
Chen, C, Chen, XQ, Ma, F, Zeng, XJ and Wang, J

 A knowledge-free path planning approach for smart ships based on 
reinforcement learning

http://researchonline.ljmu.ac.uk/id/eprint/11539/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Chen, C, Chen, XQ, Ma, F, Zeng, XJ and Wang, J (2019) A knowledge-free 
path planning approach for smart ships based on reinforcement learning. 
Ocean Engineering, 189. ISSN 0029-8018 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 

 

A Knowledge-Free Path Planning Approach for Smart Ships based 

on Reinforcement Learning 

Chen Chen1,2, 4, Xian-Qiao Chen1,2, Feng Ma 3*, Xiao-Jun Zeng4, Jin Wang4 

School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China1 

Hubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, Wuhan, China2 

Intelligent Transportation System Center, Wuhan University of Technology, Wuhan, China3 

School of Computer Science, University of Manchester, Manchester, UK5 

Liverpool Logistics, Offshore and Marine (LOOM) Research Institute, Liverpool John Moores University, 

Liverpool, UK5 

Abstract: With the development of artificial intelligence, intelligent and unmanned driving has 

received extensive attention. Compared with the rapid technological advance of unmanned vehicles, 

the research on unmanned ship technology is relatively rare. The autonomous navigation of cargo 

ships needs to meet their huge inertia and obey existing complex rules. Therefore, the requirements 

for smart ships are much higher than those for unmanned vehicles. A smart ship has to realise 

autonomous driving instead of manual operation, which consists of path planning and controlling. 

Toward to this goal, this research proposes a path planning and manipulating approach based on Q-

learning, which can drive a cargo ship by itself without requiring any input from human experiences 

or guidance rules. At the very beginning, a ship is modelled in a simulation waterway. Then, a 

number of simple rules of navigation are introduced and regularized as rewards or punishments, 

which are used to judge the performance, or manipulation decisions of the ship. Subsequently, Q-

learning is introduced to learn the action–reward model and the learning outcome is used to 

manipulate the ship’s movement. By chasing higher reward values, the ship can find an appropriate 

path or navigation strategies by itself. After a sufficient number of rounds of training, a convincing 

path and manipulating strategies will likely be produced. By comparing the proposed approach with 

the existing Rapid-exploring Random Tree (RRT) and the Artificial Potential Field A* methods, it 

is shown that this approach is more effective in self-learning and continuous optimisation, and 

therefore closer to human manoeuvring. 
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Highlights:  

[1] Novel approach in operating a vessel based on Q-learning for smart ships autonomously. 

[2] Novel method to model regulations of navigation based on rewards. 

1 Introduction and Background 

Since the 1970s, the combination of robot technologies and vehicles has led to the emergence 
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of drones, unmanned vehicles and unmanned boats [1]. Among them, the research of unmanned 

vehicles may be comprehensive. In contrast, there is much less research on unmanned ships, 

especially for cargo ships. Cargo ships are generally under-actuated due to their large tonnage, slow 

speed and relatively weak power. The autonomous navigation of cargo ships has to meet huge inertia 

and complex navigation rules, therefore the requirements for smart ships are much higher than those 

for unmanned vehicles. An operator of a cargo ship faces many challenges, including those 

associated with the dynamic environment, insufficient power and the uncertainties in perception. 

Hence, the artificial intelligence of cargo ship operating is considered to be very difficult to be built, 

the core function of which is path planning. 

In the field of robotics, path planning is a prolonged topic. Artificial Potential Field (APF), A*, 

dynamic A*, Rapid-exploring Random Tree (RRT) and other algorithms have been studied and 

developed for many years. However, the above methods are generally based on models such as 

potential fields, a rule tree, or a probability tree. In general, these methods primarily take into 

account distances, smoothness and accessibility of paths without considering the dynamic 

characteristics of the corresponding agent. Therefore, the routes obtained by these planning methods 

often do not meet the requirements of ship kinematics and safety. In other words, traditional path 

planning methods could not be practical in the navigation of cargo ships. 

At present, the development of artificial intelligence technology, especially the reinforcement 

learning, provides a new possibility to satisfy the requirements of the path planning of intelligent 

cargo ships. Reinforcement learning has attracted extensive attention in recent years, which 

emphasizes the learning of agents from the environment to behaviour mapping and seeks for the 

most correct or best action decision by maximizing value functions. Q-learning, DQN, A3C and 

DDPG are most frequently used reinforcement learning methods [2]. Different from other artificial 

intelligence algorithms, reinforcement learning methods do not need any human knowledge or pre-

set rules. Considering the navigation difficulty for cargo ships and the benefits offered by 

reinforcement learning, in this research, Q-learning is introduced to address the problem of path 

planning for a cargo ship. The essence of path planning based on the Q-learning system is that agents 

can independently find the most effective path by enumerating possible solutions, which might be 

closer to human manipulating intelligence. The only prerequisite is to build a computing 

environment which is consistent with or close to the real world. Via the proposed approach, this 

research not only provides a novel way for smart ships to sail autonomously by considering all the 

characteristics of a cargo ship, but also presents a new application scenario for reinforcement 
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learning. 

The above idea is realised and implemented in this paper. Firstly, a ship agent is introduced in 

a simulation waterway. Based on Q-learning, an action-return mode is adopted for the evaluation 

and calculation of path under the constraints of navigation safety. Then an appropriate path can be 

found after sufficient training.  

The remaining part of this paper is organised as follows. Section 2 reviews relevant literatures. 

Then Section 3 proposes a Q-learning based path planning approach. After that, Section 4 validates 

the approach in simulations. Finally the conclusion on the use of the approach is given in Section 5. 

2 Literature review 

2.1 Path planning methods for ships 

Compared with the path planning in the field of robots and manipulators on lands, there are 

only a limited number of studies on the path planning of cargo ships. For many years, the A* 

algorithm has been the dominant approach in the relevant research. A Swiss boat named Avalon [3] 

is capable of generating a persuasive path to a given destination and avoiding both static and 

dynamic obstacles based on the A* algorithm. Langbein [4] from Ulm University made use of the 

A* algorithm to develop a long-term path routing approach for autonomous sailboats. In particular, 

such an approach had been validated in a model test. Li et al. [5] developed an Autonomous 

Underwater Vehicle (AUV) optimal path planning method on a basic of A* for seabed terrain 

matching navigation to explore the underwater world. In short, A* is a popular choice for path 

finding, which is flexible. The algorithm given in [6] uses a heuristic function to estimate the 

distance from the current point to the end in the graph and determine its searching direction 

accordingly. Although A* is very efficient for avoiding static obstacles, it might not be very suitable 

for dynamic environments. Apart from the A* algorithm, APF is another popular method in the path 

planning. Ma and Chen [7] adopted the APF model to describe the collision potential caused by 

buoys, piers and encountered vessels and then estimated the collision probabilities. Xue et al. [8] 

applied an APF-based method in ship automatic navigation, which can find a promising route and 

avoid collision. In general, the APF model is elegant and considered to be practical in path planning. 

However, the major issue of the APF model is that the agent might fall into local minima. In this 

occasion, it is very difficult for the agent to reach its destination. Chen [9] developed an extension 

of RRT algorithm to overcome the actual demand of multi-waypoint path planning for unmanned 

ship. The RRT method is a sampling-based expansion algorithm. At each step of the tree-growth, 

given the generated sample (random seed), the growth of the tree is attracted to this seed until a 
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certain branch of the tree can reach the destination [10]. Alvarez et al. [11] presented a genetic 

algorithm (GA) for path planning of an AUV, which turns out to be efficient. However, the 

computing speed of this GA based approach is too slow to meet the requirement of real-time 

updating. In addition to A* and APF, other methods are also used in Unmanned Surface Vessel (USV) 

and AUV. Cheng and Liu [12] applied a genetic annealing algorithm to trajectory optimization based 

on the ship dynamic collision avoidance space model. Petres et al. [13] proposed a novel fast 

marching-based approach for the path planning of AUV, which takes the control constraints of AUV 

into consideration in two-dimensional calculation. Liu and Bucknall [14] suggested a constrained 

fast marching method to solve the problem of USV formation path planning in dynamic 

environments. 

2.2 Reinforcement learning 

As discussed previously, although these algorithms have their own advantages in path planning, 

none of them fully take consideration of the dynamic characteristics and path rationality. Therefore, 

this research introduces the Q-learning algorithm to address the problem of path planning, which 

considers the path planning as a continuous optimisation problem under the trade-off between gain 

and loss. In 1956, Bellman [15] proposed a dynamic programming method, which laid the 

foundation of reinforcement learning. Watkins [16] put forward Q-learning in 1989, which is the 

most commonly used reinforcement learning algorithm. Q-learning is a form of model-free 

reinforcement learning, which can also be viewed as a method of asynchronous dynamic 

programming (DP). The model of Q-learning is very elegant and refined. It provides agents with the 

capability of learning to act optimally by experiencing the consequences of actions, without 

requiring them to build maps of the domains. 

Q-learning was known as a Markov decision process [17] with the environment fully 

observable, which is described as the variables below [18]: 

𝑺 is a finite set of possible states. 

𝑨 is a finite set of actions. 

𝑷 is a state transition probability matrix, where 𝑷(𝑺𝒕, 𝑺𝒕+𝟏, 𝒂𝒕) is the probability of arriving 

in state 𝑺𝒕+𝟏 when performing action in state 𝑺𝒕 

𝑹 is a reward function. 

𝜸 is a discount rate, 𝟎 ≤ 𝜸 ≤ 𝟏. 

𝝅: → 𝑺 × 𝑨 is a state transaction function. 

In Q-learning, a series of different stages or episodes constitute the experience of an agent. In 
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the 𝒕𝒕𝒉 episode, the agent has the following steps: 1) Observe its current state 𝑺𝒕, 2) Select and 

perform an action 𝒂𝒕, 3) Observe the subsequent state 𝑺𝒕+𝟏, 4) Receive an immediate return value 

𝑹𝒕, 5) The 𝑸𝒕−𝟏 value is adjusted by using the learning factor 𝜶𝒏, and the Q value is obtained 

according to the following formula: 

𝑸(𝑺𝒕，𝒂𝒕) ← 𝑸(𝑺𝒕，𝒂𝒕) + 𝜶[𝑹𝒕 + 𝜸𝑸(𝑺𝒕+𝟏, 𝒂𝒕+𝟏) − 𝑸(𝑺𝒕, 𝒂𝒕)]                     (1) 

where 𝑸(𝑺𝒕，𝒂𝒕) is the value of an action 𝒂𝒕 executed by the agent; 𝑹𝒕 is the immediate reward;  

𝜶 is a learning rate and 𝛾 is the discount factor. 

When this process is sufficient, the agent generates a memory that can select actions to 

maximize the total future reward in different states. Q-learning combines Monte Carlo sampling and 

Dynamic Programming bootstrapping. Therefore, it can learn online after each step and from 

incomplete sequence, with low variance and high efficiency. Compared with the path planning 

methods briefly described previously, Q-learning has been applied in complex and challenging 

environments, such as enlarged state spaces, increased computational complexity, energy 

requirements, safety issues and many other constraints. Demircan et al. [19] took advantage of Q-

learning to find out an optimum route for electrical energy transmission lines under specified criteria. 

Konar et al. [20] provided a Q-learning-based path planning algorithm for a mobile robot with 

respect to time, the number of states traversed and energy consumption. Zolfpour et al. [21] 

presented a multi-agents reinforcement learning model for a route planning system to address the 

vehicle delay problems by studying the weights of various components in road network 

environments such as weather, traffic, road safety, and fuel capacity to create a priority route plan 

for vehicles between cities of Malaysia. Li [22] presented a reinforcement learning algorithm using 

linear function approximation to generate an optimal path by controlling the choice of four moving 

actions of the microrobot. Zhang et al. [23] developed a reinforcement learning path-following 

control strategy based on approximate policy iteration for a real mobile robot. Compared with 

traditional methods, this method offers better convergence and a higher path tracking accuracy. 

There are very few applications of reinforcement learning in the field of waterway. Gaskett et 

al. [24] used the Q-learning algorithm to make AUV control its propeller according to input 

commands and sensor information in order to find the target autonomously. El-Fakdi and Carreras 

[25] demonstrated the feasibility of reinforcement learning techniques in underwater cable tracking 

tasks for AUV. Yoo and Kim [26] used reinforcement learning for marine vehicles path optimisation 

in ocean environments without considering obstacles. 

From the above discussion, it can be concluded that there is very little research on automatic 
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manoeuvring of ships by using reinforcement learning. The existing methods of ship route planning 

are traditional ones in the field of robots, which do not consider the characteristics of ships. 

Reinforcement learning is a trial-and-error learning algorithm, in which the agent interacts with the 

environment in real-time and tries constantly to obtain an appropriate strategy. Such a method can 

be used to address the problem that needs to make continuous decisions to achieve an objective. The 

path planning and control of ships are such problems that requite continuous decision-making. 

Therefore, this research proposes reinforcement learning to address the problems. Taking into 

account the ship kinematics equation in the learning process, it enables the automatic self-driving 

of ships, filling the gap between reinforcement learning and the manoeuvring of smart cargo ships. 

3 A proposed approach 

The objective of this research is not to find a shortest path for a cargo ship, which often is not 

an appropriate path for the corresponding ship, but to find a practical path which takes into 

consideration of the dynamic characteristic and a certain criterion. This problem can be addressed 

by Q-learning, which enables a smart ship agent to learn convincing actions in a dynamic 

environment with no prior-knowledge. To make the simulation agree with the dynamic 

characteristics of a cargo ship, the given research uses the first-order Nomoto model to establish the 

initial state Q-table. Based on the risk of the ship collision with an obstacle in simulation, a reward 

function is formulated. Subsequently, the Q-learning principle is used for repeated training. After 

sufficient training, the artificial intelligence of path planning is established, and a meaningful and 

reasonable path can be found. To verify the performance of the proposed approach, such a path is 

compared with those obtained the traditional A * and RRT algorithms.  

3.1 Modelling of the Q-table 

In this research, a state space of the ship agent is formulated based on its position and heading. 

In addition, an action space is associated with its rudder angle. It is known that the position and 

heading of the corresponding ship in a certain time can be inferred by the first-order KT model. 

Such a model was proposed in 1957 by Nomoto who regarded various motion changes of a ship 

caused by the steering as the response relationship. That is, the input is rudder angle and the output 

is the ship motion change. Based on such a relationship, the first order Nomoto equation [27] is then 

proposed as the first order KT equation, which can be expressed by Eq. (2). 

Tr+r=Kδ&                                                               (2) 

with the notation  
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ψ=r&                                                                    (3) 

where ψ is the heading of a ship, Eq. (2) can be written as  

 && &T K                                                             (4) 

where 𝑲 is the turning ability coefficient, T is the turning lag coefficient, 𝒓 is the yaw rate, 

and 𝜹 is the rudder angle. 

The first order Nomoto model has been widely employed in simulating the movement of ships. 

The yaw dynamics is characterized by parameters K and T, which can be identified from standard 

manoeuvring tests [28]. 

Taking the ship as a rigid body, when the ship steers at any rudder angle 𝜹, the bow of the ship 

rotates at a certain angle and the yaw rate is r. The above formula can be seen as the bow rotation 

equation of the ship when it steers. 

Assuming that the initial conditions are 𝒕 = 𝟎, 0   and 𝒓 = 𝟎, then yaw rate 𝒓 at any 

moment t can be computed through the first-order KT equation [29].  

0
1   t / T

r K ( e )                                                     (5) 

Since the yaw rate r is actually the time derivative of 𝜳 , ship heading angle 𝜳  can be 

obtained as  

0


   

t
TK ( t T T )e                                              (6) 

In order to describe the motion of a ship, a ship motion coordinate system is established, as shown 

in Fig. 1. In this figure, G represents the position of the centre of gravity of the ship, XOY indicates 

the hydrostatic water plane, O is the origin, XOG and YOG represent the projection of the centre of 

ship gravity G on the X and Y axes respectively, ψ is the heading of ship, and 𝜹 indicates the ship 

rudder angle. The position of the ship at any moment can be calculated by Eq. (7). 

 



8 

 

Fig.1. A ship motion coordinate system 

 
 0
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


                                                 (7)  

where 𝒙(𝟎) and 𝒚 (𝟎) are the initial positions, 𝒗 is the ship speed, and 𝝍 is the heading of 

ship. With the help of these equations above, the position and heading can always be inferred. 

To enable the reinforcement learning, in this research, the return function is defined as follows. 

If the distance from the obstacle is greater than the minimum collision distance, it is set to 1. If the 

distance from the obstacle is smaller than the minimum collision distance, it is set to – 1000. In this 

occasion, the system will quit and start learning again. This is also in line with the navigation rules. 

In this way, it is possible to obtain the corresponding return value of the ship in any state after taking 

any action, so as to establish the Q-table of the corresponding ship. 

3.2 Learning process 

Through the modelling in Section 3.1, the selection of ship actions and the state of the next 

step can be linked by the first-order KT model. Hence, Q-learning can be introduced to establish 

autonomous path planning intelligence. The learning process of Q-learning can be designed to start 

from any initial state and then select actions according to an action policy. After taking the selected 

action, the agent observes the following state and finds the reward, and then updates the Q-value of 

the previous state and action based on the maximum Q-value and reward of the new state. The Q-

learning action policy employs the ε-greedy policy, which balances “exploration” and “exploitation” 

[30]. Exploitation refers to select an action with the largest value function. Exploration, on the other 

hand, means that other attempting actions still have a chance to be chosen. This will make the agent 

learn experience from the environment, ensuring that the agent searches all possible actions to avoid 

being trapped in local optimal actions. The target policy is a greedy policy, which is also a 

deterministic policy. Only when the value function is maximized, the probability is 1 and the other 

action probability is set to be 0. The algorithm is given as follows:  

Algorithm 1 Q-learning Algorithm 

1:    Initialize 𝐐(𝐬, 𝐚), ∀𝐬 ∈ 𝐒, 𝐚 ∈ 𝐀(𝐬), arbitraily 

2:    Assign a learning factor 𝛂, a discount factor 𝛄 

3:    Repeat (for each episode) 

4:        Initialize state 𝑺𝒕 

5:        Repeat (for each step of episode) 
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6:            Choose 𝒂𝒕 from 𝑺𝒕 according to ε-greedy policy, 

7:            Take action 𝒂𝒕, observe 𝒓𝒕 and next state  𝑺𝒕+𝟏 

8:            Update Q-value by using Eq. (1) 

9:            S=S', 𝒂 = 𝒂′ 

10:        Until S is terminal 

11:    Until all Q(s, a) is of convergence 

12:    Output the last policy:  

a

( s ) arg maxQ( s,a ) 
 

In summary, the Q-learning algorithm presented stores Q-values at each state for the optional 

action. When the learning process is completed, all the states are determined; the Q-table can be 

used for the coming path-planning applications.  

4 A case study 

To verify the effectiveness of the proposed method, the PyCharm platform was used to 

establish a simulation environment of a waterway. In this platform, the Q-learning-based path 

planning function was implemented by Python. Subsequently, the RRT and A* methods were also 

used to plan the paths respectively in the same platform and under the same scenario, and the results 

of the three methods were compared. For the given case study, it is worth highlighting that dynamic 

characteristics of a ship are different from those of a vehicle. In fact, a cargo ship always tries to 

maintain its speed and direction, since speed change and sharp turn would hurt its engine or could 

lead to capsize. Basically, the engine speed of a cargo ship stays on a constant value in most cases, 

and the rudder maintains a small angle in turning. In order to simulate the dynamic characteristics 

of a ship, it is fair to simplify the model, and make the assumption that the simulated ship always 

sails on a constant speed. 

4.1 An experimental platform 

This research established a virtual navigation environment for ships, which is shown in Fig. 2. 

The size of this map is set to 800×600, where the bottom-left corner is taken as the origin (0, 0). In 

this map, the orange area is considered as the land, and the blue area is considered as a waterway, 

which is 400 in width, and 600 in length. It should be pointed out that the left-bottom marginal point 

of this waterway is (200, 0). In this case study, there are 4 objective scenarios designed for this 

experiment. The four scenarios are labelled from 1 to 4, each of which represents the number of 

obstacles in the corresponding scenario. Therefore, there are 4 obstacles in scenario 4, which is most 
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complicated. The size of the obstacles is set to be 100×50. In scenario 1, there is only obstacle 1 

located at the lower left corner (300, 200). In scenario 2, obstacle 2 is added at (400, 450). Similarly, 

obstacle 3 has been added in scenario 3 at (350, 325), obstacle 4 has been added in scenario 4 at 

(400, 100). At the same time, a cargo ship is simulated with a length 𝑳 of 59 and a width 𝑾 of 

30. Certainly other sizes are also applicable in this test. The initial position of this ship is (400, 30), 

and its initial heading angle 𝜳 is set to zero.  

 

 Fig.2. Path taken by Q-learning algorithm 

4.2 Path planning based on the proposed approach 

To simplify the training process, the map was rasterized and divided into grids at the size of 5

×5, and the heading is represented as 20 steps, as the interval is 18°. Hence, the state space of the 

ship is related to its coordinates and headings, which can be represented by  

     1 1 2 2 2
  1， , ， , ， ,

n n n
x y , x y ,..., x y  

                       (8) 

where 𝒙 is the X-coordinate, 𝒚 is the Y-coordinate and ψ is the heading of the ship. 

 As discussed previously, the speed of the simulated ship is set to be constant. Therefore, the 

rudder angle is the only action option for the ship. In fact, the steering angle of a cargo ship generally 

does not have many choices, which is between ±35°. The Q-learning algorithm requires the action 

space of an agent being discrete, and therefore the discretization process is applied. Without loss of 

generality but simplifying the model and computing, the action space of the ship is set to 5 options, 

[-35, -15, 0, 15, 35]. That is, the ship can select only five rudder angles in any state in this case study.  

Taking scenario 4 (the most complicated one) of Fig.2 as an example, according to the size of 
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the map, the shape of the waterway and the dynamic characteristics of the cargo ship, and a rule that 

the ship cannot collide with the land and obstacles during the simulation; the reward value is defined 

by the following rules: 

(1) If 𝟑𝟎𝟎 − 𝑾/𝟐 < 𝒙 <  𝟒𝟎𝟎 W/2 , and 𝟐𝟎𝟎 − 𝑳/𝟐 < 𝒚 < 𝟐𝟓𝟎 + 𝑳/𝟐 , the ship has 

collided with obstacle 1, 𝒓 = −𝟏𝟎𝟎𝟎. The learning process will exit and re-start. 

(2) If 𝟒𝟎𝟎 − 𝑾/𝟐 < 𝒙 <  𝟓𝟎𝟎 + 𝑾/𝟐 , and 𝟒𝟓𝟎 − 𝑳/𝟐 < 𝒚 < 𝟓𝟎𝟎 + 𝑳/𝟐 , the ship has 

collided with obstacle 2, 𝒓 = −𝟏𝟎𝟎𝟎. The learning process will exit and re-start. 

(3) If 𝟑𝟓𝟎 − 𝑾/𝟐 < 𝒙 <  𝟒𝟓𝟎 + 𝑾/𝟐 , and 𝟑𝟐𝟓 − 𝑳/𝟐 < 𝒚 < 𝟑𝟕𝟓 + 𝑳/𝟐   the ship has 

collided with obstacle 3, 𝒓 = −𝟏𝟎𝟎𝟎. The learning process will exit and re-start.  

(4) If 𝟒𝟎𝟎 − 𝑾/𝟐 < 𝒙 <  𝟓𝟎𝟎 + 𝑾/𝟐, and 𝟏𝟎𝟎 − 𝑳/𝟐 < 𝒚 < 𝟏𝟓𝟎 + 𝑳/𝟐, the ship has 

collided with obstacle 4, 𝒓 = −𝟏𝟎𝟎𝟎. The learning process will exit and re-start. 

(5) If 𝒙 − 𝑾/𝟐 < 𝟐𝟎𝟎 , or 𝒙 + 𝑾/𝟐 > 𝟔𝟎𝟎 , the ship has collided with the land, 𝒓 =

−𝟏𝟎𝟎𝟎. The learning process will exit and re-start 

(6) If 𝒚 − 𝑳/𝟐 < 𝟎, or 𝒚 + 𝑳/𝟐 > 𝟔𝟎𝟎, the ship has sail out of the map, 𝒓 = −𝟏𝟎𝟎𝟎. 

The learning process will exit and re-start 

(7) If 400 < 𝒙 + 𝑾/𝟐 < 𝟒𝟓𝟎, or 𝒚 + 𝑳/𝟐 > 𝟓𝟓𝟎, the ship has reached the destination, 

𝒓 = 𝟏𝟎𝟎𝟎. 

(8) Other situations, the ship can be considered as sailing properly in the simulation world, 

𝒓 = 𝟏. 

In this experiment, the ship manoeuvrability coefficients are given as follows: 𝐊 = 𝟎. 𝟎𝟖,𝑻 =

𝟏𝟎. 𝟖. In fact, other K and T values are also applicable, which can be set up according to any specific 

vessel. On the other hand, the learning factor 𝜶 is set as 𝟎. 𝟑 and the discount factor 𝜸 as 𝟎. 𝟗𝟗; 

the variation of these values might change the learning speed and sometimes need some pre-analysis 

and simulation to determine. In this study, the learning factor α and the discount factor 𝛄  are 

assigned with typical values. The Q-table are updated every 20 seconds so as to reduce the 

computation, and the value function update formula can be presented as:  

𝑸(𝑺𝒕，𝒂𝒕) ← 𝑸(𝑺𝒕，𝒂𝒕) + 𝟎. 𝟑[𝑹𝒕 + 𝟎. 𝟗𝟗𝑸(𝑺𝒕+𝟏, 𝒂𝒕+𝟏) − 𝑸(𝑺𝒕, 𝒂𝒕)]                (9) 

Table 1 gives a table of the value function of an episode, which is calculated every 20 seconds. 

For example, in the last state 14, 𝒙 − 𝑾/𝟐 < 𝟐𝟎𝟎. It means that the ship collides with the shore 

and the value function is -300, the training ends and restarts. 

Table 1 The Q-table of an episode 

 x y   Action Reward 
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State1 396.05 49.34 -30.51 0 3.08 

State2 385.90 66.57 -30.51 0 3.17 

State3 375.74 83.80 -30.51 0 3.24 

State4 365.59 101.03 -30.51 0 3.28 

State5 359.18 119.70 0.00 -35 1.89 

State6 355.23 139.04 -30.51 -15 1.72 

State7 343.65 155.29 -43.58 -15 2.18 

State8 328.70 168.50 -56.65 -15 4.52 

State9 311.15 177.99 -69.73 15 4.59 

State10 292.39 184.92 -69.73 0 0.02 

State11 273.62 191.85 -69.73 35 0.08 

State12 254.11 194.84 -100.23 0 0 

State13 234.43 191.29 -100.23 0 0 

State14 214.75 187.74 -100.23 0 -300 

During 300,000 times of learning, the value function table was continuously updated, and the 

policy with the largest value function was improved. Finally, the path planned by this algorithm is 

shown by the red line in Fig.2. In fact, the learning can be implemented for ever. The more training, 

the more satisfied result would be found. 

4.3 Comparing with the existing methods 

In the same scenario, Q-learning, RRT and A* algorithms are used for path planning 

respectively. Then the paths planned by the three methods under the four scenarios are shown in 

Fig.3 to Fig.6. 
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 Fig.3. Paths planned by different methods in scenario 1 

 
 Fig.4. Paths planned by different methods in scenario 2 
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 Fig.5. Paths planned by different methods in scenario 3 

 
Fig.6. Paths planned by different methods in scenario 4 

The length of the paths, the number of sharp turns, the number of 90◦ turns planned by the 

three methods are compared respectively, and the results are shown in Table 2. Sharp turns refer to 

angles greater than 35° or angles less than -35°. 
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Table 2 The distances, the number of sharp turns and the number of 90° turns produced by the 

three methods 

Scenario 

The Distance of Path No. of sharp turns No. of 90° turns 

A* RRT 
Q-

learning 
A* RRT 

Q-

learning 
A* RRT 

Q-

learning 

Scenario 

1 
580 690.72 631.47 5 16 0 5 0 0 

Scenario 

2 
600 838.53 664.79 5 1 0 5 0 0 

Scenario 

3 
680 831.25 663.99 8 18 0 8 0 0 

Scenario 

4 
720 733.72 667.13 10 16 0 10 0 0 

Based on Table 2, it can be concluded that the path planned by the A* algorithm is the shortest 

in scenario 1 and scenario 2, which is better than the one produced by Q-learning. However, with 

the increasing number of obstacles, the path distance of the A* algorithm turns out to be longer than 

that produced using Q-learning algorithm in scenario 3 and scenario 4. In addition, the path of the 

A* algorithm in all scenarios contains many 90° sharp turns. For cargo ships, such sharp turns are 

not practical and cannot be realized. The path distance produced by the RRT algorithm is the longest. 

Although there is no 90°turn in this path, it requires the ship steering the rudder at sharp degrees, 

which does not conform to the reality of ship manipulating. Therefore, the path planned by the Q-

learning algorithm proposed in this research is a realistic and feasible one, and therefore superior to 

the path produced by the RRT algorithm.  

It is worth noting that the path distance of Q-learning is the shortest in scenarios 3 and 4. With 

the increasing of obstacles, the superiority of Q-learning algorithm becomes increasingly obvious. 

At the same time, this method has already taken into account the dynamic characteristics of the ship 

in its learning process. In fact, the output of the proposed approach not only provide a practical path 

for the corresponding ship, but also the sequential manipulating strategies. In other words, the 

controlling process of this ship has been completed simultaneously. Therefore, the path produced 

by this method can be easily implemented in real applications and enables the self-adjustment with 

the environments where the ship operates. 

5 Conclusions and discussions 

This research proposed a novel approach of ship path planning based on the Q-learning 

algorithm. To make the approach practical, the first-order Nomoto equation was used, by which the 

following position and heading angle of the ship can be inferred according to the present position, 
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rudder angle and heading of the ship. Moreover, the position, rudder angle and heading of the ship 

are also the fundamental factors of the state space and action space for the ship. According to the 

characteristics of the simulation waterway, the action reward value was defined and the value 

function updating formula was proposed. In the learning or training, the value function table was 

continuously updated. Finally, a rational path can always be found. The feasibility and effectiveness 

of the proposed approach wass validated and compared with the traditional path planning methods, 

A* and RRT algorithms. This research provides an effective route planning method for ships 

manoeuvring. 

In the simulation process of this experiment, there are no other dynamic obstacles such as ships 

in the waterway, which should be taken into consideration in future research. Moreover, DQN or 

other strategy gradient methods which are considered to be capable of addressing the problem of 

the space explosion are worth investigation and experiment. Furthermore, ship collision avoidance 

rules could be taken into consideration in the ship agents model reward function during the process 

of learning. 
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