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Abstract
Traditional pencil drawing rendering algorithms when applied to video may suffer from temporal inconsistency and shower-
door effect due to the stochastic noise models employed. This paper attempts to resolve these problems with deep learning.
Recently, many research endeavors have demonstrated that feed-forward Convolutional Neural Networks (CNNs) are capable
of using a reference image to stylize a whole video sequence while removing the shower-door effect in video style transfer
applications. Compared with video style transfer, pencil drawing video is more sensitive to the inconsistency of texture and
requires a stronger expression of pencil hatching. Thus, in this paper we develop an approach by combining a latest Line
Integral Convolution (LIC) based method, specializing in realistically simulating pencil drawing images, with a new feed-
forward CNN that can eliminate the shower-door effect successfully. Taking advantage of optical flow, we adopt a feature-map-
level temporal loss function and propose a new framework to avoid the temporal inconsistency between consecutive frames,
enhancing the visual impression of pencil strokes and tone. Experimental comparisons with the existing feed-forward CNNs
have demonstrated that our method can generate temporally more stable and visually more pleasant pencil drawing video
results in a faster manner.

CCS Concepts
• Computing methodologies → Artificial intelligence; Non-photorealistic rendering;

1. Introduction

Pencil drawing is one of the most fundemental art styles for human
beings to describe natural scenes and has drawn considerable at-
tention from the community of Non-photorealistic Rendering (N-
PR). During the past years, researchers in NPR have developed
various sophisticated approaches to render pencil drawing images
as realistic as possible and achieved many promising results. A-
mong these existing algorithms, Line Integral Convolution (LIC)
based methods [MNI01, KSZ18, TNF99, YKM12] filtering a ran-
dom noise degraded image along a given vector field have been
most widely adopted because the LIC generated texture resembles
pencil hatching strokes. Meanwhile, according to recent research-
es, Convolutional Neural Networks (CNNs) have achieved great
progress in image and video style transfer. For example, Gatys et
al [GEB16] pioneered a neural network algorithm to stylize im-
ages, but their method relied on a time-consuming optimization
process to iteratively reduce the difference of style between the in-
put image and reference image. Johnson et al [JAF16] proposed a
feed-forward CNN to significantly accelerate the generation pro-
cess to a real-time speed. For video style transfer, a natural way to

† e-mail: y.sheng@ljmu.ac.uk

Figure 1: An example of shower-door effect. The positions of the
generated pencil strokes are fixed between the two frames rather
than moving with the objects, such as the horses, although the in-
tensity of generated strokes varies according to that of the input
frames. Note that for illustration purposes the two images shown
are not consecutive frames.

generalize the image processing techniques is to directly apply the
feed-forward CNN to video transfer frame by frame. However, this
strategy inevitably results in temporal inconsistencies and flicker-
ing artifacts. To address these issues, Ruder et al [RDB16] suggest-
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ed a temporal loss function, which uses the optical flow to evaluate
the inconsistency of consecutive frames. Their method succeeded
in generation of stably video sequences, but at a higher cost of time
to transfer a single frame. Inspired by [JAF16, RDB16], Chen et
al [CLY∗17] proposed a recurrent neural network to achieve real-
time video style transfer, but their system requires to train two extra
networks to compute the optical flow and occlusion mask. Huang et
al [HWL∗17] developed a two-frame synergic training method to
maintain the consistency of stylized video sequences, and to train
the feed-forward CNN for video style transfer. Gao et al [GGZY18]
then introduced a feature-map-level temporal loss function in order
to render more stable texture. Nevertheless, these neural network
methods are inapplicable to pencil drawing video generation. Al-
though Johnson et al [JAF16] experimented their networks for pen-
cil drawing generation, their network did not specialize in pencil
drawing rendering, leading to disordered hatching results. Unlike
style transfer mainly relying on color and shape transformations,
pencil drawing video rendering should pay special attention to in-
terframe hatching consistency, which is, however, harder to handle
with the existing neural networks of style transfer.

On the other hand, the traditional algorithms [LXJ12, KSZ18]
have professional performance in pencil drawing rendering, but
suffer from the temporal inconsistency and shower-door effec-
t in pencil drawing video rendering. The temporal inconsistency
is caused by the random noise and texture used in pencil hatch-
ing synthesis, and the shower-door effect is an illusion that random
variation exists on a piece of glass through which the scene is being
viewed. Fig 1 shows such an example of shower-door effect, caused
by the position fixing of generated strokes, making the resulting
pencil drawing frames appear to be covered by a shower door. The
shower-door effect can be removed only if the random variation
follows the movement of objects. Therefore, a conventional way to
solve the shower-door effect is to adopt temporally coherent noise
capable of tracking object movement [KP11]. Moreover, Fišer et
al [FLJ∗14] developed a workflow to render temporally coherent
hand-colored animation by controlling the level of temporal noise.
These methods can achieve notable results, but at the price of high-
er computational complexity and this kind of noise is unsuitable for
generating pencil hatching.

Inspired by [GEB16, JAF16, HWL∗17, GGZY18] which use a
CNN to capture high-level features, we attempt in this paper to in-
corporate traditional methods with these deep learning models to
generate pencil drawing video. As these neural network algorithms
have been demonstrated to be capable of removing the shower-door
effect and restrain the temporal inconsistency, we consider the feed-
forward CNN an effective implement to resolve these problems oc-
curing in pencil drawing video rendering. In order to produce vi-
sually clear and dense enough pencil hatching strokes, we combine
a latest LIC-based method [KSZ18] specializing in rendering visu-
ally pleasant pencil hatching with neural networks to render pencil
drawing video sequences. We propose a new feed-forward CNN by
taking advantage of feature-map-level temporal loss to implemen-
t temporally consistent pencil hatchings. We experimentally com-
pare our rendering results with those generated by other methods
to demonstrate that our system is capable of generating more stable
pencil drawing video when using an LIC generated pencil drawing

as the reference image. The main contributions of this paper are
concluded as follows:

• A new feed-forward CNN is proposed to produce pencil draw-
ing video. With the new network, more low-level features are
remained while the frame information goes through the CNN.
Skip connections are set to directly convert information from the
encoder to the decoder in the stylizing network.
• We justify the direct application of a feed-forward CNN to pencil

drawing video rendering for the first time. By combining with the
feature-map-level temporal loss, our feed-forward CNN is able
to generate temporally stable and visually clear pencil hatching
strokes for video sequences.

The rest of this paper is structured as: Section 2 reviews the re-
lated work. Section 3 describes the details of our method, including
our network architecture and loss function design. Section 4 exper-
imentally demonstrates the effectiveness of our method. Section 5
draws a conclusion.

2. Related Work

As there is no existing work of using deep learning to render pencil
drawing video, we instead review the state of the art literature on
CNN-based style transfer as well as the extant 2D work on pencil
drawing rendering in this section.

2.1. Neural Network Algorithms

Style transfer aims to transfer the style of an input image or video
sequence in accordance with that of a reference image or video
sequence. The idea of using CNN to stylize images was first devel-
oped by Gatys et al [GEB16], where style transfer was performed
in an optimization manner by running back-propagation with a per-
ceptual loss function defined on high-level features of pre-trained
VGG-19 [SZ15]. Though this method achieved impressive styliza-
tion results, the optimization process was time-consuming. Thus
Johonson et al [JAF16] proposed to train a feed-forward CNN
with a similiar perceptual loss function defined on VGG-16 to re-
place this time-consuming process. Their method enabled real-time
style transfer on a image basis and achieved notable results. Later
Ulyanov et al [UVL16] demonstrated that using instance normal-
ization could generate visually more pleasant stylization results.

A straightforward way to generalize image style transfer meth-
ods to video is to treat each video frame as an independent im-
age. But without considering temporal consistency, severe flicker-
ing artifacts can be observed in resulting stylized video. In order
to suppress flickering and enforce temporal consistency, many al-
gorithms have been developed for different video generation tasks
[KP11, LWA∗12, BTS∗15, RDB16, ABMO16]. For example, Rud-
er et al [RDB16] introduced a temporal loss function to constraint
the interframe inconsistency. Their loss function consists of optical
flow and an occlusion mask defined in [SBK10], and is iterative-
ly optimized for each frame until the loss converges. Their method
can achieve satisfactory results but its running speed is rather s-
low due to its iterative optimization process and on-the-fly com-
putation of the optical flow. Inspired by Johnson’s work, Huang et
al [HWL∗17] trained a feed-forward CNN with Ruder’s hybrid loss
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Figure 2: An overview of our deep learning model, which consists of two networks: a stylizing network (encoder and decoder) and a loss
network. In the stylizing network, convolutional blocks, residual blocks, and deconvolutional blocks are colored in brown, green, and blue,
respectively. It , Ft , Ot , and style represent the input frame, encoded feature map, stylized output, and given reference image, respectively. Wt
and Mt denote the optical flow and occlusion mask between frames t−1 and t. To compute the temporal loss, a two-frame synergic training
mechanism [HWL∗17] is adopted. The feature-map-level loss is taken into account for temporal consistency. When applied to computing the
feature-map-level temporal loss, the occlusion mask Mt and optical flow Wt will be downscaled .

function and ground truth optical flow [RDB16]. They demonstrat-
ed that temporal consistency and style transfer could be simulta-
neously learned by the feed-forward CNN and that the on-the-fly
computation of optical flow was unnecessary when applying this
network to video stylization. Gao et al [GGZY18] introduced a
feature-map-level temporal loss function to penalize variations of
the high-level features of the same objects in consecutive frames,
in order to generate more stable video results.

In addition, superiority of reinforcement learning has also been
justified in still painting rendering [XHS12, HHZ19, JFB∗19]. The
above reviewed deep learning methods only require to lower an
overall loss. In contrast to them, reinforcement learning methods
tend to behave more intelligently. This, unfortunately, hinders their
learning methods to branch out to video style transfer. Here, a more
sophisticated reward would be required taking temporal coherence
into account. As a consequence such methods would need much
more computation time.

2.2. Traditional Pencil Drawing Rendering Methods

Pencil drawing rendering has been a booming area in NPR for years
and many sophisticated 2D methods, such as LIC-based method-
s [MNI01, KSZ18] as well as a method to simulate a combina-
tion of sketch and tone (CST) of real pencil drawing [LXJ12], etc,
have been proposed to automatically render pencil drawing images.
Note that there are also some 3D pencil drawing rendering method-
s [HZ00, GTDS10, SBB17] that will not be reviewed in this paper
as our work is 2D-related.

LIC was first developed to visualize a vector field within an im-
age by locally blurring textures along the vector field [CL93]. Since
its output highly resembles pencil hatching strokes, LIC was then
employed by Takagi et al [TNF99] in color pencil drawing render-
ing. Subsequently, Mao et al [MNI01] introduced random binary

white noise for LIC to realistically simulate pencil hatching, fol-
lowed by Yang et al [YKM12]. In real pencil drawing artists pro-
cess their drawings with hatching graduation, in order to achieve
the illusion of multi-dimensional forms. To simulate the character-
istics of hatch graduation, Kong et al [KSZ18] introduced a hy-
brid noise model for LIC to realistically simulate the progression
of hatching in terms of both stroke density and intensity. More-
over, apart from the LIC-based methods, Almeraj et al [AWI∗09]
proposed a system to generate aesthetically pleasant pencil lines
through modeling the movement of human arm. Lu et al [LXJ12]
designed an algorithm to automatically produce realistic pencil
drawing by combining sketch and tone. Nevertheless, all of these
traditional methods, when used in pencil drawing video generation,
will inevitably suffer from the shower-door effect. To resolove the
shower-door effect, in this paper we propose a new feed-forward
CNN to produce pencil drawing video with rich stroke texture as
well as temporal consistency.

3. Our Method

Our training model of pencil drawing video rendering consists of
two neural networks as shown in Fig 2: A stylizing network and a
loss network. The stylizing network including two modules, an en-
coder and a decoder, takes one frame as input and produces its cor-
responding pencil drawing output. The encoder aims to convert an
input frame into a high-level feature map, from which the feature-
map-temporal loss is derived, while the decoder is devoted to gen-
erating a pencil drawing image from the feature map. The loss net-
work, pre-trained for the ImageNet classification task [SZ15] and
fixed in our training process, extracts frame features and computes
the spatial loss that will be used to penalize the difference of high-
level features between the generated output and reference image. A
complete training process works as: Two consecutive video frames
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It and It−1 are first input into the encoder of the stylizing network
and extracted as high-level feature maps Ft and Ft−1, which will be

Table 1: The stylizing network architecture. Conv denotes the con-
volutional block (convolutional layer + instance normalization +
activation); Res denotes the residual block; Deconv denotes the de-
convolutional block (reflection padding + convolutional layer + in-
stance normalization + activation)

Layer Layer Size Stride Channel Activation

Encoder

Conv 3 1 16 ReLU

Conv 3 2 32 ReLU

Conv 3 2 48 ReLU

Res × 5

Decoder

Conv 3 1 96 ReLU

Deconv 3 0.5 48 ReLU

Conv 3 1 64 ReLU

Deconv 3 0.5 32 ReLU

Conv 3 1 3 Tanh

Res
Conv 3 1 48 ReLU

Conv 3 1 48

used to compute the feature-map temporal loss; then the decoder
uses these feature maps to generate pencil drawing outputs Ot and
Ot−1, which will be devoted to calculation of the output-level tem-
poral loss. When computing these temporal losses, optical flow and
an occlusion mask will be used to warp Ft−1 and Ot−1. The loss
network continues to extract features of the generated pencil draw-
ing image and to compute the spatial loss with these features. The
temporal loss is used to evaluate the temporal coherence of gen-
erated frames and to enforce the temporal consistency of stylized
video. The spatial loss, a weighted sum of content loss and style
loss, assesses the style transfer quality in the spatial domain. The
content loss defines the difference of high-level contents between
an input frame and its corresponding stylized frame, while the style
loss measures the similarity between stylistic features of the styl-
ized frame and given reference image. In the inference stage, only
the stylizing network is used for generating pencil drawing video.

3.1. Network Architecture

Our training pipeline consists of a stylizing network and a loss net-
work, as shown in Fig 2. The stylizing network is a feed-forward
CNN responsible for transferring the style of input video frames
to the pencil drawing style given by the reference image. The ar-
chitecture of the stylizing network is outlined in Table 1. Inspired
by [RFB15, IZZE17,GGZY18], we construct the stylizing network
with an encoder and a decoder, and convert the feature map di-
rectly from the encoder to decoder through two skip connections.
The encoder includes three convolutional blocks and five residual
blocks. The three convolutional blocks including one stride-1 con-
volution and two stride-2 convolutions aim to reduce the resolution
of the feature map to one quarter of the input, and to extract high-
level features with outputs of the second and third convolutional
blocks delivered to the decoder. The feature map extracted by the
five residual blocks are then used to compute the feature-map-level

temporal loss. Three convolutional blocks and two deconvolutional
blocks are alternately set to decode the feature map into a stylized
pencil drawing frame. The stylized frame will be devoted to com-
putation of the output-level temporal loss and to evaluation of the
temporal consistency. We use a VGG-19 network to extract features
of the stylized pencil drawing frame in order to compute the spatial
loss. The efficiency of VGG-19 has been demonstrated on image
content and style representations [GEB16]. Note that the loss net-
work does not take part in the network training, which means the
loss network will not be influenced by the loss function.

Different from the existing network achitectures, our stylizing
network has two skip connections between mirrored layers in the
encoder and decoder stacks, and is trained with both the feature-
map-level and output-level temporal loss functions. These exclu-
sive features make our network capable of generating temporally
more coherent pencil drawing video with higher quality of hatch-
ing texture using a smaller number of channels. In other words, our
networks can generate visually more pleasant pencil drawing video
sequences in a faster manner.

3.2. Loss Functions

A fundamental constraint to enable the stylizing network to gen-
erate coherently stylized video is the hybrid loss, which simulta-
neously takes both temporal inconsistency and stylization perfor-
mance into account. The hybrid loss Lhybrid consists of the spatial
loss Lspatial and the temporal loss Ltemporal , and is formulated as:

Lhybrid(t, t−1) = ∑
i∈{t,t−1}

Lspatial(i)+Ltemporal(t, t−1) (1)

3.2.1. The Spatial Loss

The spatial loss is computed separately for two consecutive frames
xi and xi−1, and their stylized results x̂i and x̂i−1, and is tailored
to evaluate the stylization performance in the spatial domain. We
adopt the perceptual loss defined by Gatys et al [GEB16] as the
spatial loss to evaluate the stylization performance, which is ex-
pressed as:

Lspatial(t) =λc ∑
l
Ll

content(x̂
t ,xt)+λs ∑

l
Ll

style(x̂
t ,s)+

λtvLtv(x̂t)

(2)

where l indexes a feature extraction layer in the loss network, and
λc,λs and λtv are hyperparameters set to 105, 1011 and 100, respec-
tively. The content loss Ll

content is a mean squared error at layer l
between the features of the original and the stylized frames, and
formulated as:

Ll
content(x̂

t ,xt) =
1

ClHlWl
‖φl(x

t)−φl(x̂
t)‖2

2 (3)

where φl(xt) represents the feature map of layer l in the loss net-
work, whose dimension is Cl ×Hl ×Wl with Cl ,Hl , and Wl denot-
ing the channel number, height, and weight, respectively. Johnson
et al [JAF16] discovered that if a higher layer were used to com-
pute the content loss, the image content and overall spatial struc-
ture would be preserved. Thus we choose ReLU2_2 to calculate the
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(a) Photograph (b) Real (c) LIC result

Figure 3: Comparison of grayscale value distributions between a
real pencil drawing and LIC generated result [KSZ18]. The first
row shows the images and the second row shows their correspond-
ing grayscale value distributions.

content loss in order to generate pencil drawing video with visual-
ly more clear strokes. The content loss forces the stylized frame x̂t

to be perceptually similar to the original frame in the feature level
rather than in the output level, so that the rendered hatching texture
can stick to moving objects when the stylizing network is applied
to video generation.

In order to penalize the style deviation between the output frame
and the given reference image, the perceptual style loss proposed
by Gatys et al [GEB16] is employed. To evaluate the stylization
performance we need to define the Gram matrix to capture the style
information of features. Elements of the Gram matrix are given as

Gφ

l (x̂
t)c,c′ =

1
ClHlWl

Hl

∑
h=1

Wl

∑
w=1

φl(x̂
t)h,w,cφl(x̂

t)h,w,c′ (4)

where Gφ

l (x̂
t)c,c′ is interpreted as the (c,c′)-th element in Gφ

l (x̂
t);

φl(x̂t)h,w,c and φl(x̂t)h,w,c′ respectively index the (h,w,c)-th and
(h,w,c′)-th elements in φl(x̂t). Since Gφ

l (x̂
t) is an inner product

of the feature maps of channel c and c′, and has been demonstrated
to be capable of expressing the activation degree between different
features [GEB16,JAF16], it can capture the style information of the
input image, such as texture, color, and shape. The style loss Lstyle
can then be defined as a Frobenius norm of the difference between
Gram matrices of the features extracted from the stylized output
and the given reference image,

Ll
style(x̂

t ,s) = ‖Gφ

l (x̂
t)−Gφ

l (s)‖
2
F (5)

where s represents the reference image. To ensure that the style
information in different scales are captured, features in a set of
layers are needed. In this paper, we choose ReLU1_2, ReLU2_2,
ReLU3_2, ReLU4_2 to calculate the style loss.

Futhermore, we adopt the total variation regularization to smooth
our pencil drawing video, which is formulated as:

Ltv(x̂t) = ∑
i, j
‖(x̂t

i, j+1− x̂t
i, j)

2 +(x̂t
i+1, j− x̂t

i, j)
2‖

η

2 (6)

where x̂t
i, j denotes the (i, j)-th pixel in stylized frame x̂t and η is set

as 1 according to [MV15].

3.2.2. The Temporal Loss

The temporal loss is tailored to constrain the temporal inconsisten-
cy during the rendering of pencil drawing video. In this paper, we
adopt a multi-layer temporal loss function which utilizes the optical
flow to calculate the feature difference between consecutive frames
xt and xt−1 on both feature-map-level and output-level. The tem-
poral loss Ltemporal is written as:

Ltemporal(t, t−1) =λ fLtemp, f (x
t ,xt−1)+

λoLtemp,o(x̂t , x̂t−1,xt ,xt−1)
(7)

where hyperparameters λ f and λo are set to 1× 108 and 2× 103,
respectively, while Ltemp, f and Ltemp,o represent the feature-map
level and output-level temporal loss, respectively. The feature-map-
level temporal loss Ltemp, f can be expressed as:

Ltemp, f (x
t ,xt−1) =

1
Dp

Dp

∑
k=1

mt
k(φp(xt

k)−ω
t
t−1(φp(xt−1

k ))2 (8)

where φp(xt) denotes the feature map of layer p in the stylizing
network, and Dp = Hp×Wp with Hp and Wp being the height and
weight of the feature map. mt indicates the ground-truth confident
coefficients between frame t and frame t−1 with 0 representing ei-
ther in occluded regions or on motion boundries, and 1 elsewhere.
ω

t
t−1 is a function that utilizes a pre-computed and downscaled op-

tical flow between xt and xt−1 to warp the output of layer s at time
t−1 to time t. The formula of the output-level temporal lossLtemp,o
is given as:

Ltemp,o(x̂t , x̂t−1,xt ,xt−1) =

1
Do

Do

∑
k=1

∑
c∈{r,g,b}

mt
k(x̂

t
k−ω

t
t−1(x̂

t−1
k ))c− (xt

k−ω
t
t−1(x

t−1
k ))Y )

2

(9)

where Do = Ho×Wo,Ho and Wo denote the height and weight of
stylized frames, respectively. c and Y symbolize respectively the
RGB channels and the luminance in the XYZ color space. Tradi-
tional output-level temporal loss disregards the fluctuation of lumi-
nance [RDB16, HWL∗17], resulting in severe flickering and poor
visual performance in pencil drawing video rendering. To address
this problem we adopt the definition of temporal loss function in
Equation 7 to maintain consistency of the luminance [GGZY18].

4. Experiments

In this section, we will experimentally introduce the implementa-
tion and training details of our neural networks. To justify the use
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Figure 4: Outputs rendered by our networks but trained with different reference images. The top row shows the original inputs while the
leftmost column shows the references, corresponding in turn to three typical real pencil drawings in different styles, a drawing by the CST
method [LXJ12], and a pencil drawing generated by the LIC-based method [KSZ18]. Each following column shows the pencil drawing
results of inputting a topmost image using variant style references.
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Table 2: Temporal errors and FPS (Frames Per Second, standing for the number of frames transfered each second) of different methods on
the Cat, Train, Tower and Farmer video sequences.

Ours Ours(no connection) Huang et al [HWL∗17] ReCoNet [GGZY18] Johnson et al [JAF16]
Cat 0.0769670 0.0783420 0.0881978 0.0767470 0.1053774

Train 0.0877978 0.0869236 0.0910891 0.0898393 0.0989200
Tower 0.0605936 0.0575110 0.0710667 0.0558016 0.0746633
Farmer 0.1273785 0.1335144 0.1352576 0.1212932 0.1394699

FPS 94.85 107.34 106.48 34.30 48.65

Figure 5: Avoidance of the shower-door effect. The left and right
columns respectively show three frames of the rendered video se-
quences using our method and the LIC-based method [KSZ18]

of the LIC-based method, we will compare the outputs of our feed-
forward CNN using different pencil drawings as the reference im-
age. To justify our proposed network in pencil drawing video ren-
dering, we also carry out several experiments to compare our results
with those generated by other neural network architectures as well
as traditional methods.

4.1. Implementation Details

Our neural networks are coded with Pytorch 1.0, trained and tested
on an NVIDIA GTX 1080 Ti GPU. The training dataset is made up
of video frames, optical flows and occlusion masks. We download
30 video sequences (about 21,000 frames) from Videvo [Tea19],

of which themes cover natural scenes, humans, and animals. 20
sequences are used as a training dataset and the rest are used to
validate our method. All the frames are resized to 512× 512. We
use Farneback’s method [Far02] to compute the optical flow and
follow the method suggested in [RDB16] to compute the occlusion
masks. We train our feed-forward stylizing network with a batch
size of 2 for 42,000 iterations, roughly four epoches over the train-
ing dataset. Two neighbouring frames are input into the proposed
feed-forward network each step, and then their stylized outputs are
used to calculate the temporal loss corporately and the spatial loss
separately. We utilize the Adam optimization [KB15] to control our
training with α = 0.5 and β = 0.999, and start with a learning rate
of 1×10−3.

4.2. Comparison of Using Different Reference Images

Directly application of real pencil drawing as the reference image
to the training of our neural network is a natural thinking to ren-
dering pencil drawing video. Nonetheless, it is insufficient for the
stylizing network to produce satisfactory pencil drawing video due
to the randomness introduced by real pencil drawing. Though pen-
cil drawing is an artistic mirror of what an artist visualizes, it may
be casually expressed. For example, Fig 3 shows that the real pencil
drawing differs from a chair photograph not only in color but also
in grayscale value distribution. Instead the LIC-based method [K-
SZ18], selected as the latest in its kind representing the state of the
art technology in pencil drawing rendering, automatically renders
a pencil drawing image in line with not only the color but also the
intensity distribution of the original photograph.

In order to demonstrate that by combining the LIC-based method
[KSZ18] we can obtain better pencil drawing rendering results, we
carry out an experiment to compare the outputs rendered by our net-
works but trained with different reference images, as shown in Fig
4. It can be seen that the pencil drawing rendering results trained
with the real pencil drawing images fail to generate visually clear
hatching strokes. Using the reference generated by the LIC-based
method to train our network can achieve pencil drawing frames
with the most distinct hatching strokes. The real pencil drawings
fail to achieve satisfactory results because it is too difficult for the
convolutional layers to capture artistic features of the real pencil
drawings. More results of pencil drawing video sequences generat-
ed by our networks can be found in our supplementary material.

4.3. Comparison to Other Methods

In order to demonstrate the effectiveness of our method in removing
the shower-door effect, we compare the 61st, 73rd, and 85th frames
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Figure 6: Temporal error variations of using different networks on the Cat,Train,Tower,Farmer sequences. We compute the temporal errors
at regular intervals on these video sequences for a better visualization of temporal consistency.

of a pencil drawing video sequence rendered by both our method
and the LIC-based method [KSZ18] in Fig 5. It can be seen that the
hatching strokes rendered by our method move as the deer raises
its head. In other words, hatching strokes rendered by our network
can move in line with the motion of objects in the scene, leading to
removal of the shower-door effect casued by the position fixing of
hatching strokes rendered by the conventional method.

In addition, we use a temporal error etemp defined in Equation
10 to evaluate the temporal consistency of pencil drawing video
sequences,

etemp =

√√√√ 1
(T −1)×D

T

∑
t=2

D

∑
k=1

mt
k(x̂

t
k−ωt

t−1(x̂
t−1
k )) (10)

where T denotes the total number of frames, and D = H×W with
H and W representing the height and weight of the test frames. A
lower value of etemp corresponds to a rendered video sequence with
a higher temporal consistency, vice versa. In order to demonstrate
our network has better performance in keeping video coherence,
we compare our temporal loss with those reported in [HWL∗17,G-
GZY18, JAF16]. To testify its effectiveness, we also compare the
temporal loss of our feed-forward CNN with and without direct
information connection between the encoder and decoder in our
network. Temporal errors of using different neural networks are
compared in Table 2 and Fig 6. As can be seen, the temporal er-
rors of video sequences rendered by our method are close to those

of ReCoNet but lower than those by Huang et al and Johnson et al,
showing our results are more stable than those of Huang et al and
Johnson et al. On the other hand, though ReCoNet reaches a sat-
isfactory temporal consistency, it has the lowest FPS value among
these network architectures while ours with no connection can even
beat that of Huang et al. We consider that the difference mainly re-
sults from the temporal loss function. Johnson et al designed their
network for image style transfer where their loss function involving
only the spatial loss did not take temporal consistency into accoun-
t. Huang et al constructed their temporal loss function without the
luminance constraint in output-level and penalization in feature-
map-level, both of which are taken into consideration by ReCoNet
and ours. Thus results of Huang et al are more stable than those of
Johnson et al but much poorer than those of ours and ReCoNet, as
shown in Fig 6 and Table 2 that the temporal errors of their results
are lower than Johnson et al but higher than ours and ReCoNet.

We show some pencil drawing video frame samples in Fig 7 to
subjectively compare the rendering performance of different net-
works. Since Johnson et al’s network is trained without the tempo-
ral loss function, meaning that their network places more empha-
sis on the stylization performance than anything else, their results
appear to have the richest texture details and the strongest visual
effect, but comes with temporal inconsistency which can be clear-
ly seen in the background of Fig 7(b), as some bright spots on the
grass as well as the highlighted deer face and rabbit ears flicker
along the consecutive frames. ReCoNet reduces the depth of net-
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Figure 7: Pencil drawing rendering results generated with different network architecutres.(a) Consecutive input frames; (b) results generated
by Johnson et al’s network; (c) results by ReCoNet; (d) results by Huang et al’s network; (e) ours.
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Figure 8: A comparison of pencil drawing frames rendered by our networks. The first and second rows correspond to the results of our
feed-forward CNN without and with the skip connetions between the encoder and the decoder.

(a) 4-Res structure (b) 5-Res structure

Figure 9: Pencil drawing rendering results of different network ar-
chitectures. The two images in turn show the outputs of Res-4 and
Res-5 stylizing networks. While hatching strokes in the former are
visually more evident in a single frame, it will appear unpleansant
due to the massive presence of strokes in video sequences.

work to four residual blocks but increases the number of neurons
compared to Johnson et al’s model, leading to a slower rendering
speed and visually unsatisfactory pencil drawing results. Hatching
strokes generated by ReCoNet appear with lack of graduality, as
can be seen in the grass around the rabbit in Fig 7(c). ReCoNet
also fails to generate edges as clear as Johnson et al and ours, as
highlighted in the close-ups. Huang et al’s model only reduces the

(a) Default (b) with a lower value of λ f

Figure 10: Pencil drawing frames rendered by our network trained
with different λ f settings. λ f is set to 1× 108 and 1× 107 for the
left and right columns, respectively.
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Table 3: User study results. We generate pencil drawing sequences
of the Cat, Rabbit and Deer videos using each method and aggre-
gate votes on the three questions for all the three video sequences.
’Same’ means that a voter thinks there is no difference between two
compared results.

ReCoNet Ours Same Huang et al. Ours Same
Q1 30 67 23 21 89 10
Q2 28 89 10 13 105 2
Q3 30 79 11 16 100 4

number of neurons to achieve a faster rendering speed, and does
not adopt both the feature-map-level temporal loss and skip con-
nection. As a result, their network cannot generate visually clear
object edges and hatching strokes, as highlighted in the close-ups
where the boundary of the deer face and the rabbit ears are miss-
ing. Though the temporal error of our method is close to that of
ReCoNet, hatching strokes rendered by our mehtod tremble less in
video sequences than those by ReCoNet, which can neither be eval-
uated by the temporal error, nor be visualized in terms of images,
but can be observed in our supplementary video.

Note that in our network the temporal loss function aims to pe-
nalize the temporal inconsistency of video sequences. In order to
suppress the temporal inconsistency, the temporal loss attempts to
make the rendered frames as bright as possible because the brighter
the rendered frames, the smaller the temporal inconsistency. This
explains the reason that our pencil drawing rendering results appear
relatively brighter, especially in areas whose inputs are bright.

To further compare the overall performance of our method with
others, we carry out a user study in this section. As the method
proposed by Johnson et al was not dedicated to video, results of
which in pencil drawing video rendering have also shown obvious
weaknesses in terms of visual effect in our previous experiments,
comparison with this method is excluded in this study. We choose
three videos downloaded from videvo.net [Tea19] to generate pen-
cil drawing videos and invite 40 people to answer three questions
after watching. (Q1) Which result has less flickering; (Q2) which
result has visually more pleasant hatching; (Q3) which result do
you prefer orverall. Note that to facilitate the study we set up com-
parisons by pairing every result of ours with its counterpart gener-
ated by each of the competitors, and then counting the total votes.
As shown in Table 3, the study demonstrates that our mehtod has
superiority against the competitors.

4.4. Influence of Network Architecture

The alteration of network architecture plays an important role in
pencil drawing video rendering. Since we adapt the feed-forward
CNN by directly converting low-level features from the encoder
to decoder through the skip connections, we take further experi-
ments to testify the influence of skip connections on pencil hatch-
ing strokes rendering. As can be discovered from both Table 2
and Fig 6, the skip connection with two extra convolutional blocks
makes the rendering process slightly slower, but makes no much
difference to the temporal consistency. However, Fig 8 presents a
direct comparison of pencil drawing frames, where the hatching

strokes rendered by our feed-forward CNN with the skip connec-
tions present higher hatching graduality and clearer objects edges,
as highlighted in the close-ups.

In order to better understand the influence of the network depth
on hatching generation, we also train another feed-forward CNN
with only four residual blocks, that is one block less than the one
we previously used. The rendering comparison of two network ar-
chitectures is shown in Fig 9. We discover that by decreasing the
depth of the network, hatching strokes turn to be denser but much
fuzzier, and the video results tend to have a higher temporal error.

Meanwhile, we find that the temporal loss affects the rendering
performance as well. Unlike other art styles which rely on color and
shape for artistic expression, pencil drawing is a style that stresses
artistic expression with lines and shade, making it more sensitive
to an adjustment of hyperparameters. Pencil drawing frames ren-
dered by our network trained with different λ f values (Equation 7)
are shown in Fig 10. Though the right images show visually more
clear pencil hatching strokes with more evident outlines, their tem-
poral errors for the Farmer and Train sequences are 0.1365856 and
0.1006114, both greater than 0.1273785 and 0.877978, produced
with the default λ f value.

5. Conluding Remarks

In this paper, we propose a new feed-forward CNN to cater for
pencil drawing video rendering. Our network is trained with the
latest temporal loss function and constructed with two additional
skip connections as well as convolutional layers. Video sequences
rendered by our method are significantly more stable than those
by [JAF16, HWL∗17], and have lower temporal errors. Although
temporal errors introduced by our method are close to those by
ReCoNet [GTL∗18], a significant reduction of hatching trembling
can be observed in the pencil drawing video rendering results with
a remarkable acceleration of rendering speed. Experiments have
demonstrated that our method can render visually more clear and
pleasant strokes than those existing neural network algorithms.
Though these competitors were not specifically designed for pen-
cil drawing video rendering, we hope the comparisons between our
method and these methods can provide some useful information for
readers. Moreover, we have also explored the influence of alteration
of network architecture on pencil drawing rendering, including the
variations of the skip connections, the depth of our feed-forward
CNN, and the λ f value. Note that although our method can render
more stable pencil drawing video than the existing deep learning
models, it cannot avoid the trembling of hatchings between neigh-
bouring frames to some extent.
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