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ABSTRACT

Context. Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time.
However, the eect that galaxy mergers have on star formation rates (SFR) is contested, with observations of galaxy mergers showing
reduced, enhanced and highly enhanced star formation.

Aims. We aim to determine the ect of galaxy mergers on the SFR of galaxies using statistically large samples of galaxies, totalling
over 200000, over a large redshift range, 0.0 to 4.0.

Methods. We train and use convolutional neural networks to create binary merger identi cations (merger or non-merger) in the SDSS,
KiDS and CANDELS imaging surveys. We then compare the galaxy main sequence subtracted SFR of the merging and non-merging
galaxies to determine what ect, if any, a galaxy merger has on SFR.

Results. We nd that the SFR of merging galaxies are not signi cantly dient from the SFR of non-merging systems. The changes

in the average SFR seen in the star forming population when a galaxy is merging are small, of the order of a factor of 1.2. However,
the higher the SFR above the galaxy main sequence, the higher the fraction of galaxy mergers.

Conclusions. Galaxy mergers have little @ct on the SFR of the majority of merging galaxies compared to the non-merging galaxies.

The typical change in SFR is less than 0.1 dex in either direction. Larger changes in SFR can be seen but are less common. The
increase in merger fraction as the distance above the galaxy main sequence increases demonstrates that galaxy mergers can induce
starbursts.

Key words. Galaxies: interactions — Galaxies: evolution — Galaxies: star formation — Galaxies: starburst — Methods: numerical

1. Introduction stars (e.d. Barngs 2004; Kim et|al. 2009; Saitoh gt al. 2009). Such
) ) shock-induced star formation in mergers has also been observed
Galaxy mergers and interactions form a key part of our undggchweizer 2009). These intense star forming events are believed
standing of how galaxies form and evolve over time. In cold dat§ be the cause of some of the brightest infrared objects, ultra lu-
matter cosmology, dark matter halos merge under hierarchigghous infrared galaxies (Sanders & Mirabel 1996; Niemi ét al.
growth that results in the merger of the halos’ baryonic counteig12). This connection between starbursts and merging galaxies
parts (e.g. Conselice 2014; Somerville & Dave 2015). This intgsylted in the prevailing theory that most merging galaxies go
action results in the disruption of the galaxies that lie at the cenfrough a starburst phase (¢.g. Joseph & Wfight 1985; Schiveizer
of the dark matter halos. Tidal forces act to pull and distort tixyps).
galaxies, moving stars within the galaxies from the disk to the
spheroid component (e.g. Toomre & Tooffire 1972; Someyville More recent observations have shown that merger induced
& Davé|201%, and references therein). Mergers can potentiadbarbursts are found in the minority of merging systems. These
increase the activity of an active galactic nucleus (e.g. Sandsfigdies have found that the typical increase in star formation rate
& Mirabel|1996 Ellison et al. 2019), although more recent WOY(SFR) of a merger is at most a factor of two, much lower than
suggests this may not always be the case|(e.g. Darg et al.|203@@t would typically be considered a starbufst (Ellison ét al.
Weigel et al| 2018). 2013; Knapen et al. 2015; Silva et/al. 2018). Work/ by Knapen
Mergers are also thought to trigger periods of extreme sgiral| (2015) has shown that the majority of galaxy mergers are
formation: starbursts. From simulations, these starbursts are foemd to cause a reduction in the SFR when compared to non-
lieved to be a result of the tidal interactions of the galaxies commerging galaxies of comparable stellar masses. In total, approx-
pressing and shocking the gas, resulting in the rapid formationiwiately 10-20% of star forming galaxies are found to be under-
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going a merger| (Luo et dl. 200/4; Cibinel etal. 2019), with thies. However, such approaches are not scalable to the volume
fraction increasing with redshift (Berrier et|al. 2006; Conseélicgf data we expect from upcoming large surveys. Using non-
et al|[ 2009 Lopez-Sanjuan etlal. 2010; Lotz €t al. 2011; Lopgrarametric statistics, such as concentration, asymmetry, smooth-
Sanjuan et al. 2015; Rodriguez-Puebla ét al. 2017). While obssess (CAS; e.d. Bershady et|al. 2000; Conselice &t al.|2000;
vational evidence for the change of SFR as a function of time B&u et all| 20011| Conselice et jal. 2003) or the Gini cegent,
fore and after a merger is dcult due to the long timescales in-a description of the relative distribution of ux within pixels,
volved, there is observational evidence for starbursts on the estd the second-order moment of the brightest 20% of the light
and second close passes of two galaxies as well as coalescdig, Lotz et all| 2004) avoids the issues with reproducibility,
These bursts appear to last betweeh difd 1§ years |(Cortijo- especially combined with detailed galaxy merger modelling to
Ferrero et al. 2017). This is supported by observations that shprevide a classi cation baseliné (Lotz et|al. 201.0a,b). However,
close pairs have higher SFRs than more separated galaxiemérger detection with these non-parametric statistics is sensitive
mergers|(Davies et al. 20[15). to image quality and resolution and srs from a high fraction
Gas rich (wet) mergers are able to support higher SFRsadgnisidenti cations (Huertas-Company et|al. 2015). The close
there is an abundance of fuel available to create new stars (pajr method is also often employed, nding pairs of galaxies that
Lin et al| 2008 Perez et al. 2011; Athanassoula &t al. 2016). Guie close on the sky and in redshift (€.g. Barton étal. J000; Lam-
poor (dry) mergers, however, do not have gas readily availablas et al. 2003; De Propris et|al. 2005; Ellison et al. 2008} Ro-
and so it is harder to form starbursts in these systems[(e.g. Belgues et al. 2018; Duncan et|al. 2019). However, this method
et all 2006; Naab et &l. 2006; Lin etlal. 2008). As a result of densjuires highly complete spectroscopic observations and can be
environments containing a larger number of gas poor galaxisntaminated with ybys|(Sinha & Holley-Bockelmaiin 2012;
than gas rich galaxies, dry galaxy mergers dominate over \l€ing et all 2014).
mergers in dense environments (Lin et[al. 2010). The fraction Deep learning has the potential to overcome some of these
of dry mergers also increases with the age of the Univérse (Idh culties. Once trained, neural networks are able to perform
et all[2008). As a result of gas poor galaxies dominating at higisual like classi cations of galaxies, and other astronomical ob-
masses (stellar mass 10’ M ), mergers of two high massjects, in a fraction of the time it takes a human, or team of hu-
galaxies tend to be dry and, as a result, can act to suppressrsi@ins, to classify the same objects. The classi cations are also
formation (Robotham et &l. 20114). reproducible: if the same object is passed through the same neu-
A study by[Davies et al/ (2015) has found that the mergl network the result will always be the same. Deep learn-
ratio of the merging galaxies also in uences the SFR. In majétg techniques are becoming more commonplace in the astro-
mergers (mass ratio 3:1), the lower mass galaxy experiences @omical community with uses including star-galaxy classi ca-
short period of enhanced star formation while in minor mergetign (e.g/ Kim & Brunnei 2017), galaxy morphology classi ca-
(mass ratio> 3:1) the star formation in the lower mass galaxy i#on (e.g. Dieleman et al. 2015; Huertas-Company ét al. 2015;
suppressed. The more massive of the merging galaxies, howeb@minguez Sanchez etjal. 2019), gravitational lens identi cation
always experiences an increase in SFR regardless of whethef&@. Petrillo et al. 2017; Davies et|al. 2019) and galaxy merger
merger is major or minor. identi cation (e.g. Ackermann et &l. 201L8; Pearson €t al. 2019).
Simulations of mergers have been conducted, allowing us to In this work we aim to use deep learning techniques to iden-
study the SFRs of the merging galaxies throughout the entiy merging galaxies within three data sets: the Sloan Digital
merger sequence from rst passage to coalescencé (e.g. Sprifg@ Survey (SDSS; York et &l. 2000), the Kilo Degree Survey
et al| [2005] Hopkins et al. 2006; Randall et [al. 2008; RupkKiDS;|de Jong et &|. 20134,b) and the Cosmic Assembly Near-
et all 2010). These simulations have shown that SFR is enhanéé@red Deep Extragalactic Legacy Survey (CANDELS; Grbgin
when the merging galaxies are close to one another: at rst pa@al| 2011; Koekemoer etal. 2011). These three data sets are em-
second pass and coalescerice (Moreno €t al.| 2019). The pepigtied so a large range of redshifts can be covered, with SDSS
between rst and second passes also maintains a higher SFR KiDS at low redshift and CANDELS at high redshift. With
than in an isolated galaxy, by approximately a factor of two. Thigese identi cations, we will compare the SFRs of the star form-
period is the majority of the merger sequence, taking approkig merging galaxies with the star forming non-merging galaxies
mately 2.5 Gyr of the entire 3.5 Gyr merger timescale (Morer\d determine if galaxy mergers have aret on the SFR of the
et all[2019). This can explain why so few galaxies are observ@§rging galaxgas. .
to be in the starburst phase of a merger as the period betweenThe paper is structured as follows. Sectjgn 2 discusses the
starbursts is much longer than the starburst period of appro@ta used and the merger selection for training our neural net-
mately 0.5 Gyr. The starburst caused by the close passage WAtk- Sectiorf B describes the tools used in this study, includ-
coalescence is also found to be stronger for head on collisidig how we determined the galaxy main sequence through mod-
and reduces in strength as the approach of the galaxies becophi¥y and a brief description of the type of deep learning we
more oblique. However, the strength of a starburst is also céimploy: convolutional neural networks. This is followed by our
nected to the resolution of the simulation, with lower resolutidi¢sults and discussion in Sedfs. 4 4id 5 before we conclude
simulations nding weaker starbursfs (Sparre & Sprifigel 2016} Sect] 6. Where necessary, Wilkinson Microwave Anisotropy
A major observational challenge of merger studies is the dffrobe year 7 (WMAP7) cosmology (Komatsu ef al. 2011;|Lar-
culty in detecting a large sample of merging galaxies. VisuSOn et a|| 20112 IS ad?pted, withy = 0.272, = 0.728 and
ally identifying galaxies is time consuming and hard to reprddo = 70.4 km s= Mpc ~.
duce; di erent people can classify the same galaxyedéntly
and the same classi er may assign dient labels on dierent 5 paig
days. Some of this diculty can be reduced by employing cit-
izen science, such as Galaxy Eh@z; Lintott et all 2008), to To train the neural network, a large number of images of pre-
get many members of the public to classify images of galaglassi ed merging and non-merging systems are required. We
also collect images of unclassi ed images from the same sur-
1 http://www.galaxyzoo.org/ veys to classify with our networks to increase the sample size for
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this study. To determine if galaxy mergersea&t star formation 14
rates in the galaxies, we also require stellar massey,(BFR 126
and redshifts for the pre-classi ed and unclassi ed galaxies. V. | 1750

gather these for SDSS, KiDS and CANDELS.

x

These three data sets coverelient redshift ranges for which 0.8 L1250

merger detection is attempted: the SDSS data that we use ¢~ o6 \ 10005
ers the low redshift regime (@05 < z  0:1), along with the o

o
KiDS data (000< z  0:15), while the CANDELS datathatwe | ™ 3
use goes to high redshift:@< z  4:0). The overlaps in the 0.27 500 5
redshifts also allow us to examine @rences due to resolution,  o.o} oso =

depth and other eects, by comparing the SDSS and KiDS re
sults, as well as dierent wavelengths, by comparing the optice “724 3 5 —5 5 —a
SDSS and KiDS with the near-infrared CANDELS. The CAN M,

DELS data also probes rest frame optical data at 1.2 with

the three CANDELS bands used (1.6, 1.25 m and 814 nm) Fig. 1. Rest frameg r colour vs. the absolute r magnitude (Mor
probing approximately the rest frame i, r and g bands used in $i8SS DR7. The colour cut is shown as a red line where galaxies below
SDSS data. the line are considered to be star forming.

2.1. SDSS Data Release 7 The rest frame r colour was determined by our own tting of

For the SDSS data, we use the network trained on SDSS fiie ve SDSS bands with CIGALE (Noll et &l. 2009; Boquien
ages froni Pearson et|dl. (2019). The merging and non-mergfdgil 2019). A UVJ colour cut, which is used for the KiDS and
ANDELS data, is not used as the wavelength coverage is not

galaxies used to train this network were collected followin : _ - :
Ackermann et al.(2018). The 3003 merging galaxies are froff Cient to reliably constrain the J band magnitude. A plot of
Is colour cut can be seen in Fg. 1. The mass limit was deter-

Darg et al. [(2010alb), itself derived from classi cations froni". ,
the Galaxy Zoo (GZ) visual classi cation. These galaxies hayBined to be log(M/M ) = 10.1, see Sedt. 3.4 for details.
GZ merger classi cation greater than 0.4 and were then visually
checked again to ensure these galaxies are likely to be meyg- kips
ing pairs. Approximately half (54%) of these merging galaxies
are major mergers (Darg etlal. 2010b), that is the ratio of ther our KiDS sample, we use the latest data release 4 (DR4; Kui-
stellar masses of the two galaxies is less than three. For the rjgan et al] 2019). We match these catalogues with the Galaxy and
merging galaxies, 3003 galaxies were randomly selected fréfass assembly (GAMA; Driver et @l. 2009) GZ catalogue (Hol-
galaxies that have their GZ merger classi cation less than OMerda et al. 2019, Kelvin et al. in prep.) to determine the merging
Cut-outs of the merging and non-merging objects were then s#d non-merging galaxies and combine this classi cation with
guested from the SDSS cut-out server for data releﬁ$R7) non-parametric statistics (see Sgct. 2.2.2). For the KiDS data, we
to create 6006 images in the gri bands, each of 256 pix- only use r-band images to train the network, using &4 pixel
els and witH Cupton et al[ (2004) colour scaling. These imagestouts, corresponding to 13.73.7 arcsec or 25.25.2 kpc at
were then cropped to the central 84 pixels, corresponding z = 0:1, and with linear colour scaling. Tests comparing multi-
to 25.3 25.3 arcsec or 46.516.5 kpc atz = 0:1, to reduce channel, as used with SDSS and CANDELS, and single chan-
memory requirements while training. The merger fraction of theel images, as used with KiDS, to identify galaxy mergers have
complete training sample, before randomly selecting the nahown that using a single channel does not notabicathe re-
merging galaxies but after mass completeness cutd,.3%. sults. When applying the trained CNN to unclassi ed objects,
To increase the sample for analysis, all SDSS galaxies witle use objects that lie within the GAMAQ9 eld. This region is
spectroscopic redshifts between 0.005 and 0.1 were selectediatge enough to provide a statistically signi cant sample size of
match the redshift range of the training sample, and were thgadaxies and has the added bene t that it MesschelSpectral
classi ed into merging and non-merging by the Pearson et and Photometric Imaging Receiver (SPIRE; Griet all[ 2010)
(2019) network, a total of 206 037 galaxies once selected fapverage to aid with determining SFRs.
mass completeness. Again, 25%6 pixel cutouts in the gri The majority of the KiDS objects in DR4 do not have es-
bands were collected for these galaxies from the SDSS D#nates of physical parameters, beyond photometric redshifts
cutout server and the central 684 pixels used for classi ca- (Kuijken etall 2019). Thus, to deriveMand SFR, we use the 9-
tion. The M, and SFR for these objects were then collected froband catalogues combined witterschel ATLAS (Eales et al.
the MPA-JHU catalogl@ which uses the Kroupa (2001) initial2010; Smith et all 2017) SPIRE data de-blended with XID
mass function (IMF)[(Kaumann et al. 2003; Salim et @al. 2007;[Hurley et al| 201[7; Pearson et|al. 2017, see also Appéndix A).
Brinchmann et aJ. 2004). The Ms therefore derived from spec-From the 9-band catalogue we use the KiDS Gaussian aperture
tral energy distribution (SED) tting while the SFR is derivedand point spread function (GAAP; Kuijken etjal. 2015) ux den-
from H observations. sities for the ugri optical bands and the VISTA Kilo-Degree In-
For determining the galaxy main sequence (MS), the sfaared Galaxy Survey (VIKING| Edge et al. 2013) GAAP ux
forming galaxies were selected by performing a cut ingher  densities for the ZYJHKs bands, all left uncorrected for fore-
- absolute r magnitude (M plane, closely following Loveday ground extinction. SEDs are tted to these data using CIGALE
et al| (2012), where we de ne star forming galaxies as: and stellar populations with|a Chabrier (2003) IMF. As can be
seen in Fig[ R, the M from CIGALE are in good agreement,

g r<008 0O3M: (1) within 0.2 dex on average, with those from the GAMA survey
2 |http://cas.sdss.org/dr7/en/tools/chart/default.asp (Wright et all 2017) estimated using the MAGPHY'S (da Clinha
3 |nttps://mwwmpa.mpa-garching.mpg.de/SDSS/DR7/ et al|2008) SED tting tool, which also uses the Chakbyjier (2003)
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Fig. 2. Comparison of the M from this work (y-axis) with M from Fig. 4. Rest frame U-V colour vs. rest frame V-J colour for KiDS-z00
the GAMA survey (x-axis). The red line denotes the 1-to-1 relatiof9:00< z  0:15). The colour cut is shown as a red line where galaxies
The two data sets are in reasonable agreement with the average ste@hw and to the right of the line are considered to be star forming.
masses within 0.2 dex and remain the same with and without the inclu-

sion of SPIRE data. The typical statistical error oa ig 0.1 dex.

2.2.1. KiDS-GAMA Galaxy Zoo

There are no pre-existing merger catalogues for the KiDS survey,
although there are visual GZ classi cations for 36 706 galax-
ies in the regions that overlap with the GAMA survey (KiDS-
GAMA): the three GAMA equatorial elds. We can use this
classi cation to help select a sample of merging galaxies to use
with the KiDS data. As with other Galaxy Zob (Lintott et|al.
2008) projects, citizen scientists were asked to classify images
of galaxies following a classi cation tree, as described in Hol-
werda et al.[(2019), through the GZ web interﬁaed we use
the vote fractions that are weighted for user performance. These
-3} weighted vote fractions have votes from users that frequently
disagree with the majority of other users weighted lower, re-
ducing their in uence on the overall vote fraction. These galax-
ies were selected to have redshifts between 0.002 and 0.15 and
Fig. 3. Comparison of the SFR from this work (y-axis) with SFR fronf>AMA data quality ags are used to ensure only science targets
the GAMA survey (x-axis). The red line denotes the 1-to-1 relation. Tt#€ shown. Of interest here is the question concerning galaxy in-
two data sets are within 0.2 dex on average and are consistent withint@f@ctions. This question asks the classi er to identify merging
typical error of 0.26 dex. Both the GAMA SFRs and the SFRs from th@galaxies, galaxies with tidal tails, galaxies that are both merg-
work are derived from SED tting. ing and have tidal tails or galaxies that show neither of these
features. The latter of these classi cations, galaxies that have
o ) ) ) ) neither tidal tails nor show evidence of a merger, is what will
IMF. A similar comparison is made with the SFR in Fig 3, showe ysed to help identify galaxy mergers and will hence forth
ing good agreement with GAMA. N be referred to asnerger_neither_frac . Galaxies that have
To select the star forming galaxies for determining the MS,erger neither frac less than 0.5, that is less than half the
UVJ colour cut was employed using the rest frame U-V and Yeople who classi ed the galaxy thought it showed no tidal fea-
J colours, determined by CIGALE during the tting to estimat@res or merger indications, will be used here to for the basis of

M- and SFR, and the photometric redshifts. For this, we fO”OtMe merging ga|axy samp]e with further re nements added.
Whitaker et al.[(201/1):

M
w
[=]

log(SFR / Mgyr—1)
-
rl' = N M
[=] (%] [=] w
Number of Galaxies

L

—4 =3 =2 -1 0 1 2
10g(SFRGama / Mgyr™?)

U Vv)>088 (v J)+069 z< 05 2.2.2. KiDS merger selection

U Vv)>088 (Vv J)+059 z> 05 The visual GZ merger classi cations require validation with
U V)>13,(V J)<16 z< 15 (2) other methods, as chance projections or star-galaxy overlaps can
U V)>13((V J<15 15<z<20 be misidenti ed as merging galaxies (Darg e] al. 2010a,b). To do
(U V)>12(V J)<1l4 20<z<40 this, we use the Gini, the second-order moment of the brightest

20 percent of the lightNl»o), concentration (C), asymmetry (A)

where any galaxies that do not meet these criteria are determifBfl Smoothness (S) non-parametric parameters (LotZ et al. 2004,
to be star forming. An example of the colour cut is shown {Gershady et al. 2000; Conselice ef al. 2000; Wu ét al. 2001; Con-

Fig.[. The mass completeness limit for the KiDS galaxies wig!!C€ et al. 2003). For each of the galaxies in the KiDS-GAMA
determined to be log(MM ) = 9.6, see Secf. 2.4 for details S@mple, we derive these ve non-parametric statistics using the
This was determined using the magnitude limit from the GAMRYthon codestatmorph (Rodriguez-Gomez et &l. 2019).

survey of 19.8, for the r-band, as this is the limit imposed on the

training sample. 4 |ttp://iwww.galaxyzoo.org/
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Lo e - - - et al|[2004). The ux distribution of a lower resolution image
0ol @ J. — Lotz etal. (2004) will be di erent, the same ux will be spread across fewer pixels
i Lotz et al. (2008) in a lower resolution images as well as removing smaller scale
structures, which will increase the uncertainties in these statis-
tics. Similarly, higher signal-to-noise images will reveal fainter
features of a galaxy that will also act the Gini andVi,o. The

Gini andMyg have been found to be reasonably consistent when

Gini

[t
w

[¥]
08 £ the signal-to-noise is above 2 bl is particularly sensitive to
&' resolution[(Lotz et . 2004). The data used in Lotz éfal. (2004)
075 is lower resolution than KiDS while Lotz et &ll. (2008) uses Hub-
El ble Space Telescope data with higher resolution.
'0-65 If instead we use the asymmetry (A) and smoothness (S)
© N | o5 2 Statistics, which have been found to be not overly sensitive to
0.9r u g resolution asMyo (Lotz et all[2004), we nd a merging sample
0sl b g T 049 that agrees much better with the visual classi cation. It has been
l'I " @ found, by Conselide (2003), that the merging galaxies lie above
0.7+ 1]
=
<

06l A= 0:355 + 0:.02 (5)

Gini

03¢ As can be seen in Fif] 6, this classi cation is in good agree-

ment with the visual classi cations from GZ. Overlaying the
Darg et al.[(2010a}b) mergers, we nd that the majority lie above

0.4¢

0.3 % Darg et al. (2010a,b) Eq.[3. Based on this agreement, we select our merging sample
0 T oS ST S5 o to be those galaxies that haveerger_neither_frac  from GZ
’ ' ' Mz.o ' ' ' less than 0.5 and lie above Eg. 5, with non-merging galaxies de-

ned as those wittmerger_neither_frac greater than 0.5 and
Fig. 5. Gini vs. My for the KiDS-GAMA GZ galaxies binned by li€ below Eq[B. This results in 1917 merging galaxies that we
Gini and M. The averagenerger_neither_frac  from GZ within  USe to train the KiDS network. By matching these galaxies to
each bin is shown from low (red) to high (blue). The green line ke nearest galaxy within 3 arcsec in the full GAMA catalogue
the[Lotz et al.[(2004) split between merging and non-merging galag®/right et all| 2017) and selecting the pairs that have redshifts
ies while the yellow line is thg Lotz et al. (2008) split. Regions witfithin 0.05, we nd that approximately half of these galaxies
low merger_neither_frac are visually identi ed as merging galax- (6 of 14) are major mergers. The total number of matched pairs
ies. Panel (b) includes the visually con rmed mergers fiom Darg et g4 very low, and will miss pairs where the secondary galaxy is
(20104.p) as purple stars. below the magnitude limit of the survey, but this fraction is in
line with that seen by Darg et al. (2010b) in the SDSS data. We
There has been found to be a division between merging giagmdomly select a further 1917 galaxies from the 20 842 that lie
non-merging galaxies using the Gini aldb, statistics] Lotz below Eq[$ and haveerger_neither_frac  greater than 0.5
et all [2004) found that galaxies can be considered to be n&mform the non-merging sample. With these classi cations for

mergers if merging and non-merging galaxies, and after mass completeness
- cuts, the merger fraction of the GZ galaxies is 8.4%.

Gini< 0:115My + 0:384 3)

while|Lotz et al. [(2008) found a similar result with non-mergers 5 -ANDELS

de ned as o

Gini< 0:15Myg + 0:33 4) To train the CANDELS network, we use the visual classi-

cations for the Great Observatories Origins Deep Survey -
We also populate the Girdyg parameter space, bin bySouth (GOODS-S; Giavalisco et|al. 2004) from Kartaltepe gt al.
Gini and My and show the averagmerger_neither_frac (2015). This catalogue contains galaxies with H magnitude less
of the galaxies inside each bin, as seen in Hipj. 5. Thean 24.5 that have been classi ed by a small number of pro-
merger_neither_frac s the fraction of GZ votes that say thefessional astronomers and we select objects with photometric
galaxy has no indication of a galaxy merger or tidal tails. In deedshift below 4.0. Of interest to this work are the classi ca-
ing this, we nd that galaxies found to be mergers in the KiDSions that identify mergersnferger), interaction within a seg-
GAMA GZ typically lie on or above these two lines. Howevennentation maplftl ), interaction with a galaxy outside of the
as can be seen in Fig| 5, there are also a large number of gat®gmentation magr{t2 ), a non interacting companio€omp
ies that lie above these lines that are classi ed by GZ as na-no interactioniloint ). During the classi cation, only one of
mergers: the merging galaxies appear to form a valley. Ovéhese identi cations may be chosen. The catalogue also contains
laying the visually con rmed merging galaxies frdm Darg et aln Any_Int category, which combines theerger, Intl and
(20104,b) that fall within the KiDS coverage, we also nd thaint2 identi cations.
the majority of these galaxies lie below the Lotz et[al. (2004) and We de ne galaxies as merging if theny_Int classi cation
Lotz et all (2008) lines, as can be seen in Fjg. 5b, suggesting tisagreater than 0.6 (i.e. more that 60% of people believe that the
this is a poor choice to determine merger status for this KiDfalaxy is interacting) and we de ne galaxies as non-merging if
data set. the Any_Int classi cation is less than 0.5. As with the KiDS
This disparity may be a result of the dirent data used. Thegalaxies, we match the merging galaxies to the rest of the CAN-
Gini andMy statistics are calculated from the images and so deELS catalogue within 3 arcsec and selecting the pairs that have
pend on the resolution and signal-to-noise of the images |(Loeshifts within 0.05, we nd that approximately half of these
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g 02 n in IO 3« ies below and to the right of the line are considered to be star forming.
E [ || | A
é“ 0.0 J_ " §.RaN ¥* 0.2 _ B
‘e "B = et all (2017) for EGS and Santini et|al. (2015) for UDS.
—0zm . s ™ As these catalogues contain a number ofedent M, and
| SFR values, the "M_med' is used for,Mand we average
04 * Darg &al. (2010a.b) . "SFR_11a tau', "SFR_13a_tau', 'SFR_2a_tau', 'SFR_14a/,
-0.30 —0.25 —0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 "SFR_14a_const', "SFR_14a_deltau’, "SFR_14a_lin,
Smoothness 'SFR_14a tau', ‘SFR_6a deltau’, ‘SFR_6a_ invtau' and

"SFR_6a_tau' for SFR, as these columns are common across
all catalogues. These dirent SFR values assume dirent

GZ within each bin is shown from low (red) to high (blue). Regions wit tar fqrma}ti.on histories (S.FH) Wh(—;‘rg cons' i§ a Co,n.Stant
low merger_neither_frac  are visually identi ed as merging galax- >F H» tau’ is an exponentially declining SFH, “deltau’ is a

ies. The orange line denotes fhe Conselice (2003) split between mélglayed-exponential, “lin* is linearly increasing and “inctau’ is

ing and non-merging galaxies. Panel (b) includes the visually con rmé&xponentially increasing. The numbers refer to the investigator

mergers from Darg et al. (2010a,b) as purple stars. within the CANDELS team who lead the determination of that
SFR [Stefanon et &l. 201.7). For the redshift, the “z_best' value
in the catalogues were used. This value is the spectroscopic

ga|axies (4 of 9) are major mergers. Again, the total number I@dShift, if a_va'ilable, or the best photometric redshift from SIX
matched pairs is very low, and this method will miss pairs whep@embers within the CANDELS tearn (Guo ef/al. 2013; Santini
the secondary galaxy is below the magnitude limit of the sift all 2015 Nayyeri et &l. 2017; Stefanon ef al. 2017) _

vey, but this fraction is in line with that seen in the SDSS data. T0 determine which CANDELS galaxies are star forming,
Cutouts for these objects were created from the in1.25 m We again apply the UVJ colour cuts de ned in Eq. 2 using the
and 814 nm images. As the 814 nm images are twice the antfft frame U-V and V-J colours in the CANDELS catalogues,
lar resolution of the other two bands, these images are redudédshown in Figl.[7. Mass completeness limits were calculated
in size by averaging the ux density in 2 pixel groups. The to be log(M:/M ) = 8.3, 8.7, 9.1, 9.4 and 9.9 within redshift
1.6 m, 1.25 m and 814 nm bands are then used as the r&ﬂ',‘ls with edges at= 0.0, 06,085, 1.21, 1.66 and 4.0, see also
green and blue channels in the images, with simple linear col®&Ct[ 2.4 below. These redshift bins were selected so there are ap-

scaling. As with the SDSS and KiDS images, the CANDELBroximately 2000 galaxies within each bin after cutting for mass
images are 6464 pixels, corresponding to 3.8.8 arcsec or completeness. For ease of reference, these redshift bins shall be

32.7 32.7 kpc atz = 1:5. Objects with clear artefacts withinreferred to as CANDELS-z000, CANDELS-z060, CANDELS-
the image were removed. This resulted in 694 merging gala@85, CANDELS-z121 and CANDELS-z166. A summary of all
ies and we randomly select a further 694 from the 4428 ndiiata sets is presented in Taple 1.

merging galaxies that meet our criteria. The merger fraction for

the training sample using these criteria, and after mass completg- \145s completeness

ness cuts, is 15.5%.

To increase the CANDELS sample for our analysis, w¥ass completeness limits were determined empirically by fol-
classied all CANDELS galaxies with H-magnitude 24.5 lowing Pozzetti et al! (2010) and using the galaxies identi ed as
and redshift between 0.0 and 4.0, to match the training safiar forming. For each galaxy, the_ mass the galaxy would need to
ple, from the Cosmic Evolution Survey (COSMOS: Scovill@?lVe to be detected at the magnitude limifgylwas calculated
et al|[2007), Extended Groth Strip (EGS; Davis el al. 200#ith
UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Dee Y= Al .

Survey (UDS{ Lawrence ef &l 2007: Cirasuolo et [al. 200530 Mim) = 10g(M) - 0:4(im  X); ©
elds with the CANDELS network (once trained). Imagesvherexis the observed magnitude in the r-band (for SDSS and
for these galaxies were created as above. The H-magnitkdBS) or H-band (for CANDELS) and, is the limiting mag-
and SED derived SFR and 4 assuming a Chabrief (2003)nitude of the observation. The limiting magnitudes for SDSS and
IMF, come from| Guo et &l.[ (2013); Santini et|gl. (2015) foCANDELS are 17.77 and 24.50 respectively. The KiDS limiting
GOODS-S,| Nayyeri et al.| (2017) for COSMOS, Stefgnomagnitude is 19.8, the limit of the GAMA survey. The faintest

Fig. 6. Asymmetry (A) vs. Smoothness (S) for the KiDS-GAMA GZ
galaxies binned by A and S. The averagerger_neither_frac from
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Table 1. Summary of the data used. The SDSS and KiDS limiting magnitudes are in r-band while the CANDELS limiting magnitude in H-band.

Data Resolution Magnitude limit  Redshift range Mass limit  Training sample Complete sample
(arcsec) log(M/M ) per class (Mass limited)

SDSS 14 17.77 005<z 01 10.1 3003 206 037

KiDS 0.77 19.8 0:00<z 015 9.6 1917 1270
CANDELS-z000 0.15 24.5 00<z 060 8.3 692 2072
CANDELS-z060 0.15 24.5 B80<z 085 8.7 694 2004
CANDELS-z085 0.15 24.5 B85<z 121 9.1 694 2031
CANDELS-z121 0.15 245 21<z 166 9.4 694 2010
CANDELS-2166 0.15 24.5 ®6<z 400 9.9 694 1910

Notes.®@ As the training set is derived from GAMA classi cations, the limiting magnitude is that of the GAMA survey not that of the KiDS
survey.® The CANDELS network was trained with 694 galaxies per class for galaxies viith<0z  4:00. The galaxies were split into the
redshift bins shown after classi cation.

20% of objects were selected and the limiting mass was the M2015) and comprises of a series of four, two-dimensional con-
value that 90% of these faintest objects lie below. This was dovautional layers followed by two one-dimensional, fully con-
as a function of redshift by binning the galaxies into redshift bimected layers of 2048 neurons. The convolutional layers have
as described in Segt] 4 below. These completeness limits we2e 64, 128 and 128 kernels of 6, 5 5, 3 3 and 3 3 pixels
then applied to the entire galaxy population. for the rst, second, third and fourth layers respectively with the
stride, how far the kernel is moved as it scans the input, set at 1
pixel for all layers and the zero padding is set to “same” to pad
3. Tools each edge of the image with zeros evenly (if required ixel
3.1. Convolutional neural networks max-pooling is applied after the rst, second and fourth convolu-
tional layers to reduce the dimensionality of the network. Batch
Convolutional neural networks (CNNs) are a subset of degprmalisation|(lo e & Szegedly 2015) is applied after each layer,
learning (e.g. Lecun et @l. 2015, and references therein). CN&¢iling the output between zero and one, and we use Recti ed
are used for image classi cations and employ a series of narinear Units (ReLU{ Nair & Hintot 2010) for activation, which
linear mathematical functions, known as neurons, each withedurns max¢, 0) when passex We also apply dropout (Srivas-
weight and bias value. The structure of a CNN is built fromf@va et al. 2014) after each activation, to help reduce over- tting,
number of layers of these neurons. The lower layers are creajgth a dropout rate of 0.2 to randomly set the output of neurons
from two-dimensional kernels that are convolved with the outptd zero 20% of the time during training. The loss of this network
of the layer below, giving CNN its name. Upper layers are ong determined using softmax cross entropy and optimised using
dimensional and each neuron in these layers is connected totag-Adam algorithm (Kingma & Ba 2015) with a learning rate of
ery neuron in the layer below. Forming a network in such awa@y 10 5. The architecture can be seen schematically in[Fig. 8.
can rapidly create a large number of neurons that require training
resulting in many more free parameters within the network than The inputs to the network are 684 pixel images with either
there are data to train them. To reduce this dimensionality, pogl{CANDELS) or 1 (KiDS) colour channels, that are globally
ing layers are employed between the lower convolutional layeggaled between 0 and 1, preserving the relative ux densities for
These pooling layers group the inputs into it and pass on thilti colour images. The output layer has two neurons, one for
maximum or average value of the group, depending on the ty@gch of the merging and non-merging classes, and uses a soft-
of pooling used, with the grouping done in two-dimensions. Thgax output, providing the probability for each class in the range
result is an output that is smaller in the width-height plane bg, 1] that sum to unity, i.e. softmax maps the un-normalised in-
has the same depth as the input. The weights and biases ofpitieinto it to a probability distribution over the output classes if
neurons within a network are trained, in the case of supervis@@ training, test and validation data sets have an equal number
learning used here, by passing labelled data through the netwefleach class. In the following, we will use the output for the
and requiring the output classi cation to converge on these lverger classftac_merger ) although this can be considered to
bels. A complete and thorough description of CNNs is beyom@ equivalent to using the output for the non-merger class as it is
the scope of this paper but further details are explained in Leciitfrac_merger ) in our binary classi cation.
et all [1998).

This paper uses the de nitions|of Pearson et al. (2019) for the Due to the limitations of this architecture, speci cally the
terms to describe the properties of CNNs. These terms mayg® of fully connected layers, it is not possible to have input
an alternate nomenclature to other works or may be unfamilizhages of di erent pixel sizes. As a result, it is not possible to
To avoid confusion we reproduce these de nitions in Appendixse cutouts of dierent sizes that maintain the relative size of the

Bl galaxy within the image. It is possible to resize the images but
this risks losing small scale structure when downscaling galaxies
3.1.1. Architecture of the CNN or creating artefacts when upscaling. This may cause issues for

large galaxies at low redshifts and low resolution as the primary
For this work, we use the architecture developed in Pearson epallaxy may Il the image. However, it is possible to correctly
(2019) and use this to train on data from CANDELS and KiDilentify the galaxies that I, or are larger than, the image if the
(the network trained in Pearson ef al. (2019) is used on the SDX&Sning set contains these types of galaxies, as has been shown
images). This network is built witifensorflow (Abadi et al. in[Pearson et al. (2019).
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Fig. 8. A schematic representation of the architecture of the CNN used with the input (three or one col@4r,p®4el image) on the left and
output (binary classi cation of merger or non-merger) on the right. The sizes of the kernels (red) and layers are shown with the input layer havin
a depth of 3 for the SDSS (gri) and CANDELS (1.6, 1.25 m and 814 nm) data and 1 for the KiDS (r-band) data.

3.1.2. Training, validation and testing Chain Monte-Carlo (MCMC) samplemceg(Foreman-Mackey
] ) et al|[2013) to simultaneously t the slope, normalisation and
If there are an unequal number of images in the two classes, §fitter of all the galaxies that are star forming. At each sam-
larger class size is reduced by randomly removing images uiliéd point in the parameter space, model SFRs are created using
the classes are the same size. The images were then subdiigthpserved stellar masses, observed redshifts and the corre-
into three groups: 80% were used for training, 10% for validaponding positions along the sampled MS. These SFRs are then
tion and 10% for testing. The training set was the set usedd@rturbed by selecting a random number from a Gaussian dis-
train the network while the validation was used to see how Welipution, with the standard deviation equal to the sampled scat-
the network was performing as training progressed. The testiag truncated to match the observed upper and lower SFR lim-
set was used once, and once only, to test the performance ofitero include observational uncertainties on SFR and bath
network deemed to be the best from the validation. Testing iffe simulated SER and the observed bf each galaxy are per-
ages are not used for validation to prevent accidental training @fhed again by a random number sampled from a Gaussian dis-
the test data set. tribution with the standard deviation equal to the error in the
During training, the input images were augmented. To ivbserved SFR or M
crease the number of galaxies to train with for CANDELS and At each step, the mock SFR-Mplane is compared to the
KiDS, the images were randomly augmented in one of the falbserved SFR-M plane by binning the data into identical bins
lowing ways: the image was translated by up to 4 pixels in eaghM,. The means and standard deviations of the SFRs inside
direction, zoomed by up to 2 rotated by a random angle aboutach bin are calculated and the results from the mock data are
the galaxy, skewed by a random angle betweenat@ 30 or compared to the results from the observed data. The closer the
passed without change. For the rst four of these options, rameans and standard deviations in the mock bins are to the ob-
dom Gaussian noise was added so the galaxy appeared “ns@fved bins, the more likely the model is a correct representation
to the network. These augmented images were then randowfithe observed data. Due to the large number of objects, for
rotated by 0, 90, 180 or 270 to reduce sensitivity to galaxy the SDSS data we randomly select 50 000 star forming objects
orientation. Once complete, we have one network for the CAM4thin each redshift bin to determine the MS.
DELS data, one for the KiDS-z00 data, one for KiDS-z15, one
for KiDS-z30 and one for KiDS-z45 data.
4. Results

3.2. Forward modelling of the galaxy main sequence Here we present the results of our analysis of the three data sets.

In determining if galaxy mergers have aneet on the star-
formation rates (SFR) of galaxies, it is hecessary to remove fhd- Performance of the CNN
mass dependence from the star-formation rate. To do this we cgie network we use for the SDSS objects is that of Pearson
rect for the slope of the main sequence of star forming galaxigial| (2019). For completeness, we repeat these results here. The
(MS, e.g[Brinchmann et &l. 2004; Noeske el al. 2007; EIb&DSS network achieves an accuracy of 0.932 at validation with a
et al[2007| Speagle et al. 2014; Pearson &t al. [2018). The M threshold of 0.5, that is any object wittac_merger > 0.5
is an observed tight correlation between the &hd SFR of star s classi ed as a merging galaxy. We can alter the threshold value
forming galaxies that exists out to at least 6 with a scatter to nd the threshold value that simultaneously minimises the fall
of 0.3 dex that is mass and redshift independent. The slopexgt and maximises the recall. By doing this to set the threshold
the MS is found to be less than one and to depend on the redsf@ift.57, the accuracy increases to 0.935. Using the same thresh-
(Pearson et al. 2018). To correct for this slope, it is necessarig of 0.57 at testing, the nal accuracy of the SDSS network is
rst determine the MS of the galaxies. 0.915, with recall, precision, speci city and negative predictive
To determine the MS, we follov Pearson etlal. (2018) and ugalue (NPV) of 0.920, 0.911, 0.910 and 0.919 respectively. We
forward modelling. Assuming a linear MS, we use the Markaapply the network to 256 497 SDSS galaxies with spectroscopic
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redshifts between 0.005 and 0.1, to match the training set, 3 - - - - - - -
sulting in 28971 2578 (14.1 1.3%) galaxies being identi ed (a) Non-merger
as mergers. The errors in these merger counts are derived fi 27 I200 "
the precision of the network, see Appen(dix B for the de nitior =~ 2
The number of merging galaxies is multiplied by the precisic 5 1t 1508
and the di erence between this value and the original count = ﬂ/// o
taken as the error for the number of mergers and numberofn 7 0 .mouf
mergers. This is likely an underestimate as the precision assul & g
equal population sizes of mergers and non-mergers, whichis 2 -1 g 5o £
idently not the case. - =
For the KiDS network, we use the CNN to identify galax = 27
ies that fall within the GAMAO9 eld. This network achieves , , , , , , , -
an accuracy of 0.942 at validation with a cut threshold of 0. (b) Merger 40
If we alter the threshold to 0.52, to simultaneously minimise tt 5l I35
fall out and maximise the recall, the accuracy increases t0 0.9 3
Using the same threshold of 0.52 at testing, the nal accura L | (303
of the KiDS network is 0.903, with recall, precision, speci city 9 ¢ 253
and NPV of 0.942, 0.874, 0.864 and 0.938 respectively. Desg = |— 505
the resolution of the KiDS images being higher than that of tl & @
SDSS images, the same image size resulted in the best pel 5§ _; | s (158
mance for the KiDS network: 6464 pixels. Larger images were < . r102
tried but these networks did not perform as well. Applying th  _,| L5
KiDS network to all galaxies in the GAMAQ9 eld with photo- — Main Sequence | ||
metric redshifts below 0.15, a total of 1270 galaxies, we identi 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00
436 55 (30.0 4.3%) merging galaxies. log(M. / Mo)

The CANDELS network achieves an accuracy of 0.826 at

validation with a cut threshold of 0.5. If we decrease the threshig. 9. The SFR-M plane populated with (a) the non-merging galaxies
old to 0.47, the accuracy increases to 0.840. Using the sa®fié (b) the merging SDSS galaxies. The colour indicates the number
threshold of 0.47 at testing, the nal accuracy of the CANDEL ensity from low (light yellow) to high (dark purple)._ Overlaid in red is
network is 0.818, with recall, precision, speci city and NPV ot e MS that has been tted to all star forming galaxies. As can be seen,
0.870, 0.789, 0.768 and 0.855 respectively. The poorer resg@ dlstrlbutlonshof tlhe ”(]jeI[/gllISng and non-merging galaxies are similar
for the CANDELS network is likely due to fewer pre-classi ed respect fo the plotte '
objects to train the network with, 694 per class for CANDELS
compared to 3003 for SDSS, as well as the higher redshifts of .. PR "
the training objects. The CANDELS images also cover a mug%f;l Iiit!{?]g g];rtgreﬂﬁ]?:enjiiﬂén, 's the description of skewness and
larger redshift range, resulting in a greater distribution of sizes To t the skewed Gaussian we bin the MS subtracted
in the image for galaxies at the same mass than the SDSS | R with bin sizes of 0.25 dex, between -3 logi %) and
ages. ldeally, it would be preferable to split the galaxies inéE ' ' 9

1 .
redshift bins and train a network per redshift to minimise th allg%g/ls ixge:)acink?int'lt'?]z grkr?)\,rvsegnetr?;:sl?gu:]czst\?v%rgu drg?(frrm?r]:e q
e ect, however with so few objects it is not feasible. We a[g- :

ply the CANDELS network to the objects with H-magnitude y generating 100 realisations of the MS subtracted SFR by per-

24.5 and @ < z < 40 in the CANDELS COSMOS, EGS andturbing the SFR and M of each galaxy by a random number

UDS elds and identify 3535746 merger candidates out of thedrawn from a Gaussian distribution centred on the observed SFR

10027 galaxies in these three elds. This is a merger fraction gf Mh? anclj with the err?]r on the value r?s the standard d(hewa'uon.
35.3 7.4%, which is high. The statistics for all the networks argC" réalisation was then binned in the same way as the obser-

prsented n T 2 and examples of non-merger and mergGH0 276 " standard devaton of e counte n he bin of
selected by the CNNs can be found in Apperjdix C. ISatl w u

observations. Thacipy.optimize  packagecurve_fit was
then used to t the skewed Gaussian distribution to the counts in
4.2. SDSS the bins and account for their errors. The distributions are pre-

. ._sented in Figl 10 with the parameters for the skewed Gaussian
To determine the eect of galaxy mergers on SFR, we determingg i, Taple[3.

:he ﬁg}Ct OI mfrgefs on tre .MS Euﬁt‘racted SFR. (;Ne tthe MS Comparing the skewed Gaussian ts to the distributions, we
to ath €s adr tﬁrml\I/InSg ga ﬁx'es’tt Od tmtﬁrgeé'rlggg dnton_—mer:gqga that the mean for the star forming mergers and non-mergers
ogetner, and the We have ted fo the ata Is SOWEL consistent within 3 times the error of the mean) @nd the

overlaid onto all the non-merging and merging galaxies in[Hig. erging galaxies have higher mean MS subtracted SFR. This

The MS subtracted SFR of the merging and non-merging gal%)L(Iggests that the star forming population has a slightly, but not

ies are then compared by tting a skewed Gaussian distributicg?gni cantly. increased SER when underaoing a meraer
of the form Y. going ger.

y= éexp(x2 2) l+erf Jé(i—) ; (7) 4.3.KiDS

As with the SDSS data, we t a skewed Gaussian distribution
to the distributions of the merging and non-merging galaxiet®, the MS subtracted SFR of the star forming galaxies. An ex-
whereA is the amplitude, and are the mean and standarcample of the resulting MS subtracted SFR distributions for the
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Table 2. Statistics for the trained CNNs. De nitions of terms can be found in Appeindiix B

SDSS KiDS CANDELS
0:005<z< 01 000<z 015 000<z 40
Cut threshold 0.57 0.52 0.47
ROC area 0.966 0.957 0.861
Recall 0.920 0.942 0.870
Precision 0.911 0.874 0.789
Speci city 0.910 0.864 0.768
NPV 0.919 0.938 0.855
Accuracy 0.915 0.903 0.818

Notes.® The SDSS network is that bf Pearson €t|al. (2019).
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Fig. 10. The distribution of MS subtracted SFR for the star formingig. 11. The distribution of MS subtracted SFR for the star forming
SDSS non-merging galaxies (blue) and merging galaxies (red). As ¢&@BS non-merging galaxies (blue) and merging galaxies (red). As can
be seen, the merging star forming population has a slightly higher méenseen, the merging star forming galaxies have a similar mean MS
MS subtracted SFR. subtracted SFR to the non-merging galaxies.

Table 3.Best t parameters for the skewed Gaussian distribution ttef-4 CANDELS

fo the star forming SDSS dataand - are in units of log(Myr %) Due to the larger redshift coverage of the CANDELS data, we

can examine if the impact of galaxy mergers on SFR changes

Parameter Merger Non-merger
033 0902 025 0 Olg as a function of redshift. To do this, we divided the data into
043 002 039 001 redshift bins with edges a = 0.0, 0.6, 0.85, 1.21, 1.66 and
129 018 -152 0.16 4.0, each with its own mass completeness limit and containing

approximately 2000 galaxies after mass completeness cuts have
been applied. Each redshift bin also had its own main sequence
tted as outlined in Secf. 3]2. For ease of reference, these redshift
bins shall be referred to as CANDELS-z000, CANDELS-z060,
Table 4.Best t parameters for the skewed Gaussian distribution tte€ANDELS-z085, CANDELS-z121 and CANDELS-z166.

to the star forming KiDS data. and ~ are in units of log(Myr *) As before, we t the distributions of the star forming CAN-
DELS galaxies with a skewed Gaussian function. However, there
Parameter Merger Non-merger is an indication of a second, high SFR population in CANDELS-
044 01 013 018 z085 (085 < z  1:21), identi able when the error on the
0.47 0.09 0.41 0.08 skew of the both the merging and non-merging distributions are
-1.53 091 -0.63 0.78 greater than 1Dand so in that bin only, we t a double Gaussian

distribution and consider the lower mean to be the mean of the
star forming population. The distributions for the MS subtracted
SFR for this redshift bin is shown in Fig.[12.

Using the best tting values for the skewed and double Gaus-
KiDS is shown in Fig[ I]l. Tablg]4 shows that the merging staian functions presented in Table 5, in the lowest redshift bin the
forming galaxies have higher average SFRs. Theinces not merging galaxies act to suppress the SFR of galaxies, with the
large, with the mean MS subtracted SFR being within ®f mean MS subtracted SFR for merging galaxies lower than non-
each other. merging galaxies by more than 3. At redshifts above = 0:60,
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Fig. 12. The distribution of MS subtracted SFR for th88< z 1:21 Fig. 13. The average MS subtracted SFR of the star forming galaxies

redshift bin for the CANDELS non-merging galaxies (blue) and merd@" the SDSS merging (purple circle) and non-merging (dark blue dia-
ing galaxies (red). This is the only data that is tted with a double Gauﬁlond)f KiDS merging (light blue circle) and non-merging (green dia-
sian distribution due to the clear multi-modal population. As can $Bond); and CANDELS merging (orange circles) and non-merging (red

seen, the main and secondary populations have a slightly higher m@ignonds) galaxies. As can be seen, the change in SFR between the
MS subtracted SFR than the non-merging galaxies. merging and non-merging galaxies is typically small.

the star forming mergers have a higher mean than the star fofn?> M and 814 nm bands) and KiDS uses a single optical
ing non-mergers or are consistent within 3 band (r band). SFRs in the three surveys are also derived dif-

ferently: SDSS uses Hbased SFR while CANDELS and KiDS
use SED derived SFR. The models used to derive the CANDELS
5. Discussion and KiDS SFRs and Mare also dierent. Thus, the small ect
of merging galaxies on the SFRs seen is this study is robust.

Here we present discussions of our results. We note that directOur results are qualitatively in line with previous work in
comparisons between the results of the three data sets is dhat we only nd small (less than a factor of two) changes in
cult due to the dierent de nitions of mergers employed for theSFR [ Tackner et al! (2014) and Knapen et [al. (2015) nd that
training data sets as well as @rence in data quality, such asnergers change the SFR by up to a factor of two. While we do
depth and resolution, which can also in uence merger identinot nd that mergers always result in an increase in SFR, we do
cation. While the merger de nitions are similar, as they are alid that the change in SFR caused by a galaxy merger is typi-
based on visual classi cation, the speci cs of the de nitions difcally small over the timescale of the entire merger. If an increase
fer. The classi cations also cover both major and minor mergeis,SFR due to a galaxy merger is large but shorter lived, theee
with approximately half of each training set comprising of mawill be hidden by the larger number of galaxies not undergoing
jor mergers. This likely results in a similar split for the mergersuch a burst of star formation. The changes in average MS sub-
classi ed by our networks. tracted SFR are small and typically found to be a factor bP.
Similarly, [Silva et al.[(2018) nd that mergers produce no sig-
ni cant change to the SFR of galaxies, which is consistent with
the results of our study. However, caution must be taken with
Across the SDSS, CANDELS and KiDS data sets there isthis comparison as the work pf Silva et] al. (2018) uses merg-
di erence between the SFRs of the merging and non-merg@tg§ where the two merging galaxies are within 3-15 kpc of each
galaxies. However, the derence between the two is small an@ther, something that this work does not take into account.
varies between the data sets as well as within the data sets. What his study has its limitations. It is likely that we are observ-
is evident is that the merging systems are not only found as siag di erent stages of galaxy mergers but our method is currently
burst galaxies but also as star forming and quiescent systemsinable to determine at what stage the mergers are. As a result,

Comparing the SDSS data with the KiDS data, we nd littlé is not possible to say, from this study, if mergers cause a mi-
di erence in how mergers areecting the SFR. Both data setgrating of the merging galaxies across the SFR{dane or if
show that star forming merging galaxies have a slight incredbe merger only slightly aects the SFR resulting in the small
in SFR. Within the CANDELS-z000 data the opposite is foun¢hanges we observe.
we nd that there is a decrease in the MS subtracted SFR, sug-
gesting that galaxy mergers are acting to reduce the SFR ofghf
star forming galaxies. The full comparison between the average’
SFRs for all data sets at all redshifts studied can be seen in Aige merger fractions for CANDELS, 35.3.4%, and KiDS,
3. 36.9 5.3%, are notably higher than the merger fractions for the
The slight di erence between the merging and non-mergir®DSS data at 14.11.3%, see Table]6 and Figs.|14 andl 15. The
SFRs is also not a result of the observation bands or methedors in these merger fractions are derived from the precision
used to derive the SFR. The mergers in all three surveys are diethe network, see Appendix| B for the de nition. The number
tected using dierent bands: SDSS uses three optical bands (goj,merging galaxies is multiplied by the precision and the dif-
CANDELS uses observed frame near infrared (Hubble 6 ference between this value and the original count is taken as the

5.1. Merger in uence on SFR

Merger fractions
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Table 5. Best t parameters for the skewed or double Gaussian distributions tted to the star forming CANDELS data. F@85tkez0 1:21
bin, where a double Gaussian is used, the star forming component is the component with the.lowest are in units of log(Myr 1)

Redshift Parameter Merger Non-merger

-0.37 0.17 -0.27 0.02

00<z 06 0.47 0.08 0.29 0.02
9999.489 87523220.85 1.21 0.26

0.10 0.12 0.02 0.11

06<z 085 0.24 0.07 0.24 0.06
-0.878 1.17 -0.79 0.99

. . -0.12 0.01 -0.16 0.01
085<z 12l 0.20 0.01 0.20 0.01
-0.43 0.02 -0.42 0.02

121<z 1.66 0.62 0.03 0.52 0.03
5.058 1.24 3.13 0.69

-0.47 0.02 -0.5 0.02

1.66<z 40 0.65 0.03 0.61 0.03
3.241 0.51 3.7 0.61

Table 6. The merger fraction by redshift and data set for the quiesce : : . : :
star forming and total galaxy populations. Errors are derived fromcc gl * Conseliceetal 2003 @ This work SDSS
recting for the precision of the network. Lotz et al. 2011 This work KiD3
Cotini et al. 2013 @ This work CANDELS
0.5 M Duncanetal 2019L
. _ c ¥ Duncanetal 2019 H
Data Set Total Quiescent  Star forming ©
SDSS 14113% 1431.3% 13412% © 04y
KiDS 30.0 43% 19.42.8% 36.95.3% i +
CANDELS-z000 32.06.8% 30.06.2% 32.46.8% o 0.31
CANDELS-z060 32.26.8% 20.24.3% 33.67.1% o
CANDELS-z085 32.66.9% 24.45.1% 33.37.0% g 0.2 *
CANDELS-z121 37.88.0% 23.95.3% 39.48.3% ® : H X
CANDELS-z166 42.18.9% 28.55.9% 44.39.3% 0.1 « . . (S
[
0.0
0.0 1.0 1.5 2.5 3.0
Redshift

error for the number of mergers and number of non-mergers. 1

merging fraction for the precision corrected counts is then ci'x_J
culated and the dierence between the original fraction and thi

precision corrected fraction is taken as the error. This is likely

underestimate as the precision assumes equal population sizgg

mergers and non-mergers, which is evidently not the case.

DELS, 000< z

ig. 14.The total merger fraction as a function of redshift for the SDSS

ark blue circle), KiDS (light blue circle) and CANDELS (red cir-

fés} by redshift bin. Also plotted are the mass limited merger fractions
Allog(M»/M ) > 10.0 from Conselice et al. (2003, green stars)] Co-

tini et al! (2013, lilac diamonds), Lotz etal. (2011) magnitude limited
Even only considering the lowest redshift bin for CANmerger fractions with M > -19.2 (orange crosses) and the Duncan gt al.

0:60, the merger fraction is much higher tha2019) lower mass (9.% log(M»/M < 10.3, L, purple left triangles)

the SDSS and higher redshift KiDS at 32808%. It is unsur- and higher mass (log(M > 10.3, H, brown right triangles) merger

prising that this becomes a larger issue as the redshift incred;

because the pixel size of the galaxy within the image beco

ing the features that the CNN will look for to identify a merging

galaxy.

ions. The SDSS data are slightly higher than would be expected and
KiDS and CANDELS merger fractions are approximately a factor

smaller and the galaxies themselves become fainter, supprgsivyo higher than the other results.

Comparing our merger fractions to other works shows thegdshifts. The KiDS data has a merger fraction that is higher
the CANDELS results are indeed much higher than would §@mpared to the other works, both at similar and higher red-
expected. Figurg 14 shows the comparison of this work wighifts, similar to the merger fractions from CANDELS as dis-

Conselice et all (2003), who use CAS to identify merders, |Log#issed above.
etal| (2011), who use Gini ardyo, (Cotini et al| 201B), who use

We can compare the merger fractions of the quiescent and

CAS, Gini andMyo, and Duncan et al. (2019), who use the closstar forming galaxies as shown in Fig] 15. The SDSS data has a
pair method. The results bf Duncan et al. (2019) are the merg#ghtly lower merger fraction for the quiescent galaxies than the
pair fraction (the number of pairs of merging galaxies dividestar forming galaxies, although the dirence is 0.2 percentage
by the total number of galaxies) and so we multiply their valugints, much less than the error on the merger fractions. KiDS
by 0.6 to compare to our resulis (Lotz ef[al. 2011; Mundy et alata has a higher merger fraction for the quiescent galaxies than
the star forming galaxies. As these two data sets cover simi-
The SDSS merger fraction is higher than the other works lar redshift ranges one would expect to see a similar trend in
the same redshift range but is consistent with the merger fréloe merger fractions of these two populations. Theedénce in
tions of| Conselice et &l. (20D3) and Lotz et al. (2011) at higheverall merger fractions may be a result of the SDSS and KiDS

2017).
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Fig. 15. The merger fraction of quiescent (diamonds) and star formit 0.65T
(circles) as a function of redshift for SDSS (purple and blue), KiD  geot
(yellow and green) and CANDELS (orange and red). There is no over
trend with redshift with SDSS having a lower merger fraction for th £ 055
star forming galaxies, KiDS having a higher merger fraction for st 2 o050}
forming galaxies and CANDELS star forming galaxies having a high © ’
merger fraction at all redshifts. w045
@
D 0.40F
L . . . L. d -
networks not being identical and the drent selection criteria = 35!
for the training sets. —— CANDELS-z000 CAMDELS-z121
This is qualitatively dierent to the CANDELS-z000 data  ®-30[ = CANDELS-2060  —— CANDELS-7166
that has a slightly lower quiescent merger fraction than st 25} CANDELS-z085
fqrming merger fractit_)n. This (_j'erence is more pronounced a 0.0 02 04 06 0.8 10 12 14 16
higher redshifts resulting in a derent conclusion from the KiDS Distance above MS / log(Moyr—!)

data. The CANDELS data suggests that there is a higher fract.....

of star forming galaxy mergers than quiescent galaxy MergergRyY 16. Merger fraction for star forming galaxies with SFRs above
all redshifts, implying that galaxy mergers do not often act i@ indicated distance above the MS for the SDSS and KiDS data (top
suppress star formation rates. panel) and the CANDELS data (bottom panel). To avoid low number
The CNNs used in this work are not perfect as they mistatistics, only thresholds above which there are 50, or more, galaxies
classify mergers as non-mergers and non-mergers as mergégsshown. The SDSS (top panel, purple), KiDS (top panel, blue) and all
The latter of these misclassi cations may present issues with StfNDELS data show a trend of increasing merger fraction as the dis-
analysis. As non-mergers are more prevalent than mergers, ce to the MS |ncrleases, although the CANDELS-z000 drops again
atively high speci city of a network can still result in a large?2°Ve 0-6210g(Myr 5).
population of non-merging galaxies being added to the merging

classi cation. If galaxy mergers do signi cantly change the SFRy g log(M yr 1). A similar trend is seen in the CANDELS

of the galaxies, the non-merging interlopers may act to SUPPI@3ta, with an increase in merger fraction as the distance from

this e ect in the statistical analysis used in }his paper. Howevet, 1S increases. CANDELS-z000 rises to approximately
as this work is primarily comparing the relative SFRs of merging 5 log(M yr 1) while the other three CANDELS redshift bins

and non-merging galaxies, we do not believe that this overly i 5e to approximately 0.8, 1.2, 1.4 and 1.6 for CANDELS-

pacts our results as the dirences we see in star formation rate§O60’ CANDELS-7085. CANDELS-z121 and CANDELS-2166
between the mergers and non-mergers is small. respectively. Thus, the merger fraction increases as the star for-
mation rate increases showing that mergers can act to trigger
5.3. Starburst merger fraction high star formation rates and starbursts. We note, hpwever, that
the number of galaxies in Fig.[L6 decreases as the distance above
We avoid using a speci ¢ de nition of a starburst galaxy and inthe MS increases meaning that the lower merger fraction at lower
stead opt to study the merger fraction as a function of distargistance can contain more mergers than the higher merger frac-
above the MS. For ease of reference, we will refer to the galaxi@n at larger distances. This allows for the small changes in
above a given SFR threshold as starbursting in this subsecti®RR seen in the star forming population despite the merger frac-
even if the threshold is the MS. To this end, we study the fractition increasing as the distance above the MS increases. This is
of star forming galaxies above a certain distance above the &alitatively consistent with (Cuo et al. 2014), who nd approx-
that are merging for all three data sets (number of merging galémately half of starburst systems (de ned as an increase in SFR
ies above a certain threshdltbtal number of galaxies above theby a factor of 5 or more) are undergoing a merger while the frac-
same threshold). These trends are presented ifi Hig. 16. tion of mergers in non-starburst systems is lower.
The SDSS and KiDS data show an increase in the merger We can also compare the fraction of star forming, merging
fraction as the distance from the MS increases, with SD$3laxies that have SFRs above a certain distance above the MS
rising to 1.1 log(M yr 1) and KiDS slowly declining above (number of merging galaxies above a certain threshditutal
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typically a factor of 1.2. Within the SDSS data, the star form-
ing objects have a slight increase, on average, that is also seen
in the KiDS data within a similar redshift range. Betweed €

z 0:6, the CANDELS data shows a slight decrease in SFR for
the star forming population when examining the MS subtracted
SFR. Continuing to higher redshifts with the CANDELS data,
we again nd slight increases SFR for the merging galaxies with.

Overall, the change seen in the SFR of the star forming pop-
ulation is small, with the majority of changes in the SFR in all
data sets being less than 3 a factor of 1.2.

The merger fraction of quiescent and star forming galaxies
also depends on the data set. The SDSS data has a slightly high
merger fraction for quiescent galaxies compared to star forming
0.0 0.5 1.0 15 2.0 5.5 (Qalaxies while the KiDS and CANDELS data is the opposite.

Distance above MS /log(Moyr1) Again, de nite conclusions are dicult with the CANDELS and
KiDS data showing that galaxy mergers are more common in

10 ' " ' ' star forming galaxies at any redshift while the SDSS data does
—— CANDELS-z000 not.

— CANDELS-z060 Instead of directly examining the fraction of starburst galax-
CANDELS-2085 ies that are mergers, we examine the merger fraction as a func-
CANDELS-z121 tion of distance above the MS. For the SDSS, CANDELS and
— CANDELS-z166 KiDS the fraction of mergers increases as the distance above the
MS increases. This is evidence that mergers can cause periods of
enhanced star formation.

Our current work does not determine the stage of the galaxy
merger but we can see by eye that our merger samples include
mergers at dierent stages. Thus, it is possible that the period
during which SFR is boosted signi cantly is very short during
the merging process and missed within our more time averaged
0.0 0.5 1.0 15 2.0 2.5 analysis. It could also be that SFR is only boosted signi cantly

Distance above MS /log(Mgyr~1) for a small fraction of merger types or a combination of both
scenarios. Future work will aim to overcome these shortcomings

Fig. 17. Fraction of star forming, merging galaxies with SFRs abovely determining the merger stage.
given distance above the MS (solid lines) and the fraction of star fo“ﬂ%l%
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6. Conclusions Based on observations made with ESO Telescopes at the La Silla Paranal Obser-
vatory under programme IDs 177.A-3016, 177.A-3017, 177.A-3018 and 179.A-
Galaxy mergers are an important part of how galaxies gr@®04, and on data products produced by the KiDS consortium. The KiDS pro-

and evolve over the history of the universe. However, identiguction team acknowledges support from: Deutsche Forschungsgemeinschatt,

. . . . _ . RC, NOVA and NWO-M grants; Target; the University of Padova, and the Uni-
ing galaxy mergers is a dicult and time-consuming task. Her ersity Federico Il (Naples).

we have _emp|0yed (_ieep learning techn!ques_ to identify galagyma is a joint European-Australasian project based around a spectroscopic
mergers in SDSS, KiDS and CANDELS imaging data. We haempaign using the Anglo-Australian Telescope. The GAMA input catalogue is
then used these classi cations to exp|0re how ga|axy mergé@ed on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared
Deep Sky Survey. Complementary imaging of the GAMA regions is being ob-

a ect SFRs. ; ; . :

. . . tained by a number of independent survey programmes including GALEX MIS,

We nd that mergers do indeed in uence the SFR in thgsTkiDs, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP pro-

merging galaxies. However, the resulting change in SFR is smailijng UV to radio coverage. GAMA is funded by the STFC (UK), the ARC
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Appendix A: De-blending the SPIRE data

For de-blending the SPIRE data, we follow Pearson et al. (2017).
CIGALE is used with the 9-band KiDS catalogue data to gener-
ate estimates of the SPIRE ux densities and we then select all
objects with a predicted 250n ux density above 1.1 mJy. The
CIGALE ux density estimates are then used as a ux density
prior inside XID+ and all three SPIRE bands in the GAMAQ9
eld are de-blended. For the CIGALE models, we follow Pear-
son et al.[(2018) but remove the active galactic nuclei compo-
nent, due to the limited wavelength coverage available, and in-
crease the sampling of the age of the stellar population.

For our CIGALE models, we follow| (Pearson et/[al. 2018)
but remove the active galactic nuclei component, due to the lim-
ited wavelength coverage available, and increase the sampling
of the age of the stellar population. Thus, we use a double ex-
ponentially declining star formation histofy, Bruzual & Chafrlot
(2003) stellar emission, Chabijier (2003) initial mass function
(IMF), [Charlot & Fall (2000) dust attenuation and the updated
Draine et al.|(2014) version of the Draine & Li (2007) infrared
dust emission. A list of parameters, where theyeatifrom the
default values, can be found in Taplé A.1.

Appendix B: CNN performance de nitions

This paper uses the de nitions pf Pearson €t/al. (2019) for the

terms to describe the properties of CNNs. These terms may be
an alternate nomenclature to other works or may be unfamiliar.

To avoid confusion we reproduce these de nitions in Tablg B.1.

Appendix C: Example non-mergers and mergers

Here we present example non-mergers and mergers as de ned by
the CNN. The images shown are all 84 pixel images with gri
composite for SDSS, Fi§l. G.1, grayscale r-band for KiDS, Fig.
[C2, and 1.6 m, 1.25 m, 814 nm composite for CANDELS,

Fig.[C3.

Fig. C.1. Examples of non-merging galaxies (top row) and merg-

ing galaxies (bottom nine rows) for the SDSS data set as de ned by

the CNN. Images are gri composite with a size of 64 pixel or

13.7 13.7 arcsec.
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Table A.1. Parameters used for the various properties in the CIGALE model SEDs where tlegyfrdm the default values. All ages and times

are in Gyr.
Parameter Value Description
Star Formation History
main 1.0,1.8,3.0,5.0,7.0 e-folding time (main)
burst 9.0, 13.0 e-folding time (burst)
fourst 0.00, 0.10, 0.20, 0.30, 0.40 Burst mass fraction
Age 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, Population age (main)
3.50, 4.00, 4.50, 5.00, 5.50, 6.00,
6.50, 7.00, 7.50, 8.00, 8.50, 9.00,
9.50, 10.00, 10.50, 11.00, 12.00, 13.00
Burst Age 0.001, 0.010, 0.030, 0.100, 0.300 Population age (burst)
Stellar Emission
IMF Chabrier (200B) Initial Mass Function
4 0.02 Metallicity (0.02 is Solar)
Separation Age 0.01 Separation between young and old stellar populations
Dust Attenuation
A 0.3,1.2,2.3,3.3,3.8 V-band attenuation of the birth clouds
Slopesc -0.7 Birth cloud attenuation power law slope
BC to ISM Factor 0.3,0.5,0.8,1.0 Ratio of the birth cloud attenuation to ISM attenuation
Slopegsm -0.7 ISM attenuation power law slope
Dust Emission
OpaH 0.47,1.12, 2.50, 3.9 Mass fraction of PAH
Umin 5.0, 10.0, 25.0 Minimum scaling factor of the radiation eld intensity
2.0 Dust power law slope
0.02 llluminated fraction
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Table B.1.Terms used when describing the performance of neural networks from Pearson et al. (2019)

Term

De nition

Positive (P)
Negative (N)

True Positive (TP)
False Positive (FP)
True Negative (TN)
False Negative (FN)

Recall

Fall-out

Speci city

Precision

Negative Predictive

Value (NPV)

Accuracy

An object classi ed in the catalogues or identi ed by a network as a
merger.

An object classi ed in the catalogues or identi ed by a network as a
non-merger.

An object classi ed in the catalogues as a merger that is identi ed by a
network as a merger.

An object classi ed in the catalogues as a hon-merger that is identi ed
by a network as a merger.

An object classi ed in the catalogues as a non-merger that is identi ed
by a network as a non-merger.

An object classi ed in the catalogues as a merger that is identi ed by a
network as a non-merger.

Fraction of objects correctly identi ed by a network as a merger wiftP /
respect to the total number of objects classi ed in the catalogues as
mergers.
Fraction of objects incorrectly identi ed by a network as a merger witP/
respect to the total number of objects classi ed in the catalogues as
mergers.

(TP+FN)

(TP+FN)

Fraction of objects correctly identi ed by a network as a non-merg@N / (TN+FP)

with respect to the total number of objects classi ed in the catalogues
as non-mergers.

Fraction of objects correctly identi ed by a network as a merger witt /
respect to the total number of objects identi ed by a network as a
merger.

(TP+FP)

Fraction of objects correctly identi ed by a network as a non-merg@nN / (TN+FN)

with respect to the total number of objects identi ed by a network as a
non-merger.

Fraction of objects, both merger and non-merger, correctly identi €P+TN) / (TP+FP+TN+FN)

by a network.
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Fig. C.2. Examples of non-merging galaxies (top row) and mergingig. C.3. Examples of non-merging galaxies (top row) and merging
galaxies (bottom nine rows) for the KiDS data sets as de ned igalaxies (bottom nine rows) for the CANDELS data set as de ned by
the CNN. Images are grayscale r-band with a size ofé@4pixel or the CNN. Images are 1.6m, 1.25 m, 814 nm composite with a size
25.3 25.3 arcsec. of 64 64 pixel or 3.8 3.8 arcsec.
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