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Abstract (300 w)

Despite the success of automated pattern recognition methods in problems of human brain
tumor diagnostic classification, limitegttention has been paid to the issue of automated data
quality assessment in the field MRS for neureoncology. Beyond some early attempts
address thisissue the current standard in practice BIRSquality control through human
(expertbased assessrant. One aspect of automatic quality control is the problem of detecting
artefacts in MRS dat@rtefacts,whose variety has already been reviewed in some detail and
some of which may even escape human quality contralje a negative influence in pattern
recognition methods attempting to assigtmor characterizationThe automatic detection of
MRS artefacts should be beneficial for radiology agutrantees more reliabléumor
characterizationsas well as the development ofore robust patten recogniton-basedtumor
classifiersand more trustable MRS data processing and analysis pipeliresture extraction
methods have previously been used to help distinguishing between good and bad quality spectra
to apply subsequent supervised pattern recognittenhniques In this study, wepplyfeature
extraction differenty and use a variant of a method for blind source separation, namely Convex
Non-Negative Matrix Factorization, to unveil MRS signal sourtescompletely unsupervised
way. We hypothesize thawhile most sources will correspond toe different tumor patterns,
some of then will reflect signal artefactsThe experimental work reported in this paper
analyzing acombinedshort and longecho time'H-MRS database ahore than 2000spectra
acquired at 1.5T and corresponding to differdotor types and other anomalous masses,
provides a first proof of concept that points to tpessiblevalidity ofthis approach
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Introduction

Sant attentionhas beerpaid to the issue of automated data quality assessment in the field of
MRS for neureancology(1) and, although recenttudieshave started addressing this issue,
often using supervised pattern recognitigRR)approachesthe current standardn practiceis
quality control through human assessmdgj. One reason for this may be the lack of the type
of biocuration standards that begin to be commorother life sciencedields such as genomics
and, to a lesser extent, proteomi¢3). Further reasons include the fact that MRS data in this
area are scarce anddgmented. Fragmentation is both geographical anditutsonal, as the
effort of gathering multicenter and international data is hindered by different barriers. The
clinicalcenterswho are ultimately responsible for data acquisition have few obviousingess

to even patrtially transfer the control of their data to third parties, and such parties, who should
be responsible for managing muttenter data, either do not exist or lack the ability to sustain
such role in a longerm basis. Furthermore, effostto gather and manage international
databases often collide with local legal limitations for the transfer and sharing of this type of
personal medical information.

Having said this, it is also true that some research efforts have been made in order¢éssdd

the problem of MRS automated quality control (AQC) and that this problem has been
approached from different perspectives. Early concerns about issues of spectral quality in clinical
MRS and the lack of standards for the definition of what makes arspe@cceptable or not

were, for instanceraised in(4). In this reviewa list of possiblartefacts, many of them difficult

to detect even by expert visual inspection, was compiledeveral quality assessment
gquantitative measures were put forward and a number of criteria for spectra rejection were
formulated. The need forne definition of quality requirements and goals fé+tMRS data, as

well as for the implementation of measures to guarantee quality standards and the sustained
management of data quality have recently been stressd@)in

Part of the pectra in the current paper were analyzed at a first levdlljpwhere the quality
assessment concerned the immediate step after data acquisition by automatic determination of
the signalto-noise ratio (SNR) in a watsuppressed spectrum and of the line width of the water
resonane (water band width, WBW) in the corresponding reuppressed spectrum. Threshold
criteria for the selection of spectra were then empirically determined andtiml artefact
detection was carried out by human visual inspection.

In recent researclb), AQC was taken to a second level that uses previously validated databases
(6-8) as a starting point. In that study, a range of differ&Rclassifiers were trained to mimic
human decision making about the quality of spectra from data transformed according to
different feature extraction methodsTo learn this task, # classifiers used original human
quality ratings from both mulicenterand local experts as training labels. Classifier performance
was subsequently compared with variance in human judgment. This work was in turn inspired
by a previous smallescale stug (9) in which a least squares support vector machine was trained
from features extracted by independent component analysis (ICA) to learn to distinguish
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acceptable from unacceptable spectra. This AQC approach hasdmestily extended to clical
IHMRSI information ir{10), where a random forestRF)classifier was trained on MRSI grids
previously labeled as acceptable or racceptable by two expert spectrosco@stnd where, in
order to acount for potential intraexpert reliability effects, each of the spectra was labeled
three times by each expert. A similar approach, also uBiRgs the classifier of choice, was
earlier presented in{11). Note that all these approaches aim to replicate human decigian
data-based automated form, but do not attempt to assess quality dispensing with human prior
assessment.

An alternative approach to AQC attempted to distinguish potentially problematic spectra using
an outlier analysi§l2). A fully unsupervised manifold learning technique was used to model the
datadistribution and a shortlist of spectra that did not conform to it was obtained. This shortlist
of quantitatively atypical cases was inspected by experts to disshghetween naturally
atypical spectra and spectra with artefact related anomalies. Ttegoazation of the artefacts

in thosesingledout cases was subsequently carried out individually and in detail by human
experts. The purpose @iur presentstudy was to apply a totally unsupervisB&®approach on

the largestmulticenter collection ofsingle voxe(SVj spectra of brain tumors available to date,

to identify artefactual MRS patterns in a way which is exjrgdrpretable.

In this study, we use feature extraction in a different manner for the purpose of MRS AQC. The
proposed approach is basenh a method of the blind source separation family (to which ICA
also belongs), namely Neregative Matrix FactorizatiolNMF(13), and, more specifically, one

of its variants knowias Convex NMEENMHK14). NMF was originally developéi3) as a methd

for the estimation of the latent (unobservable) sources of image, but it can be used with any
kind of signal assumed to consist on a combination of such soulfcepplied to an MR
spectrum, thegoal is discovering the hidden signal sources whose weighted combination
constitute it, be it tissue types or artefactual patterns

The rest of the paper is structured as followse first describe the dataset usead the
experiments, which is the largestulticenter collection to date of SV braitumor spectra at
shortand at long TEgbtained at 1.5T Next,we report theexperimental designwith a brief
description of how theCNMF algorithmvorks, and how we designethe descriptive studyand
evaluated it Thenresults for shortime of echo ($5 and long time of echol(TH are shown
separatdy and discussed. Finally, some conclusionsdigavn, and possible future lines of
research are outlined.

Materials and methods

Data acquisition and processing

The dataanalyzedn this study arghe samethat werereported in detailin (5). In brief, these

are SV spectra from human brain tumors, acquired in 1.5T scanners from three different
manufacturers (GE, Siemens and Philips) and different scanner models during the period 1994
2009 They were downloaded fronthe multi-center INTERPRHE4,8,15) and eTUM@R (7)
databasesand processed with the INTERPRET data manipulation soft{@&té) and
parameters, with a further realignment correcti@s repored in(5). Nate that this processing
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included setting the region between [4.2, 5.1hpm to zero valuesand the final processed
spectrum consisted of 51&equency points. The total number ofSTE (2832ms) spectra
acquired with PRESS or STEAMcessed and available for further analysis wa8Q The
corresponding total number diTE (135144 ms)spectraacquired with PRES$®s 977 For this
study, the original quality ratings by expegectroscopists were not ad, althoughthey were
available with the data matrices frorfb). Regarding the quality as assesdsdthe expert
*% SE} }%ngbsSofSPb, 982spectra were deemed to bgood and 198 bad quality
spectra, whereas fdfTE, 828vere deemed to bgood and 149 ba(b) - see Table 1 for details

The available spectra correspond to the variety of pathologabkeredin the databasesThe
distribution of spectra by tumor type and echo time is shown on TabB®ofne of theartefacts
known to be present in thepectrainclude (although are not limited tdpw SNRand/or bad
water suppressiorn(5). For evaluation (see section further orggvenclasses or superclasses
(brain tumor groupings) were considered: low grade gliomaéncluding astrocytoma,
oligodendroglioma and oligoastrocytoma of WHO gradeatjgressivéumors (which included
glioblastoma and metastasjsjneningioma, lymphomaprimitive neuroectodermal tumors
(PNEYT, astrocytomaWVHOgrade Ill, abscess as well asmal brain, as i8,16).

Experimental design

Sources or archetypical spectral patterns were extracted using C{MF This method
generalizes NMF bgdmitting negative values in the observed data. Note that some of the
spectra in the database include inverted peaks with such negative vallesoptimal number

of sources to be extracted is not known a pri@). Although this would be a relevant problem
in @ more general experimental settirigis not a relevanbne inthis study, as ware interested

in the explorationof the existence okignal artefacts across a wide range of source number
values. For this reason, a descriptive study extracting from 4 to 20 sources paisTEet up
Extractions start at 4 sourcas the minimum necessaty maintain a correspondence between
the sourcegor groups of sourcgandthe maintypes oftissue according tq17).

CNMPFworks by factorizinghe obsaved data matrix : (of dimensios & H 0, where &is the
dimension of the data512 points orspectralfrequenciesin our caseand 0 is the number of
samples 1,180 spectra atSTEplus 977 at LTE) ito two matrices: ( (the matrix of extracted
sources,of & H - dimensiors, where - is the number of sourcedrom 4 to 20in the reported
experiments) and ) (the mixture or coding matrix, of dimensier0 H -, where the valueg a
columnarethe weights associated withsiource or basgectorfor each spectrum The product
of these twvo matrices provides a good approximation to the original data mdtrig.important
to note that the values in) are all nonnegative and, thereforeeach spectrum can be seen as a
weighted combination of sources acting as data centroiiserefore, weare making the
important assumption thaan MR spectrums the measurable manifestation of tiveeighted
combinationof nondirectly measurable (hidden or latensjgnal sourceskurthermore, ( is
constrained to lie in the column space of the input dataso that theCNMFormula can be
written asin Eq. 1

‘G N()l, Equation 1



where ( L :g9.. This leads toL ) :) i ) ;?%; the +subscriptrepresentsa mixedsign data
matrix andthe + subscripindicates that the matrix is nenegative 9 (of dimensions0O H -)
is an auxiliary adaptative weight matrix that fully determines

Matrix ) is also called thenixing matrix as it holds the coefficien{®r coding coefficients, CC)
to recompose a specific data sampldwe CC value of each column in the mixing métgrefore
provides us with a estimation of the degree of contribution of eacbf the sources to each
reconstructed spectrum. Each spectrufof 0) is represented as the linear combination of the
&Ysource out of -) and the CQ jyas described biqg. 2

‘uk (5)s E ®E (p)uE ®E(A)ua Equation 2

NMF methods unavoidably converge to local minima. As a result, the NMF bases will be different
for different initializations. In this studyve use thek-means++ algorithn{L8) for initialization
CNMPFis based on iterative update algorithms, just like the original NMF, in which the factors
are updated alternately until convergen¢®9). The algorithm works as follows:

Step 1lnitialize and 9. This is achievedere with the k-means+-algorithm,as in(18), aiming
to ensure that the algorithm starts from values close to the actual data ceistroi

Step 2 Update , leaving9 fixed, using the ru¢ inEq.3:

R =RAR;6D 3 AD ARAR 7D B o
Jup )U'§>:NAN;7D%@>&DA:NAN;6D%O

Equation3

Where : @ is the positive part of the matrix, where all negative values become zeros;@nig
the negative part of the matrix, where all positive values become zeros.

Step 3 9 is updated, leaving fixed using the rulen Eq.4:

9. 7 9"I§>:NAN;6A?05>:NAN;7E)AAA’.6O
UP& Y UBSRAR7 A% o RAR:G D AAAD 6

Equation4

Ten repetitions werearried outfor each of the T sourceextractions(from 4 sources to 23t
both TE, since the extracted sources magry because of the&k-means-+ initialization This
number of repetitions was considered to lnough to calculate the mean and standard
deviation (STD) of the sources extracted.

In order to calculatehe mean andSTDof the sources, wdirst grouped them by similarity. For

this, the Pearson correlation coefficients between each source and all the sources at each
repetition were calculated, and those with the highesgfficient valuest each repetition were
grouped together. The first extraction wabosen as starting pointheobtainedsources were
graphicallyrepresented toallow a first intuitivevisualverification oftheir characteristicsAs
mentioned in the introduction, we hypothesize that sometlué sources would be ident#d as
artefacts while others willdescribe prototypical tumor pattern®r normal tissue, as the
databases from which the spectage obtainedcomprisespectra ofooth good and poor quality.



ONMFwas implementedn Pythonlanguage20) andrun either via Google Cloud Platformor
at the computer clusteat the Institut de BiotecnologiaBiomedicingIBB)in BarcelonaSpain.

Evaluation

The obtained sourcewere first qualitatively exploredoy two members of the team who are
expert spectroscopists (CA and Mas) then quantitatively assessedccording todifferent
calculatedmeasures with the purpose of finding an automated waydistinguish artefec
sources The quantitative measures include:

x Pearson produecinoment correlation coefficientgnatrix 4in Eq5)between the meas
of each of the matricescreated with the sourcesobtained over 10 repetitions
(matrix ;) and the meas of the different tumor classesabscesseand normal tissue
from the INTERPRET validated datal{asatrix < (6).

- Y60 :
4L v Equation 5

where %@ &%) @are elementsof the covariancematrix %of (Y, 9. The values of4
belong to the closed intervabs&? This measureevaluateswhether the extracted
sourcescorrelate with known prototypical spectra of different pathologiesr with
healthy tissue

x Euclidean distances betweethe means of each of the matrices created with the
sources obtained over 10 repetition(s) and the mean spectra of differentumor
classes in the INTERPRET validated datdbsealculated ad ; F <!5, evaluate the
similarity between the extractedgourcesand the different prototypical spectra of
different pathologiesor healthy tissue

X The CC of the mixing matii}) of the means of each of the matrices created with the
sources obtained over 10 repetitiofs). Thesecan be understood as estimates of the
concentration/abundance of the constituent signals or souricethe conformationof
each spectrumThese will help us determine how well the sources obtained through
convex NMF represent thartefacts.

Results

, EUA E %}ES *}u }( 8Z /L% ESe[ ]vE E% E § 5]}ve }( §Z
brevity, only part of the complete set of resslis reported, with some detailed results moved

to the supplementary materials
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Figurel shows the mean andtandard deviatiofSTDpf sources extracted for L v(minimum
number of sourcesat STESourcesS1land S4show patterrs that resemble those dfigh-grade
glial tumors, characterized kiye predominance of mobile lipid€.9, 1.3 ppm). Sourc83is
similar tolow grade glial tumor spectran which there is an increase in the Choline peak, a
decrease in Creatine anda¢etyl aspartate, and an increase in the Mgiositol/Glycine peak
with respect to normal brain parenchyma pattei®ourceS2 instead can be consideredsan
artefact due to poor water suppression, which can be observed in the residual vsggrmal
around the offset ared4.2-5.1ppm.



| | &\’ 'L J E"v,;,-g,L “ A
=4 vil"/}L-—- 1 A - ‘ — — g V’M N A }%J‘J":A‘ﬁ*":
I | ‘ A »‘ w ,‘
~ {\Jj __ | s _ ;Jlf B . - ﬂ/\r ’_ \ WA \Mﬂf \ A ‘ll{m -

Figure2 widens the scope andhows the extractiosfrom - L vto - L z(byrows)at STE.
Sources in column 2 show the poor tea suppression artefagtvhereasin column 6 poor water
suppression and negative intensitibad water phasingcan be observed. This should be
considered aan artefactial source giventhat spectra at STE are not supposed to have negative
values. Column 8 shows a source thaiospatible with a combination of artefacts: poor water
suppression and spurious echaés.
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Figure 3 shows the extraction fothe maximum oftwenty sources Table 2 displays the
Jve vepe E% ES *% 3 E}e. [} %ah & opsehvenl that fpurcés, S4, S7, S914
andS15are comptible with highgrade tumors, which is related to the presence of mobile lipid
peaks at 0.9 and 1.28 pprAmongst theseS9shows an uncommon high methyl resonance at
ca. 0.9 ppm, compatible with the spectral pattern of some oligodendroglidg1s82). S11 S17
andS18 even ifstill interpretable,containartefactualpatternsmainly due to insufficient water
suppressionin particular forS2, S5, S10, S12, S13, 81BS20showclearartefactual paterns,
and S18is borderline regarding this aspedt appearsthat the problemin most themis bad
water suppression§2, S5, S10, S12, S16,)S2metimes only in the downfield side of the
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suppressed water signal, rarely used for classifier developnienén also & seen thatmore
than one artefact coexisia some instancedor example low SNIS2 S13 andspurious echoes
(S2, S1B8 The remaining sources have characteristics that match the type of patterns of known
tumors, asm S3or S18 which arecompatible with meningioma$sg with low grade gliomaS8,
with PNET or astrocytoma grade Ill, &9 with normal brain.Importantly, allthese sources
consistently appear and also show little variability throughout all extractjens v& ,20).
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Figure4, we now move tosimilar experiments folLTE dad sources. lincludes the results fothe - L vextraction,
where S1, Sand S3displaygood qualty patterns, while S4clearlycorrespondto a bad water suppression artefact.

S1 and S2 though, also show a small contribution from incomplete water
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suppression.

Flgure5 dlsplays extractlons from four to elght sources. It can be observed again that some of the sources appear
consisently in the different extractions and are the less variable, and that the izdnility in the solutions increases
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Figure6 shows the extraction for L trat LTE, where it can also be appreciated that &3y
S12and S13show low variationwhile the rest of sourceshow different degrees of variability

Such vaability can be assessed in detail from
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Figure7, whichshows,for STE and LTthe standard deviatiorof the different sourcesn the
form of boxplots. These plots provide evidentteat the 4source extration is the less variable
whereas the solutions obtained with th20-source extraction areather unstable although
there is a gradientbest seen for the STE sourdastweenlow variability (39, S1, S13) to large
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variability (S12517,S5, S20)Additionally, thestandard deviatiorof the 20-source extraction
solutions at STE @dearlylower than at LTE.

Qupplementary Figures 1 to 22 provide the details ofthe standard deviation for all the
extractions at thalifferent TEs, where it can h@tedthat either 4 or 5 sources at STE and 4 at

LTE are optimal in terms of sourgability. In general, extractions at STE are more stable than
atLTE.
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Figure 8| and

Figure9| for STE and LT&spectively show thecorrelationsand Euclideardistancesbetween
the sources obtained at L 20and the different mean spectriiom the INTERPRET datahase
as well as the CCs. Tables 2 and 3 summarize the results of the different fiiterid 20 from,

in turn, data acquired aBTE and LTEs it can be observedost artefactualsourcesdo not
correlate (Pearson <€.50)with at least one of the comparetypes there is a high Euclidean
distancebetween the sources artthe compared typesind thae are nasamples withCGhigher
than 0.75 The experts alseonsideredthat the abovementionedpatterns were artefactualor
contained artefactsin particularfor STE.

Figures in thé&Supplementarynaterials fiow the equivalentesults for- L {& 49, at STEnd
LTE.

Discussion

In this study, we extracted characteristic spectral patterns in a wholly unsupervised.eay
disregarding instrumental quality or tumor type labels. The mathematical apprcamsenwas
CNMEF on the assumption thathe observed spectra are the result of a combination of
unobserved signal sources

An alternative approach could have been to apalyechnique such as ICKCA restricts the
sources to be statistically independent from each other (i.e. the occurrence of one does not
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affect the probability of occurrence of the othefgading to MRS sources that poorly resemble

the tissue types invoI\da. For this reason, even when ICA has been extensively used to
remove artefacts from electroencephalographic recordi@, we did not consider itour first
choicefor extractingthe kind of arefacts that can be found in MRS daféghe nonnegativity
constraints of NMF, instead, lead to a pan®sed representation because they allow only
additive, not subtractive, combinations. Thiarts-based representation is key to explain the
success of this BSS method in MRS data. ICA learns holistic (i.e. the whole rather than the sum
of its parts)instead of partdbased representations. AmongstMF variants, we chose to use
CNMF as 1) it appls to both nonnegative and mixesign data matrices (key féong time of

echo tLTE MRS datg), 2) it has proven to represent better the underlying signals in the data

as the sources must lay in the convex hull of the data, and 3) CNMF is bound to generate
sparse mixing matrices (with many elements taking values close to zero), which is a very useful
property that can be exploiteth future workin the artefact removal process heuse of NMF

and CNMF for the analysis of MRS has already been reported in the field ofcnmmog

. These methods have mostly been used to detect sources that might be related to specific
S]le*n SC%0 ¢ ]Jv v E&E}uv S$Z SpulCEU uvsS]vP (}E& SZ <% 8] o }r

Here, the use of ONF hal quite different goals. We hypothesidghat, should some of the
analyzed MRS data be contaminated by errors in the form efacts of different type, some

of the sources extracted by CNMF should mostly reflect such artefacts, while the restadssou
would mainly reflect true tissue information. If this hypothesis holds, it follows that the MRS
data could be adequately reconstructed from only those sources containing true signal, by
removing the artefactual sources from the reconstruction.

As the number ofunderlying sourcein the datasetis not knowna priori, we performed a
descriptive study extracting from four to twenty different sourdesm the available spectra.
Note that the criteria to choose the most appropriate number of sources may be based on
strictly quantitative measures, on the radiological interpretability of the extracted sources, or
on a tradeoff between both approaches.hiswas not the objective of the current study and,
therefore, such numberremains to be determinedTo address this problemfor example
Laruelo usedvertex component analys, Vilamalaet al. used a Bayesian NMF variant
, and, in , the authorsproposed an approach tautomatically discard irrelevasources
during the iterative pocess of matdes decompositionHowever ,in terms ofsource extraction
stability and according to the reported resultshoices of- L v F wfor STE and- L vfor LTE
seem optimato represent major tissue and artefact classes

The experiments were carried own the largestmulticenter SV MRSrain tumor patient
databaseavailable to dateThe results reported in the previous section clearly indidht
some of thesourcesappearconsistentlyacross extractionsno matter the number of sources
extracted andthat they correspond towell-defined souces (in the sense that they clearly
correspond to either tumor types or to artefagt he arefactual patterns are mostly different
shapes of bad water suppression, as well asINRRThe bad water suppressi artefact is the
most conspicuous and appeagsen in theextraction of only four source®\ recentwork by
Kyathanahally et a used a convolutional neural networCKN a variant ofdeep learning
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model) to detect the ghosting artefa, which is vey difficult to classify vih conventional
methods. It is difficult taascertainrwhether CNMF is as good as deep learningeitecting this
kind of artefact. The spectra we used in this wavkre alreadydefined on the frequency
domain,so a detailed analysis of the cause of eadkfact was out of the scope of our study.
Also, the dataset we used contains a wideiety of artefacts, sometimes more than one in each
spectrum (e.g. bad water suppression agldosting artefact), in contrast t, where the
authors used simulated anid vivo A}opuvs Es[ *% SgHrpopelyAng orily artefact
was the ghosting one. It remains to be tested whether a deep learning approach would also be
as good as CNMF to chase other kinds of artefacts, bamatate these two approaches seem
to be complementaryRecent work by Gurbaeit al. , using CNNseems to suggest so, as
their algorithm was able to pick artefactual patterns of different origiméth remarkable
efficiency(AUCof 0.95in the test set) Their dataset was composed Q884 spectra frononly
nine patients

One of thehypothesesin our study was thatsome of the sources extracted by CNMF should
mostly reflect known artefacts, while the rest of sources would maieRect true tissue
information. The results reported in figures 1 to 6 support this hypothesis to a large extent, as
artefactual sources were easily identified and characterized spgctroscopy experts.
Furthermore, these sources repeatedly and consisteapipeared with small variants in every
extraction from 4 to 20 sourcedMost importantly, the quantitative measures support the

/E %o Eopedals The results for data acquired at STE reported in Figure 8 provide us with a
detailed picture. Out of the 26xtracted sources, S2, 5, 10, 12 and itiéntified as artefactual,
have very low correlations and corresponding high Euclidean distances with all types included
in the databases (tumorgbscesseand normal tissue)They also show low CC values, which i
consistent with the fact that they only weight strongly on a limited number of spectra. On the
other hand nonartefactual sourceshow overall high correlations and low Euclidean distances.
Moreover, some sources correlate highly with sfiegrofiles. For instance, S1, 7, 9, 14 and 15
highly correlate with both absceses and aggressive tumors, while S19 correlates highly with
normal tissue Note that the CC values offer some further interesting insight: those sowities
the highest number bvalues over the 0.75 threshold are precisely the less variablébasH
defined ones, correspondingjuite neatly to database typesA similar analysisould be
presented for thedata acquired at LTE, but we omit it here for the sake of brevity.

When onlya few sources are extracted, they are more likely to be combinations of more basic
sources and these combinations tend to break into more basic components as the number of
sources increasdrelated to this, we found that the instability of the sourcesglty increased

as the number of extracted sources increased. This is no surprise, as the uncertainty of the
results is bound to increader more sources when the number of spectra remains the same.
Note though that this variability is by no means homogeus over the extracted sources, with
some of them showing very low variabilit¥/hat is more, some sources show high variability in
some frequency ranges and low variability in oth@itsis is visually clear from figures 1 to 6, but
also quantitatively f'om the boxplots of Figure Artefactual sources have, in general, more
variability. The likely reason for that is that these sources are present in a limited number of
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spectra and have limited leverage on the rest. A few of the-aefactual sourceslso show
high variability, which might be a sign of their low impact in the overall signal.

In the past, most efforts towards quality control of MRS data have been based on supervised
approaches that are known to have some limitatioBach spectrum hadwahys been treated

as either being of good quality or bad qualiffhena bad quality spectrum would bso,
irrespective of the cause (the artefacind the magnitude of the problemas an extreme
example, a slightly badly phased spectrum could epih the same category asi@xtremely
noisy spectrum,or one with bad water suppressioand a very important problem with the
phasing as well as with small peaks in filegjuency regiorof interest all artefacts at the same
time. Therefore, me limitation to this approachis the evidentfact that labelling depends on
experts and different experts may have different thresholds for accepting a spectrum based on
its quality. Thiswasextensively recordeth the same source database where the current dataset
has been taken fro, but never systematically studied. Neveetbss, the fact has always
beenduly acknowledged iall previous stuges(for examplen , to citejustone recentstudy)

Another related limitationto supervised approaches the mere existence of aliversity of
artefacts ranging from lowSNRo bad water suppression, ghosting, bad or imperfect phasing.
Kyathanahallyt al. demonstratethis fact graphically ifrigure 1 of their publicatio@, where

it can be seen that the mearand standard dviationsof good quality spectra and bad quality
spectraclearlyoverlap leavingapproaches suchsthose based on linear discriminant analysis
unsuitable for the taska fact known sincesarly Work, where a quadratiaiscriminant
classifier wagmployedinstead

Supervised approaches, in the end, require a simplified labeling s#idtimgich an unsupervised
approach such as CNMF is not restricted to. For this reason, sophisticated classifiers such as
those from the @ep learning famil@ are only suitable for such simplified setting, in which

they can achieve very competitive results. A word of caution must be given though, as deep
learning methods are only meant to provide a neat advantage in daelasettings, which are
uncommon in the MRE domain. An example of that are the excelleesults recently obtained

by alternative classifiers a similar setting without resorting to deep model architecturgs

but to a boosting and data sampling method (RUSB@) specificallysuited to class
imbalanced data sets

An unexpected finding of our study has been thalhenthere is a sufficiedy highnumber of
sources, we begin to observe patterns that are partly usable and partly unusable (for example
see Figure 3, STE, source tjion downfield from watér In fact, for20 sources extracted at
STEthere appears to be a total coincidence when #perts consider a source as artefactual
v U e ]88« W Ee}v[e }EE o0 3]}v AJEZ 3 0 +3}v }(3Z }Iu% E o)
the Euclidean distance between this source and all the means of the different classes is lower
than 100 and, 3) namof the spectra in the database has a CC higher than 0.75. However, results
for LTE are not as cleapuSU u JvoC He 8z & & -}u E u%o ¢ }( SZ -
artefactual e }pE +_X
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Altogether, evaluating the sources with three differeptantitative measuresappears to bea
valuable approach, as in cleajut artefacts all measures would agreehile in partially valid
spectra there might be disagreement between these measures, should a threshalddision
be establishedGurbaniet al. used an approach named GRAﬁm, and they were able
to identify that the most artefactual regions (approximately [0, 1.6] and [3.7, gh&])) were
those out of the main interestingnetabolite regions Despite their spectra having a narrower
spectralrange than ours ([0, 4.5ipm vs {2.7, 7.1]), their results point to their CNN being able
to at leastrecognize bad water suppression and bad homogenaltiitough exclusion of spectra
with a metabolite linewidth greater than 18 Had beenperformedbefore the experiment

The fact that NMEnethods ‘pick_artefacts as well asnetabolicallyinteresting patternshas
been known sincthe first applicationof this technique to MRS data of humans (figure @),
andhasrecentlybeen corroboratedfigure 7.7 i). However,thisfactisusually overlooked
other thanfor the need ofgetting rid ofthe artefacts. One simple strategy used by Sajtal
was to remove art@actual sources (recognized by the expert spectrostspifrom
subsequent analyses by a masking procedérmther useful approach when artefadetection
isnot the objective is to discard bad quality spectra before performumtper data analysegor
instance using welestablished threshold criteria as if1719273839), and/or by using
integrated peak areas of selected metabolite intensifi&d41).

As for our results, artefacts are conspicuous, indefectibly appearing when asking eviea for
lowest number of sourcels- L V). In this sensaynsupervisedCNMHAs shown to bea powerful

tool for this kind of imbalanced datasets (a high number of good quality spectra and a low
number of bad quality spectra), for whithe adoption of an oversampling schema for the bad
quality spectra clag®|34) is advisable fosupervised approaches to perform optimally.

Anothe question that can be raised in view tbie resultspresented in this studpnd others
addressing similar issués are someéPRapproachedestsuited to detect one particular type of
artefact than othersThisquestionmerits further indepth research.
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Figures

Figurel. Mean and STD ()/of sources (S) extracted f&=4(Kbeing number of sourcégrom spectra acquired at
STEN=1,180). S1, S2, S3 and S4 stand for source nuhb2r 3 and 4respectively Thex-axis of thegraph is
represented inparts per million (ppm)whilethe y-axisrepresentsthe intensities in arbitrary units (aju The mean
is represented by a blue line and the variabitigscribed as STD ¢}is disgayedin grayshade enclosed by #lack
line. In thissource extraction variabilityis extremely low which explains whynly a single black line seems to
representthe source The sources closely resembleacdcteristic spectra of different typesnd ould even beaken
by a mean spectrurifino more informationwas given. As the original spectra had bpemcessed with the INTERPRET
pipeline{Tate, 2006 #15942vhich includes residual water suppressidrom pointsbetween4.2 to 5.1 ppm set to
zeroprior to unit length normalisationsource alsodisplaythis characteristic of the processing pipelifiehe zeroing
of the 4.2-5.1 ppm intervalwas incorporated ito the INTERPRET pipeline becaifishere were any remnats of
water signal, theintensity of therest of the spectrum would be affected when performing the unit length
normalization.

The firstand thirdsources (S1land S3havea typical pattern of necrosisith high lipids at 0.9, 28and 2 ppm with
S4 aditionally showing cholinecontaining compounds at 3.21 ppm argbids at 5.3 ppm and a different
methyl/methylene 0.9ppnV1.28ppm) ratio than for S1S2 shows a typical pattern of bad water suppressioat, the
zeroing betweert.2 and 5.1 could only pally eliminate, thereforethe appearance of thesevo 4ails , fromthe
incompletely suppressed water signappeaing between 3.9and 4.2 approximately andetween 5.1 and’.1 ppm
No other metabolite signals can be identifiedthis S2. The third swce (S3)shows the typical pattern for an
infiltrative, lowgrade glial tumour, in particular theénigh cholinecontaining compounds / creatine ratio
(3.21ppm/3.03ppm) is indicative of high proliferation, whereas the decrease inirtemsity of the N-acetyt
containing compounds at 2.01 ppm (it should ddeout twice the height of the creatine pedk a normal braihis
indicative of a decreased amouhunctionality of neurones.
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for K=4. Other features as in figure 1 legend.

1 sz s 5 =
5 u o .
o
.
- o L =
1) ) L * w0
:
= o
o -0 3 b
— - ] 5 =
s e s i o
= = s s
" =
M n r
0 » 15| )
i i i i H
i . ) 3
0 . 1 o "
- .
e — s — T W L S
. su su 23 s1 sis
) » o 8
] MM - ; ; _‘_/JL; :
-5 = ) -8 ]
T L) 7 T =] El W £l el T = = T T T L] =1 £ ' W E) 7 L] E3 4 T T =
o won o - o
s o s s s
N . » " =
s ) N u
.
» o » o
i i i
-
" f o
« = - -
— 5 5 ——
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points are those past the end of the whiskerS)I'D was calilated from the matrix inwhich there are ten rows
(corresponding to the ten extractions) and 512 points (corresponding to the number of points of each source).
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Figure8. a) Correlation between sources extracted F6r20(from data acquired at STE)d mean spectra from the
types included in théNTERPRET validated datat@ewherethe x-axis corresponds tthe source numbeandthe
y-axis tothe values of theorrelations. b) Euclidean disce between each source for tie=20extraction(from data
acquired at STEndmean spectra from théypes included in théNTERPRET validated datat@;aNhere thex-axis
againcorrespondgo the source number, while thg-axiscorrespondso Euclidean distances. c) CC of the mixing
matrix forK = 2Q wherethe x-axis corresponds tthe source numberndthe y-axiscorrespondgo the number of

samples.
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Figure9. Correlations, Euclidean distances and CC for data acquitetEatepresented as in Figure 8.
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STE LTE

Type GOOD | POOR | BAD | Total | GOOD | POOR | BAD | Total
Abscess 9 0 2 11 8 1 2 11
Astrocytoma WHO grade I 0 0 7 0 0 7
Lymphoma 16 2 1 19 15 0 3 18
PNET 11 0 0 11 8 0 0 8
Glioblastoma ) 189 5 18 | 212 215 9 34 | 258
Metastasis Aggressive 87 1 7 95 78 4 10 92
Meningioma 100 4 23 | 127 87 5 13 | 105
Astrocytoma Low grade 68 2 77 60 7 4 73
Oligodendroglioma glial(WHO 27 0 29 39 2 2 43
Oligoastrocytoma grade I1) 12 0 15 22 1 1 24
Pilocytic astrocytoma 27 1 37 37 1 9 47
Other Pathologies 100 19 10 | 129 156 25 3 184
Not available 304 23 55 | 382 77 1 12 88

Total 982 49 149 | 1180 | 828 38 111 | 977

Tablel. Number ofspectra acquired at STE and LaEailable per tumor type and quality lab&dheGOOD, POOR

and BAD labels are taken from the data matrix from sjd lv Az] z 52

§Z

Jvs CEu

]S

(0]

0 }( "% }}E <

was assigned to the rejected spectra that had been seen by three experts and had been accepted by ane of the
Not availablecorresponds to cases lackidgfinitive/consensusliagnosisn the database.
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Source Conserlsusxpert 5 Pearson correl_ation> Euclidean distancevith | Number of_

number * %o S E}e }%]°8| 0.50 at least with one of | all the compared samples with
evaluation the compared classes classesat least> 100 CC0.75

1 Good quality Yes No Several

2 Artefactualpattern No Yes None

3 Good quality Yes No Several

4 Good quality Yes No Several

5 Artefactualpattern No Yes None

6 Good quality Yes No Several

7 Good quality Yes No Several

8 Good quality Yes No Several

9 Good quality Yes No Several

10 Artefactualpattern No Yes None

11 Good quality Yes No Several

12 Artefactualpattern No Yes None

13 Artefactualpattern Yes No Several

14 Goodquality Yes No Several

15 Good quality Yes No None

16 Artefactualpattern No Yes None

17 Partlyartefactual Yes No None
pattern

18 Partlyartefactual Yes No Several
pattern

19 Good quality Yes No Several

20 Artefactualpattern No Yes None

Table2. Summary of the evaluations for tt&9-sourceextraction, atSTE.
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Pearson .
- Euclidean
correlation > . . Number of
- . distance with all
Source Consensus €E %0 (ES *% SE}e }% 040 at least samples
X . the compared .
number evaluation with one of with CC >
classesat least>
the compared 0.75
100
classes
1 Good quality Yes No None
2 Artefactual pattern No Yes None
3 Good quality Yes No Several
4 Artefactualpattern No Yes None
5 Artefactualpattern but source too variable Yes No Several
to be sure
6 Good qualitybut source too variable to be Yes No Several
sure
No (close for
7 Partlyartefactualpattern low grade No Several
glial)
8 Artefactualpattern No Yes Several
9 Artefactualpattern Yes No Several
10 Artefactualpattern No No None
11 Artefactualpattern No No None
12 Good quality Yes No Several
13 Good quality Yes No Several
14 Artefactualpattern, but source too variable ves No Several
to be sure
15 Artefactualpattern No Yes None
16 Par_tlyartefactualpattern but source too Yes No Several
variable to be sure
17 Partlyartefactualpattern No Yes None
18 Par_tlyartefactualpattern but source too Yes No Several
variable to be sure
19 Good quality Yes No Several
20 Artefactualpattern No Yes None

Table3. Summary of the evaluations for the 2durce extraction, at LTEor some sourceshe evaluation is
uncertain(source too variablebecausehere is so much variability that one of the 10 solutions mayhieeactual
reverse ofthe evaluation.

29



