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ABSTRACT

Context. Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time.
However, the e� ect that galaxy mergers have on star formation rates (SFR) is contested, with observations of galaxy mergers showing
reduced, enhanced and highly enhanced star formation.
Aims. We aim to determine the e� ect of galaxy mergers on the SFR of galaxies using statistically large samples of galaxies, totalling
over 200 000, over a large redshift range, 0.0 to 4.0.
Methods. We train and use convolutional neural networks to create binary merger identi�cations (merger or non-merger) in the SDSS,
KiDS and CANDELS imaging surveys. We then compare the galaxy main sequence subtracted SFR of the merging and non-merging
galaxies to determine what e� ect, if any, a galaxy merger has on SFR.
Results. We �nd that the SFR of merging galaxies are not signi�cantly di� erent from the SFR of non-merging systems. The changes
in the average SFR seen in the star forming population when a galaxy is merging are small, of the order of a factor of 1.2. However,
the higher the SFR above the galaxy main sequence, the higher the fraction of galaxy mergers.
Conclusions. Galaxy mergers have little e� ect on the SFR of the majority of merging galaxies compared to the non-merging galaxies.
The typical change in SFR is less than 0.1 dex in either direction. Larger changes in SFR can be seen but are less common. The
increase in merger fraction as the distance above the galaxy main sequence increases demonstrates that galaxy mergers can induce
starbursts.

Key words. Galaxies: interactions – Galaxies: evolution – Galaxies: star formation – Galaxies: starburst – Methods: numerical

1. Introduction

Galaxy mergers and interactions form a key part of our under-
standing of how galaxies form and evolve over time. In cold dark
matter cosmology, dark matter halos merge under hierarchical
growth that results in the merger of the halos' baryonic counter-
parts (e.g. Conselice 2014; Somerville & Davé 2015). This inter-
action results in the disruption of the galaxies that lie at the centre
of the dark matter halos. Tidal forces act to pull and distort the
galaxies, moving stars within the galaxies from the disk to the
spheroid component (e.g. Toomre & Toomre 1972; Somerville
& Davé 2015, and references therein). Mergers can potentially
increase the activity of an active galactic nucleus (e.g. Sanders
& Mirabel 1996; Ellison et al. 2019), although more recent work
suggests this may not always be the case (e.g. Darg et al. 2010a;
Weigel et al. 2018).

Mergers are also thought to trigger periods of extreme star
formation: starbursts. From simulations, these starbursts are be-
lieved to be a result of the tidal interactions of the galaxies com-
pressing and shocking the gas, resulting in the rapid formation of

stars (e.g. Barnes 2004; Kim et al. 2009; Saitoh et al. 2009). Such
shock-induced star formation in mergers has also been observed
(Schweizer 2009). These intense star forming events are believed
to be the cause of some of the brightest infrared objects, ultra lu-
minous infrared galaxies (Sanders & Mirabel 1996; Niemi et al.
2012). This connection between starbursts and merging galaxies
resulted in the prevailing theory that most merging galaxies go
through a starburst phase (e.g. Joseph & Wright 1985; Schweizer
2005).

More recent observations have shown that merger induced
starbursts are found in the minority of merging systems. These
studies have found that the typical increase in star formation rate
(SFR) of a merger is at most a factor of two, much lower than
what would typically be considered a starburst (Ellison et al.
2013; Knapen et al. 2015; Silva et al. 2018). Work by Knapen
et al. (2015) has shown that the majority of galaxy mergers are
found to cause a reduction in the SFR when compared to non-
merging galaxies of comparable stellar masses. In total, approx-
imately 10-20% of star forming galaxies are found to be under-
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going a merger (Luo et al. 2014; Cibinel et al. 2019), with this
fraction increasing with redshift (Berrier et al. 2006; Conselice
et al. 2009; López-Sanjuan et al. 2010; Lotz et al. 2011; López-
Sanjuan et al. 2015; Rodríguez-Puebla et al. 2017). While obser-
vational evidence for the change of SFR as a function of time be-
fore and after a merger is di� cult due to the long timescales in-
volved, there is observational evidence for starbursts on the �rst
and second close passes of two galaxies as well as coalescence.
These bursts appear to last between 107 and 108 years (Cortijo-
Ferrero et al. 2017). This is supported by observations that show
close pairs have higher SFRs than more separated galaxies in
mergers (Davies et al. 2015).

Gas rich (wet) mergers are able to support higher SFRs as
there is an abundance of fuel available to create new stars (e.g.
Lin et al. 2008; Perez et al. 2011; Athanassoula et al. 2016). Gas
poor (dry) mergers, however, do not have gas readily available
and so it is harder to form starbursts in these systems (e.g. Bell
et al. 2006; Naab et al. 2006; Lin et al. 2008). As a result of dense
environments containing a larger number of gas poor galaxies
than gas rich galaxies, dry galaxy mergers dominate over wet
mergers in dense environments (Lin et al. 2010). The fraction
of dry mergers also increases with the age of the Universe (Lin
et al. 2008). As a result of gas poor galaxies dominating at high
masses (stellar mass& 1010:7 M � ), mergers of two high mass
galaxies tend to be dry and, as a result, can act to suppress star
formation (Robotham et al. 2014).

A study by Davies et al. (2015) has found that the merger
ratio of the merging galaxies also in�uences the SFR. In major
mergers (mass ratio< 3:1), the lower mass galaxy experiences a
short period of enhanced star formation while in minor mergers
(mass ratio> 3:1) the star formation in the lower mass galaxy is
suppressed. The more massive of the merging galaxies, however,
always experiences an increase in SFR regardless of whether the
merger is major or minor.

Simulations of mergers have been conducted, allowing us to
study the SFRs of the merging galaxies throughout the entire
merger sequence from �rst passage to coalescence (e.g. Springel
et al. 2005; Hopkins et al. 2006; Randall et al. 2008; Rupke
et al. 2010). These simulations have shown that SFR is enhanced
when the merging galaxies are close to one another: at �rst pass,
second pass and coalescence (Moreno et al. 2019). The period
between �rst and second passes also maintains a higher SFR
than in an isolated galaxy, by approximately a factor of two. This
period is the majority of the merger sequence, taking approxi-
mately 2.5 Gyr of the entire 3.5 Gyr merger timescale (Moreno
et al. 2019). This can explain why so few galaxies are observed
to be in the starburst phase of a merger as the period between
starbursts is much longer than the starburst period of approxi-
mately 0.5 Gyr. The starburst caused by the close passage and
coalescence is also found to be stronger for head on collisions
and reduces in strength as the approach of the galaxies becomes
more oblique. However, the strength of a starburst is also con-
nected to the resolution of the simulation, with lower resolution
simulations �nding weaker starbursts (Sparre & Springel 2016).

A major observational challenge of merger studies is the dif-
�culty in detecting a large sample of merging galaxies. Visu-
ally identifying galaxies is time consuming and hard to repro-
duce; di� erent people can classify the same galaxy di� erently
and the same classi�er may assign di� erent labels on di� erent
days. Some of this di� culty can be reduced by employing cit-
izen science, such as Galaxy Zoo1 (GZ; Lintott et al. 2008), to
get many members of the public to classify images of galax-

1 http://www.galaxyzoo.org/

ies. However, such approaches are not scalable to the volume
of data we expect from upcoming large surveys. Using non-
parametric statistics, such as concentration, asymmetry, smooth-
ness (CAS; e.g. Bershady et al. 2000; Conselice et al. 2000;
Wu et al. 2001; Conselice et al. 2003) or the Gini coe� cient,
a description of the relative distribution of �ux within pixels,
and the second-order moment of the brightest 20% of the light
(M20; Lotz et al. 2004) avoids the issues with reproducibility,
especially combined with detailed galaxy merger modelling to
provide a classi�cation baseline (Lotz et al. 2010a,b). However,
merger detection with these non-parametric statistics is sensitive
to image quality and resolution and su� ers from a high fraction
of misidenti�cations (Huertas-Company et al. 2015). The close
pair method is also often employed, �nding pairs of galaxies that
are close on the sky and in redshift (e.g. Barton et al. 2000; Lam-
bas et al. 2003; De Propris et al. 2005; Ellison et al. 2008; Ro-
drigues et al. 2018; Duncan et al. 2019). However, this method
requires highly complete spectroscopic observations and can be
contaminated with �ybys (Sinha & Holley-Bockelmann 2012;
Lang et al. 2014).

Deep learning has the potential to overcome some of these
di� culties. Once trained, neural networks are able to perform
visual like classi�cations of galaxies, and other astronomical ob-
jects, in a fraction of the time it takes a human, or team of hu-
mans, to classify the same objects. The classi�cations are also
reproducible: if the same object is passed through the same neu-
ral network the result will always be the same. Deep learn-
ing techniques are becoming more commonplace in the astro-
nomical community with uses including star-galaxy classi�ca-
tion (e.g. Kim & Brunner 2017), galaxy morphology classi�ca-
tion (e.g. Dieleman et al. 2015; Huertas-Company et al. 2015;
Domínguez Sánchez et al. 2019), gravitational lens identi�cation
(e.g. Petrillo et al. 2017; Davies et al. 2019) and galaxy merger
identi�cation (e.g. Ackermann et al. 2018; Pearson et al. 2019).

In this work we aim to use deep learning techniques to iden-
tify merging galaxies within three data sets: the Sloan Digital
Sky Survey (SDSS; York et al. 2000), the Kilo Degree Survey
(KiDS; de Jong et al. 2013a,b) and the Cosmic Assembly Near-
infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin
et al. 2011; Koekemoer et al. 2011). These three data sets are em-
ployed so a large range of redshifts can be covered, with SDSS
and KiDS at low redshift and CANDELS at high redshift. With
these identi�cations, we will compare the SFRs of the star form-
ing merging galaxies with the star forming non-merging galaxies
and determine if galaxy mergers have an e� ect on the SFR of the
merging galaxies.

The paper is structured as follows. Section 2 discusses the
data used and the merger selection for training our neural net-
work. Section 3 describes the tools used in this study, includ-
ing how we determined the galaxy main sequence through mod-
elling and a brief description of the type of deep learning we
employ: convolutional neural networks. This is followed by our
results and discussion in Sects. 4 and 5 before we conclude
in Sect. 6. Where necessary, Wilkinson Microwave Anisotropy
Probe year 7 (WMAP7) cosmology (Komatsu et al. 2011; Lar-
son et al. 2011) is adopted, with
 M = 0.272,
 � = 0.728 and
H0 = 70.4 km s� 1 Mpc� 1.

2. Data

To train the neural network, a large number of images of pre-
classi�ed merging and non-merging systems are required. We
also collect images of unclassi�ed images from the same sur-
veys to classify with our networks to increase the sample size for
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this study. To determine if galaxy mergers a� ect star formation
rates in the galaxies, we also require stellar masses (M? ), SFR
and redshifts for the pre-classi�ed and unclassi�ed galaxies. We
gather these for SDSS, KiDS and CANDELS.

These three data sets cover di� erent redshift ranges for which
merger detection is attempted: the SDSS data that we use cov-
ers the low redshift regime (0:005 < z � 0:1), along with the
KiDS data (0:00 < z � 0:15), while the CANDELS data that we
use goes to high redshift (0:0 < z � 4:0). The overlaps in the
redshifts also allow us to examine di� erences due to resolution,
depth and other e� ects, by comparing the SDSS and KiDS re-
sults, as well as di� erent wavelengths, by comparing the optical
SDSS and KiDS with the near-infrared CANDELS. The CAN-
DELS data also probes rest frame optical data atz � 1:2 with
the three CANDELS bands used (1.6� m, 1.25� m and 814 nm)
probing approximately the rest frame i, r and g bands used in the
SDSS data.

2.1. SDSS Data Release 7

For the SDSS data, we use the network trained on SDSS im-
ages from Pearson et al. (2019). The merging and non-merging
galaxies used to train this network were collected following
Ackermann et al. (2018). The 3003 merging galaxies are from
Darg et al. (2010a,b), itself derived from classi�cations from
the Galaxy Zoo (GZ) visual classi�cation. These galaxies have
GZ merger classi�cation greater than 0.4 and were then visually
checked again to ensure these galaxies are likely to be merg-
ing pairs. Approximately half (54%) of these merging galaxies
are major mergers (Darg et al. 2010b), that is the ratio of the
stellar masses of the two galaxies is less than three. For the non-
merging galaxies, 3003 galaxies were randomly selected from
galaxies that have their GZ merger classi�cation less than 0.2.
Cut-outs of the merging and non-merging objects were then re-
quested from the SDSS cut-out server for data release 72 (DR7)
to create 6006 images in the gri bands, each of 256� 256 pix-
els and with Lupton et al. (2004) colour scaling. These images
were then cropped to the central 64� 64 pixels, corresponding
to 25.3� 25.3 arcsec or 46.5� 46.5 kpc atz = 0:1, to reduce
memory requirements while training. The merger fraction of the
complete training sample, before randomly selecting the non-
merging galaxies but after mass completeness cuts, is� 1.0%.

To increase the sample for analysis, all SDSS galaxies with
spectroscopic redshifts between 0.005 and 0.1 were selected, to
match the redshift range of the training sample, and were then
classi�ed into merging and non-merging by the Pearson et al.
(2019) network, a total of 206 037 galaxies once selected for
mass completeness. Again, 256� 256 pixel cutouts in the gri
bands were collected for these galaxies from the SDSS DR7
cutout server and the central 64� 64 pixels used for classi�ca-
tion. The M? and SFR for these objects were then collected from
the MPA-JHU catalogue3, which uses the Kroupa (2001) initial
mass function (IMF) (Kau� mann et al. 2003; Salim et al. 2007;
Brinchmann et al. 2004). The M? is therefore derived from spec-
tral energy distribution (SED) �tting while the SFR is derived
from H� observations.

For determining the galaxy main sequence (MS), the star
forming galaxies were selected by performing a cut in theg � r
- absolute r magnitude (Mr ) plane, closely following Loveday
et al. (2012), where we de�ne star forming galaxies as:

g � r < 0:08� 0:03Mr : (1)
2 http://cas.sdss.org/dr7/en/tools/chart/default.asp
3 https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/

Fig. 1. Rest frameg � r colour vs. the absolute r magnitude (Mr ) for
SDSS DR7. The colour cut is shown as a red line where galaxies below
the line are considered to be star forming.

The rest frameg� r colour was determined by our own �tting of
the �ve SDSS bands with CIGALE (Noll et al. 2009; Boquien
et al. 2019). A UVJ colour cut, which is used for the KiDS and
CANDELS data, is not used as the wavelength coverage is not
su� cient to reliably constrain the J band magnitude. A plot of
this colour cut can be seen in Fig. 1. The mass limit was deter-
mined to be log(M? /M � ) = 10.1, see Sect. 2.4 for details.

2.2. KiDS

For our KiDS sample, we use the latest data release 4 (DR4; Kui-
jken et al. 2019). We match these catalogues with the Galaxy and
Mass assembly (GAMA; Driver et al. 2009) GZ catalogue (Hol-
werda et al. 2019, Kelvin et al. in prep.) to determine the merging
and non-merging galaxies and combine this classi�cation with
non-parametric statistics (see Sect. 2.2.2). For the KiDS data, we
only use r-band images to train the network, using 64� 64 pixel
cutouts, corresponding to 13.7� 13.7 arcsec or 25.2� 25.2 kpc at
z = 0:1, and with linear colour scaling. Tests comparing multi-
channel, as used with SDSS and CANDELS, and single chan-
nel images, as used with KiDS, to identify galaxy mergers have
shown that using a single channel does not notably a� ect the re-
sults. When applying the trained CNN to unclassi�ed objects,
we use objects that lie within the GAMA09 �eld. This region is
large enough to provide a statistically signi�cant sample size of
galaxies and has the added bene�t that it hasHerschelSpectral
and Photometric Imaging Receiver (SPIRE; Gri� n et al. 2010)
coverage to aid with determining SFRs.

The majority of the KiDS objects in DR4 do not have es-
timates of physical parameters, beyond photometric redshifts
(Kuijken et al. 2019). Thus, to derive M? and SFR, we use the 9-
band catalogues combined withHerschelATLAS (Eales et al.
2010; Smith et al. 2017) SPIRE data de-blended with XID+
(Hurley et al. 2017; Pearson et al. 2017, see also Appendix A).
From the 9-band catalogue we use the KiDS Gaussian aperture
and point spread function (GAAP; Kuijken et al. 2015) �ux den-
sities for the ugri optical bands and the VISTA Kilo-Degree In-
frared Galaxy Survey (VIKING; Edge et al. 2013) GAAP �ux
densities for the ZYJHKs bands, all left uncorrected for fore-
ground extinction. SEDs are �tted to these data using CIGALE
and stellar populations with a Chabrier (2003) IMF. As can be
seen in Fig. 2, the M? from CIGALE are in good agreement,
within 0.2 dex on average, with those from the GAMA survey
(Wright et al. 2017) estimated using the MAGPHYS (da Cunha
et al. 2008) SED �tting tool, which also uses the Chabrier (2003)
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Fig. 2. Comparison of the M? from this work (y-axis) with M? from
the GAMA survey (x-axis). The red line denotes the 1-to-1 relation.
The two data sets are in reasonable agreement with the average stellar
masses within 0.2 dex and remain the same with and without the inclu-
sion of SPIRE data. The typical statistical error on M? is 0.1 dex.

Fig. 3. Comparison of the SFR from this work (y-axis) with SFR from
the GAMA survey (x-axis). The red line denotes the 1-to-1 relation. The
two data sets are within 0.2 dex on average and are consistent within the
typical error of 0.26 dex. Both the GAMA SFRs and the SFRs from this
work are derived from SED �tting.

IMF. A similar comparison is made with the SFR in Fig 3, show-
ing good agreement with GAMA.

To select the star forming galaxies for determining the MS, a
UVJ colour cut was employed using the rest frame U-V and V-
J colours, determined by CIGALE during the �tting to estimate
M? and SFR, and the photometric redshifts. For this, we follow
Whitaker et al. (2011):

(U � V) > 0:88� (V � J) + 0:69 z < 0:5
(U � V) > 0:88� (V � J) + 0:59 z > 0:5

(U � V) > 1:3; (V � J) < 1:6 z < 1:5
(U � V) > 1:3; (V � J) < 1:5 1:5 < z < 2:0
(U � V) > 1:2; (V � J) < 1:4 2:0 < z < 4:0

(2)

where any galaxies that do not meet these criteria are determined
to be star forming. An example of the colour cut is shown in
Fig. 4. The mass completeness limit for the KiDS galaxies was
determined to be log(M? /M � ) = 9.6, see Sect. 2.4 for details.
This was determined using the magnitude limit from the GAMA
survey of 19.8, for the r-band, as this is the limit imposed on the
training sample.

Fig. 4. Rest frame U-V colour vs. rest frame V-J colour for KiDS-z00
(0:00 < z � 0:15). The colour cut is shown as a red line where galaxies
below and to the right of the line are considered to be star forming.

2.2.1. KiDS-GAMA Galaxy Zoo

There are no pre-existing merger catalogues for the KiDS survey,
although there are visual GZ classi�cations for 36 706 galax-
ies in the regions that overlap with the GAMA survey (KiDS-
GAMA): the three GAMA equatorial �elds. We can use this
classi�cation to help select a sample of merging galaxies to use
with the KiDS data. As with other Galaxy Zoo (Lintott et al.
2008) projects, citizen scientists were asked to classify images
of galaxies following a classi�cation tree, as described in Hol-
werda et al. (2019), through the GZ web interface4 and we use
the vote fractions that are weighted for user performance. These
weighted vote fractions have votes from users that frequently
disagree with the majority of other users weighted lower, re-
ducing their in�uence on the overall vote fraction. These galax-
ies were selected to have redshifts between 0.002 and 0.15 and
GAMA data quality �ags are used to ensure only science targets
are shown. Of interest here is the question concerning galaxy in-
teractions. This question asks the classi�er to identify merging
galaxies, galaxies with tidal tails, galaxies that are both merg-
ing and have tidal tails or galaxies that show neither of these
features. The latter of these classi�cations, galaxies that have
neither tidal tails nor show evidence of a merger, is what will
be used to help identify galaxy mergers and will hence forth
be referred to asmerger_neither_frac . Galaxies that have
merger_neither_frac less than 0.5, that is less than half the
people who classi�ed the galaxy thought it showed no tidal fea-
tures or merger indications, will be used here to for the basis of
the merging galaxy sample with further re�nements added.

2.2.2. KiDS merger selection

The visual GZ merger classi�cations require validation with
other methods, as chance projections or star-galaxy overlaps can
be misidenti�ed as merging galaxies (Darg et al. 2010a,b). To do
this, we use the Gini, the second-order moment of the brightest
20 percent of the light (M20), concentration (C), asymmetry (A)
and smoothness (S) non-parametric parameters (Lotz et al. 2004;
Bershady et al. 2000; Conselice et al. 2000; Wu et al. 2001; Con-
selice et al. 2003). For each of the galaxies in the KiDS-GAMA
sample, we derive these �ve non-parametric statistics using the
python codestatmorph (Rodriguez-Gomez et al. 2019).

4 http://www.galaxyzoo.org/
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Fig. 5. Gini vs. M20 for the KiDS-GAMA GZ galaxies binned by
Gini and M20. The averagemerger_neither_frac from GZ within
each bin is shown from low (red) to high (blue). The green line is
the Lotz et al. (2004) split between merging and non-merging galax-
ies while the yellow line is the Lotz et al. (2008) split. Regions with
low merger_neither_frac are visually identi�ed as merging galax-
ies. Panel (b) includes the visually con�rmed mergers from Darg et al.
(2010a,b) as purple stars.

There has been found to be a division between merging and
non-merging galaxies using the Gini andM20 statistics: Lotz
et al. (2004) found that galaxies can be considered to be non-
mergers if

Gini < � 0:115M20 + 0:384 (3)

while Lotz et al. (2008) found a similar result with non-mergers
de�ned as

Gini < � 0:15M20 + 0:33: (4)

We also populate the Gini-M20 parameter space, bin by
Gini and M20 and show the averagemerger_neither_frac
of the galaxies inside each bin, as seen in Fig. 5. The
merger_neither_frac is the fraction of GZ votes that say the
galaxy has no indication of a galaxy merger or tidal tails. In do-
ing this, we �nd that galaxies found to be mergers in the KiDS-
GAMA GZ typically lie on or above these two lines. However,
as can be seen in Fig. 5, there are also a large number of galax-
ies that lie above these lines that are classi�ed by GZ as non-
mergers: the merging galaxies appear to form a valley. Over-
laying the visually con�rmed merging galaxies from Darg et al.
(2010a,b) that fall within the KiDS coverage, we also �nd that
the majority of these galaxies lie below the Lotz et al. (2004) and
Lotz et al. (2008) lines, as can be seen in Fig. 5b, suggesting that
this is a poor choice to determine merger status for this KiDS
data set.

This disparity may be a result of the di� erent data used. The
Gini andM20 statistics are calculated from the images and so de-
pend on the resolution and signal-to-noise of the images (Lotz

et al. 2004). The �ux distribution of a lower resolution image
will be di� erent, the same �ux will be spread across fewer pixels
in a lower resolution images as well as removing smaller scale
structures, which will increase the uncertainties in these statis-
tics. Similarly, higher signal-to-noise images will reveal fainter
features of a galaxy that will also a� ect the Gini andM20. The
Gini andM20 have been found to be reasonably consistent when
the signal-to-noise is above 2 butM20 is particularly sensitive to
resolution (Lotz et al. 2004). The data used in Lotz et al. (2004)
is lower resolution than KiDS while Lotz et al. (2008) uses Hub-
ble Space Telescope data with higher resolution.

If instead we use the asymmetry (A) and smoothness (S)
statistics, which have been found to be not overly sensitive to
resolution asM20 (Lotz et al. 2004), we �nd a merging sample
that agrees much better with the visual classi�cation. It has been
found, by Conselice (2003), that the merging galaxies lie above

A = 0:35S + 0:02: (5)

As can be seen in Fig. 6, this classi�cation is in good agree-
ment with the visual classi�cations from GZ. Overlaying the
Darg et al. (2010a,b) mergers, we �nd that the majority lie above
Eq. 5. Based on this agreement, we select our merging sample
to be those galaxies that havemerger_neither_frac from GZ
less than 0.5 and lie above Eq. 5, with non-merging galaxies de-
�ned as those withmerger_neither_frac greater than 0.5 and
lie below Eq. 5. This results in 1917 merging galaxies that we
use to train the KiDS network. By matching these galaxies to
the nearest galaxy within 3 arcsec in the full GAMA catalogue
(Wright et al. 2017) and selecting the pairs that have redshifts
within 0.05, we �nd that approximately half of these galaxies
(6 of 14) are major mergers. The total number of matched pairs
is very low, and will miss pairs where the secondary galaxy is
below the magnitude limit of the survey, but this fraction is in
line with that seen by Darg et al. (2010b) in the SDSS data. We
randomly select a further 1917 galaxies from the 20 842 that lie
below Eq. 5 and havemerger_neither_frac greater than 0.5
to form the non-merging sample. With these classi�cations for
merging and non-merging galaxies, and after mass completeness
cuts, the merger fraction of the GZ galaxies is 8.4%.

2.3. CANDELS

To train the CANDELS network, we use the visual classi-
�cations for the Great Observatories Origins Deep Survey -
South (GOODS-S; Giavalisco et al. 2004) from Kartaltepe et al.
(2015). This catalogue contains galaxies with H magnitude less
than 24.5 that have been classi�ed by a small number of pro-
fessional astronomers and we select objects with photometric
redshift below 4.0. Of interest to this work are the classi�ca-
tions that identify mergers (merger), interaction within a seg-
mentation map (Int1 ), interaction with a galaxy outside of the
segmentation map (Int2 ), a non interacting companion (Comp)
or no interaction (NoInt ). During the classi�cation, only one of
these identi�cations may be chosen. The catalogue also contains
an Any_Int category, which combines themerger, Int1 and
Int2 identi�cations.

We de�ne galaxies as merging if theAny_Int classi�cation
is greater than 0.6 (i.e. more that 60% of people believe that the
galaxy is interacting) and we de�ne galaxies as non-merging if
the Any_Int classi�cation is less than 0.5. As with the KiDS
galaxies, we match the merging galaxies to the rest of the CAN-
DELS catalogue within 3 arcsec and selecting the pairs that have
redshifts within 0.05, we �nd that approximately half of these
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Fig. 6. Asymmetry (A) vs. Smoothness (S) for the KiDS-GAMA GZ
galaxies binned by A and S. The averagemerger_neither_frac from
GZ within each bin is shown from low (red) to high (blue). Regions with
low merger_neither_frac are visually identi�ed as merging galax-
ies. The orange line denotes the Conselice (2003) split between merg-
ing and non-merging galaxies. Panel (b) includes the visually con�rmed
mergers from Darg et al. (2010a,b) as purple stars.

galaxies (4 of 9) are major mergers. Again, the total number of
matched pairs is very low, and this method will miss pairs where
the secondary galaxy is below the magnitude limit of the sur-
vey, but this fraction is in line with that seen in the SDSS data.
Cutouts for these objects were created from the 1.6� m, 1.25� m
and 814 nm images. As the 814 nm images are twice the angu-
lar resolution of the other two bands, these images are reduced
in size by averaging the �ux density in 2� 2 pixel groups. The
1.6 � m, 1.25� m and 814 nm bands are then used as the red,
green and blue channels in the images, with simple linear colour
scaling. As with the SDSS and KiDS images, the CANDELS
images are 64� 64 pixels, corresponding to 3.8� 3.8 arcsec or
32.7� 32.7 kpc atz = 1:5. Objects with clear artefacts within
the image were removed. This resulted in 694 merging galax-
ies and we randomly select a further 694 from the 4428 non-
merging galaxies that meet our criteria. The merger fraction for
the training sample using these criteria, and after mass complete-
ness cuts, is 15.5%.

To increase the CANDELS sample for our analysis, we
classi�ed all CANDELS galaxies with H-magnitude< 24.5
and redshift between 0.0 and 4.0, to match the training sam-
ple, from the Cosmic Evolution Survey (COSMOS; Scoville
et al. 2007), Extended Groth Strip (EGS; Davis et al. 2007),
UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep
Survey (UDS; Lawrence et al. 2007; Cirasuolo et al. 2007)
�elds with the CANDELS network (once trained). Images
for these galaxies were created as above. The H-magnitude
and SED derived SFR and M? , assuming a Chabrier (2003)
IMF, come from Guo et al. (2013); Santini et al. (2015) for
GOODS-S, Nayyeri et al. (2017) for COSMOS, Stefanon

Fig. 7. Rest frameU � V colour vs. rest frameV � J colour for
CANDELS-z000. The colour cut is shown as a red line where galax-
ies below and to the right of the line are considered to be star forming.

et al. (2017) for EGS and Santini et al. (2015) for UDS.
As these catalogues contain a number of di� erent M? and
SFR values, the `M_med' is used for M? and we average
`SFR_11a_tau', `SFR_13a_tau', `SFR_2a_tau', `SFR_14a',
`SFR_14a_const', `SFR_14a_deltau', `SFR_14a_lin',
`SFR_14a_tau', `SFR_6a_deltau', `SFR_6a_invtau' and
`SFR_6a_tau' for SFR, as these columns are common across
all catalogues. These di� erent SFR values assume di� erent
star formation histories (SFH) where `cons' is a constant
SFH, `tau' is an exponentially declining SFH, `deltau' is a
delayed-exponential, `lin' is linearly increasing and `inctau' is
exponentially increasing. The numbers refer to the investigator
within the CANDELS team who lead the determination of that
SFR (Stefanon et al. 2017). For the redshift, the `z_best' value
in the catalogues were used. This value is the spectroscopic
redshift, if available, or the best photometric redshift from six
members within the CANDELS team (Guo et al. 2013; Santini
et al. 2015; Nayyeri et al. 2017; Stefanon et al. 2017)

To determine which CANDELS galaxies are star forming,
we again apply the UVJ colour cuts de�ned in Eq. 2 using the
rest frame U-V and V-J colours in the CANDELS catalogues,
as shown in Fig. 7. Mass completeness limits were calculated
to be log(M? /M � ) = 8.3, 8.7, 9.1, 9.4 and 9.9 within redshift
bins with edges atz = 0.0, 0.6, 0.85, 1.21, 1.66 and 4.0, see also
Sect. 2.4 below. These redshift bins were selected so there are ap-
proximately 2000 galaxies within each bin after cutting for mass
completeness. For ease of reference, these redshift bins shall be
referred to as CANDELS-z000, CANDELS-z060, CANDELS-
z085, CANDELS-z121 and CANDELS-z166. A summary of all
data sets is presented in Table 1.

2.4. Mass completeness

Mass completeness limits were determined empirically by fol-
lowing Pozzetti et al. (2010) and using the galaxies identi�ed as
star forming. For each galaxy, the mass the galaxy would need to
have to be detected at the magnitude limit (Mlim) was calculated
with

log(Mlim) = log(M) � 0:4(xlim � x); (6)

wherex is the observed magnitude in the r-band (for SDSS and
KiDS) or H-band (for CANDELS) andxlim is the limiting mag-
nitude of the observation. The limiting magnitudes for SDSS and
CANDELS are 17.77 and 24.50 respectively. The KiDS limiting
magnitude is 19.8, the limit of the GAMA survey. The faintest

Article number, page 6 of 20



W. J. Pearson et al.: E� ect of galaxy mergers on star formation rates

Table 1.Summary of the data used. The SDSS and KiDS limiting magnitudes are in r-band while the CANDELS limiting magnitude in H-band.

Data Resolution Magnitude limit Redshift range Mass limit Training sample Complete sample
(arcsec) log(M? /M � ) per class (Mass limited)

SDSS 1.4 17.77 0:005< z � 0:1 10.1 3003 206 037
KiDS 0.77 19.8a 0:00 < z � 0:15 9.6 1917 1270

CANDELS-z000 0.15 24.5 0:00 < z � 0:60 8.3 694b 2072
CANDELS-z060 0.15 24.5 0:60 < z � 0:85 8.7 694b 2004
CANDELS-z085 0.15 24.5 0:85 < z � 1:21 9.1 694b 2031
CANDELS-z121 0.15 24.5 1:21 < z � 1:66 9.4 694b 2010
CANDELS-z166 0.15 24.5 1:66 < z � 4:00 9.9 694b 1910

Notes. (a) As the training set is derived from GAMA classi�cations, the limiting magnitude is that of the GAMA survey not that of the KiDS
survey.(b) The CANDELS network was trained with 694 galaxies per class for galaxies with 0:00 < z � 4:00. The galaxies were split into the
redshift bins shown after classi�cation.

20% of objects were selected and the limiting mass was the Mlim
value that 90% of these faintest objects lie below. This was done
as a function of redshift by binning the galaxies into redshift bins
as described in Sect. 4 below. These completeness limits were
then applied to the entire galaxy population.

3. Tools

3.1. Convolutional neural networks

Convolutional neural networks (CNNs) are a subset of deep
learning (e.g. Lecun et al. 2015, and references therein). CNNs
are used for image classi�cations and employ a series of non-
linear mathematical functions, known as neurons, each with a
weight and bias value. The structure of a CNN is built from a
number of layers of these neurons. The lower layers are created
from two-dimensional kernels that are convolved with the output
of the layer below, giving CNN its name. Upper layers are one-
dimensional and each neuron in these layers is connected to ev-
ery neuron in the layer below. Forming a network in such a way
can rapidly create a large number of neurons that require training
resulting in many more free parameters within the network than
there are data to train them. To reduce this dimensionality, pool-
ing layers are employed between the lower convolutional layers.
These pooling layers group the inputs into it and pass on the
maximum or average value of the group, depending on the type
of pooling used, with the grouping done in two-dimensions. The
result is an output that is smaller in the width-height plane but
has the same depth as the input. The weights and biases of the
neurons within a network are trained, in the case of supervised
learning used here, by passing labelled data through the network
and requiring the output classi�cation to converge on these la-
bels. A complete and thorough description of CNNs is beyond
the scope of this paper but further details are explained in Lecun
et al. (1998).

This paper uses the de�nitions of Pearson et al. (2019) for the
terms to describe the properties of CNNs. These terms may be
an alternate nomenclature to other works or may be unfamiliar.
To avoid confusion we reproduce these de�nitions in Appendix
B.

3.1.1. Architecture of the CNN

For this work, we use the architecture developed in Pearson et al.
(2019) and use this to train on data from CANDELS and KiDS
(the network trained in Pearson et al. (2019) is used on the SDSS
images). This network is built withTensorflow (Abadi et al.

2015) and comprises of a series of four, two-dimensional con-
volutional layers followed by two one-dimensional, fully con-
nected layers of 2048 neurons. The convolutional layers have
32, 64, 128 and 128 kernels of 6� 6, 5� 5, 3� 3 and 3� 3 pixels
for the �rst, second, third and fourth layers respectively with the
stride, how far the kernel is moved as it scans the input, set at 1
pixel for all layers and the zero padding is set to “same” to pad
each edge of the image with zeros evenly (if required). 2� 2 pixel
max-pooling is applied after the �rst, second and fourth convolu-
tional layers to reduce the dimensionality of the network. Batch
normalisation (Io� e & Szegedy 2015) is applied after each layer,
scaling the output between zero and one, and we use Recti�ed
Linear Units (ReLU; Nair & Hinton 2010) for activation, which
returns max(x, 0) when passedx. We also apply dropout (Srivas-
tava et al. 2014) after each activation, to help reduce over-�tting,
with a dropout rate of 0.2 to randomly set the output of neurons
to zero 20% of the time during training. The loss of this network
is determined using softmax cross entropy and optimised using
the Adam algorithm (Kingma & Ba 2015) with a learning rate of
5 � 10� 5. The architecture can be seen schematically in Fig. 8.

The inputs to the network are 64� 64 pixel images with either
3 (CANDELS) or 1 (KiDS) colour channels, that are globally
scaled between 0 and 1, preserving the relative �ux densities for
multi colour images. The output layer has two neurons, one for
each of the merging and non-merging classes, and uses a soft-
max output, providing the probability for each class in the range
[0, 1] that sum to unity, i.e. softmax maps the un-normalised in-
put into it to a probability distribution over the output classes if
the training, test and validation data sets have an equal number
of each class. In the following, we will use the output for the
merger class (frac_merger ) although this can be considered to
be equivalent to using the output for the non-merger class as it is
1-(frac_merger ) in our binary classi�cation.

Due to the limitations of this architecture, speci�cally the
use of fully connected layers, it is not possible to have input
images of di� erent pixel sizes. As a result, it is not possible to
use cutouts of di� erent sizes that maintain the relative size of the
galaxy within the image. It is possible to resize the images but
this risks losing small scale structure when downscaling galaxies
or creating artefacts when upscaling. This may cause issues for
large galaxies at low redshifts and low resolution as the primary
galaxy may �ll the image. However, it is possible to correctly
identify the galaxies that �ll, or are larger than, the image if the
training set contains these types of galaxies, as has been shown
in Pearson et al. (2019).
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Fig. 8. A schematic representation of the architecture of the CNN used with the input (three or one colour, 64� 64 pixel image) on the left and
output (binary classi�cation of merger or non-merger) on the right. The sizes of the kernels (red) and layers are shown with the input layer having
a depth of 3 for the SDSS (gri) and CANDELS (1.6� m, 1.25� m and 814 nm) data and 1 for the KiDS (r-band) data.

3.1.2. Training, validation and testing

If there are an unequal number of images in the two classes, the
larger class size is reduced by randomly removing images until
the classes are the same size. The images were then subdivided
into three groups: 80% were used for training, 10% for valida-
tion and 10% for testing. The training set was the set used to
train the network while the validation was used to see how well
the network was performing as training progressed. The testing
set was used once, and once only, to test the performance of the
network deemed to be the best from the validation. Testing im-
ages are not used for validation to prevent accidental training on
the test data set.

During training, the input images were augmented. To in-
crease the number of galaxies to train with for CANDELS and
KiDS, the images were randomly augmented in one of the fol-
lowing ways: the image was translated by up to 4 pixels in each
direction, zoomed by up to 2� , rotated by a random angle about
the galaxy, skewed by a random angle between 10� and 30� or
passed without change. For the �rst four of these options, ran-
dom Gaussian noise was added so the galaxy appeared “new”
to the network. These augmented images were then randomly
rotated by 0� , 90� , 180� or 270� to reduce sensitivity to galaxy
orientation. Once complete, we have one network for the CAN-
DELS data, one for the KiDS-z00 data, one for KiDS-z15, one
for KiDS-z30 and one for KiDS-z45 data.

3.2. Forward modelling of the galaxy main sequence

In determining if galaxy mergers have an e� ect on the star-
formation rates (SFR) of galaxies, it is necessary to remove the
mass dependence from the star-formation rate. To do this we cor-
rect for the slope of the main sequence of star forming galaxies
(MS, e.g. Brinchmann et al. 2004; Noeske et al. 2007; Elbaz
et al. 2007; Speagle et al. 2014; Pearson et al. 2018). The MS
is an observed tight correlation between the M? and SFR of star
forming galaxies that exists out to at leastz = 6 with a scatter
of � 0.3 dex that is mass and redshift independent. The slope of
the MS is found to be less than one and to depend on the redshift
(Pearson et al. 2018). To correct for this slope, it is necessary to
�rst determine the MS of the galaxies.

To determine the MS, we follow Pearson et al. (2018) and use
forward modelling. Assuming a linear MS, we use the Markov

Chain Monte-Carlo (MCMC) sampleremcee(Foreman-Mackey
et al. 2013) to simultaneously �t the slope, normalisation and
scatter of all the galaxies that are star forming. At each sam-
pled point in the parameter space, model SFRs are created using
the observed stellar masses, observed redshifts and the corre-
sponding positions along the sampled MS. These SFRs are then
perturbed by selecting a random number from a Gaussian dis-
tribution, with the standard deviation equal to the sampled scat-
ter, truncated to match the observed upper and lower SFR lim-
its. To include observational uncertainties on SFR and M? , both
the simulated SFR and the observed M? of each galaxy are per-
turbed again by a random number sampled from a Gaussian dis-
tribution with the standard deviation equal to the error in the
observed SFR or M? .

At each step, the mock SFR-M? plane is compared to the
observed SFR-M? plane by binning the data into identical bins
in M? . The means and standard deviations of the SFRs inside
each bin are calculated and the results from the mock data are
compared to the results from the observed data. The closer the
means and standard deviations in the mock bins are to the ob-
served bins, the more likely the model is a correct representation
of the observed data. Due to the large number of objects, for
the SDSS data we randomly select 50 000 star forming objects
within each redshift bin to determine the MS.

4. Results

Here we present the results of our analysis of the three data sets.

4.1. Performance of the CNN

The network we use for the SDSS objects is that of Pearson
et al. (2019). For completeness, we repeat these results here. The
SDSS network achieves an accuracy of 0.932 at validation with a
cut threshold of 0.5, that is any object withfrac_merger > 0.5
is classi�ed as a merging galaxy. We can alter the threshold value
to �nd the threshold value that simultaneously minimises the fall
out and maximises the recall. By doing this to set the threshold
to 0.57, the accuracy increases to 0.935. Using the same thresh-
old of 0.57 at testing, the �nal accuracy of the SDSS network is
0.915, with recall, precision, speci�city and negative predictive
value (NPV) of 0.920, 0.911, 0.910 and 0.919 respectively. We
apply the network to 256 497 SDSS galaxies with spectroscopic

Article number, page 8 of 20



W. J. Pearson et al.: E� ect of galaxy mergers on star formation rates

redshifts between 0.005 and 0.1, to match the training set, re-
sulting in 28 971� 2578 (14.1� 1.3%) galaxies being identi�ed
as mergers. The errors in these merger counts are derived from
the precision of the network, see Appendix B for the de�nition.
The number of merging galaxies is multiplied by the precision
and the di� erence between this value and the original count is
taken as the error for the number of mergers and number of non-
mergers. This is likely an underestimate as the precision assumes
equal population sizes of mergers and non-mergers, which is ev-
idently not the case.

For the KiDS network, we use the CNN to identify galax-
ies that fall within the GAMA09 �eld. This network achieves
an accuracy of 0.942 at validation with a cut threshold of 0.5.
If we alter the threshold to 0.52, to simultaneously minimise the
fall out and maximise the recall, the accuracy increases to 0.948.
Using the same threshold of 0.52 at testing, the �nal accuracy
of the KiDS network is 0.903, with recall, precision, speci�city
and NPV of 0.942, 0.874, 0.864 and 0.938 respectively. Despite
the resolution of the KiDS images being higher than that of the
SDSS images, the same image size resulted in the best perfor-
mance for the KiDS network: 64� 64 pixels. Larger images were
tried but these networks did not perform as well. Applying the
KiDS network to all galaxies in the GAMA09 �eld with photo-
metric redshifts below 0.15, a total of 1270 galaxies, we identify
436� 55 (30.0� 4.3%) merging galaxies.

The CANDELS network achieves an accuracy of 0.826 at
validation with a cut threshold of 0.5. If we decrease the thresh-
old to 0.47, the accuracy increases to 0.840. Using the same
threshold of 0.47 at testing, the �nal accuracy of the CANDELS
network is 0.818, with recall, precision, speci�city and NPV of
0.870, 0.789, 0.768 and 0.855 respectively. The poorer results
for the CANDELS network is likely due to fewer pre-classi�ed
objects to train the network with, 694 per class for CANDELS
compared to 3003 for SDSS, as well as the higher redshifts of
the training objects. The CANDELS images also cover a much
larger redshift range, resulting in a greater distribution of sizes
in the image for galaxies at the same mass than the SDSS im-
ages. Ideally, it would be preferable to split the galaxies into
redshift bins and train a network per redshift to minimise this
e� ect, however with so few objects it is not feasible. We ap-
ply the CANDELS network to the objects with H-magnitude<
24.5 and 0:0 < z < 4:0 in the CANDELS COSMOS, EGS and
UDS �elds and identify 3535� 746 merger candidates out of the
10 027 galaxies in these three �elds. This is a merger fraction of
35.3� 7.4%, which is high. The statistics for all the networks are
presented in Table 2 and examples of non-merger and mergers
selected by the CNNs can be found in Appendix C.

4.2. SDSS

To determine the e� ect of galaxy mergers on SFR, we determine
the e� ect of mergers on the MS subtracted SFR. We �t the MS
to all the star forming galaxies, both mergers and non-mergers
together, and the MS we have �tted to the SDSS data is shown
overlaid onto all the non-merging and merging galaxies in Fig. 9.
The MS subtracted SFR of the merging and non-merging galax-
ies are then compared by �tting a skewed Gaussian distribution,
of the form

y =
A
�

exp
� (x � � )

2� 2

��
1 + er f

� � (x � � )
p

2�

��
; (7)

to the distributions of the merging and non-merging galaxies,
whereA is the amplitude,� and � are the mean and standard

Fig. 9.The SFR-M? plane populated with (a) the non-merging galaxies
and (b) the merging SDSS galaxies. The colour indicates the number
density from low (light yellow) to high (dark purple). Overlaid in red is
the MS that has been �tted to all star forming galaxies. As can be seen,
the distributions of the merging and non-merging galaxies are similar
with respect to the plotted MS.

deviation of the Gaussian,� is the description of skewness and
er f is the error function.

To �t the skewed Gaussian we bin the MS subtracted
SFR with bin sizes of 0.25 dex, between -3 log(M� yr� 1) and
2 log(M� yr� 1) and �t the skewed Gaussian to the number of
galaxies in each bin. The errors on these counts were determined
by generating 100 realisations of the MS subtracted SFR by per-
turbing the SFR and M? of each galaxy by a random number
drawn from a Gaussian distribution centred on the observed SFR
or M? and with the error on the value as the standard deviation.
Each realisation was then binned in the same way as the obser-
vations and the standard deviation of the counts in the bins of
the 100 realisations were taken as the errors on the counts of the
observations. Thescipy.optimize packagecurve_fit was
then used to �t the skewed Gaussian distribution to the counts in
the bins and account for their errors. The distributions are pre-
sented in Fig. 10 with the parameters for the skewed Gaussian
�ts in Table 3.

Comparing the skewed Gaussian �ts to the distributions, we
�nd that the mean for the star forming mergers and non-mergers
are consistent within 3 times the error of the mean (� � ) and the
merging galaxies have higher mean MS subtracted SFR. This
suggests that the star forming population has a slightly, but not
signi�cantly, increased SFR when undergoing a merger.

4.3. KiDS

As with the SDSS data, we �t a skewed Gaussian distribution
to the MS subtracted SFR of the star forming galaxies. An ex-
ample of the resulting MS subtracted SFR distributions for the
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Table 2.Statistics for the trained CNNs. De�nitions of terms can be found in Appendix B

SDSSa KiDS CANDELS
0:005< z < 0:1 0:00 < z � 0:15 0:00 < z � 4:0

Cut threshold 0.57 0.52 0.47
ROC area 0.966 0.957 0.861

Recall 0.920 0.942 0.870
Precision 0.911 0.874 0.789
Speci�city 0.910 0.864 0.768

NPV 0.919 0.938 0.855
Accuracy 0.915 0.903 0.818

Notes.(a) The SDSS network is that of Pearson et al. (2019).

Fig. 10. The distribution of MS subtracted SFR for the star forming
SDSS non-merging galaxies (blue) and merging galaxies (red). As can
be seen, the merging star forming population has a slightly higher mean
MS subtracted SFR.

Table 3.Best �t parameters for the skewed Gaussian distribution �tted
to the star forming SDSS data.� and� are in units of log(M� yr� 1)

Parameter Merger Non-merger
� 0.33� 0.02 0.25� 0.01
� 0.43� 0.02 0.39� 0.01
� -1.29� 0.18 -1.52� 0.16

Table 4.Best �t parameters for the skewed Gaussian distribution �tted
to the star forming KiDS data.� and� are in units of log(M� yr� 1)

Parameter Merger Non-merger
� 0.44� 0.1 0.13� 0.18
� 0.47� 0.09 0.41� 0.08
� -1.53� 0.91 -0.63� 0.78

KiDS is shown in Fig. 11. Table 4 shows that the merging star
forming galaxies have higher average SFRs. The di� erences not
large, with the mean MS subtracted SFR being within 3� � of
each other.

Fig. 11. The distribution of MS subtracted SFR for the star forming
KiDS non-merging galaxies (blue) and merging galaxies (red). As can
be seen, the merging star forming galaxies have a similar mean MS
subtracted SFR to the non-merging galaxies.

4.4. CANDELS

Due to the larger redshift coverage of the CANDELS data, we
can examine if the impact of galaxy mergers on SFR changes
as a function of redshift. To do this, we divided the data into
redshift bins with edges atz = 0.0, 0.6, 0.85, 1.21, 1.66 and
4.0, each with its own mass completeness limit and containing
approximately 2000 galaxies after mass completeness cuts have
been applied. Each redshift bin also had its own main sequence
�tted as outlined in Sect. 3.2. For ease of reference, these redshift
bins shall be referred to as CANDELS-z000, CANDELS-z060,
CANDELS-z085, CANDELS-z121 and CANDELS-z166.

As before, we �t the distributions of the star forming CAN-
DELS galaxies with a skewed Gaussian function. However, there
is an indication of a second, high SFR population in CANDELS-
z085 (0:85 < z � 1:21), identi�able when the error on the
skew of the both the merging and non-merging distributions are
greater than 104 and so in that bin only, we �t a double Gaussian
distribution and consider the lower mean to be the mean of the
star forming population. The distributions for the MS subtracted
SFR for this redshift bin is shown in Fig. 12.

Using the best �tting values for the skewed and double Gaus-
sian functions presented in Table 5, in the lowest redshift bin the
merging galaxies act to suppress the SFR of galaxies, with the
mean MS subtracted SFR for merging galaxies lower than non-
merging galaxies by more than 3� � . At redshifts abovez = 0:60,
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Fig. 12.The distribution of MS subtracted SFR for the 0:85 < z � 1:21
redshift bin for the CANDELS non-merging galaxies (blue) and merg-
ing galaxies (red). This is the only data that is �tted with a double Gaus-
sian distribution due to the clear multi-modal population. As can be
seen, the main and secondary populations have a slightly higher mean
MS subtracted SFR than the non-merging galaxies.

the star forming mergers have a higher mean than the star form-
ing non-mergers or are consistent within 3� � .

5. Discussion

Here we present discussions of our results. We note that direct
comparisons between the results of the three data sets is di� -
cult due to the di� erent de�nitions of mergers employed for the
training data sets as well as di� erence in data quality, such as
depth and resolution, which can also in�uence merger identi�-
cation. While the merger de�nitions are similar, as they are all
based on visual classi�cation, the speci�cs of the de�nitions dif-
fer. The classi�cations also cover both major and minor mergers,
with approximately half of each training set comprising of ma-
jor mergers. This likely results in a similar split for the mergers
classi�ed by our networks.

5.1. Merger in�uence on SFR

Across the SDSS, CANDELS and KiDS data sets there is a
di� erence between the SFRs of the merging and non-merging
galaxies. However, the di� erence between the two is small and
varies between the data sets as well as within the data sets. What
is evident is that the merging systems are not only found as star-
burst galaxies but also as star forming and quiescent systems.

Comparing the SDSS data with the KiDS data, we �nd little
di� erence in how mergers are a� ecting the SFR. Both data sets
show that star forming merging galaxies have a slight increase
in SFR. Within the CANDELS-z000 data the opposite is found:
we �nd that there is a decrease in the MS subtracted SFR, sug-
gesting that galaxy mergers are acting to reduce the SFR of the
star forming galaxies. The full comparison between the average
SFRs for all data sets at all redshifts studied can be seen in Fig.
13.

The slight di� erence between the merging and non-merging
SFRs is also not a result of the observation bands or methods
used to derive the SFR. The mergers in all three surveys are de-
tected using di� erent bands: SDSS uses three optical bands (gri),
CANDELS uses observed frame near infrared (Hubble 1.6� m,

Fig. 13. The average MS subtracted SFR of the star forming galaxies
for the SDSS merging (purple circle) and non-merging (dark blue dia-
mond); KiDS merging (light blue circle) and non-merging (green dia-
mond); and CANDELS merging (orange circles) and non-merging (red
diamonds) galaxies. As can be seen, the change in SFR between the
merging and non-merging galaxies is typically small.

1.25 � m and 814 nm bands) and KiDS uses a single optical
band (r band). SFRs in the three surveys are also derived dif-
ferently: SDSS uses H� based SFR while CANDELS and KiDS
use SED derived SFR. The models used to derive the CANDELS
and KiDS SFRs and M? are also di� erent. Thus, the small e� ect
of merging galaxies on the SFRs seen is this study is robust.

Our results are qualitatively in line with previous work in
that we only �nd small (less than a factor of two) changes in
SFR. Lackner et al. (2014) and Knapen et al. (2015) �nd that
mergers change the SFR by up to a factor of two. While we do
not �nd that mergers always result in an increase in SFR, we do
�nd that the change in SFR caused by a galaxy merger is typi-
cally small over the timescale of the entire merger. If an increase
in SFR due to a galaxy merger is large but shorter lived, the e� ect
will be hidden by the larger number of galaxies not undergoing
such a burst of star formation. The changes in average MS sub-
tracted SFR are small and typically found to be a factor of� 1.2.
Similarly, Silva et al. (2018) �nd that mergers produce no sig-
ni�cant change to the SFR of galaxies, which is consistent with
the results of our study. However, caution must be taken with
this comparison as the work of Silva et al. (2018) uses merg-
ers where the two merging galaxies are within 3-15 kpc of each
other, something that this work does not take into account.

This study has its limitations. It is likely that we are observ-
ing di� erent stages of galaxy mergers but our method is currently
unable to determine at what stage the mergers are. As a result,
it is not possible to say, from this study, if mergers cause a mi-
grating of the merging galaxies across the SFR-M? plane or if
the merger only slightly a� ects the SFR resulting in the small
changes we observe.

5.2. Merger fractions

The merger fractions for CANDELS, 35.3� 7.4%, and KiDS,
36.9� 5.3%, are notably higher than the merger fractions for the
SDSS data at 14.1� 1.3%, see Table 6 and Figs. 14 and 15. The
errors in these merger fractions are derived from the precision
of the network, see Appendix B for the de�nition. The number
of merging galaxies is multiplied by the precision and the dif-
ference between this value and the original count is taken as the
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Table 5. Best �t parameters for the skewed or double Gaussian distributions �tted to the star forming CANDELS data. For the 0:85 < z � 1:21
bin, where a double Gaussian is used, the star forming component is the component with the lowest� . � and� are in units of log(M� yr� 1)

Redshift Parameter Merger Non-merger

0:0 < z � 0:6
� -0.37� 0.17 -0.27� 0.02
� 0.47� 0.08 0.29� 0.02
� 9999.489� 87523220.85 1.21� 0.26

0:6 < z � 0:85
� 0.10� 0.12 0.02� 0.11
� 0.24� 0.07 0.24� 0.06
� -0.878� 1.17 -0.79� 0.99

0:85 < z � 1:21 � -0.12� 0.01 -0.16� 0.01
� 0.20� 0.01 0.20� 0.01

1:21 < z � 1:66
� -0.43� 0.02 -0.42� 0.02
� 0.62� 0.03 0.52� 0.03
� 5.058� 1.24 3.13� 0.69

1:66 < z � 4:0
� -0.47� 0.02 -0.5� 0.02
� 0.65� 0.03 0.61� 0.03
� 3.241� 0.51 3.7� 0.61

Table 6.The merger fraction by redshift and data set for the quiescent,
star forming and total galaxy populations. Errors are derived from cor-
recting for the precision of the network.

Data Set Total Quiescent Star forming
SDSS 14.1� 1.3% 14.3� 1.3% 13.4� 1.2%
KiDS 30.0� 4.3% 19.4� 2.8% 36.9� 5.3%

CANDELS-z000 32.0� 6.8% 30.0� 6.2% 32.4� 6.8%
CANDELS-z060 32.2� 6.8% 20.2� 4.3% 33.6� 7.1%
CANDELS-z085 32.6� 6.9% 24.4� 5.1% 33.3� 7.0%
CANDELS-z121 37.8� 8.0% 23.9� 5.3% 39.4� 8.3%
CANDELS-z166 42.1� 8.9% 28.5� 5.9% 44.3� 9.3%

error for the number of mergers and number of non-mergers. The
merging fraction for the precision corrected counts is then cal-
culated and the di� erence between the original fraction and this
precision corrected fraction is taken as the error. This is likely an
underestimate as the precision assumes equal population sizes of
mergers and non-mergers, which is evidently not the case.

Even only considering the lowest redshift bin for CAN-
DELS, 0:00 < z � 0:60, the merger fraction is much higher than
the SDSS and higher redshift KiDS at 32.0� 6.8%. It is unsur-
prising that this becomes a larger issue as the redshift increases
because the pixel size of the galaxy within the image becomes
smaller and the galaxies themselves become fainter, suppress-
ing the features that the CNN will look for to identify a merging
galaxy.

Comparing our merger fractions to other works shows that
the CANDELS results are indeed much higher than would be
expected. Figure 14 shows the comparison of this work with
Conselice et al. (2003), who use CAS to identify mergers, Lotz
et al. (2011), who use Gini andM20, (Cotini et al. 2013), who use
CAS, Gini andM20, and Duncan et al. (2019), who use the close
pair method. The results of Duncan et al. (2019) are the merger
pair fraction (the number of pairs of merging galaxies divided
by the total number of galaxies) and so we multiply their values
by 0.6 to compare to our results (Lotz et al. 2011; Mundy et al.
2017).

The SDSS merger fraction is higher than the other works in
the same redshift range but is consistent with the merger frac-
tions of Conselice et al. (2003) and Lotz et al. (2011) at higher

Fig. 14.The total merger fraction as a function of redshift for the SDSS
(dark blue circle), KiDS (light blue circle) and CANDELS (red cir-
cles) by redshift bin. Also plotted are the mass limited merger fractions
with log(M? /M � ) > 10.0 from Conselice et al. (2003, green stars), Co-
tini et al. (2013, lilac diamonds), Lotz et al. (2011) magnitude limited
merger fractions with MB > -19.2 (orange crosses) and the Duncan et al.
(2019) lower mass (9.7< log(M? /M � < 10.3, L, purple left triangles)
and higher mass (log(M? /M � > 10.3, H, brown right triangles) merger
fractions. The SDSS data are slightly higher than would be expected and
the KiDS and CANDELS merger fractions are approximately a factor
of two higher than the other results.

redshifts. The KiDS data has a merger fraction that is higher
compared to the other works, both at similar and higher red-
shifts, similar to the merger fractions from CANDELS as dis-
cussed above.

We can compare the merger fractions of the quiescent and
star forming galaxies as shown in Fig. 15. The SDSS data has a
slightly lower merger fraction for the quiescent galaxies than the
star forming galaxies, although the di� erence is 0.2 percentage
points, much less than the error on the merger fractions. KiDS
data has a higher merger fraction for the quiescent galaxies than
the star forming galaxies. As these two data sets cover simi-
lar redshift ranges one would expect to see a similar trend in
the merger fractions of these two populations. The di� erence in
overall merger fractions may be a result of the SDSS and KiDS
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Fig. 15.The merger fraction of quiescent (diamonds) and star forming
(circles) as a function of redshift for SDSS (purple and blue), KiDS
(yellow and green) and CANDELS (orange and red). There is no overall
trend with redshift with SDSS having a lower merger fraction for the
star forming galaxies, KiDS having a higher merger fraction for star
forming galaxies and CANDELS star forming galaxies having a higher
merger fraction at all redshifts.

networks not being identical and the di� erent selection criteria
for the training sets.

This is qualitatively di� erent to the CANDELS-z000 data
that has a slightly lower quiescent merger fraction than star
forming merger fraction. This di� erence is more pronounced at
higher redshifts resulting in a di� erent conclusion from the KiDS
data. The CANDELS data suggests that there is a higher fraction
of star forming galaxy mergers than quiescent galaxy mergers at
all redshifts, implying that galaxy mergers do not often act to
suppress star formation rates.

The CNNs used in this work are not perfect as they mis-
classify mergers as non-mergers and non-mergers as mergers.
The latter of these misclassi�cations may present issues with our
analysis. As non-mergers are more prevalent than mergers, rel-
atively high speci�city of a network can still result in a large
population of non-merging galaxies being added to the merging
classi�cation. If galaxy mergers do signi�cantly change the SFR
of the galaxies, the non-merging interlopers may act to suppress
this e� ect in the statistical analysis used in this paper. However,
as this work is primarily comparing the relative SFRs of merging
and non-merging galaxies, we do not believe that this overly im-
pacts our results as the di� erences we see in star formation rates
between the mergers and non-mergers is small.

5.3. Starburst merger fraction

We avoid using a speci�c de�nition of a starburst galaxy and in-
stead opt to study the merger fraction as a function of distance
above the MS. For ease of reference, we will refer to the galaxies
above a given SFR threshold as starbursting in this subsection,
even if the threshold is the MS. To this end, we study the fraction
of star forming galaxies above a certain distance above the MS
that are merging for all three data sets (number of merging galax-
ies above a certain threshold/ total number of galaxies above the
same threshold). These trends are presented in Fig. 16.

The SDSS and KiDS data show an increase in the merger
fraction as the distance from the MS increases, with SDSS
rising to � 1.1 log(M� yr� 1) and KiDS slowly declining above

Fig. 16. Merger fraction for star forming galaxies with SFRs above
the indicated distance above the MS for the SDSS and KiDS data (top
panel) and the CANDELS data (bottom panel). To avoid low number
statistics, only thresholds above which there are 50, or more, galaxies
are shown. The SDSS (top panel, purple), KiDS (top panel, blue) and all
CANDELS data show a trend of increasing merger fraction as the dis-
tance to the MS increases, although the CANDELS-z000 drops again
above 0.62 log(M� yr� 1).

� 0.8 log(M� yr� 1). A similar trend is seen in the CANDELS
data, with an increase in merger fraction as the distance from
the MS increases. CANDELS-z000 rises to approximately
0.3 log(M� yr� 1) while the other three CANDELS redshift bins
rise to approximately 0.8, 1.2, 1.4 and 1.6 for CANDELS-
z060, CANDELS-z085, CANDELS-z121 and CANDELS-z166
respectively. Thus, the merger fraction increases as the star for-
mation rate increases showing that mergers can act to trigger
high star formation rates and starbursts. We note, however, that
the number of galaxies in Fig. 16 decreases as the distance above
the MS increases meaning that the lower merger fraction at lower
distance can contain more mergers than the higher merger frac-
tion at larger distances. This allows for the small changes in
SFR seen in the star forming population despite the merger frac-
tion increasing as the distance above the MS increases. This is
qualitatively consistent with (Luo et al. 2014), who �nd approx-
imately half of starburst systems (de�ned as an increase in SFR
by a factor of 5 or more) are undergoing a merger while the frac-
tion of mergers in non-starburst systems is lower.

We can also compare the fraction of star forming, merging
galaxies that have SFRs above a certain distance above the MS
(number of merging galaxies above a certain threshold/ total
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Fig. 17.Fraction of star forming, merging galaxies with SFRs above a
given distance above the MS (solid lines) and the fraction of star form-
ing, non-merging galaxies with SFRs above a given distance above the
MS (dashed lines). The top panel contains the SDSS and KiDS data
sets while the bottom panel contains the CANDELS data. To avoid low
number statistics, only thresholds above which there are 50, or more,
galaxies are shown. The SDSS (top panel, purple), KiDS (top panel,
blue) and all CANDELS data show that there is a higher fraction of the
total number of merging galaxies above nearly all distance above the
MS.

number of merging galaxies) with the fraction of star forming,
non-merging galaxies that have SFRs above a certain distance
above the MS as shown in Fig. 17. The SDSS, KiDS and CAN-
DELS data all show that a higher fraction of starburst mergers
are found than the fraction of starburst non-mergers, although
this switches at larger distances for the KiDS data. This is clear
evidence that the merging galaxies are causing an increase in
SFR.

6. Conclusions

Galaxy mergers are an important part of how galaxies grow
and evolve over the history of the universe. However, identify-
ing galaxy mergers is a di� cult and time-consuming task. Here
we have employed deep learning techniques to identify galaxy
mergers in SDSS, KiDS and CANDELS imaging data. We have
then used these classi�cations to explore how galaxy mergers
a� ect SFRs.

We �nd that mergers do indeed in�uence the SFR in the
merging galaxies. However, the resulting change in SFR is small,

typically a factor of� 1.2. Within the SDSS data, the star form-
ing objects have a slight increase, on average, that is also seen
in the KiDS data within a similar redshift range. Between 0:0 <
z � 0:6, the CANDELS data shows a slight decrease in SFR for
the star forming population when examining the MS subtracted
SFR. Continuing to higher redshifts with the CANDELS data,
we again �nd slight increases SFR for the merging galaxies with.

Overall, the change seen in the SFR of the star forming pop-
ulation is small, with the majority of changes in the SFR in all
data sets being less than 3� � , a factor of� 1.2.

The merger fraction of quiescent and star forming galaxies
also depends on the data set. The SDSS data has a slightly high
merger fraction for quiescent galaxies compared to star forming
galaxies while the KiDS and CANDELS data is the opposite.
Again, de�nite conclusions are di� cult with the CANDELS and
KiDS data showing that galaxy mergers are more common in
star forming galaxies at any redshift while the SDSS data does
not.

Instead of directly examining the fraction of starburst galax-
ies that are mergers, we examine the merger fraction as a func-
tion of distance above the MS. For the SDSS, CANDELS and
KiDS the fraction of mergers increases as the distance above the
MS increases. This is evidence that mergers can cause periods of
enhanced star formation.

Our current work does not determine the stage of the galaxy
merger but we can see by eye that our merger samples include
mergers at di� erent stages. Thus, it is possible that the period
during which SFR is boosted signi�cantly is very short during
the merging process and missed within our more time averaged
analysis. It could also be that SFR is only boosted signi�cantly
for a small fraction of merger types or a combination of both
scenarios. Future work will aim to overcome these shortcomings
by determining the merger stage.

Acknowledgements.We would like to thank the anonymous referee for their
thoughtful comments that have improved the quality of this paper.
We would like to thank the Center for Information Technology of the University
of Groningen for their support and for providing access to the Peregrine high
performance computing cluster.
MB is supported by the Polish Ministry of Science and Higher Education through
grant DIR/WK/2018/12.
Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science Foundation, the
U.S. Department of Energy, the National Aeronautics and Space Administration,
the Japanese Monbukagakusho, the Max Planck Society, and the Higher Educa-
tion Funding Council for England. The SDSS Web Site is http://www.sdss.org/.
The SDSS is managed by the Astrophysical Research Consortium for the Partic-
ipating Institutions. The Participating Institutions are the American Museum of
Natural History, Astrophysical Institute Potsdam, University of Basel, University
of Cambridge, Case Western Reserve University, University of Chicago, Drexel
University, Fermilab, the Institute for Advanced Study, the Japan Participation
Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics,
the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scien-
tist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National
Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-
Institute for Astrophysics (MPA), New Mexico State University, Ohio State Uni-
versity, University of Pittsburgh, University of Portsmouth, Princeton University,
the United States Naval Observatory, and the University of Washington.
Based on observations made with ESO Telescopes at the La Silla Paranal Obser-
vatory under programme IDs 177.A-3016, 177.A-3017, 177.A-3018 and 179.A-
2004, and on data products produced by the KiDS consortium. The KiDS pro-
duction team acknowledges support from: Deutsche Forschungsgemeinschaft,
ERC, NOVA and NWO-M grants; Target; the University of Padova, and the Uni-
versity Federico II (Naples).
GAMA is a joint European-Australasian project based around a spectroscopic
campaign using the Anglo-Australian Telescope. The GAMA input catalogue is
based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared
Deep Sky Survey. Complementary imaging of the GAMA regions is being ob-
tained by a number of independent survey programmes including GALEX MIS,
VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP pro-
viding UV to radio coverage. GAMA is funded by the STFC (UK), the ARC

Article number, page 14 of 20

http://www.sdss.org/


W. J. Pearson et al.: E� ect of galaxy mergers on star formation rates

(Australia), the AAO, and the participating institutions. The GAMA website is
http://www.gama-survey.org/
This work is based on observations taken by the CANDELS Multi-Cycle Trea-
sury Program with the NASA/ESA HST, which is operated by the Association
of Universities for Research in Astronomy, Inc., under NASA contract NAS5-
26555.
This research made use of Astropy,5 a community-developed core Python pack-
age for Astronomy (Astropy Collaboration et al. 2013, 2018).

References

Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems, software available from tensor-
�ow.org

Ackermann, S., Schawinski, K., Zhang, C., Weigel, A. K., & Turp, M. D. 2018,
MNRAS, 479, 415

Astropy Collaboration, Price-Whelan, A. M., Sip�ocz, B. M., et al. 2018, AJ, 156,
123

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558,
A33

Athanassoula, E., Rodionov, S. A., Peschken, N., & Lambert, J. C. 2016, ApJ,
821, 90

Barnes, J. E. 2004, MNRAS, 350, 798
Barton, E. J., Geller, M. J., & Kenyon, S. J. 2000, ApJ, 530, 660
Bell, E. F., Naab, T., McIntosh, D. H., et al. 2006, ApJ, 640, 241
Berrier, J. C., Bullock, J. S., Barton, E. J., et al. 2006, ApJ, 652, 56
Bershady, M. A., Jangren, A., & Conselice, C. J. 2000, AJ, 119, 2645
Boquien, M., Burgarella, D., Roehlly, Y., et al. 2019, A&A, 622, A103
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000
Chabrier, G. 2003, PASP, 115, 763
Charlot, S. & Fall, S. M. 2000, ApJ, 539, 718
Cibinel, A., Daddi, E., Sargent, M. T., et al. 2019, MNRAS, 485, 5631
Cirasuolo, M., McLure, R. J., Dunlop, J. S., et al. 2007, MNRAS, 380, 585
Conselice, C. J. 2003, ApJS, 147, 1
Conselice, C. J. 2014, ARA&A, 52, 291
Conselice, C. J., Bershady, M. A., Dickinson, M., & Papovich, C. 2003, AJ, 126,

1183
Conselice, C. J., Bershady, M. A., & Jangren, A. 2000, ApJ, 529, 886
Conselice, C. J., Yang, C., & Bluck, A. F. L. 2009, MNRAS, 394, 1956
Cortijo-Ferrero, C., González Delgado, R. M., Pérez, E., et al. 2017, A&A, 607,

A70
Cotini, S., Ripamonti, E., Caccianiga, A., et al. 2013, MNRAS, 431, 2661
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595
Darg, D. W., Kaviraj, S., Lintott, C. J., et al. 2010a, MNRAS, 401, 1552
Darg, D. W., Kaviraj, S., Lintott, C. J., et al. 2010b, MNRAS, 401, 1043
Davies, A., Serjeant, S., & Bromley, J. M. 2019, MNRAS[arXiv:1905.04303 ]
Davies, L. J. M., Robotham, A. S. G., Driver, S. P., et al. 2015, MNRAS, 452,

616
Davis, M., Guhathakurta, P., Konidaris, N. P., et al. 2007, ApJ, 660, L1
de Jong, J. T. A., Kuijken, K., Applegate, D., et al. 2013a, The Messenger, 154,

44
de Jong, J. T. A., Verdoes Kleijn, G. A., Kuijken, K. H., & Valentijn, E. A. 2013b,

Experimental Astronomy, 35, 25
De Propris, R., Liske, J., Driver, S. P., Allen, P. D., & Cross, N. J. G. 2005, AJ,

130, 1516
Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441
Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., et al. 2019, MN-

RAS, 484, 93
Draine, B. T., Aniano, G., Krause, O., et al. 2014, ApJ, 780, 172
Draine, B. T. & Li, A. 2007, ApJ, 657, 810
Driver, S. P., Norberg, P., Baldry, I. K., et al. 2009, Astronomy and Geophysics,

50, 5.12
Duncan, K., Conselice, C. J., Mundy, C., et al. 2019, ApJ, 876, 110
Eales, S., Dunne, L., Clements, D., et al. 2010, PASP, 122, 499
Edge, A., Sutherland, W., Kuijken, K., et al. 2013, The Messenger, 154, 32
Elbaz, D., Daddi, E., Le Borgne, D., et al. 2007, A&A, 468, 33
Ellison, S. L., Mendel, J. T., Patton, D. R., & Scudder, J. M. 2013, MNRAS, 435,

3627
Ellison, S. L., Patton, D. R., Simard, L., & McConnachie, A. W. 2008, AJ, 135,

1877
Ellison, S. L., Viswanathan, A., Patton, D. R., et al. 2019, MNRAS, 487, 2491
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,

306
Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJ, 600, L93
Gri� n, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518, L3

5 http://www.astropy.org

Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35
Guo, Y., Ferguson, H. C., Giavalisco, M., et al. 2013, ApJS, 207, 24
Holwerda, B. W., Kelvin, L., Baldry, I., et al. 2019, AJ, 158, 103
Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2006, ApJS, 163, 1
Huertas-Company, M., Gravet, R., Cabrera-Vives, G., et al. 2015, ApJS, 221, 8
Hurley, P. D., Oliver, S., Betancourt, M., et al. 2017, MNRAS, 464, 885
Io� e, S. & Szegedy, C. 2015, International Conference on Machine Learning
Joseph, R. D. & Wright, G. S. 1985, MNRAS, 214, 87
Kartaltepe, J. S., Mozena, M., Kocevski, D., et al. 2015, ApJS, 221, 11
Kau� mann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33
Kim, E. J. & Brunner, R. J. 2017, MNRAS, 464, 4463
Kim, J.-h., Wise, J. H., & Abel, T. 2009, ApJ, 694, L123
Kingma, D. P. & Ba, J. 2015, 3rd International Conference for Learning Repre-

sentations [arXiv:1412.6980 ]
Knapen, J. H., Cisternas, M., & Querejeta, M. 2015, MNRAS, 454, 1742
Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011, ApJS, 197, 36
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18
Kroupa, P. 2001, MNRAS, 322, 231
Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2
Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015, MNRAS, 454, 3500
Lackner, C. N., Silverman, J. D., Salvato, M., et al. 2014, AJ, 148, 137
Lambas, D. G., Tissera, P. B., Alonso, M. S., & Coldwell, G. 2003, MNRAS,

346, 1189
Lang, M., Holley-Bockelmann, K., & Sinha, M. 2014, ApJ, 790, L33
Larson, D., Dunkley, J., Hinshaw, G., et al. 2011, ApJS, 192, 16
Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, MNRAS, 379, 1599
Lecun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436
Lecun, Y., Bottou, L., Bengio, Y., & Ha� ner, P. 1998, in Proceedings of the IEEE,

Vol. 86, Issue 11, 2278–2324
Lin, L., Cooper, M. C., Jian, H.-Y., et al. 2010, ApJ, 718, 1158
Lin, L., Patton, D. R., Koo, D. C., et al. 2008, ApJ, 681, 232
Lintott, C. J., Schawinski, K., Slosar, A., et al. 2008, MNRAS, 389, 1179
López-Sanjuan, C., Balcells, M., Pérez-González, P. G., et al. 2010, A&A, 518,

A20
López-Sanjuan, C., Cenarro, A. J., Varela, J., et al. 2015, A&A, 576, A53
Lotz, J. M., Davis, M., Faber, S. M., et al. 2008, ApJ, 672, 177
Lotz, J. M., Jonsson, P., Cox, T. J., et al. 2011, ApJ, 742, 103
Lotz, J. M., Jonsson, P., Cox, T. J., & Primack, J. R. 2010a, MNRAS, 404, 590
Lotz, J. M., Jonsson, P., Cox, T. J., & Primack, J. R. 2010b, MNRAS, 404, 575
Lotz, J. M., Primack, J., & Madau, P. 2004, AJ, 128, 163
Loveday, J., Norberg, P., Baldry, I. K., et al. 2012, MNRAS, 420, 1239
Luo, W., Yang, X., & Zhang, Y. 2014, ApJ, 789, L16
Lupton, R., Blanton, M. R., Fekete, G., et al. 2004, PASP, 116, 133
Moreno, J., Torrey, P., Ellison, S. L., et al. 2019, MNRAS, 485, 1320
Mundy, C. J., Conselice, C. J., Duncan, K. J., et al. 2017, MNRAS, 470, 3507
Naab, T., Khochfar, S., & Burkert, A. 2006, ApJ, 636, L81
Nair, V. & Hinton, G. E. 2010, in Proceedings of the 27th international confer-

ence on machine learning (ICML-10), 807–814
Nayyeri, H., Hemmati, S., Mobasher, B., et al. 2017, ApJS, 228, 7
Niemi, S.-M., Somerville, R. S., Ferguson, H. C., et al. 2012, MNRAS, 421,

1539
Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJ, 660, L43
Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A&A, 507, 1793
Pearson, W. J., Wang, L., Hurley, P. D., et al. 2018, A&A, 615, A146
Pearson, W. J., Wang, L., Trayford, J. W., Petrillo, C. E., & van der Tak, F. F. S.

2019, A&A, 626, A49
Pearson, W. J., Wang, L., van der Tak, F. F. S., et al. 2017, A&A, 603, A102
Perez, J., Michel-Dansac, L., & Tissera, P. B. 2011, MNRAS, 417, 580
Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2017, MNRAS, 472, 1129
Pozzetti, L., Bolzonella, M., Zucca, E., et al. 2010, A&A, 523, A13
Randall, S. W., Markevitch, M., Clowe, D., Gonzalez, A. H., & Brada�c, M. 2008,

ApJ, 679, 1173
Robotham, A. S. G., Driver, S. P., Davies, L. J. M., et al. 2014, MNRAS, 444,

3986
Rodrigues, M., Puech, M., Flores, H., Hammer, F., & Pirzkal, N. 2018, MNRAS,

475, 5133
Rodriguez-Gomez, V., Snyder, G. F., Lotz, J. M., et al. 2019, MNRAS, 483, 4140
Rodríguez-Puebla, A., Primack, J. R., Avila-Reese, V., & Faber, S. M. 2017,

MNRAS, 470, 651
Rupke, D. S. N., Kewley, L. J., & Barnes, J. E. 2010, ApJ, 710, L156
Saitoh, T. R., Daisaka, H., Kokubo, E., et al. 2009, PASJ, 61, 481
Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173, 267
Sanders, D. B. & Mirabel, I. F. 1996, ARA&A, 34, 749
Santini, P., Ferguson, H. C., Fontana, A., et al. 2015, ApJ, 801, 97
Schweizer, F. 2005, in Astrophysics and Space Science Library, Vol. 329, Star-

bursts: From 30 Doradus to Lyman Break Galaxies, ed. R. de Grijs & R. M.
González Delgado, 143

Schweizer, F. 2009, in Globular Clusters - Guides to Galaxies, ed. T. Richtler &
S. Larsen (Berlin, Heidelberg: Springer Berlin Heidelberg), 331–338

Scoville, N., Aussel, H., Brusa, M., et al. 2007, ApJS, 172, 1

Article number, page 15 of 20

http://www.gama-survey.org/
http://www.astropy.org


A&A proofs:manuscript no. Paper-AA-2019-36337

Silva, A., Marchesini, D., Silverman, J. D., et al. 2018, ApJ, 868, 46
Sinha, M. & Holley-Bockelmann, K. 2012, ApJ, 751, 17
Smith, M. W. L., Ibar, E., Maddox, S. J., et al. 2017, ApJS, 233, 26
Somerville, R. S. & Davé, R. 2015, ARA&A, 53, 51
Sparre, M. & Springel, V. 2016, MNRAS, 462, 2418
Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS,

214, 15
Springel, V., Di Matteo, T., & Hernquist, L. 2005, MNRAS, 361, 776
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

2014, Journal of Machine Learning Research, 15, 1929
Stefanon, M., Yan, H., Mobasher, B., et al. 2017, ApJS, 229, 32
Toomre, A. & Toomre, J. 1972, ApJ, 178, 623
Weigel, A. K., Schawinski, K., Treister, E., Trakhtenbrot, B., & Sanders, D. B.

2018, MNRAS, 476, 2308
Whitaker, K. E., Labbé, I., van Dokkum, P. G., et al. 2011, ApJ, 735, 86
Wright, A. H., Robotham, A. S. G., Driver, S. P., et al. 2017, MNRAS, 470, 283
Wu, K. L., Faber, S. M., & Lauer, T. R. 2001, in Deep Fields, ed. S. Cristiani,

A. Renzini, & R. E. Williams, 170
York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, AJ, 120, 1579

Article number, page 16 of 20



W. J. Pearson et al.: E� ect of galaxy mergers on star formation rates

Appendix A: De-blending the SPIRE data

For de-blending the SPIRE data, we follow Pearson et al. (2017).
CIGALE is used with the 9-band KiDS catalogue data to gener-
ate estimates of the SPIRE �ux densities and we then select all
objects with a predicted 250� m �ux density above 1.1 mJy. The
CIGALE �ux density estimates are then used as a �ux density
prior inside XID+ and all three SPIRE bands in the GAMA09
�eld are de-blended. For the CIGALE models, we follow Pear-
son et al. (2018) but remove the active galactic nuclei compo-
nent, due to the limited wavelength coverage available, and in-
crease the sampling of the age of the stellar population.

For our CIGALE models, we follow (Pearson et al. 2018)
but remove the active galactic nuclei component, due to the lim-
ited wavelength coverage available, and increase the sampling
of the age of the stellar population. Thus, we use a double ex-
ponentially declining star formation history, Bruzual & Charlot
(2003) stellar emission, Chabrier (2003) initial mass function
(IMF), Charlot & Fall (2000) dust attenuation and the updated
Draine et al. (2014) version of the Draine & Li (2007) infrared
dust emission. A list of parameters, where they di� er from the
default values, can be found in Table A.1.

Appendix B: CNN performance de�nitions

This paper uses the de�nitions of Pearson et al. (2019) for the
terms to describe the properties of CNNs. These terms may be
an alternate nomenclature to other works or may be unfamiliar.
To avoid confusion we reproduce these de�nitions in Table B.1.

Appendix C: Example non-mergers and mergers

Here we present example non-mergers and mergers as de�ned by
the CNN. The images shown are all 64� 64 pixel images with gri
composite for SDSS, Fig. C.1, grayscale r-band for KiDS, Fig.
C.2, and 1.6� m, 1.25� m, 814 nm composite for CANDELS,
Fig. C.3.

Fig. C.1. Examples of non-merging galaxies (top row) and merg-
ing galaxies (bottom nine rows) for the SDSS data set as de�ned by
the CNN. Images are gri composite with a size of 64� 64 pixel or
13.7� 13.7 arcsec.
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Table A.1. Parameters used for the various properties in the CIGALE model SEDs where they di� er from the default values. All ages and times
are in Gyr.

Parameter Value Description
Star Formation History

� main 1.0, 1.8, 3.0, 5.0, 7.0 e-folding time (main)
� burst 9.0, 13.0 e-folding time (burst)
fburst 0.00, 0.10, 0.20, 0.30, 0.40 Burst mass fraction
Age 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, Population age (main)

3.50, 4.00, 4.50, 5.00, 5.50, 6.00,
6.50, 7.00, 7.50, 8.00, 8.50, 9.00,

9.50, 10.00, 10.50, 11.00, 12.00, 13.00
Burst Age 0.001, 0.010, 0.030, 0.100, 0.300 Population age (burst)

Stellar Emission

IMF Chabrier (2003) Initial Mass Function
Z 0.02 Metallicity (0.02 is Solar)

Separation Age 0.01 Separation between young and old stellar populations

Dust Attenuation

ABC
V 0.3, 1.2, 2.3, 3.3, 3.8 V-band attenuation of the birth clouds

SlopeBC -0.7 Birth cloud attenuation power law slope
BC to ISM Factor 0.3, 0.5, 0.8, 1.0 Ratio of the birth cloud attenuation to ISM attenuation

SlopeISM -0.7 ISM attenuation power law slope

Dust Emission

qPAH 0.47, 1.12, 2.50, 3.9 Mass fraction of PAH
Umin 5.0, 10.0, 25.0 Minimum scaling factor of the radiation �eld intensity

� 2.0 Dust power law slope
 0.02 Illuminated fraction
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Table B.1.Terms used when describing the performance of neural networks from Pearson et al. (2019)

Term De�nition
Positive (P) An object classi�ed in the catalogues or identi�ed by a network as a

merger.
Negative (N) An object classi�ed in the catalogues or identi�ed by a network as a

non-merger.
True Positive (TP) An object classi�ed in the catalogues as a merger that is identi�ed by a

network as a merger.
False Positive (FP) An object classi�ed in the catalogues as a non-merger that is identi�ed

by a network as a merger.
True Negative (TN) An object classi�ed in the catalogues as a non-merger that is identi�ed

by a network as a non-merger.
False Negative (FN) An object classi�ed in the catalogues as a merger that is identi�ed by a

network as a non-merger.
Recall Fraction of objects correctly identi�ed by a network as a merger with

respect to the total number of objects classi�ed in the catalogues as
mergers.

TP / (TP+FN)

Fall-out Fraction of objects incorrectly identi�ed by a network as a merger with
respect to the total number of objects classi�ed in the catalogues as
mergers.

FP/ (TP+FN)

Speci�city Fraction of objects correctly identi�ed by a network as a non-merger
with respect to the total number of objects classi�ed in the catalogues
as non-mergers.

TN / (TN+FP)

Precision Fraction of objects correctly identi�ed by a network as a merger with
respect to the total number of objects identi�ed by a network as a
merger.

TP / (TP+FP)

Negative Predictive
Value (NPV)

Fraction of objects correctly identi�ed by a network as a non-merger
with respect to the total number of objects identi�ed by a network as a
non-merger.

TN / (TN+FN)

Accuracy Fraction of objects, both merger and non-merger, correctly identi�ed
by a network.

(TP+TN) / (TP+FP+TN+FN)
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Fig. C.2. Examples of non-merging galaxies (top row) and merging
galaxies (bottom nine rows) for the KiDS data sets as de�ned by
the CNN. Images are grayscale r-band with a size of 64� 64 pixel or
25.3� 25.3 arcsec.

Fig. C.3. Examples of non-merging galaxies (top row) and merging
galaxies (bottom nine rows) for the CANDELS data set as de�ned by
the CNN. Images are 1.6� m, 1.25� m, 814 nm composite with a size
of 64� 64 pixel or 3.8� 3.8 arcsec.
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