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Abstract—Dynamic Spectrum Access, based on the Cognitive 

Radio (CR) paradigm, is a promising solution to improve the 

currently inefficient spectrum utilization. In this respect, this 

paper deals with the spectrum selection problem when a number 

of radio links has to be established in a CR network. A novel 

strategy based on a Partially Observable Markov Decision 

Process (POMDP) is proposed combining partial observations of 

the interference state together with a statistical characterization 

of the interference dynamics. In this context, the use of an 

efficient observation strategy is a key element to account for the 

trade-off between achieved performance and measurement 

requirements. For that purpose, the aim of the paper is to 

propose and evaluate different observation policies for the 

POMDP-based spectrum selection framework. Results show that 

the proposed framework is able to achieve very similar 

performance than a strategy operating under full knowledge of 

the interference state requiring much less associated signaling. 

Keywords-spectrum selection; Partially Observable Markov 

Decision Process (POMDP) 

I.  INTRODUCTION 

Spectrum management is the process of developing and 
executing policies, regulations, procedures, and techniques 
used to allocate, assign, and authorize frequencies in the radio 
spectrum to specific services and users. Regulatory bodies at 
international, European and national levels are actively 
working towards efficient and flexible spectrum regulation by 
fostering technology and service neutral spectrum 
management, spectrum trading  and promotion of collective 
use of spectrum as well as shared use of spectrum [1]. In this 
context, spectrum usage efficiency can be enhanced through 
the combination of Dynamic Spectrum Access (DSA) and 
Cognitive Radio (CR) technology [2][3]. CR has emerged as 
an intelligent radio that automatically adjusts its behavior 
based on the active monitoring of its environment. In that 
respect, spectrum selection refers to choosing the most 
appropriate portion of radio electrical spectrum to be used in 
DSA/CR communication systems. Several research works 
have addressed the spectrum selection problem highlighting 
the importance of having efficient decision-making criteria. 
Some of these works rely on databases that record historical 
information about the occupation in the different channels 
[4][5], which can be used to build predictive models on 
spectrum availability [6].  

In order to perform an efficient spectrum selection, the 
cognitive cycle paradigm that includes observation, analysis, 
decision and action is exploited in this paper. The observation 
of the radio environment and the analysis of such observations 
will lead to acquire knowledge about the state of the potential 
spectrum blocks (SBs) that can be selected (e.g. the amount of 

measured interference, their occupation, etc.) as well as their 
dynamic behavior (e.g. how the interference changes with 
time). Observations of the radio environment typically involve 
making measurements at the terminal side and reporting back 
to the infrastructure side, then resulting very costly in terms of 
signaling overhead, battery consumption, etc. Consequently, 
decision-making strategies able to efficiently operate with the 
minimum amount of measurements would be of high interest. 
In this respect, Partially Observable Markov Decision 
Processes (POMDPs) [7] become a powerful decision making 
tool since they allow achieving an optimized performance by 
combining observations at specific periods of time with a 
statistical characterization of the system dynamics.  

Some works in the literature have used POMDPs in similar 
contexts. In [8] an opportunistic spectrum access approach to 
channels that can be either busy or idle is proposed, assuming 
a single unlicensed user. In [9] the problem was extended to a 
multi-user scenario through a collaborative approach in which 
users need to exchange information about their belief vectors 
at each time slot to generate consistent actions. Based on the 
above, this paper formulates the spectrum selection problem in 
a scenario with heterogeneous application requirements and 
variable interference levels in the available SBs as a POMDP 
process. On the one side, as a difference from previous works 
in the literature, the framework presented in this paper is able 
to capture different levels of interference, while [8][9] are 
based on binary (i.e., idle/occupied) measurements. Moreover, 
the proposed approach considers the heterogeneity of 
requirements in the different applications to be supported, 
while in previous works the different suitability levels 
between spectral resources and application requirements have 
not been considered. This paper extends previous works from 
the authors in [10], where just a short contribution stating the 
main concepts was presented in the work in progress track, 
and [11], where the framework was comprehensively 
formulated and first results focusing on comparison against 
different references was performed. In that context, this paper 
represents a substantial step forward with respect to our 
previous works by focusing on the impact of different 
observation strategies, which constitute a key element in any 
POMDP framework that should balance the trade-off between 
measurement cost and achieved performance. 

The rest of the paper is organized as follows: in Section II 
the system model is described and the considered spectrum 
selection problem is formulated as a POMDP. The considered 
observation strategies will be detailed in Section III. Section 
IV presents the considered simulation model to evaluate the 
proposed approaches. Results are presented in Section V. 
Finally, Section VI points out concluding remarks and future 
works. 



II. SYSTEM MODEL AND PROBLEM FORMULATION 

Fig. 1 illustrates the system model together with the 
functional entities related with the spectrum selection problem 
considered in this paper. The system is characterized by a set 
of links j=1,..., L each one intended to support data 
transmission between a pair of terminals and/or infrastructure 
nodes. The radio link j will be characterized by a required bit 
rate Rreq,j. The potential spectrum to be assigned to the 
different radio links is organized in a set of i=1,..., M SBs. 
Each one is characterized by a central frequency and a 
bandwidth. SBs can belong to different spectrum bands 
subject to different interference conditions.  

The available bit rate for the j-th link in the i-th SB Rj,i will 
depend on both the propagation conditions between the j-th 
link transmitter and receiver as well as on the interference 
experienced by the receiver in the i-th block. Then, the 
spectrum selection problem considered here consists in 
performing an efficient allocation of the SBs to the radio links 
by properly matching the required and achievable bit rates.   

 

Figure 1.  System Model. 

As illustrated in Fig. 1, the spectrum selection decision 
making is executed in a centralized entity in the infrastructure 
node that controls the existing links in the network. The 
overall process follows the steps of the classical cognitive 
cycle, in which the spectrum selection decisions are supported 
by the information stored in a Knowledge Database (KD) that 
includes the knowledge resulting from the analysis of the 
observations (measurements) made on the different SBs. 
Decisions made are translated into actions to configure the 
existing links with the corresponding spectrum allocation. 

The considered interference model denotes as 

Ij,i(t)=Imax,j,i·σi(t) the interference spectral density measured by 
the receiver of the j-th link in the i-th SB at a given time due to 
other external transmitters. In order to capture that interfering 

sources may exhibit time-varying characteristics, σi(t) is a SB-

specific term between 0 and 1 (i.e. σi(t)=0 when no 

interference exists and σi(t)=1 when the interference reaches 
its maximum value Imax,j,i ).  

It is considered that the set of possible values of σi(t) is 
translated into a discrete set of interference states 

Si(t)∈{0,1,..., K} where state Si(t)=k corresponds to σk-

1<σi(t)<σk  for k>0 and to σi(t)=σ0=0 for k=0. Note also that 

σK=1. Moreover, the interference evolution for the i-th block 
is modeled as a discrete-time Markov process that evolves in 
discrete time intervals of duration ∆t with state transition 
probability from state k to k’ given by: 

 ( ) ( ), ' Pr 'i
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 (1) 

It is assumed that the state of the i-th SB Si(t) evolves 
independently from the other blocks, and that the state 
evolution is independent from the assignments made by the 
spectrum selection algorithm. The execution of the spectrum 
selection decision-making algorithm results into actions 
corresponding to the allocation of SBs to the different radio 
links. The action made for link j at time t is denoted as 

aj(t)∈{1,..., M} and corresponds to the selected SB among 
those currently available. It is assumed that an action is taken 
for a given link at any time that a data transmission session is 
initiated on this radio link. As a consequence of the different 
actions and resulting SB assignments, each radio link with a 
data session in course will obtain a reward that measures the 
obtained performance depending on the interference state of 

the SB at each time. Then, let denote 
( ), , ij i S t

r  the reward that 

the j-th link gets at time t when using its allocated SB i and the 
interference state is Si(t). The total system reward TR (t) is then 
given by the sum of rewards of all the active links at time t. 

As a general target, the spectrum selection decision making 
should follow the optimal policy that maximizes the 
performance in terms of the expected long-term total system 
reward TR(t) accumulated over a certain time horizon tending 
to infinity. For this purpose, the decision-making entity would 
ideally need to know the actual interference state of all the SBs 
at time t. However, this would impact in terms of increasing 
signaling overheads and battery consumption to perform all the 
required observations and report them to the decision-making 
entity. To overcome this issue, it is proposed to model the 
spectrum selection process as a POMDP that relies on (i) 
partial observations of certain SBs carried out at specific time 
instants defined according to an observation strategy, and (ii) a 
statistical characterization of the interference dynamics in the 

SBs given in terms of the so-called belief vector ϒϒϒϒ(t)=[bi,k(t)] 
where component bi,k(t) is the probability that the i-th block 
will be in state Si(t)=k at time t. In this context, the definition of 
a smart observation strategy becomes a key aspect to ensure 
that the knowledge of the current interference state is accurate 
enough to make the proper decisions, while at the same time 
reducing the cost associated to performing measurements.  

In a POMDP the complexity associated to finding the 
optimal policy that maximizes the expected long-term system 
reward is usually prohibitive, mainly because the number of 
states (K+1)

M
 grows exponentially with the number of SBs. 

Consequently, this paper proposes to use instead the so-called 
Myopic Policy that maximizes the immediate system reward 
TR(t+∆t). Myopic policies have been found in some works to 
be optimal under certain conditions [12]. More specifically, 
considering that the SB selection is made in time t for just one 
link j and among the set of available blocks so the selection 
will not impact on the immediate reward of any other link, the 
myopic spectrum selection policy becomes: 
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The expected reward ( ), , ij i S t t
E r

+∆
 
  is computed using the 

belief vector values at time t and the state transition 
probabilities that the SB i is in state k at time t and jumps to 



state k’ in the next period t+∆t. Then, the decision policy is 
formulated as: 
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The reward is a metric between 0 and 1 capturing how 
suitable the i-th SB is for the j-th radio link/application, 
depending on the bit rate that can be achieved in this block 
with respect to the bit rate required by the application Rreq,j. 
Based on the formulation defined in [13], the reward function 
considered in this paper is given by: 
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where Rj,i,k denotes the achievable bit rate by the j-th link 
in the i-th SB given that it is in state k. The relationship 
between achievable bit rate and interference state is a 
decreasing function assumed to be known for each link. Uj,i,k is 
the following utility function that relates the achievable and 
the required bit rates: 
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Γ and ξ are shaping parameters to capture different degrees 

of elasticity with respect to the bit rate requirements and λ is a 
normalization factor given by: 
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The proposed formulation of the reward function rj,i,k 
increases with the available bit rate Rj,i,k up to a maximum of 
Rreq and then it starts to smoothly decrease reflecting that it 
becomes less efficient from a system perspective to have an 
available bit rate much higher than the required one.  Based on 
all the above, the implementation of the spectrum selection 
decision making following (3) requires that the KD in Fig. 1 
stores the state transition probabilities for the different SBs

, '

i

k kp , the values of the reward rj,i,k that the different radio links 

can obtain in each SB for each interference state, and the 
belief vector values bi,k(t). 

Concerning 
, '

i

k k
p and rj,i,k, they can be obtained based on 

some initial acquisition mechanisms including measurements 
of the different links and SBs. The details on how to perform 
this acquisition as well as the capability to update the stored 
values whenever relevant changes are detected are out of the 
scope of this paper. Just as a reference, some previous works 
that have addressed the dynamic acquisition of unknown 
transition probabilities in POMDP systems are [14][15]. 

Concerning the belief vector values bi,k(t), they should be 
dynamically updated with time resolution ∆t in accordance 
with the discrete-time Markov process that models the 
interference state in each SB. To perform this update, the 
POMDP exploits the knowledge about the real interference of 
the SBs obtained through observations performed at certain 
time instants according to the observation strategy. More 
precisely, let define as oi(t) the observation made at time t in 
the SB i that provides the actual interference state of the SB, 

that is oi(t)=k. Then the values of bi,k(t) are updated for all the 

SBs every ∆t as follows: 
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The first condition in (7)
 
corresponds to the SBs for which 

an observation is performed at time t providing the actual 
interference state of the SB (i.e. oi (t)=k). Then, the probability 
bi,k’(t+∆t) that SB i will be in state k’ in the next time period 

t+∆t is simply given by the state transition probability 
, '

i

k k
p . In 

turn, the second condition in (7)
 
corresponds to those SBs for 

which no observation has been performed at time t. In this 
case, the actual interference state is not known and thus the 
value bi,k’(t+∆t) is computed probabilistically from the belief 
values bi,n(t) and the state transition probabilities to state k’. 

It is worth mentioning that this paper assumes that the 
network operates in a stationary environment, so that the 
values of the state transition probabilities and the rewards for 
the different links/SBs do not change. In case of non-
stationary environments, some additional mechanisms would 
be needed to detect that the operational conditions of the 
network have changed and to trigger the necessary acquisition 
mechanisms to obtain the new values of these parameters. 
However, such mechanisms are out of the scope of this paper 
and are left for future work. 

III. OBSERVATION STRATEGIES 

An observation strategy should specify the time instants 
when measurements have to be performed to obtain the actual 
interference state in the available SBs. If measurements are 
made very often, this will turn into a more accurate knowledge 
of the actual system state that will impact on making better 
decisions thus resulting in better performance. On the contrary, 
this will increase the cost in terms of sensing requirements and 
signaling overheads to report the measurement results. Hence, 
a trade-off arises between performance and measurement cost. 

Another relevant aspect when deciding the observation 
strategy is to properly capture the dynamics of the different 
SBs to be measured. When the interference dynamics varies 
slowly a measurement taken at a certain time instant can be 
valid for a longer time horizon than when the interference 
exhibits a fast variation, which would require more frequent 
measurements to track the actual interference. Then, 
information about the dynamics in each SB is also a relevant 
issue of the observation strategy. To account for the above 
trade-offs, we consider the following observation strategies: 

• Full Observation strategy (FO). In this strategy, it is 
assumed that an observation of the actual interference state 
Si(t) for all the available SBs is executed whenever a new 
link establishment is required. Hence, a perfect knowledge 
of the system state in all the SBs is available prior to the 
spectrum selection decision making. Note that in this case 
with full knowledge the decision making criterion does not 
rely on the POMDP approach but it simply allocates the 
SB that provides the highest reward, that is:  
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This strategy will be considered as the baseline for 
comparison with the POMDP-based approach. 

• Periodic Observation strategy (PO). This strategy supports 
the POMDP-based decision making of (3) by means of 
observations performed periodically every Tobs in all the 
SBs that are not allocated to any link.  

• Adaptive Observation strategy (AO). This strategy supports 

the POMDP-based decision making of (3) by means of 

observations whose periodicity is adaptively varied 

depending on the dynamics of each SB. In particular, 

assuming that the last observation made for the i-th SB at 

time t indicated that the real interference state was k, the 

next observation will be performed at time t+Tobs(i,k). The 

period Tobs(i,k) is computed based on the expected duration 

of the k-th interference state obtained from the transition 

probabilities for the i-th SB:  

      

,

( , )
1

obs i

k k

t
T i k

p
ρ

∆
=

−
          (9) 

where ρ is a coefficient to be selected (0< ρ ≤1).  
Moreover, in PO and AO approaches, measurements are 

made for non-used SBs, while allocated blocks will be 
measured at the time when they are released if the time 
elapsed since the last observation is higher than Tobs(i,k).  

IV. EVALUATION SCENARIO 

This section describes the specific scenario and simulation 
assumptions that have been considered to evaluate the 
performance achieved by the presented strategies. 

A. Simulation parameters 

A set of M = 5 SBs has been considered. Blocks B1 and B5 
belong to the ISM band at 2.4 GHz with bandwidth 20 MHz. 
SBs B2, B3 and B4 belong to the white spaces in the TV band 
operated at frequencies 400, 800 and 600 MHz, respectively. 
Their bandwidths are 16, 24 and 16 MHz, respectively. Three 
different interference states are considered for the five SBs. 
The average durations of these states for each SB are 
presented in Table I. 

TABLE I.  DURATIONS OF THE INTERFERENCE STATES  

State B1 B2 B3 B4 B5 

Si=0 10 min 10 min 4 min 30 min 10 min 

Si=1 50 min 10 min 90 min 50 min 50 min 

Si=2 10 min 80 min 4 min 10 min 50 min 

A set of L = 3 links has been considered. Each link 
generates sessions whose duration is exponentially distributed 
with average T=30 s. The time between the end of a session 
and the beginning of the next one is also exponentially 
distributed with average 10 s. The bit rate requirement for the 
link 1 is 200 Mb/s, while for links 2 and 3 it is 100 Mb/s. Other 

parameters are Γ=1 and ξ=5. Performance has been obtained in 
steps of ∆t=1 s during TSIM=604800 time steps. 

B. Key Performance Indicators (KPIs) 

The assessment of the proposed framework has been 
carried out in terms of the following KPIs: 

• Average satisfaction probability: It is the fraction of time 
that the established sessions in the links achieve a bit rate 

higher or equal than the requirement Rreq,j. The result is the 
average for all the links along the total simulation time.  

• Average system reward: It is the reward obtained by the 
active links depending on their allocated SBs and 
interference state averaged along the total simulation time 
TSIM. The result is averaged for all the L links. 

• Observation rate: It is the average number of observations 
per second that are performed to determine the interference 
state of the different SBs.  

V. PERFORMANCE EVALUATION RESULTS 

The performance of the different strategies in terms of 
average reward, satisfaction probability and observation rate is 
presented respectively in Figs. 2, 3 and 4 as a function of the 
parameter ρ of the AO strategy. As an additional baseline 
reference, the random algorithm is also considered, in which 
the SB is selected randomly among the available ones without 
making any observation. In case of PO, Tobs=60 s and 
Tobs=150 s have been considered.  

 
Figure 2.  Performance in terms of Reward as a function of ρ 

 
Figure 3.  Performance in terms of Satisfaction as a function of ρ 

  
Figure 4.  Performance in terms of Observation Rate as a function of ρ 

From Fig. 2 and Fig. 3 it can be observed that all the 
strategies achieve a very significant improvement of around 
60% in terms of reward and satisfaction probability with 



respect to the random spectrum selection algorithm. Besides, 
the reward and satisfaction achieved by both POMDP-based 
approaches PO and AO is very similar to the FO-based 
algorithm, particularly for low values of ρ roughly up to 0.1. 

However, as seen in Fig. 4, this is achieved with a very 
significant reduction in the observation rate with respect to FO. 
For instance, when ρ is 0.1 with AO the observation rate is 
reduced in 89% with respect to FO, while for PO the reduction 
is 72% and 88% for the cases Tobs=60 s and Tobs=150 s, 
respectively. In turn, the reward and satisfaction achieved with 
AO and ρ=0.1 is only 3% less than with FO, while the 
reduction with PO is between 1.5% and 3% depending on Tobs. 
Then, AO strategy with setting ρ=0.1 is a good trade-off 
between the considered fixed Tobs period values of PO strategy. 
Moreover, increasing factor ρ tends to degrade the performance 
of AO because of the longer time between observations. 

To further gain insight in the capability of the AO strategy 
to adapt to interference dynamics, the impact of varying the 
average durations of the interference states for each SB has 
been analyzed. Hence, the durations of Table I have been 
multiplied by a factor varied between 0.5 and 3. Fig. 5 presents 
the corresponding performance in terms of observation rate for 
the different strategies, considering ρ = 0.1 for the AO one.  

 
Figure 5.  Performance as a function of the average duration of the SB states. 

From the figure it can be observed that the observation rate 

requirements for AO are significantly reduced when the state 

durations are longer, which leads to further improvements in 

comparison with FO and PO. For instance, when the durations 

are multiplied by a factor 3, AO strategy allows a reduction in 

the observation rate of 75% with respect to PO with Tobs=150 s 

and of 89% with Tobs=60 s. This reduction is achieved without 

having a significant impact in terms of neither reward nor 

satisfaction. Specifically, the obtained values for all the 

considered strategies range from 0.68 to 0.70 in the case of the 

reward, and from 72% to 76% in the case of the satisfaction. 

VI. CONCLUSIONS 

In this paper a novel POMDP-based framework for 
spectrum selection in cognitive radio networks has been 
presented. The framework makes use of the knowledge stored 
in a database that contains the statistical characterization of the 
interference variations in the SBs. The approach considers 
heterogeneity in the bit rate requirements of the applications to 
be established by maximizing a reward function that considers 
the different suitability of each SB to each radio 
link/application. The main focus of the paper has been on the 
impact of the observation strategies that determine the instants 
in which the SBs are measured. It has been obtained that the 

POMDP-based algorithm operating with partial observations 
executed following either a periodical or an adaptive strategy is 
able to achieve a very close performance with respect to a 
strategy with full observation capabilities, but with an 
important reduction of more than 70% in terms of observation 
rate. Moreover, it has been obtained that the adaptive 
observation strategy is able to modify the observation rate 
requirements in accordance with the observed interference 
dynamics, thus allowing a further reduction in the observation 
rate with respect to the periodical approach. 

Future work will deal with performing a further 
optimization of the POMDP-based algorithm with the inclusion 
of spectrum handover mechanisms and with the development 
of strategies for dynamically acquiring and maintaining the 
state transition probability values stored in the KD. 
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