binary; this should improve signifiaoter
the next few years.

Finally, we have demonstrated that several existing dycalmi
stability analyses of NN Ser and related systems are basadaip
flawed methodology and require revision.
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