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Summary

The Internet-of-Things (IoT) is the vision of a global network that connects various
physical world objects to the IT infrastructure through a wireless medium. Despite
the availability of a number of mature Radio Access Technologies (RATs) such as
GSM, LTE,Wi-Fi and due to the current progressmade in developing 5G technology,
more and more IoT operators are opting to use Low Power Wide Area (LPWA) tech-
nologies due to their low cost and easy deployment. However, recent studies show
that the radio resource allocation used in these technologies is not scalable. This lim-
itation often results in packet collisions, retransmission and unnecessary waste of
scarce energy resources. In this paper, we propose a Radio Resource Management
(RRM) framework, based on Software-Defined Networking (SDN), to overcome the
inefficient radio resource allocation of LPWA technologies. This is possible through
the centralized nature of SDN, which allows collecting network monitoring informa-
tion in order to analyze and calculate the optimal channel assignment configuration
across the IoT network. We perform software-defined radio based spectrum moni-
toring within the real IoT network platform in 868 MHz bands in which the latest
IoT technologies, i.e., LoRa and SigFox, operate. We demonstrate, through extensive
simulations, that the proposed approach provides a better radio resource allocation
for LPWA, reduces the number of packet collisions, and significantly improves the
energy efficiency of the IoT communications.
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1 INTRODUCTION

The overwhelming success of the Internet is built in part
on the availability of numerous edge communication solu-
tions ranging from wired technologies such as optic fiber and
ADSL to wireless communication technologies such as Wi-
Fi. This diversity of communication technologies is, in reality,
a reflection of the heterogeneity of users and applications
requirements. As mobility is a major requirement for many
users, wireless communication has unsurprisingly become the
most popular technology in many cases. The rise of wireless

communications is mainly due to the introduction of smart-
phones and tablets which allowed users to access the Internet
and interact with online services while moving. Since wire-
less communication technologies rely on the availability of a
finite radio spectrum, it becomes important to optimize the
utilization of this scarce resource as much as possible.
Until recently, the design of wireless communication solu-

tions and architectures has always been motivated by the need
to improve ubiquitous connectivity between people and inter-
action with online services. The latest progress made inMicro-
Electromechanical Systems (MEMS) has enabled new types
of applications that rely mostly on wireless communication to
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interact with physical objects and platforms such as appliances,
cars, power supply networks, etc. This concept, often referred
to as the Internet-of-Things (IoT), promises to revolutionize the
way we interact with everyday objects and services1.
Wireless communications have an important role in the IoT,

as wired connections are often not possible or in many cases
not economically viable. Due to their unique data traffic char-
acteristics, IoT applications have different requirements than
current Internet applications. Data traffic in these applications
consists generally of small uplink data transmissions, with very
little or no mobility of IoT devices and the need for high energy
efficiency2. The data rate requirement in IoT is also very low in
comparison to cellular communications because the data trans-
mission occurs less frequently, e.g., from once every hour to a
few updates per day. Moreover, the IoT network has to support
a diversity of applications within the same energy constraints.
For instance, alarm signal applications need highly reliable
communication with a guaranteed minimum Quality of Ser-
vice (QoS), whereas in smart metering applications packet
delays could possibly be acceptable3. Moreover, the energy
efficiency of the IoT devices should be maximized due to the
fact that the battery on such distributed IoT devices cannot be
easily replaced in which case the efficient energy harvesting
techniques are also needed4.
A number of wireless communication technologies have

been designed to address these requirements with cellular tech-
nologies such as GPRS, Narrow-Band IoT and the upcoming
Fifth Generation (5G) being proposed for IoT connectivity.
However, for many IoT applications that rely on a sheer deploy-
ment of sensors, RATs operating in the unlicensed bands
represent amuch cheaper andmore practical alternative. In this
context, a number of low power wide area (LPWA) technolo-
gies such as LoRa, SigFox, and Ingenu have recently emerged.
Typically, operating on the license-free Industrial, Scientific,
and Medical (ISM) bands, LPWA solutions use a duty cycle
access mode, in which a device can only access the subchannel
during a fixed time period.
Although the purpose of the duty cycle access mode is

to provide fair access to the subchannel among IoT devices,
recent studies have shown that it does not scale well when used
in dense deployments5. This limitation is due to the lack of
coordination to access the radio channels. In a scenario where
a sizable number of devices are deployed in close proximity,
each device will be competing for access to the subchannel,
resulting in packet collisions and retransmissions6,7. This sit-
uation not only affects the performance of the network but
also results in spectrum congestion and reduction of available
energy on the device.
Motivated by these issues, in this paper, we address the

problem of spectrum congestion and energy-inefficiency in

LPWA IoT networks by proposing a Radio Resource Manage-
ment (RRM) framework based on Software-Defined Network
(SDN)8. The use of SDN allows us to centralize the net-
work management operations in a single entity referred to
as a Controller, which in turn enables the programming of
large networks through the OpenFlow protocol9. Moreover,
the proposed RRM framework relies on spectrum monitoring
information in order to analyze and calculate the optimal sub-
channel assignment configuration across the IoT network over-
coming the above-mentioned limitations of LPWA technolo-
gies. In the proposed RRM framework, access to time frames
and frequency subchannel resources are devised according to
the rate of traffic generated by IoT devices which often follows
a random pattern.
The remainder of the paper is organized as follow. In

Section 2, we provide a comprehensive analysis of the state-of-
the-art on radio access schemes for IoT and the contributions
of the paper. In Section 3, we analyze the LPWA communi-
cation system for IoT including the radio access scheme and
spectrum usage pattern in ISM bands. In Section 4, we present
the proposed RRM framework for LPWA technologies in IoT.
In Section 5, we evaluate our RRM approach and analyze its
performance results. Finally, our conclusions are presented in
Section 6.

2 STATE-OF-THE-ART AND PAPER
CONTRIBUTIONS

The main factor in the realization of the IoT is ubiquitous
connectivity among the devices at minimal cost and configura-
tion10. The maturity of wireless communication technologies
along with their easy and often cheap deployment makes them
the best candidate for IoT applications. These wireless com-
munication technologies can be classified into three categories
according to their connectivity approach: cellular communica-
tion, Wireless Personal Area Networks (WPAN), and LPWA
networks. In addition to their connectivity approach, these
technologies can also be differentiated in terms of the way
wireless devices access the radio medium11. In this section, we
first present the currently available technologies to realize IoTs
in practice which is followed by the contributions of the paper.
Following the current trends, IoT will exponentially expand

the use of cellular communication beyond traditional smart-
phones and computers to a large number of applications and
devices. Therefore, one of the pillars of the fifth generation of
mobile networks (5G) is the massive machine type commu-
nications (MTC). To address the demands of massive MTC
connectivity in 5G, 3GPPP proposed the Long Term Evolution
for MTC (LTE-M) and NarrowBand-IoT (NB-IoT) standards.
The mobile service providers can leverage the existing LTE
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and 5G infrastructures to support extraordinarily wide avail-
ability of IoT devices thereby reducing the capital expenses
(CAPEX) for operators.
On the other side, novel IoT technologies and protocols

have been recently emerged as an alternative to the cellu-
lar technology for short range and indoor connectivity. In
this context, WPAN technologies often operate on unlicensed
2.4 GHz, 915 MHz and 868 MHz bands which are charac-
terized by higher energy efficiency and short transmission
range12 as is the case with Bluetooth Low Energy13, Z-Wave14
and ZigBee15, which are already used for smart homes and
appliance management applications. However, these charac-
teristics make the application of these WPAN technologies to
outdoor IoT services very limited.

2.1 Low Power Wide Area Technologies
Also operating mostly on unlicensed ISM bands, the LPWA
technologies as discussed above exhibit certain characteristics
that make them attractive to many IoT services. LPWA tech-
nologies are specifically designed for M2M connectivity with
low power consumption and low bit rate requirements16. The
transmission range of LPWA typically depends on the radio
propagation environment. For instance, LoRa typically pro-
vides long-range communication up to 10-40 km in rural areas
and 1-5 km in urban areas10. These characteristics make them
more suitable than cellular networks andWPANs for many IoT
services where thousands of devices that generate small data
traffic need to be connected. Furthermore, the relatively small
operational cost makes LPWA a popular alternative to cellular
technologies.
There are two main LPWA technologies which are acting

as an enabler of IoT, SigFox and LoRa, which operate on ISM
868 MHz in Europe and 902 MHz in the US17. Furthermore,
SigFox devices can transmit on a bandwidth of 100 Hz with
less than 30 seconds in an hour, i.e., 1% duty cycle, at a data
rate of 100 bits/s. LoRa is the spread spectrum based protocol
with the maximum data rate of 50 kbps, at a maximum band-
width of 125 kHz, which is suitable for applications requiring
higher data rates. It is designed based on a ‘star of stars’ net-
work architecture which supports mobility of the users. Both
technologies are highly energy efficient in which batteries are
expected to last more than ten years with 20 dBm maximum
output power.
In18, the authors provide a detailed analysis of coverage

and capacity for SigFox and LoRa, together with GPRS and
Narrow-Band IoT. In detail, they focus on the performance
study of collisions and blocking probabilities in indoor and
outdoor environments. While in19 the authors assess the LoRa
scheme through a system-level simulator in ns-3 consisting
in tens of thousands of end devices. Their results show that

the LoRa access scheme outperforms with respect to a basic
ALOHA solution in terms of throughput due to the partial
orthogonality between its spreading factors.

2.2 Radio Access in the Internet-of-Things
In general, the nature of network connectivity adopted in a
wireless communication dictates the radio access scheme for
the devices trying to transmit through the wireless medium.
Accordingly, we can classify the radio access schemes for
IoT wireless communication technologies into two categories:
coordinated and uncoordinated.
Coordinated access approaches typically rely on a central

entity to manage access to the wireless medium by IoT devices.
This category of access schemes is applicable for commu-
nication technologies that operate on the licensed radio, as
is the case with cellular systems. Since cellular communica-
tion technologies operate on dedicated radio bands, access to
the spectrum is therefore coordinated, centralized and provi-
sioned according to the size of the network. The drawback
of cellular communication, however, is the cost as this access
mode will limit the number of devices that could transmit.
In addition, radio access schemes in current cellular systems
do not consider the energy constraints that often character-
ize many IoT devices. The upcoming 5G mobile networks
promise to address these challenges by offering low cost, low
energy wireless communication20 but specific details have yet
to emerge.
In contrast, uncoordinated access schemes rely on a dis-

tributed management approach without the intervention of a
central entity21. This usually applies to IoT technologies that
operate on unlicensed radio bands, as is the case with WPANs
and LPWA. Obviously, the use of unlicensed bands will reduce
the cost of the radio spectrum, and this uncoordinated access
mode will also help to simplify the implementation of com-
munication software in often computationally limited devices.
Uncoordinated access schemes could, therefore, yield efficient
communication for limited size and short transmission IoT net-
works as is the case for applications using WPANs. However,
in cases where IoT applications are deployed in large networks
that require long-range transmissions using LPWA technolo-
gies, such uncoordinated access could result in interference
and spectrum congestion, thus, degrading the reliability of
communication links22.
This situation is similar to the spectrum congestion prob-

lems often observed in densely deployed residential Wi-Fi net-
works. As Wi-Fi networks also operate on unlicensed bands,
the popularity of this technology has resulted in dense deploy-
ments with a lack of coordination among Wi-Fi Access Points
(APs) which has resulted in interference and congestion that
affects the quality of connectivity for many wireless users.
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Many research initiatives are currently trying to address the
spectrum congestion problem in Wi-Fi networks by introduc-
ing novel inter-AP cooperation solutions based on SDN23,24.

2.3 Our Motivations and Novel Contributions
From the analysis of the state-of-the-art, it emerges that
LPWAs technologies are more suitable for dense environments
including thousands of IoT devices. On the other hand, as we
have mentioned in the introduction, the main shortcoming in
LPWA IoT networks is the lack of coordination among devices
that can cause spectrum congestion and energy inefficiency.
The main contributions of this paper can be then summarized
as follows:

The proposed SDN-based IoT framework, to the best of
our knowledge, is the first solution that provides sub-
channel sensing information to the IoT nodes through
a centralized controller. Such subchannel sensing and
monitoring techniques enable us to analyze and calcu-
late the optimal subchannel assignment configuration
across the IoT network, therefore the proposed method
efficiently minimizes the limitations of uncoordinated
LPWA radio access schemes. The existing radio access
technologies in the IoT domain are not optimal and
impact higher packet loss and round trip delay. Our novel
RRM framework is proposed based on a new parame-
ter, i.e., the number of subchannel reallocation attempts,
which will be explained in Section 4. We will demon-
strate how the proposedmethod outperforms the existing
SigFox and LoRa standard schemes, assessed in18,19, in
terms of packet collision rate and energy consumption.

The next section presents an overview on the LPWA com-
munication system where our RRM framework can be applied
to improve the performance of SigFox and LoRa standard
schemes.

3 LPWA COMMUNICATION SYSTEMS
FOR IOT

3.1 Radio Access Scheme for LPWA
In general, LPWA technologies use specific base stations to
allow long-range communication with IoT devices deployed in
a specific network. As illustrated in Fig. 1, the base station pro-
vides wireless connectivity and acts as a gateway between IoT
and the backend infrastructure where the collected data is pro-
cessed and stored. Here, the base station can be connected to
the SDN infrastructure by means of optical fiber or cable con-
nection where the transmission delay is negligible. Since it is
envisaged that wireless IoT devices will be deployed in large
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FIGURE 1 The architecture of LPWA communication for IoT.

numbers, the method of radio access becomes very important
as this will dictate the performance of the IoT network and
the quality of the wireless connections. Moreover, in many IoT
applications, wireless devices may operate on battery power
without recharging or replacement for many years. Therefore,
the radio access scheme needs to be energy efficient such that
the lifetime of IoT devices is extended25.
There are broadly two possible techniques to access the

subchannel in LPWA networks, namely: Listen-Before-Talk
(LBT) and Duty Cycle26. In LBT, a device listens for com-
munication on the subchannel before transmitting and waits
for an acknowledgment after each transmission. If no acknowl-
edgment is received after a predefined delay, the device re-
transmits after a random back-off time. This process is repeated
until the transmission is successful. LBT is effective in reduc-
ing interference, however, it is only suitable for applications
where devices are not energy-constrained, as the listening and
retransmission process can result in costly energy usage27.
The Duty Cycle restriction scheme, on the other hand,

restricts the network access of IoT devices to a fixed total
duration thus dispensing them from continuously listening to
the subchannels. In this scheme, a device is assigned a time
duration per hour that indicates the maximum sum of time
the device can occupy the specific subchannel. For example,
when a subchannel is restricted to a 1% duty cycle, a device
is allowed 36 seconds of transmission per hour, in which
such 36 seconds can be divided in any random or periodic
order depending on the application and device requirements.
Many LPWA solutions available in the market today, such as
LoRa and SigFox, have adopted this access approach due to its
optimized energy efficiency.
In both approaches, access to time frames and frequency

channels is devised according to the rate of traffic generated
by IoT devices which often follows a random pattern. This
is largely due to the large number and heterogeneous func-
tionality of these devices which makes it difficult to organize
access. As a result, the probability of simultaneous access to
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the subchannel both in time and frequency domains increases
as the number of IoT devices increases, which often results
in transmission collisions. Therefore, our work considers duty
cycle radio access for uplink transmissions as it is the most
challenging issue in LPWA IoT communications.

3.2 Spectrum for IoT in ISM Bands
In order to devise an efficient radio resource allocation
approach for LPWA communication technologies, it is also
necessary to assess the available spectrum and utilization
on the ISM bands used by these technologies. For that, we
focus on SigFox and LoRa, which both operate on the fre-
quencies ranging from 868 MHz to 868.6 MHz for uplink
transmissions with a maximum transmit power of 25 mW. For
downlink transmissions, SigFox and LoRa use 869.40 MHz to
869.65 MHz with a maximum transmit power of 500 mW.
The availability of free subchannels in such ISM bands can

be estimated by using spectrum sensing techniques, such as
an energy detection method28. By comparing the received sig-
nal energy to the threshold energy level, which is a system
defined parameter, the idle subchannels can be estimated. Such
statistical information can be grouped in space and time to
obtain the Radio Environment Mapping. In an IoT framework,
such a radio database could help to coordinate uplink com-
munications thereby significantly reducing the contention for
resources29.

4 RADIO RESOURCE MANAGEMENT
FRAMEWORK FOR IOT LPWA
COMMUNICATION

The main challenge addressed in this paper is the uncoordi-
nated allocation of subchannels and subframes to IoT devices
for uplink communications. In cases the radio resource alloca-
tion strategy is not properly designed it may result in interfer-
ence and severe transmit packet collisions. Therefore, we pro-
pose an RRM framework based on SDNwhich is implemented
in the Radio Access Network (RAN). In this framework, the
centralized SDN controller accesses and uses a set of IoT gate-
ways to allocate each IoT device a specific subchannel through
which it transmits without interfering with other devices as
illustrated in Fig. 2.
The components of the proposed framework include the IoT

devices, the IoT gateways and the SDN-based controller and,
therefore, our implementation includes a modification in the
RAN and SDN controller for the execution of our algorithm.
In this paper, we analyze the proposed radio resource alloca-
tion framework for IoT devices within isolated IoT network
scenario.

FIGURE 2 A centralized radio resource management frame-
work to enable efficient IoT.

The design of this RRM framework follows a strategy that
defines three essential components: a Spectrum Sensing Mod-
ule, a Channel Status Database and a Channel Allocation
Module. All three network components are located on top of
the SDN controller as illustrated in Fig. 3. In this framework,
the SDN controller gathers subchannel sensing information
through the uplink control channels. The information is then
processed at the SDN controller to evaluate the idle and busy
subchannels. The available subchannels pool is then provided
to the IoT gateway which schedules the subchannels with a
low probability of interference to the IoT devices for uplink
transmissions. The SDN controller and IoT gateway are either
collocated or connected through wired or optical networks.
This avoids the network congestion issue when there are a very
large number of IoT devices. The subchannel availability com-
putation, subchannel monitoring and allocation techniques are
discussed in detail in this section.
Note that the radio band, duty cycle restrictions, physi-

cal and MAC layer technologies are according to the stan-
dards used by the SigFox and LoRa protocols. The details of
the implementation of these LPWA protocols are out of the
scope of this paper, see6 for the details. The proposed RRM
framework improves over the random subchannel allocation
to individual IoT devices included in these communication
technologies18,19.
The strategy used in this RRM framework can be described

using Algorithm 1 below. As shown in line 1, the number
of subchannel allocation attempts, N , is set, which allows an
IoT device to repeat the subchannel selection process if the
previous attempt has resulted in choosing a busy subchannel,
where the subchannel allocation is based on the Duty Cycle
restriction approach.
According to this strategy, the status of each subchannel

C that is highly likely to be idle is maintained and the IoT
gateways allocate them with an optimal number of attempts
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FIGURE 3 The proposed radio resource management frame-
work and associated components.

TABLE 1 Symbols used in the paper.

Symbols Descriptions
x[K] Transmit signal sample
y[K] Received signal sample
w[k] AWGN sample (variance �2w)
Ec Received energy level
Etℎ Threshold energy level
fs Sampling frequency
ℙf False alarm probability
ℙm Miss detection probability
Ts,c Sensing duration

H0,H1 Null and alternative hypothesis
N Channel reallocation attempt
D Number of IoT devices

to the end IoT devices. When the subchannels are used, the
related information is stored and updated in the Channel Status
Database following a predefined time interval, which depends
on the type of applications. For instance, home security and
utility monitoring will have extremely low updates in compar-
ison to road monitoring IoT devices in the busy road.
To assess the availability of each subchannel in each IoT

gateway managed by the controller, the strategy relies on the
Spectrum Sensing Module which executes the sub-Nyquist
sampling as described in the following. Let the transmitted sig-
nal by an IoT device be x = [x(0), x(1),… , x(K − 1)], where
x(k) is the kth sample in the sequence for k = {0, 1,… , K−1}.
The sub-Nyquist sample of signal is x(k) = x(kTs) where
fs = 1∕Ts is the sampling rate and Ts is the symbol duration.
If w[k] is the received noise vector of the same size K , then
the received signal monitored by spectrum sensor is y[k] =
x[k]+w[k]when the subchannel is occupied, orw[k]when the

subchannel is free. Then, the controller obtains a set of received
signal y = [y(0), y(1),… , y(K − 1)] through the IoT gate-
way and in the Spectrum Sensing Module defines the received
energy level Ec on subchannel c, where c = {1,… , C}, which
is computed by averaging over k observed samples and is
defined as follows:

Ec =
1
K

K−1
∑

k=0
|yc[k]|2,∀c. (1)

Hence, the energy levels Ec are first obtained for all the C
subchannels (line 2 of Algorithm 1). Then, Ec ,∀c, is compared
to the detection threshold, Etℎ, which is a system controlled
parameter, that depends on the QoS requirements and sub-
channel conditions. For instance, when higher channel QoS is
required, the system will be able to raise the Etℎ value cor-
respondingly. As a result, the set of available subchannels,
i.e., any subchannel c with Ec < Etℎ, with minimum detec-
tion errors are obtained (lines 3-5). Afterward, the Spectrum
Sensing Module orders the subchannels according to their
probability of interference, which is the weighted sum of prob-
abilities of the false alarm, i.e.,ℙf , and the miss detection, i.e.,
ℙm. Specifically, we can define ℙf and ℙm, as follows:

ℙf = Pr(Ec ≥ Etℎ|H0), (2)

ℙm = Pr(Ec < Etℎ|H1), (3)
where, H0 (H1) is the hypotheses of subchannel c is idle
(busy). It can be demonstrated that for a large value of K , ℙf
andℙm can be computed under hypothesesH0 andH1 through
the Q-function as follows30:

ℙf = Pr(Ec ≥ Etℎ|H0)

≈ Q
((

Etℎ
�2w

− 1
)

√

Ts,cfs

)

, (4)

ℙm = Pr(Ec < Etℎ|H1)

≈ Q
⎛

⎜

⎜

⎝

(

Etℎ
�2w

− c − 1
)

√

Ts,cfs
2c + 1

⎞

⎟

⎟

⎠

. (5)

Here, �2w is the variance of additive white Gaussian noise
(AWGN), Ts,c is the sensing duration on subchannel c, and c is
the average Signal to Noise Ratio (SNR) of the received signal
yc and defined as follows:

c =
E[|yc|2]|ℎc|2

�2w
, (6)

where, E[⋅] indicates expected value and ℎc is the channel
gain of subchannel c. Furthermore, Etℎ is the energy detection
threshold, which varies from 0 to ∞, and decides whether the
subchannel is busy or idle. It primarily depends on thresholds
for miss detection and false alarm probabilities. In this paper,
we considerEtℎ whenmaximum tolerable probabilities ofmiss
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Algorithm 1 RRM allocation algorithm in the considered IoT
framework
1: Set N the number of subchannel allocation attempt
2: Obtain the subchannel information Ec for subchannel c =

{1,… , C} from Spectrum Sensing Module
3: if Ec < Etℎ,∀c then
4: Get the available channel set X ∈ c
5: end if
6: Order the subchannels X for uplink according to lower

probability of interference, i.e., ℙmPr(H1) +ℙfPr(H0), as
a channel quality indicator

7: Obtain the subchannel status, Cs, for each X, and update
the Channel Status Database

8: for i = 1, 2… , N do
9: Select random slot and subchannel
10: if slot(i) = idle and Cs(i) = available then
11: Exit for loop
12: end if
13: Update the Channel Status Database
14: end for
15: for each device d = 1, 2… , D do
16: if IoT device has packet to transmit then
17: Execute RRM for LoRaWAN and SigFox
18: end if
19: end for

detection and false alarm are 0.1 and 0.2, respectively, accord-
ing to the IEEE 802.22 standard. Similarly, the probabilities of
states H0 and H1 are denoted by Pr(H0) and Pr(H1), respec-
tively, and their initial distributions are assumed according to
Pr(H0) + Pr(H1) = 1.
The Spectrum Sensing Module then updates the Channel

Status Database with the information about the probability of
interference, i.e.,ℙmPr(H1)+ℙfPr(H0), as a subchannel qual-
ity indicator for uplink transmissions (lines 6-7). Note that
such information may not be completely accurate due to the
inevitable probabilities of false alarm and miss detection in the
spectrum sensing process.
Since the number of available subchannels is limited, the

value ofN depends on the end-to-end delay requirement, num-
ber of IoT devices competing for the subchannel which is
denoted in Algorithm 1 asD, and the number of available sub-
channels. When the number of IoT devices is relatively small,
it will be reasonable to set N to a small number. On the other
hand, this value should be larger if the size of the IoT network
is relatively big. In such a case, however, a very important
trade-off will need to be made: a large value forN might result
in a device that keeps attempting to access an available sub-
channel for a long time, thus, affecting the performance of the

communication in terms of end-to-end delay or QoS. More-
over, it is also possible that the subchannels allocated at t = 0
may become invalid at t > 0 when a large N is set due to
unavoidable sensing errors, ℙm and ℙf .
In addition, and as explained previously in Section 3, both

SigFox and LoRa do not use the listen-before-talk protocol
due to the energy constraints. The IoT devices, therefore,
select a random slot and subchannel to connect to the gate-
way following the predefined duty cycle. In our proposed
framework, however, when the IoT device tries to initiate the
transmission of a data packet, the SDN controller triggers the
Channel Allocation Module which accesses the Channel Sta-
tus Database to find a suitable subchannel, as shown in lines
8-14 in Algorithm 1. Note that a chosen subchannel needs to be
exclusively used by the transmitting IoT device and its status
will be updated as busy in the Channel Status Database.
The Channel Allocation Module has the specific task of

channel reallocation attempts which is a system defined param-
eter and primarily depends on the network size and QoS
requirements. When this module detects that the chosen sub-
channel is being used by another device, it will repeat the
process up to a maximum N times. If the allocation of a
free subchannel to the IoT device proves unsuccessful afterN
attempts, it will then forcefully allocate a subchannel randomly
to the device, which may or may not be in idle state. If the allo-
cation of available subchannels to the IoT device is successful,
the LPWA communication protocol (i.e., SigFox or LoRa) is
executed, thus allowing the transmission of the data packet, as
described in lines 15-19 of Algorithm 1. In Section 5, we will
discuss the obtained results for different values ofN .

5 PERFORMANCE EVALUATION

To evaluate our system, we analyze the performance of the
subchannel monitoring functionality of the proposed method
against the standard SigFox and LoRa schemes based on ran-
dom access allocation and assessed in18 and19.

5.1 Subchannels Monitoring
In this subsection, we present the subchannel monitor-
ing scheme introduced in Section 4. We deployed RealTek
RTL2832U radio receivers31 as spectrum sensors at uniform
locations to monitor the status of all c = {1,… , C} sub-
channels, each of 125 kHz, used by the existing two LPWA
technologies. The sampling frequency of 2.4 MHz is chosen
and it is decimated by a factor of 12 so that only one of 12 sam-
ples are obtained at the signal processor. The receiver tuner
gain is set to 25 dB.
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FIGURE 4 The instantaneous signal measurement in ISM 868 MHz band in the monitored area.

FIGURE 5 The time-frequency diagram of received signal showing both uplink and downlink subchannels for LoRa and SigFox
in the monitored area.

The computing of subchannel power is facilitated by the
Software-Defined Radio (SDR) package available in MAT-
LAB. The spectrum sensors perform the subchannel sensing
and measurement within a gateway transmission range to
improve the spatio-temporal sensing results. The SDR sensor
was deployed at ten different locations in the monitored area
to create the subchannel database. It is true that a larger num-
ber of radio receivers would lead to more accurate results but
this would be at the expense of increasing the computational
complexity. In a real deployment, however, we need a large
number of sensors to consider the tolerable probabilities of
miss detection and false alarm within 0.1 and 0.2, respectively,
as mentioned in Section 4.
The deployed spectrum sensors determine the subchannel

information of the 868 MHz ISM bands by using (1) and the
measurements of access of these bands are shown in Fig. 4.

Here, k = 1,… , N samples are taken periodically for the
energy detection method to measure the energy profile of sub-
channels. The information is then transmitted to a MATLAB-
based SDN controller for further processing and to fine-tune
the subchannel states. As shown in the figure, a subset of radio
channels is being accessed in the range of 868 MHz bands
which are observed as two spikes of observed signal power.
As a matter of fact, such transmissions cannot be easily

observed due to the fact that a very small duty cycle is imposed
on those bands, typically 10% in the downlink and 1% in the
uplink subchannels. In addition, when very limited numbers
of SigFox and LoRa devices are installed in the measurement
area, the instantaneous signals in uplink and downlink are
difficult to trace. For instance, an instantaneous packet trans-
mission, i.e., high energy detection, has been observed at the
864 MHz bands at the time of measurement.
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Fig. 5 shows the time-frequency plot for the uplink and
downlink frequencies that can be used in LoRa and SigFox.
We can observe from this figure that the 868.25 MHz chan-
nel in the uplink band is being continuously accessed, as we
notice high levels of power ratio, denoted by a high received
signal in the range from approximately -50 dBm to -10 dBm.
We also notice that within 40 seconds of observation, there are
still available subchannels to be used for the uplink and down-
link communications in our proposed framework. Moreover,
larger the number of measurement, higher will be the accuracy
but at the cost of increasing the computational complexity and
power consumption on the IoT devices. The channel has been
monitored for 40 seconds to create the subchannel database in
order to handle a trade-off between complexity and accuracy.
Based on the subchannel monitoring result illustrated in

Fig. 4 and Fig. 5, the Spectrum SensingModule orders the sub-
channels according to (1) - (6) and stored them in the Channel
Status Database. Furthermore, theChannel Allocation Module
assigns the subchannels to the IoT devices based on differ-
ent values of channel allocation attempts N set during the
simulation campaign.

5.2 Simulation Setup
The performance of the proposed channel assignment
algorithm was measured by counting the number of collisions,
i.e., when two IoT devices transmit at the same time and the
same subchannel. This is measured for various user densities,
i.e., number of IoT devices which contend for the scarce radio
resources. It is important to note that higher system capacity,
longer battery life, and wider coverage are the fundamental
goals of LPWA technologies32. To achieve this, the proposed
RRM framework addresses the lack of coordination among
IoT devices in order to reduce collisions thereby optimizing
network capacity and reducing battery consumption33. There-
fore, we obtain the success rate of packet transmissions among
IoT devices to measure the relative performance gain of the
proposed resource allocation framework.
To assess the performance of the proposed RRM frame-

work, we simulated an IoT network where a number of devices
varying from 50 to 1000 are deployed randomly within the
transmission range of the IoT gateway. The IoT devices per-
form the channel sensing by means of the energy detection
method to find the available subchannels based on the obtained
channel QoS. The information is then transmitted to the IoT
gateway using Pure ALOHA access due to the fact that both
LoRaWAN and SigFox have adopted it for uplink communi-
cation34. ALOHA is an asynchronous protocol where the end
devices communicate when they have data ready to send, either
scheduled or event-driven. Since ALOHA operates well under
low-traffic loads, only subset of IoT devices takes part in the

spectrum sensing phase in the proposed method so that there
are no uplink collisions while transmitting the channel sensing
information.
The subchannel sensing information is then provided to the

SDN controller through the simulated backhaul channels for
further processing. A pool of subchannels for the data trans-
mission is then obtained as explained in the previous section.
When the SDN controller receives the data transmission noti-
fication, it creates a user subchannel pair, which are then
logically allocated to the IoT devices through the IoT gateway
as described in Algorithm 1. By the time IoT device trans-
mits the data packets, the subchannel may no longer be valid.
This problem can be tackled, as proposed, by allowing the IoT
device to transmit on orthogonal channels up to the maximum
number of reallocation attempts value, i.e.,N .
The evaluation of the proposedmethod is focused on the two

most popular LPWA technologies: LoRa and SigFox17, where
we assessed the performance of both protocols with and with-
out the proposed RRM framework. In these simulations, we
assume that IoT devices can transmit at the maximum power
of 10 dBm and 14 dBm and that both the IoT devices and the
gateway use an omnidirectional antenna, as is the case in LoRa
and SigFox18.
The number of packets in each device is randomly selected

between 1 or 2. Therefore, every device has at least one packet
to transmit, i.e., the minimum numbers of packets on the con-
sidered IoT network scenario is equal to the number of devices.
This emulates the highly similar scenario to the majority of
real IoT applications where a very limited number of pack-
ets per hour are generated. Moreover, we consider 60 seconds
of simulation duration in which the proposed algorithm runs.
Therefore, this is equivalent to long duration in real IoT system
models.

5.3 Performance Evaluation under LoRa
For the evaluation of LoRa’s performance in a dense IoT
environment with and without our RRM framework, we sim-
ulate three scenarios according to the method followed by IoT
devices to access the subchannel:

• Scenario 1: In this scenario, IoT devices access the sub-
channel following a 2% duty cycle where there is no
listen-before-talk as is the case with the LoRa protocol.

• Scenario 2: In this scenario, the proposed RRM frame-
work is implemented to coordinate IoT device access to
the subchannel, with the number of attempts N = 2,
while keeping the 2% duty cycle of LoRa.

• Scenario 3: In this scenario, the proposed RRM frame-
work is implemented to coordinate IoT device access to
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the subchannel, with the number of attempts N = 5,
while keeping the 2% duty cycle of LoRa.

Due to the nature of the proposed system model where
IoT devices go to sleep mode unless they have something to
transit and the LoRa server, i.e., IoT gateway, schedules the
transmit and receive resources, class A LoRa nodes are consid-
ered in this paper. However, the proposed subchannel sensing
and resource allocation method are equally applicable for all
type of LoRa nodes because it aims to distribute the avail-
able resources optimally based on some criteria, e.g., channel
quality.
Fig. 6 shows the obtained results in terms of the number of

unsuccessful transmissions when the number of IoT devices
trying to access the subchannels is increased for the three
simulation scenarios. The results show that the number of
unsuccessful transmissions in scenario 1 (blue-dotted graph)
increases linearly as the number of devices competing to access
the subchannel increase. Such results are expected because
the lack of coordination will result in collisions among device
transmissions and this will increase as the number of devices
increases. The figure shows a significant improvement under
the proposed RRM framework in both scenario 2 (red-dotted
graph) and scenario 3 (yellow-dotted graph). These improve-
ments indicate that our RRM framework helps to maximize the
probability of IoT devices accessing unoccupied subchannels,
thus decreasing the number of collisions. These improvements,
however, come at a price as the allocation of subchannels to
devices might increase their waiting time and incur more com-
munication delay. Therefore, although most IoT applications
are delay-tolerant, it will be important to use this framework
to develop trade-offs between packet collisions and delay.
Similarly, the performance of the proposed resource alloca-

tion technique is studied when the transmit power is 10 dBm
and 14 dBm. It can be observed that when transmit power is
increased from 10 dBm to 14 dBm, the performance gain is
not significantly high due to the fact that higher transmit power
increases the interference and channel reallocation will fur-
ther limit the performance. Therefore, for the energy efficiency
point of view, the optimal transmit power of 10 dBm is chosen
for further simulations.
Next, we repeated the experiment above for the three scenar-

ios while decreasing the duty cycle ratio from 2% to 0.9% and
took the samemeasurements as previously, which are shown in
Fig. 7. The obtained results show that reducing the duty cycle
ratio reduces the number of collisions for the three scenarios
in comparison to the results shown in Fig. 6. Such results are
again expected as reducing the duty cycle, in turn, reduces the
number of times an IoT device tries to access the subchan-
nel. The obtained results show that under the RRM framework
in both scenario 2 (red-dotted graph) and scenario 3 (yellow-
dotted graph), the number of collisions is almost the same. This
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FIGURE 6 Evaluation of number of collisions vs. the number
of devices in LoRa for various numbers of resource allocation
attempts at higher duty cycle (2%).
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FIGURE 7 Evaluation of number of collisions vs. the number
of devices in LoRa for various numbers of resource allocation
attempts at lower duty cycle (0.9%).

is due to the fact that the reduction of the duty cycle ratio will
result, as mentioned previously, in fewer attempts to access the
subchannel simultaneously. Therefore, the number of attempts
to access the channel, defined in Algorithm 1 as N , will have
almost no effect on the performance of the proposed RRM
framework.

5.4 Performance Evaluation under SigFox
Unlike LoRa, a device communicating using SigFox needs to
transmit each data packet three times on three randomly cho-
sen subchannels, following the duty cycle constraint below 1%.
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Therefore, the probability of collision with another transmit-
ting device not only depends on the chosen subchannels but
also on the size of the data packet transmitted.
To assess the performance of SigFox in a dense IoT envi-

ronment, with and without our RRM framework, we simulated
four scenarios according to the method followed by the IoT
devices to access the subchannel and data packet size:

• Scenario 1: In this scenario, IoT devices transmit on
three randomly chosen subchannels, with the data packet
size set to 6 Bytes, which is a relatively small packet size
in SigFox.

• Scenario 2: In this scenario, IoT devices transmit on
three randomly chosen subchannels, with the data packet
size set to 12 Bytes, which is the maximum packet size
in SigFox.

• Scenario 3: In this scenario, IoT devices transmit on
the three best possible subchannels, i.e., with a lower
probability of interference, using the proposed RRM
framework, with the data packet size set to 6 Bytes.

• Scenario 4: In this scenario, IoT devices transmit on
the three best possible subchannels, i.e., with a lower
probability of interference, using the proposed RRM
framework, with the data packet size set to 12 Bytes.

The obtained results, shown in Fig. 8, indicate that the mea-
sured number of collisions are higher for scenario 1 (yellow-
dotted graph) and scenario 2 (blue-dotted graph) in compari-
son to the number of collisions for scenario 3 (purple-dotted
graph) and scenario 4 (red-dotted graph), respectively.
The number of collisions in scenario 2 is the highest in

comparison to scenario 1 due to the fact that when the packet
size is doubled, i.e., from 6 Bytes to 12 Bytes, it will take a
longer frame duration to transmit a packet. This will result in
higher number of packet collisions shown in Fig. 8. Further-
more, when the number of IoT devices increases, the collision
rate also increases significantly both when using the ran-
dom subchannel selection and when using the proposed RRM
framework. These results are caused by the three simultane-
ous packet transmissions approach used in SigFox. The results
obtained in scenario 4 show that, despite the use of the RRM
framework, the measured number of collisions is higher than
in scenario 1 primarily due to the larger packet size. However,
when the RRM framework is applied for the same packet size,
i.e., either 6 Bytes or 12 Bytes, as it is the case in scenarios 3
and 4, respectively, there is a significant improvement in terms
of the number of collisions. These results indicate that in addi-
tion to the use of a robust RRM strategy in SigFox, it is very
important to optimize the packet size, in order to achieve better
performance.
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FIGURE 8 Evaluation of number of collisions vs. the number
of devices in SigFox for various numbers of resource allocation
attempts and packet sizes.

As with LoRa, a similar scenario has been further inves-
tigated where the duty cycle is restricted to 0.9% and 2% in
SigFox. Since the duty cycle indicates how long an IoT device
can transmit during the 24 hours period, there would be a sig-
nificant reduction of packet collisions when this parameter is
restricted. In Fig. 9, we can observe an improvement in terms
of the number of collisions (purple-solid graph vs. yellow-solid
graph) when the proposed RRM framework is used with the
duty cycle fixed to 2%. Therefore, similar to the LoRa net-
work scenario, the packet collision rate can be improved in
the proposed framework by optimally selecting the number of
subchannel allocation attempts,N .
A similar performance improvement can be observed in

Fig. 9 for the case of the duty cycle set to 0.9% (red-dotted
graph vs. blue-dotted graph). However, the improvement is not
as significant as in the packet size study in Fig. 8. This is
primarily due to the mechanism of three identical packet trans-
missions which have an effect on the number of collisions.
Therefore, it can be concluded that the proposed RRM frame-
work improves the SigFox performance for a high duty cycle,
larger packet size as well as higher network density.
The end-to-end delay is not a very critical parameter inmany

IoT applications. However, for the higher the value ofN we set,
it is obvious that the delay performance starts degrading. Here,
the simulation setupmay not provide the accurate delay profile,
so a real LoRa network with the proposed resource allocation
algorithm needs to be deployed to study the end-to-end delay
performance which is some future work under consideration.
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FIGURE 9 Evaluation of number of collisions vs. the number
of devices in SigFox for various numbers of resource allocation
attempts and duty cycles.

5.5 Analysis of Energy Efficiency
In this section, we analyze the energy efficiency (EE) and
energy consumption model of the proposed resource alloca-
tion technique against the standard LoRa protocol. First of
all, the energy consumption by a LoRa node to transmit one
data packet is evaluated. Here, the selection of the transmis-
sion parameters directly impacts the energy consumption of the
device. Such parameters are, for instance, the transmit power,
coding rate, bandwidth and duty cycle, amongst others. For
various selection of radio parameters, the energy consump-
tion per packet transmission is evaluated based on the software
LoRa Calculator 35. The selection of radio parameters, unless
otherwise stated, is as shown in Table 2, which closely follows
the specifications for LoRa physical and MAC layer standards.
In such a case, the average energy consumption for transmitting
one packet of data is approximately 48.68 mJoule.
As mentioned in the previous section while describing LoRa

performance, two different duty cycles have been considered,
i.e., 2% and 0.9%, for performance comparison purposes. In
this section, the EE is evaluated by calculating the number of
packets that are successfully transmitted for the whole network
divided by total energy consumption. Since a data packet of
6 Bytes is selected, we finally obtain EE as the number of bits
that are successfully transmitted using 1 mJoule of Energy.
The analysis of EE, when the duty cycle is set to 2%, is

shown in Fig. 10 both for no subchannel allocation and the
proposed technique of subchannel allocation while varying
the number of subchannel allocation attempts, N = 2 and
N = 5. As it can be observed in the figure, the EE deteriorates
almost linearly when the number of LoRa devices competing
for the radio resources are increased in all cases. However,

TABLE 2 LoRa radio parameter selection for energy con-
sumption model.

Radio Parameters Selected Values

Operating frequency 868 MHz (Europe)
Transmit power 10 dBm
Packet payload 6 Bytes
Bandwidth 125 kHz

Packet header Disabled
coding rate 4/5

Battery capacity 1.8 v, 1000 mAh
Spreading factor 8
Preamble length 10 symbols
ACK length 2 Bytes

FIGURE 10 Evaluation of energy efficiency vs. the number
of LoRa nodes for the proposed method and no subchannel
allocation under duty cycle of 2%.

The proposed subchannel allocation technique improves the
EE thereby successfully transmitting almost 90 more bits per
mJoule than the case of no subchannel allocation. On the other
hand, we can still improve the EE by increasing the number of
channel attempt (N), but the improvement is not significantly
higher. This also shows that optimal N should be selected
to reduce the computational complexity while keeping the
performance within the same level.
Within a similar LoRa network where the duty cycle is

reduced to 0.9%, the EE gain is slightly lowered than in cases of
higher duty cycle as shown in Fig. 11. This is due to the fact that
there is a lower probability of packet collision or packet drop.
However, by implementing the proposed subchannel alloca-
tion scheme, the EE is significantly higher than the case of no
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FIGURE 11 Evaluation of energy efficiency vs. the number
of LoRa nodes for the proposed method and no subchannel
allocation under duty cycle of 0.9%.

channel allocation method. In such a case of low duty cycle,
the choice ofN does not play a vital role, as shown in Fig. 11,
due to the availability of a slightly large number of vacant
subchannels.
Since the proposed resource allocation technique improves

the packet collision rate and energy efficiency, it apparently
consumes lower energy from the battery source. In Fig. 12,
total energy saving in the LoRa network has been shown for
channel allocation attempt, i.e., N to be 2 and 5. It is increas-
ing proportionally according to the number of LoRa devices
because it is simply the sum of energy saving in each device.
However, the optimal choice of the number of attempts, i.e.,N ,
is necessary because even a higher selection ofN does not sig-
nificantly save energy. Therefore, it can be observed that even
the large LoRa network will save energy proportionally when
the proposed resource allocation technique is implemented.

6 CONCLUSIONS

Wireless connectivity is a major requirement for the realiza-
tion of the vision of the Internet-of-Things. Although a number
of radio access technologies are being considered to satisfy
this requirement, LPWA networks technologies are gaining
increased popularity as their low cost and easy deployment
make them ideal for many IoT applications. However, due
to the unlicensed nature of the spectrum used by LPWA,
radio resource allocation should be considered a critical task,
especially as the size of IoT networks keeps growing.
In this paper, we addressed the problem of spectrum conges-

tion in LPWA IoT networks by proposing an RRM framework
based on SDN. The proposed framework consists of three

FIGURE 12 Evaluation of energy savings of the proposed
method of subchannel allocation in LoRa networks in compar-
ison to the case of no subchannel allocation.

components, a spectrum sensing module, a channel status
database and a channel allocation module, to cooperatively
function for the time slot and frequency subchannel alloca-
tion to IoT devices. The main aim of this framework is to
minimize the number of packet collisions during uplink trans-
missions from the IoT devices to the gateway.We evaluated our
RRM framework by simulating two IoT technologies, namely
LoRa and SigFox, upon which we implemented the proposed
method. The simulation results demonstrate that the proposed
resource allocation significantly improves the packet collision
rate, energy efficiency and energy consumption in various IoT
network conditions. As future work, we will further investigate
the impact of the proposed RRM approach on transmission
delay as well as explore, implement and test the framework
by deploying the SDN-based LoRa network in a real network
environment. We will also consider the inclusion of com-
pressive sensing in the Spectrum Sensing Module, which is
a suitable option for IoT applications because of its reduced
sampling rate and computational complexity29.
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