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Abstract
An adverse outcome pathway (AOP) network is an attempt to represent the complexity of systems toxicology. This study 
illustrates how an AOP network can be derived and analysed in terms of its topological features to guide research and support 
chemical risk assessment. A four-step workflow describing general design principles and applied design principles was estab-
lished and implemented. An AOP network linking nine linear AOPs was mapped and made available in AOPXplorer. The 
resultant AOP network was modelled and analysed in terms of its topological features, including level of degree, eccentricity 
and betweenness centrality. Several well-connected KEs were identified, and cell injury/death was established as the most 
hyperlinked KE across the network. The derived network expands the utility of linear AOPs to better understand signalling 
pathways involved in developmental and adult/ageing neurotoxicity. The results provide a solid basis to guide the develop-
ment of in vitro test method batteries, as well as further quantitative modelling of key events (KEs) and key event relation-
ships (KERs) in the AOP network, with an eventual aim to support hazard characterisation and chemical risk assessment.

Keywords Adverse outcome pathway · Predictive toxicology · Network development · Network analytics · Neurotoxicity

Introduction

The science of networks is defined as the collection, man-
agement, analysis, interpretation and presentation of rela-
tional data (Brandes et al. 2013). The investigation of net-
works is spread widely throughout all branches of biology 
and chemistry, from neurobiology (Bassett and Sporns 2017) 
to genomics (Li et al. 2017). For example, in biology, the 
application of networks has made advances towards uncov-
ering the organising principles of various complex systems, 
e.g. protein-protein interactions, metabolomics, signalling 
and transcription-regulatory networks (Barabasi and Oltvai 

2004). On the other hand, systems toxicology, considered 
as an application of systems biology, aims to describe the 
perturbation by toxicants and the resilience of the essential 
defence and adaptive mechanisms across multiple levels of 
biological organisations (Hartung et al. 2017; Sturla et al. 
2014). In other words, systems toxicology helps to iden-
tify meaningful disease-specific biomarkers as opposed to 
systems biology where the purpose is to discover the under-
lying molecular and cellular mechanisms (Aguayo-Orozco 
et al. 2019). Systems biology captures interactions between 
biological entities, while systems toxicology focuses on 
the temporal/spatial relationships between processes/
events, triggered by an exposure to stressor(s), particularly 
chemicals.

Following the publication of the National Research 
Council’s report on “Toxicity Testing in the 21st Century” 
(Krewski et al. 2010), there was an increased interest in using 
information from physiological pathways, and their pertur-
bation, to better inform the adverse effects of chemicals. In 
many ways, this provided the stimulus to develop the adverse 
outcome pathway (AOP) concept (Ankley et al. 2010) into 
a systematic framework to collect and organise mechanistic 
knowledge in the field of predictive toxicology. An AOP 
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is a linear description of a toxicological process from the 
molecular initiating event (MIE), in which a stressor first 
perturbs the biological system, through a series of interme-
diate or key events (KEs), to the adverse outcome (AO) that 
may manifest as a consequence. In recent years, AOPs have 
become a tool to support the development and application of 
in vitro and in silico testing strategies for the assessment of 
adversity while offering new insights into in vivo outcomes 
of regulatory interest (Kleinstreuer et al. 2016).

Although AOPs are linear constructs and thus a simplifi-
cation of complex physiological and toxicological processes 
(Vinken et al. 2017), it is well appreciated that AOPs are 
interconnected and potentially share the same processes or 
key events (Knapen et al. 2018). As such, network science 
provides an appealing framework to better represent the 
complexity of biological processes by studying relation-
ships among interconnected linear AOPs. The term “AOP 
network” can be defined as a set of individual AOPs sharing 
at least one common element represented by a KE, including 
an MIE and an AO (Villeneuve et al. 2014a). Different AOPs 
diverging from a single MIE, or converging to a single AO, 
also form AOP networks, even if they do not have any other 
KE in common (Knapen et al. 2018). An individual AOP 
can be considered as a pragmatic unit of development and 
evaluation, while an AOP network can be seen as the func-
tional unit of prediction (Villeneuve et al. 2014a, b). Hence, 
an individual AOP should be treated as a building block 
within a larger AOP network that more comprehensively 
describes the biological processes involved in real-world 
scenarios. This does, however, imply that it will become 
increasingly important to move away from viewing single 
linear AOPs in isolation and to consider instead non-linear 
and branched AOPs within the broader context of AOP net-
works, as acknowledged in recent guidance (OECD 2017). 
The challenge is to integrate individual AOPs into a network 
for a predefined application and to characterise the network 
in quantifiable terms.

The Organisation for Economic Co-operation and Devel-
opment (OECD) AOP Knowledge Base (AOP-KB) project, 
especially the AOP-Wiki module (https ://aopwi ki.org/), 
brings together the scientific community to develop, share 
and discuss AOP-related knowledge while accelerating and 
facilitating AOP development in a central location, allowing 
the connectivity of AOPs to be explored (Villeneuve et al. 
2014a). By developing an AOP network, all the possible 
AOPs in the AOP-Wiki that are relevant to the specific ques-
tion may be examined. As AOPs are living documents (Vil-
leneuve et al. 2014a), capable of accommodating updates to 
the description of key event relationships (KERs) and the 
addition of new KEs, AOP networks should also be regarded 
as living documents. The AOP-Wiki module is designed to 
automatically generate AOP networks through the identi-
fication of common KEs involved in multiple AOPs. This 

allows information that has been curated for one AOP to be 
reused in another, avoiding duplication of effort. Recently, a 
“global” AOP network was developed to evaluate the overall 
connectivity and structural features of existing linear AOPs 
in the AOP-Wiki module (Pollesch et al. 2019). This illus-
trated the possibility of deriving AOP networks for toxi-
cological applications. However, the development and use 
of AOP networks are still in its infancy, and further proof-
of-concept examples are needed, including approaches for 
characterising the underlying uncertainties and limitations 
(Edwards et al. 2016).

To describe and analyse an AOP network, a range of 
network analytics can be used to identify and investigate 
specific network properties, such as topological features 
or interactions between linear AOPs (Knapen et al. 2018). 
Although the visual examination of the AOP network graph 
is compelling, the use of techniques from graph theory facil-
itates the interpretation of a network in terms of its quantita-
tive topological characteristics. To analyse the topology of 
an AOP network, many metrics can be calculated to describe 
the overall shape and structure of the network. Several 
parameters were identified and described by Villeneuve et al. 
(2018a), such as level of degree (also known as valency, here 
the number of KERs linked to a KE), betweenness centrality, 
path occurrence, eccentricity, topological sorting, connec-
tivity, contraction and matching index. Using these kinds of 
metrics helps to identify the most upstream or downstream 
KEs, points of convergence and divergence, positive and 
negative feedback loops, etc. The topological parameters 
allow not only the characterisation of AOP networks, but 
also the identification of the most common/highly connected 
KEs. In the absence of empirical information on the toxi-
cological relevance of individual KEs, it seems reasonable 
to priortise the most highly connected KEs for testing and 
quantification. These topological parameters can be grouped 
further depending on the question of interest and network 
size, so that not all of them need to be measured at once. 
For example, an AOP network can be tested for degree, path 
occurrence, betweenness centrality and eccentricity in order 
to identify points of convergence and/or divergence. Thus, a 
key challenge is how to establish which parameters are most 
relevant for the specific question and context of use.

Developmental and adult/ageing neurotoxicity are impor-
tant endpoints in chemical risk assessment and are emerging 
fields for method development and use in regulatory deci-
sion making (Bal-Price et al. 2018a; Fritsche et al. 2018). 
Early life exposures to certain chemicals, such as pesticides, 
may have long-term adverse health consequences for the 
developing brain. In addition, adult/ageing neurotoxicity, 
e.g. Alzheimer’s and Parkinson’s diseases, pose major chal-
lenges for societies with rapidly ageing populations. Vari-
ous test systems are used to evaluate the neurotoxicity of a 
chemical, including cell lines, primary rodent cells, induced 

https://aopwiki.org/
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pluripotent stem cells-derived mixed neuronal/glial cultures 
in 2D and 3D cultures, etc. (Bal-Price et al. 2015a; Schmidt 
et al. 2017). While none of these is currently validated for 
regulatory use (e.g. as OECD Test Guidelines), they provide 
relevant information for AOP development (Bal-Price et al. 
2015b). Furthermore, evaluating and mapping available lin-
ear AOPs for neurotoxicity into a network help to understand 
the causative linkages between KEs in terms of mechanistic 
knowledge supported by empirical evidence, while identify-
ing knowledge gaps, limitations and opportunities related to 
pathophysiological pathways involved.

The main aim of this study was to develop an AOP net-
work for human neurotoxicity and characterise the network 
using the analytics proposed by Knapen et al. (2018) and 
Villeneuve et al. (2018a). We also formulate and utilise a 
workflow to guide scientists interested in the development of 
AOP networks. In addition, a further aim was to analyse the 
neurotoxicity AOP network to identify the most common/
highly connected KEs and KERs as the basis for quantita-
tive modelling.

Materials and methods

Data Set

Linear AOPs from the OECD AOP-Wiki 2.0 were inves-
tigated manually to develop the derived AOP network fol-
lowing the criteria described in “Network construction”. 
The following information about the status of individual 
AOPs was extracted and collected in an Excel spreadsheet 
available as supplementary information: progress through 
the OECD review and endorsement processes (e.g. under 
development, endorsement by the Working Party on Hazard 
Assessment (WPHA)/Working Group of the National Coor-
dinators of the Test Guidelines Programme (WNT), approval 
of the Extended Advisory Group on Molecular Screening 
and Toxicogenomics (EAGMST)), KE title, KE type (i.e. 
MIE, KE, AO), KER (i.e. linkage between upstream and 
downstream KEs), adjacency of the relationship between a 
pair of KEs, and qualitative weight of evidence. The linear 
AOPs were collected in December 2018 and the last check 
was performed in July 2019.

Stressors

The OECD AOP-Wiki 2.0 was also used to extract the stress-
ors (chemical initiators and/or non-chemical stressors) trig-
gering KEs, including MIEs and AOs of the collected linear 
AOPs together with the available unique identifier number 
used in PubMed (PMIDs) listed in the stressor’s description 
page. The data for the stressors (in this case, all chemicals) 
were compiled in an Excel spreadsheet. In addition, the 

Chemical Abstracts Service Registry Number (CAS RN), 
Simplified Molecular Input Line Entry System (SMILES) 
strings, and details on the industrial and therapeutic uses 
were retrieved from the PubChem database (https ://pubch 
em.ncbi.nlm.nih.gov/) to understand the nature of the chemi-
cal stressor responsible for the initiation of the linear AOPs. 
At the same time, the ToxCast™ Dashboard (https ://actor 
.epa.gov/dashb oard/) was investigated for relevant data relat-
ing to assays that may be associated with the KEs, including 
MIEs and AOs of the collected linear AOPs.

Network construction

The process of developing a so-called “derived” AOP net-
work (i.e. derived from existing AOPs) followed the four 
steps that are illustrated in Fig. 1. Initially, the “General 
Design Principles” were formulated. These principles are 
intended to be generic in nature and can be applied to any 
other question of interest. The “Applied Design Principles” 
are an exemplified version of the General Design Princi-
ples followed for the development of an organ specific AOP 
network—in Fig. 1, this is illustrated for neurotoxicity. 
The methodology of each part of the four-step process is 
described below.

Step 1

Step 1 of the workflow is the definition of the purpose of 
an AOP network to be modelled. In this investigation, the 
purpose was to identify the most common/highly connected 
KEs and KERs in neurotoxicity AOP network as the basis 
for quantitative modelling. Accordingly, the scope of the 
exercise included the linear AOPs known for human neuro-
toxicity formulated and published in the AOP-Wiki module.

Step 2

Step 2 of the workflow is the definition of the criteria for the 
selection of the AOPs for the development of the network. 
In this investigation, the criteria included:

– the AOP development stage in terms of the progress of 
the AOP through the OECD review and endorsement 
processes,

– the life stage applicability, and
– the taxonomic applicability.

Of these, taxonomy was chosen to be the main criterion 
for collecting individual AOPs, i.e. those for human toxi-
cology. The AOP development stage was investigated to 
evaluate the level of maturity of the AOPs used to derive 
the AOP network. It gives an indication of uncertainties 
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in the AOP network and shows where further efforts are 
needed to elucidate the underlying mechanisms.

As one of the uses of an AOP network is the quantita-
tive modelling, developing a network with a high level of 
qualitative and quantitative evidence will give confidence 
to the model applicability. As such, refinement of the 
parameters for the initially collected linear AOPs follow-
ing Step 1 was considered: adjacency and non-adjacency 
of relationships between a pair of KEs, and the weight of 
evidence, specifically the qualitative level of understand-
ing for the relationships between a pair of KEs: high, 
medium or low. Considerations of the Bradford Hill cri-
teria for weight of evidence assessment were out of scope 
of this modelling exercise. This study relied on the assess-
ments performed by the authors of the AOPs which are 
summarised in dedicated tables in the AOP-Wiki.

Step 3

Step 3 of the workflow is the identification of appropriate 
AOPs from the AOP-Wiki module. The AOPs identified 
according to the criteria in Step 2 were inspected and col-
lected manually in an Excel spreadsheet. The information 
contained in the AOPs was subsequently curated using the 
ontology annotations of KEs titles.

Step 4

Step 4 of the workflow is the generation and analysis of the 
network. Cytoscape 3.7.1 (https ://cytos cape.org/), an open 
source software platform, was used to model the AOP net-
work, and NetworkAnalyzer 3.3.2 App (Assenov et al. 2008), 
a pre-installed application of the Cytoscape software, was 
used to analyse the resulting AOP network. The nodes were 
manually positioned as needed to conserve space and max-
imise readability. Additional annotation information (e.g. 
weight of evidence, adjacency and type of KE) was used to 
further define the visual attributes of the AOP network. The 
KEs shared by more than one AOP are shown graphically 
as nonrepetitive (i.e. represented by a single arrow), while 
the duplication of a relationship between a pair of KEs was 
taken into account when calculating the network analytics.

Network analysis

The level of degree, betweenness centrality and eccentric-
ity were chosen to characterise the derived AOP network 
analytically due to their ability to quantify the position of 
a KE in relation to its neighbour KEs in the network using 
Cytoscape NetworkAnalyzer 3.3.2 App. Level of degree 
allowed for the identification of points of convergence and 
divergence, and to analyse the overall connectivity of the 

Fig. 1  The general design principles of the four-step workflow for developing a derived AOP network illustrated by applied design principles 
with regard to human neurotoxicity

https://cytoscape.org/
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KEs across the AOP network, while the most upstream and 
downstream KEs across the AOP network were assessed on 
the basis of betweenness centrality and eccentricity. KEs 
with a higher score for the degree and betweenness centrality 
and a lower score for the eccentricity were considered the 
most common/highly connected KEs. Comparative analysis 
of multiple parameters provided the centrality score more 
efficiently and, therefore, less uncertainty in defining the 
most common/highly connected KEs.

Results and discussion

Development of the AOP network for neurotoxicity

Published AOPs in the AOP-Wiki were used to develop a 
derived AOP network for human neurotoxicity. Initially, 12 
linear AOPs relevant to human neurotoxicity were identi-
fied in accordance with the methodology (Fig. 1) outlined 
in “Materials and methods”. Table 1 provides details of the 
AOPs selected including the stage of their development at 
the time of retrieval.

After curation, with the exception of AOPs IDs 10, 26, 
and 152, all the nine other AOPs were found to share com-
mon KEs and were mapped in a network. The developed 
AOP network is shown graphically in Fig. 2. The MIE 
defined as binding of the antagonist NMDA receptors is 
common to two AOPs (AOP ID 12 and AOP ID 13) and 
similarly the MIE inhibition of Na +/I− symporter (NIS) 
linked two other AOPs (AOP ID 54 and AOP ID 134). Three 
AOs defined as neurodegeneration, Parkinsonian motor defi-
cits and impairment of learning and memory/decrease of 
cognitive function connected all nine AOPs.

The common KEs across the network are represented by 
the reduction of the human brain-derived neurotrophic fac-
tor (BDNF), mitochondrial dysfunction, oxidative stress, 
neuroinflammation, cellular injury/death, degeneration of 
dopaminergic neurons of the nigrostriatal pathway, decrease 
of neuronal network function, decrease in the synthesis of 
the thyroid hormones (TH), decrease in thyroxine (T4) in 
serum and neuronal tissue. Interestingly, different upstream 
KEs contribute to the same common KEs triggering different 
downstream KEs. For example, oxidative stress is initiated 
by two MIEs: activation of CYP2E1 and binding to SH/
SeH proteins of two different AOPs. At the same time, once 
triggered, oxidative stress leads to several other downstream 
KEs, such as dyshomeostatis of glutamate, lipid peroxida-
tion and unfolded protein response.

The most centrally located KE across the network is cell 
injury/death triggered by several mechanisms. For instance, 
reduced levels of BDNF, which is widely expressed in the 
developing and mature central nervous system (CNS), cause 
abberations in neuronal morphology and function, including 

neuronal cell death, since as a neurotrophic factor, it plays 
an important role in neuronal survival, proliferation, dif-
ferentiation (synaptogenesis) and maturation (AOP ID 13). 
Another crucial KE is neuroinflammation which triggers cell 
injury/death and neurodegeneration through the increased 
release of different pro-inflammatory mediators from acti-
vated microglia and astrocytes exacerbating neurodegen-
eration which potentiates neuroinflammation (AOP ID 17). 
Therefore, cell injury/death is involved in a feedback loop 
mechanism of cellular injury/death-neuroinflammation-
neurodegeneration. Impaired proteostatis through the dis-
regulation of the ubiquitin-proteasome system (UPS) and the 
autophagy-lysosome pathway (ALP) increases accumulation 
of certain proteins (e.g. α-synuclein), contributing to the 
degeneration of dopaminergic neurons of the nigrostriatal 
pathway that further leads to the motor deficits observed in 
Parkinson’s disease (AOP ID 3). Cell injury/death also leads 
directly to the decrease of the neuronal network function 
implied in the impairment of learning and memory/decrease 
of cognitive function (AOPs IDs 13, 17, 48, 54). Dyshomeo-
statis of glutamate and mitochondrial dysfunction are other 
mechanisms associated with neuronal cell injury/death (see 
references for each AOP in AOP-Wiki).

The AOP network for neurotoxicity relies solely on KERs 
established between adjacent KEs. The use of the adjacent 
relationships between KEs shows the biological plausibility 
of triggering neurodegeneration as one of the most com-
mon/converging KEs (AOP ID 48) and AOs (AOP ID 12 
and AOP ID 260) through different signalling pathways. 
Depending on the brain structure and the sub-type of neu-
rons undergoing neurodegeneration, different AOs can be 
triggered. Indeed, as illustrated through this network, degen-
eration of dopaminergic neurons (DA) in substantia nigra 
(SN) leads to motor deficit, the AO in Parkinson’s disease 
(AOP ID 3). However, neurodegeneration in the hippocam-
pus or cortex leads mainly to impairment of learning and 
memory/decrease of cognitive function (AO of AOPs IDs 
12, 13, 17, 42, 48, 54, 134).

The empirical evidence supporting KERs in this AOP 
network is mainly described in a qualitative or semi-quan-
titative manner. The weight of evidence (WoE) supporting 
KERs varies from low to high, with low WoE possibly based 
on poor empirical data or contradictory information. To 
increase the empirical evidence supporting the KER, more 
experiments designed for such purpose may be required. 
In addition, to improve confidence in an AOP network, for 
instance to support regulatory use (e.g. risk assessment), 
a better quantitative definition of the thresholds to trigger 
respective KEs within each KER is needed. In other words, 
the availability of quantitative KERs should enable an 
assessment of the likelihood, and under what conditions of 
chemical concentration and exposure duration, a cascade of 
key events triggered by an MIE will lead to an AO.
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Analytical characterisation of the AOP network 
for neurotoxicity

The analysis was performed on the derived AOP network 
for neurotoxicity that contains KEs and adjacent relation-
ships between KEs of nine linear AOPs. As a result, network 
analytics confirmed that the most hyperlinked KE across the 
network is cell injury/death, followed by neuroinflammation, 
neurodegeneration, decrease in neuronal network function, 
and reduction of BDNF, with a level of degree of 13, 10, 
8, 8 and 8, respectively. The least connected KEs were the 
MIEs with a level of degree 1, such as binding of agonist to 
the ionotropic glutamate receptors. The AO of Parkinsonian 
motor deficit also has a level of degree of 1, as only one 
linear AOP is currently developed for this AO. The overall 
connectivity of the KEs is shown in Fig. 3.

The level of degree of KEs helped to identify points 
of convergence (common KEs) and divergence across the 
network, as listed in Table 2. Seven convergent KEs and 
twelve divergent KEs were identified following the score 
of the in-degree and out-degree. Points of convergence are 
defined as KEs linked to more upstream than downstream 
KEs (Villeneuve et al. 2018a), while points of divergence are 
defined as KEs linked to more downstream than upstream 
KEs (Villeneuve et al. 2018a). For example, oxidative stress 
is linked to three downstream KEs (glutamate dyshomeosta-
sis, unfolded protein response, lipid peroxidation) and two 
upstream KEs defined as MIEs (CYP2E1 activation, binding 

to SH/SeH proteins). The AO of the impairment of learning 
and memory/decrease of cognitive function has the highest 
number of incoming KERs (in-degree) with a score of seven, 
while the highest number of outgoing KERs (out-degree) is 
cell injury/death with a score of seven. This indicates that 
the impairment of learning and memory/decrease of cogni-
tive function is a point of high convergence and cell injury/
death is a point of high divergence. Furthermore, all the 
MIEs of the network were identified as points of divergence, 
except the MIE protein adduct formation described in the 
AOP ID 260, which was linked to one upstream and one 
downstream KE. The protein adduct formation leads to the 
accumulation of unfolded proteins in the endoplasmic reticu-
lum (downstream KE), but also lipid peroxidation (upstream 
KE) contributes to the formation of protein adducts through 
one of its main products 4-hydroxynonenal (https ://aopwi 
ki.org/aops/260).

Another important analytical measure is the eccentricity, 
which is a node centrality index that helps to sort the KEs 
into upstream and downstream KEs. A low score of eccen-
tricity shows that the KE is more centrally located within 
the network and can be easily influenced by other KEs with 
which it is interconnected. The most centrally located KE, 
according to the eccentricity, is the reduction of BDNF with 
a score of 5. The most upstream KEs, according to their 
eccentricity, are the two MIEs: inhibition, Na +/I− sym-
porter (NIS) and binding of agonist, Ionotropic glutamate 
receptors, with a score of 10 which indicates the maximum 

Table 2  The list of identified 
seven convergent and 12 
divergent KEs

KE type KE title

Convergent key events
KE General apoptosis
AO Impairment of learning and memory/cognitive function, decreased
KE Neuroinflammation
AO Parkinsonian motor deficits
KE Synaptogenesis, decreased
KE Tissue resident cell activation
KE Unfolded protein response
Divergent key events
KE BDNF, reduced
MIE Binding of agonist, ionotropic glutamate receptors
MIE Binding of antagonist, NMDA receptors
MIE Binding of inhibitor, NADH-ubiquinone oxidoreductase (complex I)
MIE Binding, SH/SeH proteins involved in protection against oxidative stress
KE Cell injury/death
MIE CYP2E1 activation
KE Increased pro-inflammatory mediators
MIE Inhibition, Na +/I− symporter (NIS)
KE Lipid peroxidation
KE Oxidative stress
MIE Thyroperoxidase, inhibition

https://aopwiki.org/aops/260
https://aopwiki.org/aops/260
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distance to the other KEs. These results are represented as a 
heat map in Figure S1 of the supplementary material.

Betweenness centrality measures the number of shortest 
paths between any two KEs in the AOP network that passes 
through the KE of interest (Villeneuve et al. 2018a). The 
KE with the highest betweenness centrality score was cell 
injury/death, which means that it is located most centrally 
within the network and confirms the assumptions made 
based on the graphical representation. This information 
complements the results given by the level of degree. These 
results are represented as a heat map in Figure S2 of the 
supplementary material.

The statistical distribution of the number of KEs, in rela-
tion to the level of in-degree and out-degree, shows that the 
majority of the KEs are associated with at least other two 
KEs, with almost 57% of KEs for the in-degree and almost 
72% for the out-degree (Figure S3A and B). The num-
ber of shared AOPs by a KE varies between one and nine 
AOPs (Figure S3C). This has a tremendous impact on the 

development and analysis of an AOP network, as a network 
can be modelled once a KE shares at least two linear AOPs. 
The eccentricity parameter reveals that almost 67% of the 
KEs are so interconnected that they cannot be categorised 
as upstream or downstream KEs (Figure S3D). The common 
KEs identified based on both the graphical representation 
and analytics of the AOP network for neurotoxicity could 
serve as a basis for developing/selecting in vitro assays. 
These in vitro test methods could be included in an Inte-
grated Approach to Testing and Assessment (IATA) for eval-
uating neurotoxicity induced by individual chemicals and 
mixtures (Bal-Price and Meek 2017). For example, Li et al. 
(2019) propose an IATA for the assessment of developmen-
tal neurotoxicity by selecting a set of assays that can be used 
to assess common KEs. Our work also supports the common 
KEs identified by Li et al. (2019) as testing endpoints. Such 
IATA offer the possibility of addressing different regulatory 
needs including screening and prioritisation, hazard identifi-
cation/characterisation or even risk assessment if combined 

Fig. 2  Derived network of nine AOPs for neurotoxicity containing 
adjacent key event relationships. Green squares indicate an MIE, red 
squares indicate an AO, and blue squares indicate the most common/
highly connected KEs. Solid arrows indicate relationships between 
KEs that are adjacent. The qualitative weight of evidence between 

two KEs is annotated as H for high, M for medium and L for low 
level of evidence. The KE cell injury/death is a common KE across 
the AOP network, being the most centrally located and most highly 
connected (colour figure online)
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with exposure and ADME data (Aschner et al. 2017; Bal-
Price et al. 2018a, b).

Adjacency and non‑adjacency in the context 
of the AOP network for neurotoxicity

One aspect considered while developing the AOP network 
was the inclusion of solely adjacent relationships between 
KEs. Relying only on directly connected KEs facilitates the 
quantitative simulation of the AOP network. However, the 
topological difference between AOPs networks consisting of 
adjacent and both adjacent and non-adjacent relationships 
was evaluated by comparing the analytical parameters of 
the two AOP networks. The AOP networks containing both 
types of interactions are represented graphically in Figure 
S4 in the supplementary material.

Four out of nine AOPs included in the AOP network con-
tain solely adjacent relationships (AOPs IDs 12, 13, 48, and 
260) and five of nine AOPs contain both types of relation-
ships (AOPs IDs 3,17,42, 54, and 134). Several KEs were 
involved in non-adjacent relationships, including reduction 
of BDNF, decrease in TH synthesis, and decrease of T4 in 
the serum. Cell injury/death and reduction of BDNF remain 
the most connected/common KEs across the network. The 
AO defined as impairment of learning and memory/decrease 

of cognitive function is involved in five non-adjacent rela-
tionships, besides the other seven adjacent relationships 
and, therefore, becomes the most connected KE across the 
network.

Since a non-adjacent relationship is likely to be associ-
ated with more biological processes, an AOP network con-
taining both types of relationships implies more connections, 
representing a higher level of biological complexity. Net-
work analytics show differences in terms of the distance and 
path length. At the same time, a given stressor might trigger 
all kinds of relationships and the AOP network serves as a 
suitable platform for such evaluations. For the initial devel-
opment of a quantitative AOP (qAOP), it is easier to model 
adjacent KEs only rather than include both types. However, 
this also depends on data availability and the scope of the 
quantitative modelling.

Mapping stressors to the AOP network

Chemicals either individually or in combinations (mix-
tures), as well as other factors such as particles and infec-
tious agents, represent stressors responsible for the initia-
tion of an AOP (OECD 2017). Mapping stressors to linear 
AOPs in an AOP network allows for the evaluation of 
interactions between co-occurring stressors. Furthermore, 

Fig. 3  The overall connectivity of KEs used to develop the derived 
AOP network for neurotoxicity. The score indicates the number of 
the KERs associated with a KE. Cell injury/death has the highest 
score, which means that it is the most interconnected KE across the 

network. The least connected KE was the AO of Parkinson’s motor 
deficits due to the fact that only one AOP is currently available for 
this outcome
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for the purpose of an IATA, it is essential to derive a clear 
relationship between MIEs and AOs and whether there are 
interactions between AOPs (OECD 2016). Different (types 
of) stressors may interact at the MIE or at downstream KEs 
common to multiple AOPs.

The AOP network for neurotoxicity is represented by 
chemicals as stressors, with no additional types being men-
tioned in the AOP-Wiki module. Based on an understand-
ing of the nature of MIEs, in silico models can be derived 
and, as a result, inform IATA and read-across. For exam-
ple, several types of MIEs with associated AOPs have been 
distinguished and described by Cronin and Richarz (2017), 
including covalent reactivity, changes in receptor or enzyme 
activity. The different types of MIEs are identified in the 
AOP network for neurotoxicity including chronic receptor 
inhibition (binding of antagonist to NMDA receptors) and 
activation (binding of agonist to ionotropic glutamate recep-
tors, binding of inhibitor to NADH-ubiquinone oxidoreduc-
tase (complex I), binding to SH/SeH proteins involved in 
the protection against oxidative stress, inhibition of thyrop-
eroxidase, inhibition of Na +/I− symporter (NIS)), covalent 
reactivity (protein adduct formation) and enzyme activa-
tion (CYP2E1 activation). These examples could serve as 
starting points in the development of in silico models for 
neurotoxicity.

AOP networks are critical for addressing exposures to 
multiple stressors that lead to the same AO or to individual 
stressors that perturb multiple MIEs (Knapen et al. 2015; 
Villeneuve et al. 2018a, b). For example, the inhibition of 
thyroperoxidase (MIE ID 279) is induced by chemicals with 
industrial and therapeutic uses, such as antifungal agents 
(e.g. 2(3H)-benzothiazolethione, mercaptobenzothiazole), 
antithyroid agents (e.g. thiouracil, propylthiouracil, methi-
mazole), pesticides (e.g. ethylenethiourea), industrial agents 
(e.g. 4-nonylphenol) and cosmetic ingredients (e.g. resor-
cinol). On the other hand, acrylamide, with multiple chemi-
cal and industrial applications, a widely occurring food con-
taminant from cooking, binds to SH/Seleno proteins, an MIE 
in the AOP ID 17 that leads to the impairment in learning 
and memory through neuronal degeneration. Acrylamide 
also induces protein adduct formation, an MIE in AOP ID 
260, that leads to neurodegeneration, an AO in AOPs IDs 
12 and 260 and a KE in AOP ID 48. This is because of the 
electrophilic nature of acrylamide that covalently reacts with 
nucleophilic sulfhydryl groups on certain proteins that are 
critically involved in membrane fusion of the nerve termi-
nals (LoPachin 2004; Lopachin and Decaprio 2005).

For qAOP modelling purposes, in its initial phase of 
development, evidence that a chemical can induce an entire 
AOP is of great help. However, the AOPs evaluated herein 
lacked stressors known to be active across all the biologi-
cal levels of the AOP. This might be due to the fact that 
no compounds were yet tested for those AOPs or were not 

tested at high enough concentrations. The only AOP that has 
chemicals associated with all KEs is AOP ID 42 “Inhibition 
of Thyroperoxidase and Subsequent Adverse Neurodevelop-
mental Outcomes in Mammals”. Therefore, a qAOP could 
be derived and was modelled by Hassan et al. (2017) for 
6-propyl-2-thiouracil which is an enzyme inhibitor that is 
known to trigger AOP ID 42. Information on all chemicals 
collected for the AOPs used for modelling the AOP network 
is provided in the supplementary material.

The current description of stressors in the AOP-Wiki is 
lacking in detail, so it would be very valuable to include 
more information such as mechanistic knowledge related to 
the kinetics, existing QSAR models and read-across predic-
tions, as well as other data sources. This would make the 
AOP-Wiki module not only a repository, but also a resource 
for modelling qAOPs.

One of the critical requirements for in silico modelling is 
the availability of reliable data. A data repository that could 
be used for in silico modelling is the ToxCast™ dashboard. 
It contains 76 assays studied on the brain tissue for sev-
eral endpoints, including oxidative stress, binding to dopa-
minergic or GABAergic neurons that characterise KEs of 
a linear AOP. Following the AOPs currently published in 
the AOP-Wiki KB, 15 assays were identified as applicable 
to the AOPs known to induce neurotoxicity and that could 
be used to inform the AOP network. The results of linking 
assays to KEs of the AOP network are listed in Table S1 in 
the supplementary material.

The use of AOPXplorer

The AOPXplorer module of the AOP-Wiki KB was designed 
to visualise and explore AOP networks for a given adverse 
outcome. It also allows the uploading of additional data, e.g. 
high-throughput screening, omics and dose–response data 
that can be used to predict the adverse outcome. The AOPX-
plorer was developed as an App of the Cytoscape software 
that can be easily downloaded and installed. This facilitates 
the development of AOP networks while making them living 
documents. Currently, the AOPXplorer repository contains 
18 AOP networks developed for different endpoints, includ-
ing coagulopathy, ulcer gastric, steatosis, lung fibrosis, skin 
sensitisation, epilepsy. The AOP network modelled herein 
was also included in the AOPXplorer repository (Burgoon 
2019). This allows further improvement and refinement of 
the AOP network by the scientific community that can view 
and further enrich the AOP network, thereby contributing 
to a better assessment of neurotoxicity.

Applications of the derived AOP network

The development of AOP networks is still in its infancy, 
but there are already examples of AOP networks applied 
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to both human and other species toxicological endpoints as 
listed in the Table 3.

Because of its advantages, such as the use of analytics to 
characterise the position of a KE (including MIE and AO) 
within a network, the concept of a derived AOP network has 
a plethora of applications in predictive toxicology which are 
exemplified below.

Types of modelling approaches for qAOPs

The development and quantification of AOP networks are 
emergent topics in predictive toxicology and safety assess-
ment. The Pellston Workshop (Hecker and LaLone 2019) 
addressed key challenges, approaches and solutions to pro-
gress the AOP framework, emphasising the need for more 
examples of where and how AOPs can fit in a regulatory 
context. Currently, three approaches have been proposed for 
modelling qAOPs: semiquantitative/quantitative weight of 
evidence (WoE) of qAOPs, probabilistic qAOP and qAOP 
networks, and mechanistic qAOPs (Perkins et al. 2019). Usu-
ally, quantification of WoE relies solely on tailored Bradford 
Hill considerations (Becker et al. 2017; Collier et al. 2016). 
However, ideally, the position of the KE within an AOP/
AOP network should also be considered. Another scien-
tific workshop report (Kleinstreuer et al. 2016) proposed 
a mathematical approach to establish the relevance of KEs 
in AO prediction, based on the position of the event within 
the AOP and the available empirical data. Such details can 
be acquired from the analysis of topological parameters of 
KEs within an AOP/AOP network. This also allows for the 
reduction of the uncertainty of the final qAOP model.

However, it is challenging to move from the devel-
opment and quantification of linear AOPs to the 

quantification of AOP networks. One approach is to apply 
Bayesian statistics to derive probabilistic of models. Sev-
eral examples have already been published for human toxi-
cological endpoints, such as chronic kidney injury (Zgheib 
et al. 2019), liver steatosis (Burgoon et al. 2017) and skin 
sensitisation (Jaworska et al. 2015). Furthermore, Bayes-
ian networks can enable integration of multiple data types, 
including omics, toxicokinetics and toxicodynamics. The 
AOP network derived herein could be enriched with such 
data from in vitro studies (González-Ruiz et al. 2019; 
Schultz et al. 2015) to increase the confidence of the mech-
anistic understanding of the exposure to neurotoxicants.

Finally, mechanistic qAOPs encounter many chal-
lenges, one of them being lack of adequate and sufficient 
data. Foran et al. (2019) proposed a modular approach to 
develop a qAOP to take this limitation into account. They 
derived quantitative KERs for pairs of KEs for the AOP ID 
48 (binding of agonists to ionotropic glutamate receptors 
in adult brain causes excitotoxicity that mediates neuronal 
cell death, contributing to learning and memory impair-
ment). They quantified the relationship between the MIE 
(binding of agonist, ionotropic glutamate receptors) and 
KE2 (increased, intracellular calcium overload), the MIE 
(binding of agonist, ionotropic glutamate receptors) and 
KE4 (cell injury/death), and KE4 (cell injury/death) and 
AO (impairment, learning and memory). As this AOP is 
included in the derived AOP network herein, the analy-
sis of the AOP network gives confidence in the modular 
approach to qAOP modelling: the neuronal cell injury/
death is one of the most common/highly connected KE 
across the network, while the increase in the intracellular 
calcium overload is an essential KE that leads to the reduc-
tion in BDNF.

Table 3  Summary of eight derived AOP networks currently developed and publicly available

AOP network title Taxonomy Aim Reference

AOP network related to reproductive and devel-
opmental toxicity in fish

Fish Toxicity assay development Knapen et al. (2015)

AOP network for disrupted androgen-and insulin-
like hormone 3 (INSL-3)-dependent in male rats

Rodents Evaluation of chemical mixtures Howdeshell et al. (2017)

AOP network linking activation of the nicotinic 
acetylcholine receptor in honey bees to colony 
death

Bees Evaluation of biological plausibility and empiri-
cal support to identify knowledge gaps

LaLone et al. (2017)

AOP network for metabolic disorders mediated by 
hepatic steatosis

Homo sapiens Identification of critical paths Knapen et al. (2018)

Decreased serum thyroid hormone AOP network Rodents
Amphibians
Fish

The use of layers and the identification of points 
of convergence/divergence

Knapen et al. (2018)

Hub KEs for inflammation-related AOP network Not specified Connection of AOPs that previously had no 
shared KEs

Villeneuve et al. (2018b)

Cytochrome P45019 [CYP19]-AOP network Not specified Linking all possible AOPs to an AOP Villeneuve et al. (2018a)
Thyroxine [T4]-AOP network Not specified Linking all possible AOPs to a process Villeneuve et al. (2018a)
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Conclusions

An AOP network for human neurotoxicity was developed 
using the principles of the derived AOP network. A work-
flow was formulated which can be adapted according to the 
purpose of the investigation. Even though the developed 
AOP network is simplistic and probably incomplete, the 
results provide a solid basis for prioritising the testing of 
KEs, for quantifying KEs and KERs, and for quantitative 
modelling of the AOP network. In addition, the work could 
be useful for identifying biomarkers of toxicity at different 
biological levels and for further developing in silico and 
in vitro test methods, thereby contributing to the assess-
ment of neurotoxicity without animal testing (Bal-Price 
et al. 2017).

More generally, AOP networks strengthen the utility of 
the OECD AOP-KB by increasing scientific confidence 
in the application of individual AOPs, facilitating bet-
ter understanding of their roles as individual blocks in 
the network of complex biological interactions. Network 
analytics can be utilised to analyse multiple perturbations 
and complex interactions across the biological and time 
scales of interconnected AOPs. As additional mechanistic 
details enrich the existing AOPs, it is envisaged that AOP 
networks will become more complete and informative for 
predictive toxicology and regulatory decision making.

There are several challenges in the development of an 
AOP network:

1. The ontology annotations influence the construction 
of an AOP network. There are still KEs titled differ-
ently while having the same meaning and/or referring 
to the same process. For example, the AOP network on 
neurotoxicity contains KEs related to the mitochondrial 
dysfunction: KE ID 177, KE ID 1185, KE ID 1186. All 
of these KEs can be grouped or renamed under a com-
mon KE umbrella. This would also facilitate further 
quantification in terms of response–response relation-
ships useful for systems toxicology. Following an expert 
review, such annotations can be easily amended. Slenter 
et al. (2018) evaluated the WikiPathways database (https 
://www.wikip athwa ys.org) in terms of the content and 
curation of metabolic pathways and showed the benefits 
of harmonising the annotation of metabolism and meta-
bolic pathways.

2. As information on the compensatory mechanisms for 
neurotoxicity is missing and not included in the OECD 
AOP-Wiki pages, such networks do not represent the 
entire complexity of biological processes (feedback and 
feedforward loops, etc.) and research in this sense is 
urgently needed. Understanding possible compensatory 
mechanism and adaptive changes, which take place ear-

lier before the first KE is triggered, may moderate and 
contribute to the observed adverse outcome. If compen-
satory and adaptive mechanisms are effective, the cell is 
coping and toxicity is not taking place. At present, this 
kind of information is captured in the KER descriptions, 
but perhaps the AOP template should also be modified 
permitting visualisation and description of these pro-
cesses.

3. The uncertainty of the network model partly arises from 
the stage of development of an AOP. An AOP network is 
built on individual AOPs that ideally follow the OECD 
requirements, hence giving confidence to the use of 
an AOP network for predicting toxicity and assessing 
chemical safety. Even though the majority of the individ-
ual AOPs published in the AOP-Wiki module are under 
development (almost two-thirds at the time of prepara-
tion of this manuscript), this should not limit their use 
as the basis of an AOP network. For example, four out 
of the initial 12 AOPs collected for the development of 
the AOP network for neurotoxicity were under develop-
ment, from which one AOP was included in the OECD 
work plan. Therefore, it will be increasingly possible 
to develop AOP networks once the OECD AOP-KB 
becomes more populated with linear AOPs and associ-
ated mechanistic information.

4. When a linear AOP is updated, the AOP network should 
also include the changes. The AOPXplorer serves as a 
tool that can encompass such changes.

5. There are “orphan” AOPs that were not linked to the 
AOP network for neurotoxicity (AOPs IDs 10, 26, 152) 
and were, therefore, excluded in the current work. How-
ever, these may eventually provide additional KEs and 
KERs for expanding the network.

6. AOP networks can be derived for different applications, 
including development of toxicity assays (Knapen et al. 
2015), evaluation of chemicals mixture (Howdeshell 
et al. 2017), evaluation of biological plausibility and 
empirical support to identify knowledge gaps (LaLone 
et al. 2017), etc. Herein, linear AOPs were investigated 
for the adverse outcome of developmental and adult/
ageing neurotoxicity induced in Homo sapiens.

7. To maximise the application of AOP networks, the use 
of network analytics provides an essential instrument for 
characterising the network and identifying common KEs 
and KERs. Several parameters defined by Villeneuve 
et al. (2018a), including level of degree, betweenness 
centrality and eccentricity, were applied in this work. 
Information regarding the centrality and connectivity of 
a KE, the most upstream or downstream KEs across the 
network, is of a great value for finding gaps in knowl-
edge and unforeseen paths. The choice of metric(s) 
depends on the intended purpose, e.g. development of a 
battery of in vitro tests.

https://www.wikipathways.org
https://www.wikipathways.org
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8. The concept of AOP network should not be confused 
with the concept of a hub. A hub consists of several KEs 
closely linked and involved in the same biological pro-
cess. Therefore, a hub can be part of an AOP network. 
For example, one of the common KEs identified was 
neuroinflammation. However, increase of proinflamma-
tory mediators is also known to contribute to the cell 
apoptosis and necrosis, as AOP ID 17 illustrates. Since 
inflammation is a complex process, a key event describ-
ing it might not be identified as a connected node across 
the network as is the case of the increased proinflam-
matory mediators. Villeneuve et al. (2018b) developed 
a hub which links different MIEs to distinct inflamma-
tion-mediated AOs or to AOPs where inflammation is 
an essential exacerbating element. Such a hub allows 
interconnectivity with other AOPs that were previously 
disconnected, independent of the tissue.
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