
Bodo, N, Jones, M and Levi, E

 A Space Vector PWM With Common-Mode Voltage Elimination for Open-End 
Winding Five-Phase Drives With a Single DC Supply

http://researchonline.ljmu.ac.uk/id/eprint/112/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Bodo, N, Jones, M and Levi, E (2014) A Space Vector PWM With Common-
Mode Voltage Elimination for Open-End Winding Five-Phase Drives With a 
Single DC Supply. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 
61 (5). pp. 2197-2207. ISSN 0278-0046 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 

 

A Space Vector PWM with Common-Mode Voltage 

Elimination for Open-End Winding Five-Phase 
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Nandor Bodo, Student Member, IEEE, Martin Jones, Emil Levi, Fellow, IEEE 

 
AbstractOpen-end winding three-phase drive topologies have 

been extensively investigated in the last two decades. In majority 
of cases supply of the inverters at the two sides of the winding is 
provided from isolated dc sources. Recently, studies related to 
multiphase open-end winding drives have also been conducted, 
using isolated dc sources at the two winding sides. This paper 
investigates for the first time a five-phase open-end winding 
configuration, which is obtained by connecting a two-level five-
phase inverter at each side of the stator winding, with both 
inverters supplied from a common dc source. In such a 
configuration it is essential to eliminate the common-mode 
voltage (CMV) that is inevitably created by usual PWM 
techniques. Based on the vector space decomposition (VSD), the 
switching states that create zero CMV are indentified and 
plotted. A space vector pattern with large redundancy of 
switching states is obtained. Suitable space vectors are then 
selected to realize the required voltage reference at the machine 
terminals with zero CMV. The large number of redundant states 
enables some freedom in the choice of switching states to impress 
these space vectors. Out of numerous possibilities, two particular 
switching sequences are chosen for further investigation. Both 
are implemented in an experimental set-up, and the results are 
presented and discussed. 

Index TermsMultiphase drives, open-end winding, pulse 
width modulation, induction motor drives. 

I.  INTRODUCTION 

Multiphase machines are nowadays recognized as a 

potentially viable solution for a wide range of applications. A 

comprehensive review of the state-of-the-art in the area and 

the advantages offered by such solutions is provided in [1, 2]. 

Current interest in these drives is mostly the consequence of 

their better fault tolerance and lower power (current) per-

phase rating, when compared to an equivalent three-phase 

system. 

The open-end stator winding topology with power 
electronic converters connected to both sides of the winding 

is a supply  option  which has  been investigated extensively in 
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conjunction with three-phase drives. However, the extent to 

which this option has been considered in relation to 

multiphase drives is very limited. In [3] the open-end 

topology was used for an asymmetrical six-phase induction 

machine in order to achieve harmonic filtering. An 

asymmetrical six-phase machine was also the subject of [4], 

where four isolated dc supplies were utilized in order to 

reduce the system PWM control to the well-known ‘nearest 

three vector’ method, customarily used in three-level three-

phase neutral point clamped (NPC) voltage source inverters 

(VSIs). Multiphase open-end winding topology with dual 
inverter supply has been further considered in [5-7], where 

space-vector and carrier-based PWM techniques have been 

developed for five-phase systems.  

The common feature of [3-7] is that isolated dc sources are 

used to supply VSIs at two sides of the multiphase machine’s 

winding. A drawback of the requirement for isolated dc 

sources is that one or more isolation transformers are required 

in all applications where separate dc sources do not exist 

naturally (the requirement for isolated dc sources can be 

easily met in autonomous power systems that exist in, for 

example, ships, aircraft, and electric vehicles). Zero-sequence 

current cannot flow when CMV has non-zero value due to the 
dc supply isolation, so that the dual inverter supply can 

provide performance equivalent to multi-level single-sided 

supply.  

In contrast to the existing body of work [3-7], this paper 

considers a dual two-level inverter supplied five-phase motor 

drive where a single dc bus is used to supply both inverters. 

Such a possibility has only ever been considered in 

conjunction with the three-phase configuration. A further 

advantage of this topology, in addition to the fact that only a 

single dc source is required, is that each stator phase is 

connected in effect to an H-bridge, leading to the doubling of 
the amount of voltage available at the output. This is indeed 

perceived as the most favorable feature of this topology since 

it means that, for a given motor rated voltage, dc bus voltage 

has to be just over 50% of the value which would have been 

required in single-sided supply mode with, say, a three-level 

NPC VSI. This supply option is therefore well suited to 

general industrial applications which require, in addition to 

fault tolerance and high output voltage waveform quality, 

supply of a machine from a dc source of rather low voltage.  

However, due to the system configuration, there is now a 

path for zero-sequence current to flow freely. The CMV, 

which exists between the two dc buses in the isolated dc 
source version of the topology, will now lead to a 

considerable zero-sequence current. Since this current is by 
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definition identical in all the phases of the machine, it only 

produces losses; hence its cause, the CMV, has to be 

eliminated. The paper builds on the initial considerations of 

this topology, reported in [8]. However, instead of extensive 

simulations and initial experiments on a five-phase R-L load, 

the emphasis is here on detailed experimental study using a 

five-phase induction machine. Since the zero-sequence 

current is not completely eliminated, regardless of the use of 

the space vector PWM that should theoretically give zero 

CMV, a detailed analysis of the sources of the zero-sequence 

current flow is also provided. 
Various approaches have been adopted to achieve CMV 

and zero-sequence current elimination in three-phase drives 

with open-end winding configuration. The approach in [9] 

uses space vectors which do not generate the CMV. 

Therefore, theoretically, every modulation technique that 

utilizes only these space vectors would result in zero CMV. 

This idea, developed for the dual two-level three-phase VSI 

supply, was later applied in conjunction with various multi-

level inverter topologies at the two sides of the stator winding 

[10-12]. This paper follows the approach adopted in [9] for 

three-phase drives and extends it to a five-phase open-end 
topology with dual two-level inverter supply. The switching 

states giving zero CMV are indentified and the resulting 

space vector pattern is plotted. The most appropriate space 

vectors are selected to realize the reference voltage across the 

machine terminals. It is observed that the space vectors have 

considerable redundancies. Therefore, two alternative 

approaches have been adopted to select the appropriate 

switching states, while applying the same space vectors. The 

dwell times of these space vectors are derived from a simple 

carrier-based sinusoidal PWM modulation.  

II.  MULTIPHASE OPEN-END WINDING TOPOLOGY WITH DUAL 

INVERTER SUPPLY AND SINGLE DC BUS 

A schematic of the considered topology is shown in Fig. 1 

for a machine with n phases. The dc bus voltage Vdc (set here 

to  300 V) is applied to both inverters by connecting their 

positive (P) and negative (N) rails. The two inverters (VSIa 

and VSIb) have their corresponding switches denoted in Fig. 

1 with index a or b in addition to the machine phase number. 

The phase voltage references are sinusoidal signals since the 

machine is with near-sinusoidal spatial m.m.f. distribution.  
The  topology of  Fig. 1 makes it  possible  to consider each 

 

 
Fig. 1. Open-end winding n-phase topology with dual two-level inverter 

supply and a single dc source.  

phase as being supplied by an independent H-bridge which 

can create three voltage levels at the output: +Vdc, 0 and –Vdc. 

Thus, the sinusoidal reference with magnitude of Vdc is easily 

achievable with this topology. The +Vdc voltage results by 

connecting the left-hand end of the stator phase to the positive 

rail and the right-hand end to the negative rail. The –Vdc level 

is obtained by reversing the connections. However, the zero 

voltage state can be achieved in two different ways: by 

connecting both ends to the positive or to the negative rail. In 

terms of switching states, if the connection to the positive rail 

is denoted with 1 and to the negative with 0, and the states of 
the two inverters are separated by a hyphen, these states can 

be described as 1-0 for +Vdc, 0-1 for –Vdc and 1-1, 0-0 for zero 

state. The relationship between the two leg voltages and load 

phase voltage for this topology is, for any phase, given with: 

5...2,1               ivvv lbilaiphi        (1) 

The considerations above are valid for individual phases. 

However, the study for the complete topology cannot be 

carried out based on the individual H-bridges, since the 

elimination of the CMV and zero-sequence current demand a 

simultaneous analysis of all the phases. 
A difficulty imposed by the five-phase topology is that five 

(instead of three) voltages have to be controlled. The five 

phase voltages can be transformed into two planes (α-β and x-

y plane) and the zero-sequence component (i.e. CMV). Space 

vectors of phase voltages in the two planes are given with: 
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where )5/2exp( ja  . The CMV equals the difference of 

the CMVs of the two inverters and has to be zeroed: 
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The condition that the total CMV equals zero is therefore 
equivalent to having the same number of ‘ones’ in the 

selected switching states (labelled s) of the two inverters.  

The number of switching states can be calculated as 

follows: both inverters have one switching state with five 

zeros and one with five ones, five switching states with a 

single one, five with four ones, ten switching states with two 

ones and ten with three ones. Switching states from the same 

group have to be applied from both sides. This gives a total of 

252 switching states.  

The pattern of the space vectors of the open-end topology 

that do not create CMV was generated according to equations 

(1) and (2) and is depicted in Fig. 2. The space vector pattern 
is the same in both planes, with five different magnitudes of 

the active space vectors, which form five decagons. Four 

decagons have parallel sides, while one is shifted by 18 

degrees. The relationship between the space vectors in the 

two planes is as follows: out of the four concentric decagons, 

the vertices of the outer-most and the inner-most decagon 

change places and the two middle decagons also change 
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places. The fifth (shifted) decagon remains the same in both 

planes. Naturally, the angular positions of the particular space 

vectors in the two planes are different.  

III.  DEVELOPED MODULATION TECHNIQUES 

A. General Considerations 

For the sake of a more detailed explanation of the 

relationship between the switching states and space vectors, 
Fig. 3 depicts the part of the space vector pattern that applies 

to what is referred to here as the first sector. The positions of 

the sectors are such that they are shifted by 18 degrees 

clockwise from the sectors of the five-phase single inverter 

topology. The zero vector has 32 possible switching states, 

since it can be achieved by applying each of the possible 32 

switching states of one inverter at both sides of the winding. 

Since the two largest decagons in the α-β plane map into the 

two smallest decagons in the x-y plane and since one wants to 

achieve zero average voltage in the x-y plane in addition to 

the zero CMV, the vectors of the outer two decagons of the α-
β plane are selected to generate the reference voltages. In a 

five-phase system one needs to apply five space vectors in a 

switching period [1] in order to control both planes. These 

five vectors consist of the zero vector and four active vectors, 

as depicted in Fig. 2 for the first sector. This sector represents 

the focus of the explanations in the paper further on, and it is 

also shown in Figs. 3 and 4. The vectors can be applied in a 

different order. Two of the possibilities are depicted in Fig. 4 

and they relate to the use of pairs of vectors from the two 

outer-most decagons. The arrangement denoted with solid 

arrows in Fig. 4 will be explored further in this paper.  

Although the sectors are shifted by 18 degrees, there is a 
strong correlation with the space vectors of the five-phase 

two-level topology. The magnitudes of the space vectors used 

here can be expressed as 4/5cos(π/10)Vdc and 

8/5cos(π/5)cos(π/10)Vdc, while the ones used in a single-sided 

two-level topology with twice higher dc bus voltage can be 

expressed as 4/5Vdc and 4/5cos(π/10)/sin(π/5)Vdc. It can be 

noticed that the ratio of the larger to smaller vector is in both 

configurations 2cos(π/5), and, since the sectors in each case 

are of 36 span, it can be said that the switching trajectories 
that the space vector projections make in the two topologies 

are similar. The space vectors of the open-end topology are 

cos(π/10)=0.951 times smaller than those obtainable in the 

standard two-level VSI. 
There are many possibilities to choose the specific 

switching states to realize the same vectors. There are 32 

switching states for the zero vector, eight for each medium 

and two for each large vector (Fig. 3). It is essential that the 

selection of the switching states is done in a manner that 

imposes the minimum number of switchings when the 

transfer is made from one vector to another. From (3) it is 

clear that zero instantaneous CMV can be obtained in two 

ways. One way is to keep the sum of the switching states the 

same at each side,  which means that the amount of ones in the 

switching states has to be always the same for two inverters in 
any time instant. The other way is to keep the difference of 

the two sums equal to zero by having always the same 

increment (or decrement) in both sums, so  that   changes in the  

 
Fig. 2. Space vectors created by switching states that yield zero common-

mode voltage (in α-β plane). 

 

Fig. 3. Distribution of the space vectors and switching states in the first sector 

of Fig. 2 (in α-β plane). 

 
Fig. 4. Two possible arrangements for the application sequence of the 

selected space vectors (in α-β plane).  

individual CMVs of the two inverters take place 

simultaneously. 

Both alternatives require a minimum of two changes in the 

switching states when a transfer is made from the location of 

one space vector to the other. In the former case, assuming 

that one inverter stays in the previous switching state while 

the other changes the state, the leg that was on has to be 

switched off and the new one has to be switched on, to keep 
the amount of legs in state ‘one’ the same. The latter 

possibility implies simultaneous state changes in both 

inverters. If one inverter changes the number of active legs, 

the other inverter has to follow, to keep the total CMV equal 

to zero. Obviously, at least two simultaneous changes have to 

be made in both cases. As a consequence, the inductive load 
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currents can cause multiple unintended clamping during the 

dead time, which can lead to low-order harmonics in the 

voltage waveforms. Some of these harmonics will inevitably 

map into the CMV. Detailed analysis of the dead-time effect 

is available in [13] for the three-phase case.  

B. Selected Switching Sequences and Implementation 

One of the possible switching sequences, selected to 

comply with the rules of the second alternative and which 

follows the trajectory described by the solid arrows in Fig. 4, 

is given with: 

sa1=[0,0,0,0,0], sb1=[0,0,0,0,0] 
sa2=[1,0,0,0,0], sb2=[0,0,0,1,0] 

sa3=[1,0,0,0,1], sb3=[0,0,1,1,0] 

sa4=[1,1,0,0,1], sb4=[0,0,1,1,1] (4) 
sa5=[1,1,0,1,1], sb5=[0,1,1,1,1] 

sa6=[1,1,1,1,1], sb6=[1,1,1,1,1] 

where the switching states are again denoted with s. The 
subscripts identify to which inverter the switching state 

applies to (a or b) and the order of application in a switching 

period (1…6). This order of switching states is termed 

‘Sequence 1’. The vectors applied by the individual inverters 

are shown in Fig. 5 (the large and medium vectors).  

The space vectors applied by VSIa are the same as those 

applied by the two-level space vector PWM in the tenth sector 

in the single-sided supply mode. They are highlighted in Fig. 

5. It can be seen from (4) that the switching states applied by 

the second inverter can be obtained by shifting the first 
inverter switching states by two to the left. This is equivalent 

to a shift by 4π/5in the α-β plane. Therefore, these space 
vectors are in fact those that are applied by the two-level 

space vector PWM in single-sided supply mode in the sixth 

sector, since one sector spans π/5. The space vectors applied 

by the VSIb are also shown in Fig. 5. The zero vector is 

applied by both inverters, the underlined vectors by VSIb and 

the non-underlined ones by VSIa. The vectors, applied at the 

same time by the two inverters, are connected with dashed 

lines, showing the result of their vector subtraction. The 

resulting vectors are the highlighted ones in Fig. 2.  

Previous space vector related considerations enable 

subsequent simple implementation, using the carrier-based 
PWM approach. This is the manner in which both simulations 

and experiments have been conducted. The first inverter is 

modulated with the standard five-phase sinusoidal signal 

references; the second inverter is modulated with the same 

sinusoidal reference signals delayed by four sectors, i.e. by 

4π/5. In order to get at the output the same magnitude and 

phase shift as in the reference, some adjustments have to be 

made. It is necessary to modulate the first inverter with a 

signal that has a phase shift decreased by π/10, to get its 

reference in the tenth sector; for the second inverter the phase 

shift has to be decreased by 9π/10 to get its reference in the 
sixth sector. This applies to the overall reference positioned in 

the first sector. The magnitudes of the individual references 

have to be scaled with the factor 0.5/cos(π/10) to achieve the 

total reference. The scaling is needed since the references of 

the two inverters have to be subtracted and they are not 

collinear vectors. The individual references with the 

appropriate phase shift and magnitude alterations, as well as 

the overall reference, are also illustrated in Fig. 5. 

Since the zero instantaneous CMV is ensured by the 

switching states, min-max (offset) injection is added to the 

references to increase the maximum modulation index 

(defined as the peak fundamental phase voltage over dc bus 

voltage), in the linear modulation region:  

)(5.0 maxmin vvvinj          (5) 

This enhances the dc bus voltage utilization by 1/cos(π/10) = 

1.051. As a result, the maximum fundamental is equal to the 

one obtainable with the two-level topology in single-sided 

supply mode without min-max injection (i.e. Mmax = 1). The 

illustration in Fig. 5 applies to this maximum modulation 

index value. 

Another possibility that is considered, again for the 

trajectories shown in black in Fig. 4, is when only one of the 
two possible zero states (say 0-0) is used rather than both. The 

switching states for this choice are: 

sa1=[0,0,0,0,0], sb1=[0,0,0,0,0] 

sa2=[1,0,0,0,0], sb2=[0,0,0,1,0] 

sa3=[1,0,0,0,1], sb3=[0,0,1,1,0] 
sa4=[1,1,0,0,0], sb4=[0,0,1,1,0] (6) 

sa5=[1,0,0,0,0], sb5=[0,0,1,0,0] 

sa6=[0,0,0,0,0], sb6=[0,0,0,0,0] 
This ordering of switching states is termed ‘Sequence 2’. 

In this case, the application times of the space vectors equal 

the ones from the previous case, and both originate from the 

two-level five-phase modulation. Therefore, it is necessary to 

change the modulation only in a sense that different 

individual space vectors are to be applied. Figure 6 depicts 

the space vectors applied by the individual inverters for 

Sequence 2. Their subtraction results in the same overall 

vectors in the open-end topology as for Sequence 1. The 

implementation is this time based on the space vector PWM. 

Both approaches have the lowest amount of switching state 

transitions possible and the switchings are equally distributed 
among all the legs within a fundamental period. When a 

single switching period is considered, the switching states of 

the first method distribute the switchings equally while the 

second method keeps two legs in each inverter clamped. In 

this way an individual leg can be clamped for half of the 

fundamental period and switched four times (rather than the 

usual two times) in the rest of the fundamental period. The  

 
Fig. 5. Space vectors applied by the individual inverters for Sequence 1 

when the overall reference is positioned in the first sector (in α-β plane). 
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Fig. 6. Space vectors applied by the individual inverters for Sequence 2 when 

the overall reference is positioned in the first sector (in α-β plane). 

techniques apply the same space vectors and produce the 

same phase voltages; hence the harmonics and THDs are the 

same. The only differences can occur during the dead time, 

due to the different switching instants of the semiconductors. 

IV.  EXPERIMENTAL VERIFICATION 

The two modulation methods were investigated in detail by 

simulation in [8]. Hence the emphasis is here on experimental 

results, so that only a sample of simulation results is given. A 

five-phase induction machine under no-load conditions is 

controlled using open-loop V/f control without voltage boost. 

PWM includes the min-max injection and switching 

frequency is 2 kHz. The inverter dead time is set to 6 μs. The 

machine parameters are: stator resistance = 3 Ω; rotor 

resistance = 3 Ω; stator leakage inductance = 45 mH; rotor 

leakage inductance = 15 mH; magnetising inductance = 515 

mH. The number of pole pairs is 2.  

 

The experiments were conducted using two custom-made 

multiphase two-level inverters connected to a five-phase 

induction machine. The modulation algorithms have been 

implemented using a dSPACE DS1006 processor board that 

provided the gating signals to the inverters via a DS5101 

output board. The dc buses of the inverters were fed by a 

controlled dc supply source, providing a constant 300 V dc 

bus voltage. The inverters use FS50R12KE3 IGBTs from 

Eupec (forward voltage drops of the IGBTs and diodes are set 

to 0.7 V each in simulations, which is the approximate value 

for the current values encountered here). The phase and leg 
voltages were measured using high voltage differential probes 

while the phase current was measured using a current probe. 

The zero-sequence current was measured by passing both 

conductors that connect the dc buses through a single current 

probe. Only the current that flows in the same direction, and 

thus circulates through the load, was measured in this way. 

Note that this current is not the zero-sequence component, 

since it represents each frequency component simultaneously 

in all five phases. Per-phase values (i.e. zero-sequence 

components) are therefore 1/5 of the values shown further on. 

The experimental results for both sequences are presented 
in Figs. 7-12 for three values of the modulation index, M = 

0.5, 0.8 and 1. Corresponding simulation results for the load 

phase and leg voltages, for the same conditions, are shown in 

Fig. 13. As can be seen from experimental and simulation 

voltage waveforms, the results are in very good agreement. 

By comparing experimental results in Figs. 7-12 for the 

two sequences at the same modulation index values it can be 

concluded that the phase voltage and phase current 

waveforms are practically identical. Sequence 1 is however 

the preferred choice, due to the equalized switching frequency 

 

 
Fig. 7. Experimental results: phase voltage (250V/div), leg voltage 

(400V/div), phase current (2A/div) with spectrum, and zero-sequence current 

(1A/div) with spectrum for Sequence 1, M=0.5, f=25 Hz.  

 

 
Fig. 8. Experimental results: phase voltage (250V/div), leg voltage 

(400V/div), phase current (2A/div) with spectrum, and zero-sequence current 

(1A/div) with spectrum for Sequence 1, M=0.8, f=40 Hz. 
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Fig. 9. Experimental results: phase voltage (250V/div), leg voltage 

(400V/div), phase current (2A/div) with spectrum, and zero-sequence current 

(1A/div) with spectrum for Sequence 1, M=1, f=50 Hz. 

 

 
Fig. 10. Experimental results: phase voltage (250V/div), leg voltage 

(400V/div), phase current (2A/div) with spectrum, and zero-sequence current 
(1A/div) with spectrum for Sequence 2, M=0.5, f= 25Hz.  

 

in all inverter legs over the entire fundamental period. 

The zero-sequence currents are also very similar, 

containing predominantly harmonics that are multiples of the 

phase number (i.e. 5), with the fifth and the fifteenth 

harmonics being the largest.  

The experimental  and  simulation         results also show the leg  

voltages in order to emphasize the difference between the two 

sequences. It can be seen that Sequence 1 modulates each leg 

throughout the whole fundamental period at the frequency of 

2 kHz. Sequence 2 re-distributes the switchings. In half of the 

fundamental period one leg of the inverter is clamped while in 

the  other  half  it  switches  at  double  the  average         switching  

 

 

 
Fig. 11. Experimental results: phase voltage (250V/div), leg voltage 

(400V/div), phase current (2A/div) with spectrum, and zero-sequence current 

(1A/div) with spectrum for Sequence 2, M=0.8, f= 40Hz.  

 

 
Fig. 12. Experimental results: phase voltage (250V/div), leg voltage 

(400V/div), phase current (2A/div) with spectrum, and zero-sequence current 

(1A/div) with spectrum for Sequence 2, M=1, f= 50Hz. 
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Fig. 13. Simulation results: phase voltage, its spectrum, and leg voltage for modulation indices M = 0.5, 0.8 and 1 (from left to right) for (a) Sequence 1 and 

(b) Sequence 2 (both with min-max injection). 

 
 

frequency. The legs connected to the same phase are 

complementary in this manner; while one is clamped the 

other switches twice faster. An overall constant switching 

frequency is thus achieved in all leg pairs that form the 

individual H-bridges. 

Comparison of the experimentally obtained phase voltage 

THDs is illustrated in Fig. 14. For benchmarking purposes, 

the THD obtained by using the same drive configuration, but 

with two isolated dc sources of 300 V each, in conjunction 

with phase disposition PWM (PD-PWM) from [5], is also 

shown. The THD was calculated according to: 

2
1

2

2 VVTHD

r

i

i


  (7) 

where r is adjusted to take into account harmonics up to the 

frequency of 21 kHz – the first ten switching frequency 

sidebands. 

 

Fig. 14. Experimental results: THD of the phase voltage against modulation 

index.  
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Results for both sequences apply to the case with the 

injection of the min-max (MM) offset and fully overlap, as 

expected. The requirement to zero the CMV significantly 

reduces the number of space vectors and switching states that 

can be used, when compared to the equivalent configuration 

with two isolated dc sources. As a consequence, the THD 

performance is worse than the one reported in [5]. 

V.  ZERO-SEQUENCE CURRENT ANALYSIS 

The presence of the zero-sequence current is both 

undesirable and unexpected. On the basis of the theoretical 

considerations and having in mind that the CMV is eliminated 

by the applied switching states, it is expected that the zero-

sequence current will also be zero. However, it has to be 
noted that the impedance in this topology for the zero-

sequence component is very low, since it is composed of only 

stator resistance and stator leakage inductance. Hence any 

non-ideal property of the machine/inverter system can cause a 

significant current.  

The harmonics in the zero-sequence current in Figs. 7-12 

are of two types: i) harmonics that normally do not map into 

the-zero sequence axis, and, ii) zero-sequence harmonics. The 

first category includes the fundamental harmonic and the third 

harmonic (which is however of much lower values). The 

existence of non-zero fundamental in the zero-sequence 
current means that the five individual phase currents do not 

sum to zero. Since physics of the system do not impose such a 

constraint, this is not surprising. Each phase is in essence 

supplied from its own H-bridge inverter and there is no 

closed-loop control of any type. Hence any, no matter how 

minute, asymmetry between machine’s phases and any 

difference in the semiconductor/inverter characteristics can 

lead to a slight imbalance of the fundamental current (and, 

similarly, the third harmonic which maps into the second 

plane). The highest value of the fundamental in the zero-

sequence current is 68 mA in Fig. 7 (i.e. 13.6 mA per phase), 

which is small compared to the fundamental in the phase 
current of 1.19 A. 

The second group of harmonics includes those that 

customarily map into the zero-sequence axis. On the basis of 

considerations in [14] and [15], three different causes for 

appearance of such harmonics can be identified: dead-time 

effect, voltage drops on semiconductors, and rotor slot 

harmonics.  

The effect of the dead time and semiconductor voltage drop 

is explained using Fig. 15, Fig. 16, Table I and Table II. Fig. 

15 shows one phase of the connected dc bus open-end 

topology. In each transfer between two switching states (zero 
to one or one to zero) of either inverter, on each side of the 

stator winding, the actual change of the voltage level can 

happen in the beginning or at the end of the dead-time 

interval. Since in these intervals both IGBTs associated with 

an inverter leg are turned off, the state taken by the inverter 

leg is determined by the diodes, or, in other words, the 

direction of the current flow. Considering the reference 

current direction indicated in Fig. 15, Table I summarizes the 

states taken during dead time by VSIa and VSIb with respect 

to the current direction. 

The current flow direction also impacts on whether the 

voltage drop of the IGBT or the diode will be deducted or 

added to the desired output voltage (0 or Vdc). The 

considerations here can be decomposed in four different 

situations for each inverter, summarized in Table II. The first 

row of Table II assumes a positive current flow and high 

voltage state on both inverters. Since the current has to flow 

through the upper switch in the direction indicated in VSIa it 

will cause a voltage drop on the IGBT which has to be 

deducted from Vdc, while at VSIb side the current must flow 

through the upper diode and, according to its direction, causes 
a voltage drop that has to be added to Vdc. 

Fig. 16 includes the observations above in the leg voltage 

waveforms of half of the switching period in the first and 

second sector for Sequence 1. Very much the same applies to 

Sequence 2. The plus and minus signs on the right-hand side 

in both sectors shown in Fig. 16 represent the current 

direction in accordance with π/5 lagging phase shift. The left 

columns denote the phase and inverter to which the shown 

waveform applies to, while the values ±Vce and ±Vdf indicate 

whether the IGBT collector-emitter or the diode forward 

voltage drop is to be added to or subtracted from the desired 
voltage at the output. The values obtained using (3) when 

these voltage drops are taken into consideration are 

(Vdf+Vce)/5 in the first sector and all other odd sectors, and 

(Vdf+Vce)/5 in the second and all other even sectors. These 
considerations are graphically shown as CM1 waveform in 

Fig. 16. CM2 in Fig. 16 is the waveform that is the 

consequence of the difference in the instant of the leg voltage 

change during dead time. Both of these effects cause a CMV 

that alternates from sector to sector, causing a voltage 

alternating five times faster than the fundamental. Since the 

common-mode voltage, which normally appears between the 

two negative rails of the two inverters, is short-circuited in the 

connected   dc  bus   topology,         the  effect  leads  to  the  zero- 
 

TABLE I: INVERTER OUTPUT VOLTAGE DURING DEAD TIME. 

Inverter a: 
current direction 

Dead-time 
state 

 Inverter b: 
current direction 

Dead-time 
state 

+ 0  + 1 

- 1  - 0 

TABLE II: ALTERATION OF INVERTER OUTPUT VOLTAGE CAUSED BY 

SEMICONDUCTOR VOLTAGE DROP. 

Inverter a state and 

current direction 
V1N (=vla) 

 Inverter b state and 

current direction 
V2N (=vlb) 

1, + Vdc-Vce  1, + Vdc+Vdf 

1, - Vdc+Vdf  1, - Vdc-Vce 

0, + 0-Vdf  0, + 0+Vce 

0, - 0+Vce  0, - 0-Vdf 

 
Fig. 15. Schematic of one phase of the connected dc bus open-end topology. 
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Fig. 16. Graphical analysis of semiconductor voltage drop and dead-time 

effect.  

 

sequence current. The net result is the fifth harmonic in the 

zero-sequence current.  

Another significant component appears in the zero-
sequence current, around the fifteenth harmonic. While the 

fifth harmonic was also present in the simulation study, the 

component around the 15th harmonics was non-existent in the 

simulations. This harmonic is believed to be caused by the 

rotor slot harmonics of the machine. The slot harmonics 

appear at frequencies [14]: 

0)/(   rsh PZ  (8) 

where ωsh is the harmonic angular frequency, ωr the rotor 

speed, ω0 the synchronous speed, p = 2 the number of pole 

pairs and Z = 28 the number of rotor slots. Since the rotor 

runs under no-load conditions, rotor speed is practically equal 

to the synchronous speed. It follows from (8) that the 

dominant stator current slot harmonic is positioned near to the 

15th multiple of the synchronous speed. The existence of this 

harmonic is the particular feature of the machine used here 

and this does not represent a general situation. 

In order to compare the modulation methods obtained by 

the application of the two sequences, Figs. 17 and 18 depict 

the amounts of the fifth and the fifteenth harmonic of the 
zero-sequence current, respectively. In Fig. 19 the RMS of the 

fundamental of the phase current is displayed to give a 

measure of comparison to Figs. 17-18. 

The fifth harmonic of the zero-sequence current reaches 

significant values at low modulation indices, where, due to 

the V/f control, a larger number of switchings in a particular 

sector helps to build up a larger stator current harmonic. This 

is especially noticeable for Sequence 1. At large modulation 

indices the fifth harmonic reduces to more acceptable values.  

The fifteenth harmonic increases with modulation index 

(i.e. stator fundamental frequency). At first, at low 
modulation indices, it is lower than the fifth harmonic, but it 

becomes dominant at high modulation index values. 

 

Fig. 17. Experimental results: zero-sequence current 5
th
 harmonic RMS 

against modulation index.  

 
Fig. 18. Experimental results: zero-sequence current 15

th
 harmonic RMS 

against modulation index.  

 
Fig. 19. Experimental results: phase current fundamental RMS against 

modulation index. 

The last conducted experimental test serves the purpose of 

verifying the theoretical considerations related to Fig. 16 and 

the dead-time effect. Sequence 1 is used again. However, 

instead of the common dc-source topology, the structure with 

two isolated dc voltage sources (300 V each) is used and the 

CMV is measured between the negative rails of the 

configuration. To eliminate the impact of non-ideal machine 

characteristics, pure R load is used. Fig. 20 shows the phase 

voltage and the CMV, which should be zero, for operation at 

0.8 modulation index (40 Hz). As can be seen, the CMV has 

only very short spikes, commensurate with the dead-time 

interval, and the value of the spikes is 60 V, as predicted in 
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the last row of Fig. 16 (Vdc/5 = 60 V). The frequency is 

clearly the one of the fifth harmonic and the average value is 

zero. 

Since the drive system discussed in the paper is most likely 

to be used in practice in vector controlled mode, the best 

method for zero-sequence current elimination appears to be 

use of closed-loop current control. It has been demonstrated 

in [15] that use of two pairs of current controllers enables 

excellent compensation of both asymmetries and the dead-

time effect in the five-phase drive with isolated neutral point 

and single-sided supply. Since here one has five rather than 
four (as in [15]) degrees of freedom, this means that the 

current control of the drive would have to involve five rather 

than four current controllers. 

VI.  CONCLUSION 

The paper has presented two modulation methods for the 

five-phase open-end topology with CMV elimination. The 

approach is based on the principles used for three-phase 

topologies. It is shown that many possibilities exist regarding 

switching state selection in the five-phase structure. 

Theoretical considerations are verified by means of 

experimental results. Although the modulation methods are 

aimed at full CMV elimination and should therefore ensure 

absence of any zero-sequence current, parasitic effects due to 
the non-ideal nature of the inverter and the motor cause the 

flow of zero-sequence current. These effects have also been 

addressed in detail.  

 

 
Fig. 20. Sequence 1 applied to the isolated dc-bus topology: phase voltage 

and CM voltage at 0.8 modulation index (40 Hz) with 300 V dc sources. 
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