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Abstract  15 

Faecal hormone monitoring offers a robust tool to non-invasively determine the physiological stress 16 

experienced by an individual when faced with natural or human-driven stressors. Although already 17 

quantified for a number of species, the method needs to be validated for each new species to ensure 18 

reliable quantification of the respective glucocorticoids. Here we investigated whether measurement of 19 

faecal glucocorticoid metabolite (fGCM) provides a feasible and non-invasive way to assess the 20 

physiological state of sugar gliders (Petaurus breviceps), an arboreal marsupial native to Australia, by using 21 

both a biological and physiological validation. Our analysis confirmed that the cortisol enzyme 22 

immunoassay (EIA) was the most appropriate assay for monitoring fGCM concentrations in sugar gliders. 23 

Comparing the fGCM response to the physiological and the biological validation, we found that while the 24 

administration of ACTH led to a significant increase in fGCM concentration in all individuals, only six of 25 

eight individuals showed a considerable fGCM response following the biological validation. Our study 26 

identified the most appropriate immunoassay for monitoring fGCM concentrations as an indicator of 27 
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physiological stress in sugar gliders, but also supports recent suggestions that, if possible, both biological 28 

and physiological stressors should be used when testing the suitability of an EIA for a species. 29 

 30 

Additional keywords: ACTH challenge, separation, faecal glucocorticoid metabolites, physiological stress, 31 

individual variation  32 

 33 

Introduction 34 

Monitoring adrenocortical activity in wild animal populations is critical, given the well‐documented 35 

relationship between stress, health, and reproduction (Tilbrook et al. 2000; Romano et al. 2010). When 36 

an animal is experiencing stress, such as unpredictable environmental changes, a main component of the 37 

body’s response is the activation of the hypothalamic-pituitary-adrenal (HPA) axis, which results in the 38 

increased production and secretion of glucocorticoids (GCs) into the bloodstream (Sapolsky et al. 2000).  39 

Based on the ‘reactive scope model’ the increase in GCs (cortisol or corticosterone) can be seen as a 40 

mediator of the allostatic load and are a way for the individuum to achieve homeostatis again, often 41 

through adjustments in metabolism, energy availability, cardiovascular activity, and behavior (Moberg 42 

2000; Romero 2002; Romero et al. 2009). Although this response can be beneficial when it comes to 43 

circadian or seasonal variations (predictive homeostasis) as well as short-term disturbances (reactive 44 

homeostasis), chronically elevated GC secretion, also described as “homeostatic overload”, may lead to a 45 

suppression of the immune system and reproductive activities, muscle atrophy, and a shortened life span 46 

(Sapolsky 2002; Charmandari et al. 2005; Cohen et al. 2007; Romero et al. 2009).  47 

Due to the role GCs play in this response, and the numerous deleterious effects the homeostatic 48 

overload, i.e. chronically elevated GCs, can have on an individual, they are often used as a physiological 49 

marker for the level of stress experienced and welfare of an individual. Thus, physiological measurements 50 

of stress hormones are often used to estimate the consequences of natural or human-induced change in 51 

ecological studies of various animals. Non-invasive hormone monitoring has become a reliable technique 52 

for assessing physiological stress in a range of wildlife species (Creel et al. 2013). Because glucocorticoids 53 

(active molecule) circulating in the bloodstream are processed by the liver and excreted via the bile as GC 54 

metabolites (Touma and Palme 2005; Sheriff et al. 2011), GCs can be monitored non-invasively by 55 

collecting excreted faecal material (Hodges et al. 2010). Although non-invasive faecal glucocorticoid 56 

metabolite (fGCM) monitoring have some shortcomings, such as the inability to monitor short term 57 

stressors or the need to determine the time of fGCM excretion relative to the applicable stressor (Touma 58 

and Palme 2005; Heistermann 2010), it is often chosen above invasive blood collection techniques for a 59 
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number of reasons. For example, there is little to no need for animal capture, restraint or anaesthesia to 60 

collect faeces, which decreases animal contact and potentially dangerous consequences to animal or 61 

collector health (Behringer and Deschner 2017). As a result of the ease of collection, longitudinal sampling 62 

can be conducted from captive and free-ranging animals. Another inherent advantage of using faecal 63 

material to monitor adrenocortical function is the ability to monitor free (non-protein-bound) GCs that 64 

are excreted via faeces. This method is often classified as more relevant than looking into the amount of 65 

total GC level in blood samples, as only free GCs are able to reach the target organs and invoke the 66 

necessary physiological changes in response to a stressor (Palme et al. 2005; Sheriff et al. 2011).  67 

Before a specific assay can be used to monitor fGCM concentrations in a particular species, it is 68 

important that the method have been carefully validated, either physiological or biological, to ensure that 69 

the assay can monitor biologically meaningful differences (Palme 2005). Physiological validation refers to 70 

the artificial activation, through the injection of synthetic adrenocorticotrophic hormone, of the HPA axis 71 

and the ability to monitor the resulting change in fGCM concentrations (ACTH challenge test). Where a 72 

physiological validation cannot be performed, e.g. when working with critically endangered or intractable 73 

species, biological validations (e.g. handling, constraint, blood collection, transportation and/or agonistic 74 

interactions) should be conducted (Bosson et al. 2009; Rimbach et al. 2013). Although biological 75 

validations are often employed as part of the validation process, individual variation in the stress response 76 

towards specific stressors may lead to inconsistent and varying results (Koolhaas et al. 2010). Thus, to 77 

ensure the most appropriate enzyme immunoassay is used to quantify physiological stress in a species, 78 

many authors highlight the need to conduct both a physiological and biological validation on the chosen 79 

study species (Goymann et al. 1999; Sheriff et al. 2011).   80 

Recent studies have demonstrated a dramatic decline in Australian wildlife as a result of 81 

anthropogenic activities, such as introduction of exotic species, the reduction in vegetative cover, 82 

fragmentation, a change in fire regimes and causing climate change (Burbidge and McKenzie 1989; 83 

McKenzie et al. 2007; Hing et al. 2014). Despite evidence that chronic stress has significant welfare 84 

implications, studies focusing on the possible effects of such stressors on the adrenocortical activity have 85 

only been conducted on several Australian marsupials (Hing et al. 2014). In this regard, non-invasive 86 

hormone monitoring techniques, using hair as hormone matrix, have been successfully applied to 87 

determine adrenocortical function in squirrel gliders (Petaurus norfolcensis) faced with anthropogenic 88 

disturbances (Brearley et al. 2012).  89 

The sugar glider (Petaurus breviceps) is a small arboreal marsupial native to Australia and currently 90 

listed as of least concern by the International Union for Conservation of Nature (IUCN, 2016). Sugar gliders 91 
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are a social species known to form groups consisting of several individuals and are frequently found in 92 

large huddling groups (Suckling 1984; Nowack and Geiser 2016). They are well adapted to survive short-93 

term changes in their environment (Henry and Suckling 1984; Kortner and Geiser 2000; Parmesan et al. 94 

2000; Christian and Geiser 2007). However, chronic or extreme changes in temperature, food availability 95 

and habitat loss may lead to energetic bottlenecks as well as changes in foraging behaviour and 96 

reproduction. Validating a method for monitoring physiological stress in the species may assist in 97 

determining sugar glider health and survivability throughout its natural distribution during such periods 98 

of change. Here we used both a biological (separation) as well as physiological (ACTH administration) 99 

validations to assess the suitability of five enzyme immunoassays (EIAs) that would allow non-invasive 100 

monitoring of physiological stress of captive and free-ranging sugar glider populations via the collection 101 

of faecal samples.  102 

 103 

Material and methods 104 

Ethical note 105 

Approval to conduct this study was granted by the University of New England Animal Ethics Committee 106 

and the New South Wales National Parks and Wildlife Service (AEC14-108). 107 

 108 

Capture and housing 109 

The experiment was performed in February 2014 on eight sugar glider individuals (5 adult females, 2 adult 110 

males, 1 sub-adult male) originally retrieved from wooden nest boxes near Dorrigo (30°22′S, 152°34′E) 111 

and within Imbota Nature Reserve (30°35′S, 151°45′E) (a group of four animals per location). The 112 

individuals were transferred to the University of New England, where they were used to establish a 113 

breeding colony, which was used during this study. All individuals were weighed to the nearest 0.1 g, 114 

sexed and aged according to Suckling (1984), before being micro-chipped for individual recognition (PIT 115 

tags, Destron Technologies, South St Paul, MN, USA). Animals were kept in their capture groups and 116 

housed in two outdoor enclosures (3.6 × 1.8 × 2 m), each fitted with branches, two feeding platforms and 117 

three wooden nest boxes per group. All individuals of one group usually shared one nest box (Nowack and 118 

Geiser 2016). Following a physical evaluation, all animals were deemed healthy at the start of the study. 119 

Individuals were removed from their group housing in the late afternoon (start of active period) on the 120 

first day of the study and placed into individual enclosures (0.7 x 1 x 2 m) for the study period: individuals 121 

were able to have visual and olfactory contact with one or two other members of their family group 122 

situated in close-by aviaries. Each individual enclosure was equipped with a wooden nest box and 123 
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branches; the floor of the enclosure was lined with shade cloth to captured faeces while allowing urine to 124 

drain off. Animals were fed daily with a mixture of high protein baby cereal, egg, honey and water, to 125 

which a high protein supplement (Wombaroo Food Products, Australia) was added. This food was 126 

supplemented with a dish of fresh fruits. Water was provided ad libitum.  127 

 128 

Separation, ACTH challenge and faecal sample collection  129 

In total, faecal samples were collected for eleven nights including separation (day 1), five nights where no 130 

animal manipulation occurred, ACTH administration on day 7, and for four nights after the treatment. 131 

After both separation and ACTH injection, enclosures were checked for faecal samples at two-hour 132 

intervals starting from 2100h until 0600h. The freshest sample was collected and all other faecal samples 133 

were removed from the enclosure and discarded. For all other nights, enclosures were checked at the 134 

start and end of the active period (2100h in the evening and 0600h in the morning; the same sampling 135 

procedure as described above was used). Samples were marked according to the date and time of 136 

collection to allow for longitudinal fGCM monitoring. On day 7, all eight individuals were injected 137 

intramuscularly with 0.1 ml of synthetic ACTH (1-2 IU/kg of Synacten Depot, Novartis, Auckland, New 138 

Zealand) at the start of the active phase between 1925h and 2000h and released back into their individual 139 

enclosures. This ACTH dose was chosen as it has been used successfully in a number of studies to invoke 140 

a stress response, such as the African lesser bushbaby (Galago moholi, Scheun et al. 2015), yellow baboons 141 

(Papio cynocephalus, Wasser et al. 2000) and the black-footed ferret (Mustela nigripes, Young et al. 2001). 142 

All faecal samples were stored in 1.5 ml Eppendorf tubes and frozen at -20˚C within 20 min of collection.  143 

At the end of the experiment, all individuals were relocated into their original groups. 144 

 145 

Faecal sample extraction 146 

Faecal samples were lyophilized, pulverized and sieved through a thin mesh to remove any undigested 147 

material (Fieß et al. 1999). Following this, 0.050 – 0.055 g of faecal powder were extracted by adding 1.5 148 

ml 80% ethanol prior to vortexing for 10 min. Suspensions were then centrifuged for 10 min at 1500xg 149 

and the supernatants transferred into a new microcentrifuge tube. Centrifugation of the supernatants 150 

was repeated at 1500xg for 5 min and the resulting supernatants transferred into new microcentrifuge 151 

tube. Subsequently, 1 ml of supernatant was dried in an oven at 50 ˚C overnight; the dried product was 152 

sent to the Endocrine Research Laboratory (ERL), University of Pretoria, South Africa, for EIA analysis. At 153 

the ERL, dried samples were reconstituted with 1 ml assay buffer and stored at -20 ˚C until EIA analysis. 154 

 155 
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Enzyme immunoassay analysis 156 

To determine an appropriate EIA for measuring alterations in fGCM concentrations in sugar gliders, a 157 

subset of faecal extracts from two males (Male1, Male2) and two females (Female1, Female2), injected 158 

with synthetic ACTH, were measured for immunoreactive fGCMs using five EIAs, namely: cortisol, 159 

corticosterone, 11-oxoetiocholanolone I (measuring 11,17 dioxoandrostanes), 11-oxoaetiocholanalone II 160 

(detecting fGCMs with a 5β-3α-ol-11-one structure), and 5α-pregnane-3β,11β,21-triol-20-one (measuring 161 

3β,11β-diol-CM). The choice of enzyme immunoassays included assays that were specifically designed to 162 

target cortisol or corticosterone, but also widely used group specific assays (Palme 2019). The number of 163 

individuals that we used for the evaluation of a suitable EIA has been based on previous studies that have 164 

successfully validated assays by using between 2 to 4 individuals (Wielebnowski et al. 2002 [N=4]; Fichtel 165 

et al. 2007 [N=4] ; Laver et al. 2012 [N=2]; Young et al. 2017 [N=4]; Scheun et al. 2018 [N=3]). Details of 166 

the five EIAs, including cross-reactivities, are described by Palme and Möstl (1997) for 11-167 

oxoetiocholanolone I and cortisol, Möstl et al. (2002) for 11-oxoaetiocholanalone II, and Touma et al. 168 

(2003) for 5α-pregnane-3β,11β,21-triol-20-one and corticosterone. Assay sensitivity was 0.6 ng/g for 169 

cortisol, 11-oxoetiocholanolone I and 11-oxoaetiocholanalone II, 1.8 ng/g for corticosterone, and 2.4 ng/g 170 

for 5α-pregnane-3β,11β,21-triol-20-one EIA. Intra-assay coefficients of variation, of high- and low-value 171 

quality controls, were 4.17 % and 4.67 % for cortisol, 6.87 % and 8.22 % for corticosterone, 3.05 % and 172 

5.71 % for 11-oxoetiocholanolone I, 5.27 % and 5.76 % for 11-oxoaetiocholanalone II and 3.81 % and 4.19 173 

% for 5α-pregnane-3β,11β,21-triol-20-one. Inter-assay coefficients of variation, of high- and low-value 174 

quality controls, were 8.11 % and 11.68 % for cortisol, 13.46 % and 16.88 % for corticosterone, 1.80 % and 175 

6.38 % for 11-oxoetiocholanolone I, 5.74 % and 11.68 % for 11-oxoaetiocholanalone II and 8.22 % and 176 

11.36 % for 5α-pregnane-3β,11β,21-triol-20-one.  177 

 178 

Data analysis 179 

Choice of enzyme immunoassay 180 

To determine EIA suitability, individual baseline and peak fGCM concentrations were identified for each 181 

of the EIAs tested, using a subset of samples collected two days prior and following ACTH administration. 182 

Individual baseline fGCM concentration was determined for the respective data sets, using an iterative 183 

process (Brown et al. 1994; Scheun et al. 2016). Here, the mean and standard deviation (SD) value for 184 

each individual was calculated. Subsequently, all data points higher than the mean + 1.5 SD were removed 185 

and the mean and SD recalculated. This process was repeated until no value exceeded the mean + 1.5 SD, 186 

thus yielding the individual baseline value. To determine the effect of a stressor (ACTH/Separation) on the 187 
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hypothalamic-pituitary-adrenal axis, the absolute fGCM change was determined, defined as percentage 188 

fGCM response, by calculating the quotient of baseline and fGCM samples. An average increase of ≥100% 189 

was considered a significant rise in fGCM levels (e.g. Jepsen et al. 2019; Young et al. 2017). To identify the 190 

most suitable EIA, we then chose the commonly used approach to select the EIA with the highest 191 

percentage increase for all individuals (e.g. Young et al. 2017, Ludwig et al, 2013; see Touma and Palme 192 

2005 for a list of studies). The cortisol EIA showed the largest peak fGCM response of the five EIAs tested, 193 

exceeding the 100% average response (range: 100 % - 2155.30 %, Tab. 1) post-injection for the four study 194 

animals (Fig. 1). The lack of a response in one study animal (F2) is not uncommon during a physiological 195 

validation via ACTH administration (see Touma and Palme 2005), and does not lower the reliability of the 196 

assay. Subsequently, the cortisol EIA was used to assess fGCM concentrations in the samples from the 197 

remaining four ACTH administered individuals, as well as in the samples linked to separation from all eight 198 

animals. However, we would like to note that, despite the lack of an average increase exceeding 100%, 199 

the corticosterone assay produced fGCM responses that were comparable between the four individuals, 200 

which is another favourable indicator for assay suitability, and as such, the tested corticosterone EIA may 201 

also be suitable to monitor fGCM in sugar gliders. For the assay of choice (cortisol EIA), serial dilutions of 202 

extracted samples gave displacements curves, which were parallel to the respective standard curves (the 203 

relative variation of the slopes of the trend lines was < 5%). Faecal glucocorticoid metabolite 204 

concentrations are given as µg/g dry weight (DW). All EIAs used throughout the study were performed on 205 

microtiter plates as described by Ganswindt et al. (2012).  206 

 207 

ACTH administration and separation 208 

After deciding on an appropriate EIA for monitoring fGCM concentrations in the sugar glider, the entire 209 

sample set was analysed using the cortisol EIA. Individual baseline fGCM concentration was calculated 210 

from the entire dataset using the iterative process as described above. The production of GCs from the 211 

adrenal gland can fluctuate daily (Peter et al. 1978; Lincoln et al. 1982). In order to determine whether 212 

natural daily fluctuations are apparent in sugar gliders, fGCM concentrations from the unmanipulated 213 

period preceding the ACTH injection were compared to the calculated baseline value (as above) for each 214 

individual. The deviation from the calculated baseline level was expressed as a percentage deviation value 215 

and ranged from 14 % - 29% (Tab. 2). Thus, daily variation in fGCM excretion is negligible for sugar gliders.   216 

 217 

Results  218 

ACTH challenge  219 
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Seven of the eight animals exhibited a pronounced increase in fGCM concentrations, following ACTH 220 

administration, when using the cortisol EIA (range: 69 – 1566 %, Tab. 2). Both adult males as well as the 221 

sub-adult male showed a considerable increase in fGCM response (206 – 1566 %) 4.5 to 8 hours following 222 

ACTH administration (Tab. 2). The fGCM concentrations returned to baseline levels for all three individuals 223 

between 6.5 and 25 hours following ACTH administration (Tab. 2). Four of the five females injected with 224 

ACTH showed an increase in fGCM response (69-1290 %) 1.5 to 10.5 hours following ACTH administration 225 

(2-6 samples post-injection, Tab. 2). The fGCM concentrations of all four females returned to baseline 226 

levels between 6.5 and 49 hours following ACTH administration (Tab. 2). 227 

 228 

Biological validation via separation 229 

While six of the eight individuals showed a considerable increase in fGCM response after separation 230 

(range: 62 - 2413 %, Tab. 2 Fig. 2), two females did not show an acute fGCM response above 50% (Tab. 2). 231 

Both adult males, the sub-adult male and two adult females showed a peak fGCM response between the 232 

first and third collected faecal sample post-separation, with fGCM concentrations returning to baseline 233 

levels on the subsequently collected sample for each individual. Additionally, one adult female showed a 234 

prolonged, elevated fGCM response following the separation event, with the fGCM response exceeding 235 

125% from the first to the fifth collected faecal sample before returning to baseline level.  236 

 The fGCM response to the separation event was considerably stronger than the response 237 

determined following ACTH administration in sugar gliders (Tab. 2: not statistically tested due to small 238 

and inhomogeneous sample size). 239 

 240 

Discussion 241 

Our study shows that fGCM changes induced by both physiological stimulation (ACTH) and behavioural 242 

event (separation) can be reliably monitored in faecal samples from sugar gliders using a cortisol EIA. In 243 

addition to confirming the ability to non-invasively monitor stress responses in sugar gliders using faecal 244 

samples, the measured response to separation further proves the ability of the chosen assay for 245 

monitoring biological relevant changes in the stress response.  246 

Sugar glider are a highly social species and are commonly found nesting together throughout the 247 

year (Suckling, 1984), even though energy savings achieved via torpor expression during winter can be 248 

reduced by the presence of normothermic nest mates (Nowack and Geiser 2016). In fact, sugar glider 249 

groups are fairly stable and although groups occasionally split up when changing nests, they usually re-250 

join after a few days (Kortner and Geiser 2000). Separation of individuals of a highly social species, such 251 
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as sugar gliders, can result in the increased production of GCs of the individuals into the ‘reactive 252 

homeostasis range’ in order to facilitate physiological and behavioural changes which promotes a return 253 

to homeostasis. A similar response has also been shown for a number of other social species, such as the 254 

domestic guinea pig (Cavia porcellus, Hennessy et al. 2008), pied babbler (Turdoides bicolor, Jepsen et al. 255 

2019), African buffalo (Syncerus caffer, Ganswindt et al. 2012), the common prairie vole (Microtus 256 

ochrogaster, Ruscio et al. 2007), the common squirrel monkey (Saimiri sciureus, Hennessy et al. 1982) and 257 

the black tufted-ear marmoset (Callithrix kuhlii, Smith and French 1997).  258 

The time lag between elevated circulating GCs from ACTH administration to the excretion of GCs 259 

in sugar glider faeces was around 4-6 hours post-injection. This is similar to other small-bodied mammals, 260 

such as the degu (6 hours, Octodon degus, Soto‐Gamboa et al. 2009), mice (8-10 hours, Mus musculus f. 261 

domesticus, Touma et al. 2004), African lesser bushbaby (14 hours, Galago moholi, Scheun et al. 2015) 262 

and eastern chipmunks (8 hours, Tamias striatus, Montiglio et al. 2012). However, following both 263 

biological and physiological stressors, a considerable amount of individual variability for the tested males 264 

and females have been observed in terms of peak fGCM response, time to peak response, and return to 265 

fGCM baseline levels. The time span from injection of ACTH to the observed peak response varied by up 266 

to 8.5 hours between individuals. Furthermore, only three of five female individuals showed an increase 267 

in fGCM levels in response to the separation event. Our data also suggest differences between the sexes 268 

as males had a considerably higher average fGCM response to both ACTH administration and handling 269 

compared to their female counterparts. Although biological stressors (animal handling, separation, 270 

constraint, blood collection, transportation and/or agonistic interactions; Goymann et al. 1999; Bosson et 271 

al. 2009; Rimbach et al. 2013) have been used successfully in a number of validation studies to increase 272 

GC production (Touma and Palme 2005), numerous instances exist where individual variation in the stress 273 

response to biological validation has led to inconsistent validation results. The ability of an event to act as 274 

a stressor and activate the stress response is based on individual perception; that is, specific biological 275 

stressors may not be recognized as such by an individual (Reeder and Kramer 2005). Furthermore, 276 

individual and sex-related variations in the stress response can also be caused by the time of year, 277 

reproductive status, body condition and the animal’s developmental history (Yoshimura et al. 2003; 278 

Kudielka and Kirschbaum 2005; Cockrem 2013). Individual variation in response to a stressor has been 279 

reported in a number of studies. For example, Smith et al. (2012) showed that the stress response to 280 

capture in yellow-bellied marmots (Marmota flavivetris) were individual-specific, with a number of 281 

individuals failing to show a significant fGCM increase. Similarly, dwarf hamsters (Phodopus campbelli) 282 

exposed to a subordinate ‘on-back’ position showed a large degree of individual variation, ranging from a 283 
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large to no response (Guimont and Wynne-Edwards 2006), while Narayan et al. (2012) showed that 284 

greater bilby (Macrotis lagotis) held in captivity displayed individual variation in the stress response to 285 

anthropogenic activities.  286 

 Although both physiological and biological validation techniques were largely successful in this 287 

study, both can have shortcomings. The injection of ACTH can lead to the overstimulation of the adrenal 288 

gland, resulting in a less sensitive EIA being chosen as an ideal assay for fGCM monitoring in a species 289 

(Young et al. 2017). In contrast to this, the response to a biological stressor is individual specific and may 290 

result in the under stimulation of the adrenal gland (Koolhaas et al. 2007). As such we agree with previous 291 

researchers that, when possible, both a physiological and biological validation should be conducted to 292 

ensure the most appropriate EIA is chosen for monitoring fGCM patterns in a particular species. 293 

Being able to use fGCM to non-invasively assess the physiological state of sugar gliders will be 294 

beneficial to determine the health status of sugar glider populations and may be especially useful to 295 

investigate the impact of anthropogenic disturbance and climate change on this species. A study on the 296 

closely related squirrel gliders has already shown that reduced availability of nesting sites in highly 297 

fragmented habitats leads to elevated cortisol levels, i.e. a homeostatic overload, in squirrel gliders 298 

(Brearley et al. 2012); the study utilised hair as a sample matrix for monitoring GC metabolites, which 299 

gives a seasonal GC metabolite pattern. In contrast to the seasonal patterns observed in hair, the use of 300 

fGCM monitoring, as used in our study, can give a more acute (1 h – 2 days) description of the adrenal 301 

activity of a species or population, allowing for an almost real-time assessment of physiological stress 302 

experienced in a population. This will provide conservationists and researchers with an accurate, real-303 

time pattern of the physiological stress experienced by populations within altered habitats, leading to the 304 

development of more robust conservation programs.  305 

 306 

Conclusion  307 

Our study confirmed the ability to monitor biologically relevant changes in the adrenal function of sugar 308 

glider, using faeces as a matrix. The aim of this study was to determine the suitability of the tested EIAs 309 

for monitoring fGCM concentrations in the sugar glider; in this regard, only the cortisol assay showed an 310 

overall response exceeding 100 % of the calculated baseline level and seems to be the most suited out of 311 

the five EIAs tested. This validated technique can now be employed to determine the physiological stress 312 

experienced by free-ranging populations faced with a range of natural and anthropogenic stressors. 313 
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Tables: 

Table 1. Comparison of five enzyme immunoassays.  The fGCM result obtained from the ACTH challenge using on two male and two female 

sugar gliders. Shown here are baseline fGCM concentrations prior to injection, as well as peak fGCM values and the percentage response from 

baseline values.  

 

 

 

 

 

 

 

 

 

 

 

ID Enzyme immunoassay 

Cortisol Corticosterone 5α-pregnane-3β,11β,21-triol-

20-one 

11-oxoaetiocholanolone I 11-oxoaetiocholanalone II 

Baseline 

µg/g 

Peak 

µg/g 

% 

response 

Baseline 

µg/g 

Peak 

µg/g 

% 

response 

Baseline 

µg/g 

Peak 

µg/g 

% 

response 

Baseline 

µg/g 

Peak 

µg/g 

% 

response 

Baseline 

µg/g 

Peak 

µg/g 

% 

response 

M1 0.14 0.69   398 0.74 1.08 46   8.06 12.77  58 29.51 39.38 33 5.27   9.28 76 

M2 0.15 3.07 2055 0.67 1.04 55   4.48   6.09  36   6.94 12.39 79 2.63   2.60  -1 

F1 0.18 0.47   157 0.62 0.99 61   5.89 14.71  150 18.14 17.26  -5 2.86   3.90 37 

F2 1.50 1.50   0 1.01 1.45 43 12.99 16.02  23 52.71 73.28 36 9.63 17.92 86 
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Table 2. Time and intensity of peak fGCM response for each of the eight study animals following ACTH administration and separation event. 

Individual sample numbers are given (N) as well as total numbers of males and females monitored. 

 

 

 

 

 

 

Sex Deviation from 

baseline  

unmanipulated 

period 

(%) 

 Time to peak response post 

ACTH administration 

(h)                                                            

Peak fGCM response  

ACTH injection 

(%) 

Peak fGCM response  

Separation 

(%) 

Sub-adult male 20  6.50 (N=2) 206   168 

Adult male1  19  4.5 (N=3) 497 1248  

Adult male2 19  8.0 (N=3) 1566 2413 

Mean ± SD 19 ± 1 (n=3)  6.3 ± 1.8 (n=3) 756 ± 716 (n=3) 1276 ± 1123 (n=3) 

Female1  23   1.5 (N=1) 91 1655 

Female2 29   4.0 (N=2) 32    -17 

Female3 18  10.5 (N=5) 69 2090 

Female4 14   4.0 (N=2) 1290   26 

Female5 25   2.0 (N=2) 681   862 

Mean ± SD 22 ± 6 (n=5)  4.4 ± 3.6 (n=5) 433 ± 549 (n=5) 923 ± 947 (n=5) 
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Figure legends 

 

Figure 1. Relative change (%) of fGCMs following ACTH administration observed in two male (A, B) and 

two female (C, D) sugar gliders using five different enzyme immunoassays. 

 

Figure 2. Relative change (%) of fGCMs following the separation event in all eight study animals using 

the cortisol enzyme immunoassay.  
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