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ABSTRACT 

The massive growth of data consumption and the variety of wireless technology emergence 

has made the handover (HO) an attractive research topic nowadays, mainly due to the 

popularity of Wireless Local Area Networks (WLANs), which allow users to reach high-speed 

data communication while they are in movement. Moreover, mobile devices such as tablets 

and smartphones have also become increasingly popular due to their low cost and ease of use, 

and an increase in mobile device use is expected to accelerate in the coming years, along with 

the availability and use of applications such as real-time services and online gaming. The 

traditional HO methods will likely not meet the requirements of mobile devices for modern 

applications due to the lack of intelligence, lack of awareness Quality of Service (QoS) and 

Quality of Experience (QoE) requirements of mobile users.   

We, therefore, introduce a novel architecture that supports horizontal HO in homogenous 

networks. This architecture is based on the Software-Defined Wireless Networking (SDWN) 

concept, where the wireless network is controlled centrally and the wireless Access Points 

(APs) are programmable. In this architecture, HO algorithms will assist wireless users to find 

the network that could best support the application requirements through Quality of Service 

(QoS) and Quality of Experience (QoE) management policies. 

The first HO algorithm proposed in this thesis is called Quality of Experience Oriented 

Handover Algorithm. This algorithm will guarantee the best possible connectivity to the users 

in terms of their QoE and QoS requirements and outperforms the traditional methods in a sparse 

network environment. The second contribution is called Optimised Handover Algorithm for 

Dense WLAN Environments. This algorithm has been designed to address dense network 

environments via taking into consideration the Adaptive Hysteresis Value (AHV). The AHV 
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will help the Optimised Handover Algorithm via reducing the so-called ping-pong effect. This 

contribution shows promising performance results by selecting the best candidate AP, 

decreasing the number of redundant HO and avoiding the ping-pong effect. 

The final contribution is called Priority Based Handover Algorithm. We extended our proposed 

SDWN architecture in order to include the concept of prioritising users and make a smart 

decision during the process of HO. This algorithm will prioritise a certain class of users to 

avoid the effect of the over-congestion. The results show that the approach based on priority 

outperforms the state of the art and provides better QoE to the high priority users despite the 

over-congestion situation. 
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 Introduction 

1.1 Introduction 

Wireless local area networks (WLANs) have become virtually ubiquitous [1]. As the recent 

availability of hands-free technology increases, this allows users to interact with rich 

multimedia services in a hassle-free manner [2]. Mobile devices, such as tablets and 

smartphones have also become increasingly popular due to their low cost and ease of use [3]. 

Researchers must be prepared for further developments in the coming years due to the 

advancement of applications, such as real-time services and online gaming which consume big 

data, and that could be an issue in a dense environment. This will cause significant growth in 

data traffic as a result. Figure 1-1 demonstrates the acceleration of smartphone uptake that is 

forecast to the year 2022 when they are expected to overwhelm other devices by 70.1% [4][5]. 

 IEEE 802.11 is the standard that includes a set of the physical layer (PHY) and media access 

control (MAC) layer specifications for implementing WLAN [6]. In addition to WLAN, there 

are various other wireless technologies such as Universal Mobile Telecommunications System 

(UMTS), and Long-Term Evolution (LTE) that allow Internet connections over mobile 

networks. These numerous technologies have resulted in a heterogeneous wireless 

environment, where devices have the ability to connect to many different wireless networking 

providers using traditional network infrastructures [7]. However, these traditional 

infrastructures are not designed to meet the requirements of seamless mobility and large 
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volumes of traffic [8], [9]. Moreover, these infrastructures do not always guarantee the service 

to the end-users [10]. 

 

Figure 1-1: The global growth of mobile smartphones [11] 

To overcome these problems, various methods have been used to evaluate and enhance Quality 

of Service (QoS) which refers to the performance of a network and Quality of Experience 

(QoE) which refers to a measure of the overall experienced service at the end-users. In fact, 

since the invention of mobile networks, the protocols have constantly evolved to ensure the 

best possible service to customers in terms of data rates and communication experience. The 

evolution of mobile networks has now passed the fourth generation (4G), which provides 

enhanced data rates via LTE, and has now reached the fifth-generation (5G). 4G networks have 

more support for heterogeneous networking technologies to achieve the best service for their 

users in terms of QoS and flexibility when using multi-services, such as navigation services 

and seamless connection [10]. Correspondingly, the IEEE 802.11 standard has also 

significantly improved, from the first generations (a/b) [12] when the speed was up to 2 Mbps, 

until reaching speeds up to 1.3 Gbps in the fifth version (i.e., IEEE 802.11ac) [8], and 4.8 Gbps 
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in IEEE 802.11ax, which is the most recent standard [13] [10]. This has the effect of improving 

the overall user experience, supporting, for instance, 4K video streaming in hotspots, channel 

bonding and connections that allow handling more clients [8]. Additionally, in 2008, IEEE 

802.11r has been proposed to include all the IEEE 802.11 standards that enhance the HO 

process. Specifically, IEEE 802.11r has significantly reduced the length of time that 

connectivity is interrupted between AP and STA through the HO process. It reduced the 

roaming time from 525 ms into 42 ms compared to IEEE 802.1x. Additionally, this results in 

reducing the packet loss from 1.8% into 0.2% and can significantly improve the real-time 

interactive services such as online gaming, video and VoIP [14]. 

However, in 802.11 networks, the clients are not managed and still need to manually apply the 

handover (HO) process in order to switch between different Access Points (APs) or different 

providers while they are in movement [15], [16]. This limited capacity in traditional HO 

processes and the rapid evolution of applications could result in poor QoS and QoE. As such, 

a large number of works have been proposed to refine the HO process. The works using mobile 

terminals to make a decision, however, are limited in their capacity to detect the best available 

bandwidth (BW), since they do not consider QoS criteria and the load balancing at the APs 

[17]. Although a number of works have been reported in the literature to control HO 

management, it is still challenging to drive a powerful decision-based analysis approach [18].  

In this context, the goal of this PhD project is to overcome the load balancing issue by designing 

and developing HO strategies through various decision-making methods that take into 

consideration the QoS and QoE requirements of the wireless users. The proposed methods are 

based on Fuzzy Logic Control Theory (FLCT) and implemented in a centralised controller 

relying on a Software-Defined Network (SDN) architecture. An SDN controller will be capable 
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of monitoring and handling a set of APs to select the best candidate for each user through its 

global view of all the network.  

1.2 Research Objectives and Novel Contributions 

Our literature review shows that the existing HO solutions exhibit a number of limitations that 

affect the performance of mobile devices and ignore their requirements [22], [23]. These issues 

are caused by a lack of awareness within the wireless network of the performance requirements 

of the user’s devices, the distributed nature of most handover solutions, and their complexity 

and poor scalability. 

1.2.1 Objectives  

The aim of this research project is to improve Wi-Fi user station (STA) experience by 

minimising the transition delay and assist the STA in choosing the best network that satisfies 

the application's QoS and QoE requirements. This research will focus on densely overlapping 

areas, where STAs have access to different APs, which can belong to different networks. 

Therefore, the objective is to design a novel architecture that supports seamless HO considering 

the STA’s QoS and QoE requirements. Our design approach will be based on the latest 

developments in network architecture design and management, and more specifically Software 

Defined Wireless Network (SDWN) [19], that extends the SDN paradigm as will be explained 

in Chapter 3. Hence, in summary, the main objective of our research is to address the limitations 

of current HO techniques related to transition delays, complexity, and QoS/QoE awareness. 

We believe that these limitations can be addressed by achieving the following scientific 

objectives: 

 To understand, analyse and identify major issues for the existing HO decision schemes, 

focused on QoS and QoE requirements in overlapping areas. We presented a detailed 
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analysis of different research works regarding HO, resource allocation and mobility 

management in wireless networks. Specifically, we discussed in detail the existing 

techniques and solutions in this area together with their limitations. 

 To design a centralised network architecture based on SDWN where wireless APs act 

as programmable wireless switches connected to a single controller or multiple 

controllers. We achieved this objective introducing a centralised intelligence into the 

network able to assist the HO process and address QoS and QoE. This centralised 

intelligence is implemented in a controller is based on SDWN. This controller is able 

to program data plane switches and implement different networking policies using an 

application programming interface. 

 To design seamless HO based first on an FLCT algorithm that supports QoS and QoE 

for real-time applications. We achieved this objective implementing an algorithm at the 

application layer that ensures the best AP connection based on QoS/QoE requirements. 

 To improve our initial approach based on FLCT in order to make it effective in large 

network environments with a high density of APs and STAs. This enhanced version 

will be called the Optimised Handover Algorithm. We achieved this objective 

introducing a new element in our HO approach in order to reach the optimal HO 

decision through the Adoptive Hysteresis Values (AHV) at the edge of QoE levels, 

which aid to avoid unnecessary ping-pong handovers. 

 To further extend our work with the inclusion of STA prioritisation. This version is 

based on prioritisation that relies on the MCDM concept and will be called the High 

and Low Priority-based algorithm. We achieved this objective implementing a priority-

based handover algorithm in the application layer. The algorithm optimises the QoE for 
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the users according to their priorities. This algorithm will always provide the best QoE 

to the high priority users at the expense of low priority users. 

1.2.2 Novel Contributions 

As we explained above, existing HO methods do not meet the requirements of mobile devices 

and cause long latency due to the lack of intelligence which is the optimised decisions and the 

capable of high-level data routing. In this context, this project will contribute to enhancing HO 

processes in the case of Wi-Fi networks. In summary, the proposed approach will provide the 

following novel contributions:  

 Design a novel architecture, based on the SDWN paradigm, which will implement the 

proposed HO algorithms in homogeneous networks. This novel architecture will allow 

the centralised controller to provide real-time monitoring to collect data from the 

managed APs and STAs, which will support the HO process.  

 Define novel wireless network management algorithms by applying the Fuzzy Logic 

Control Theory (FLCT). The novel FLCT wireless network management will receive 

real-time measurements as a set of parameters from the controller called membership 

values, which represent the QoE requirements. 

 Develop a strategy that will support the designed HO algorithms in large network 

environments with a high density of APs and STAs. This novel strategy will enhance 

the performance results by reducing the redundant HO, and the corresponding 

messaging overhead through the use of Adaptive Hysteresis Values (AHV).  

 Develop an approach to prioritise users in order to facilitate HO process for the purpose 

of improving QoE. This novel approach will utilise the concept of users’ prioritisation 

to make a smart decision during the process of HO classifying the user into two 
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categories (i.e., high user and low priority user). This approach will guarantee the best 

QoE for the high priority users. 

Therefore, this PhD project addresses the limitations found in the state of the art as follows:  

I. It will address the HO problem by taking into consideration the user’s expectations 

in terms of QoS and QoE.  

II. It will offer an innovative SDWN-based architecture, through which a centralised 

controller is able to monitor all the nodes even in large networks by gathering the 

radio environment information that will allow it to efficiently address the above-

mentioned QoS and QoE. 

1.3 Structure of the Thesis 

The thesis is structured as follows: Chapter 2 presents the literature review in terms of HO 

strategies. Then, Chapter 3 illustrates the SDN, SDWN and the proposed design architecture, 

while Chapter 4 presents the proposed first version of the QoE Oriented HO algorithm, i.e., 

FLCT algorithm. Chapter 5 presents the Optimised Handover Algorithm for Dense WLAN 

Environments. Chapter 6 illustrates Priorities Based Handover Algorithm, i.e., High and Low 

Priority-based algorithm. Finally, Chapter 7 provides conclusions and future works. 
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 Background Research and Related 

Work on Handover 

2.1 Introduction 

A Handover (HO) is the process of moving a Mobile Node (MN) or also called STA from one 

wireless network to another, or moving an STA from one wireless provider to another [20]. 

Generally, the HO is divided into three phases: Handover Information Gathering, Handover 

Decision and Handover Execution [20]. The Handover Information Gathering phase, also 

known as a system discovery phase, focuses on collecting information in order to identify the 

need for an HO and subsequently initiating it when it is necessary.  

The Handover Decision phase focuses on providing user satisfaction by trying to determine the 

most appropriate access network when making an HO decision. This is a challenging task, and 

there are many approaches that have been proposed in the literature. These approaches can be 

divided into two categories: static and dynamic. Static approaches focus on the user profile 

[10], whereas dynamic approaches focus on mobility and Received Signal Strength (RSS) [20].  

The Handover Execution phase confirms the change of channel and network in a seamless way 

based on the outcome of the decision phase, and preferably before the previous connection is 

terminated [21]. In this chapter, we investigate the state of the art on HO techniques.  
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2.2 WLANs in Enterprise Environments 

2.2.1 Introduction of IEEE 802.11 

IEEE 802.11, also known as Wi-Fi, includes a set of functionalities and specifications for the 

implementation of wireless local area networks (WLANs). The number 802 refers to the date 

of the first meeting of the association, which was on the 11th of February 1980 according to 

[22]. The first specification of the Wi-Fi standard was released in 1997 under the name of 

802.11, which included the set of the physical layer (PHY) and media access control (MAC) 

specifications for implementing WLAN [6] with data rates up to 2 Mb/s using the 2.4 GHz 

band. The IEEE 802.11 standard has meaningfully improved, from the first generations using 

the 2.4GHz band to the most recent ones using the 5GHz band.  

Table 2-1: The most important versions of IEEE 802.11. 

IEEE 802.11 

Standard 

Version 

Year of 

Release 

Data Rate Approximately 

Transmission Range 

Frequency 

Band 

IEEE 802.11 1997 Up to 2Mbps Indoor up to 20 feet 2.4GHz 

IEEE 802.11b 1999 Up to 11Mbps Indoor up to 150 feet 2.4GHz 

IEEE 802.11a 1999 Up to 54Mbps Indoor up to 75 feet 5GHz 

IEEE 802.11g 2003 Up to 54Mbps Indoor up to 150 feet 2.4GHz 

IEEE 802.11n 2009 Up to 600Mbps Indoor up to 175 feet 2.4GHz/5GHz 

IEEE 802.11ac 2013 Up to 1.3 Gbps Indoor up to 270 feet 5GHz 

IEEE 802.11ax 2019 3.5 to 14 Gbps Indoor up to 270 feet 2.4GHz/5GHz 
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Table 2-1 shows the most important versions of the IEEE 802.11 standards and their data rate 

and transmission range. 

IEEE 802.11ac is considered the most recent version, promising a high speed by increasing the 

throughput in band (5 GHz). This high speed has been reached by using the new technology 

Multiple Input Multiple Output antenna (MIMO). The main idea behind MIMO technology, 

which is illustrated in Figure 2-1, is to combine multiple signals for transmission over a single 

line or medium in order to increase the WLAN data rate and range [23]. In another words, at 

the same time, the data will travel through different antennas using the same channel. In that 

case, the receiver must have multiple antennas in order to receive all the sent data. The MIMO 

technology exploits the phenomenon of multipath propagation in which the signal travels 

towards the receiver in two or more paths. The functionality of MIMO is divided into three 

categories as precoding, spatial multiplexing and diversity coding. The transmitter performs 

precoding by using spatial processing. In order to enhance the received signal gain, single-

stream beamforming is performed. However, the traditional method of beamforming does not 

work well in cellular networks. Therefore, precoding is applied to transform a single stream 

beamforming into multi-stream beamforming. In spatial multiplexing, the MIMO antenna is 

configured to split high-rate signal into many lower-rate signal streams. These lower-rate 

streams are transmitted in the same channel by the antenna. The spatial multiplexing technique 

is used to increase channel capacity in the presence of a high signal-to-noise ratio (SNR). The 

diversity coding technique is used in the absence of channel properties of the communication 

link. In this technique, the signal is coded using space-time coding and transmitted in a single 

stream.  

Finally, the upcoming IEEE standard is 802.11ax, also known as Wi-Fi 6. It is similar to 

802.11ac in terms of using the MIMO concept, but the 802.11ax will be more than 4x faster 
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than 802.11ac and use multiple channels which significantly increase throughput. In detail, 

802.11ax uses 160 MHz channels, the speed of streaming is 3.5Gbps for a single channel. With 

using MIMO, the total capacity could reach up to 14Gbps. 

AP with  multiple antenna using MIMO User with multiple antennaUser with single antenna
 

Figure 2-1: AP with multiple antenna MIMO 

2.2.2 Deployment of WLANs in the Large-Scale network. 

Due to the massive increase in the use of a smartphones and tablets, large-scale Wi-Fi 

deployment is considered an important challenge. Using Wi-Fi in large-scale networks in 

places such as airports, university campuses, stadiums and train stations will result in a 

massively dense network because of the number of the APs that have been used, or the number 

of users. This dense network will cause interference between APs in overlapping areas, which 

will reduce the quality of the received services. Typically, in large-scale Wi-Fi environments, 

the HO is considered an important process to enable a smooth transition of mobile users across 

different APs in order to support real-time applications (VoIP, video and online gaming). 

2.3 Handover Process in WLANs  

The HO process in WLANs is shown in figure 2-2. The shadow areas represent the coverage 

of the APs. In the beginning, the user is connected to AP1 and receives the best QoS. When 

the user is in the overlap area of both APs and starts moving away from AP1 towards AP2, the 

signal strength of AP1 starts decreasing and it affects the QoS for the user. In this case, when 
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the signal from AP1 drops below a threshold, the user starts receiving stronger signals from 

AP2 as he is in the coverage area of AP2. In this situation, the handover process takes place.  

In detail, the HO process is initiated by listing the available candidate APs. In WLANs the 

decision of HO is typically made by the STAs while in cellular networks the HO decision is 

made by mutual collaboration. Traditional techniques waited until the current AP signals are 

completely lost before HO. However, this approach did not provide an optimal solution due to 

service disruption. The currently deployed industry standards tackle this problem by 

maintaining a list of available APs in the background. The next step in the HO process is the 

assessment of the ability of the new AP to handle the traffic of the STA. If the new AP is 

running at its full capacity, then the HO process will not commence. When the AP has capacity 

for accepting a new STA, authentication is carried out between the STA and new AP. If the 

HO is between two different subnets, the STA is assigned a new IP address. However, taking 

a new IP address via DHCP demands extra delays during HO. Therefore, it is a best practice to 

avoid obtaining a new IP address if possible. At this point, the handover process is essentially 

complete.  

 

Figure 2-2: Handover process 

Switching 

AP2 AP1 

Examine Signal 

Strength 
Exchange sessions 

keys 

Obtain new IP if needed 
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2.3.1 Handover Techniques 

HO Techniques can be classified into three types: Hard Handover, Soft Handover and Smart 

Handover. A hard handover is termed as break-before-make; the connection with the source 

(base station or AP) is first broken before making a new connection with the new candidate 

network [24]. This will obviously result in packet loss and latency and so is not ideal for 

streaming applications but is often the case for devices with a single interface. 

A soft handover, which is also called Make-before-break, will allow the STA to establish a 

new connection with another candidate network before the loss of connection with the current 

source. In this type of connection, the user will receive better service as the connection can 

continue without interruption [25]. Figure 2-3 illustrates an example of soft and hard HO 

techniques in the case of WLANs.   

Finally, a smart handover is an improved version of the soft handover, which provides a 

seamless handover without interruption of service. Specifically, a smart handover aims to 

choose the best possible service through all the available networks and even through the same 

WLAN provider by connecting to the best AP [26].  
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Figure 2-3: The difference between the soft and hard handover 

2.3.2 Mobility Handover 

A HO is an action of moving an STA from one AP to another or to a different wireless 

technology [3]. A HO can also be divided into the following three different types: Horizontal 

handover (HHO), Vertical handover (VHO) and Diagonal handover (DHO). An HHO occurs 

in different cells in the same network, also known as a homogenous network, whereas a VHO 

takes place between cells of different network technologies. Diagonal handover is the 

combination of horizontal and vertical handovers [4]. Specifically, a DHO occurs when the 

STA crosses different wireless cells that use a common underlying technology such as 

Ethernet, allowing the users to carry on running its applications with the required QoS from 

Wi-XX to Wi-YY networks [4]-[27]. Figure 2-4 shows the difference between HHO, VHO and 

DHO. In the figure, the Y-axis presents the different technologies (heterogeneous) and X-axis 

presents connections from the same technology (homogenous). 
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Figure 2-4: DHO, HHO and VHO 

2.3.3 Vertical and Horizontal Handover  

As previously mentioned, a HO is the process that enables users to keep the connection when 

their STAs change the joining point to the access network, also known as the ‘point of 

attachment’ [5]. The handover classification depends on the access technology, i.e., whether it 

is the same technology or different. Table 2-2 illustrates the main differences between 

horizontal and vertical Handovers in terms of the handover consequence. 
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Table 2-2: Difference between VHO and HHO [8] 

 VHO HHO  

Network 

Connection 

More than one 

connection 

Single connection 

QoS Parameters Maybe changed Not Changed 

Access 

Technology 

Changed Not Changed 

IP Address Changed Changed 

Network Interface Maybe Changed Not Changed 

2.4 Handover Phases 

Several studies have revealed that HOs could be divided into three phases, HO Information 

Gathering, HO Decision Making and HO Execution [28], [24], [29]. We will describe these 

three phases in the following sections, which all together are called Handover Management.  

2.4.1 Handover Information Gathering 

The first phase, also known as system discovery, focuses on collecting information in order to 

identify the need for a handover, and can subsequently initiate it. The HO process usually uses 

the IEEE 802.11 standard during this phase to obtain information by such as RSS, available 

BW, jitter, delay [10]. The full set of information gathered will help make the best HO decision 

[20]. This phase aims to gather all the available information by a mobile device that will scan 

the surrounding networks to detect all the possible services, data rates and power consumption. 

Other collected information on a mobile device is also needed, such as device features, speed 

and battery status. Table 2-3 shows the required information and parameters for the HO process 

from each network layer. 
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Table 2-3: Information parameters pertinent to the HO process 

2.4.2 Handover Decision Algorithms 

The second HO phase focuses on providing user satisfaction by trying to determine the most 

appropriate access network. The information gathered, based on the aforementioned 

parameters, is used to make the HO decision. The decision step is highly critical during whole 

HO process as it is responsible for deciding at what time to start the HO process and to which 

AP the connection should be made. The HO process has a different level of complexity in 

homogeneous and heterogeneous networks, i.e. with the same or differing physical 

technologies. In homogeneous networks, the timing of HO is decided based on the RSS values 

while the selection of best AP is primarily trivial due to having the same network. However, in 

heterogeneous networks, the HO process is non-trivial which naturally increases the 

complexity.  

Making a HO decision is a challenging task, and there are many approaches that have been 

proposed in the literature. These approaches can be divided into the following two categories: 

static and dynamic. Static approaches focus on the user profile [10], whereas dynamic 

Layers Type of Parameters 

Application Context information (e.g. speed) User preferences (e.g. cost, provider),  

QoS parameters (e.g.  offered bandwidth, delay, jitter), security alerts (e.g. 

notifications) 

Transport  Network load (e.g. available BW) 

Network available foreign agents, network pre-authentication, network configuration, 

network topology, routing information 

Data-link Radio access network conditions, link parameters, link status 

Physical Available access media, for example copper or fibre, WLAN 
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approaches focus on the Mobility and RSS [4]. Many works classify handover decisions into 

the following seven strategies detailed in the next subsections [21][10]: 

 Received Signal Strength (RSS) 

 Decision function-based algorithm strategies (DF) 

 QoS and User-centric algorithm strategies (UC) 

 Multiple attribute decision algorithm strategies (MAD) 

 Fuzzy logic and neural network-based algorithm strategies (FL/NN) 

 Cooperative Vertical Handover strategies (CVHO) 

 Context-aware algorithm strategies (CA) 

2.4.2.1 Received Signal Strength  

Traditional HO decisions are based on RSS and a hysteresis margin [21]. The RSS represents 

the strength of the radio signal received by the STA. The idea behind RSS-based algorithms is 

simply comparing the RSS of the current attachment point with the RSS of the other available 

networks, while the hysteresis margin value is considered in order to avoid the ping-pong HO. 

Ping-pong HO happens when the STA hands over from one AP to another but rapidly hands 

back to the original AP, and that will cause unnecessary HO signalling messages.  The STA 

scans the surrounding networks, checking the availability of each candidate wireless network 

during the discovery phase. After that, the STA measures the level of the RSS of each network 

and compares the RSS of its currently connected network with the new one. If the new RSS is 

higher than the current one, the handover process moves the STA to the new network. 

Otherwise, the process goes back to the network discovery phase [21], [27]. The general steps 

of the RSS-based algorithm are shown below. 
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1. RSS only: choosing the new Base Station (BS), if RSSnew > RSSold. 

2. RSS with Threshold T: choosing the new BS, if RSSnew > RSSold and RSSold < T. 

3. RSS with Hysteresis H: choosing the new BS, if RSSnew > RSSold + H. 

4. RSS, Hysteresis and Threshold: choosing the new BS, if RSSnew > RSSold + H and RSSold 

< T. 

This criterion is suitable to determine the time of HO. However, the limitation is that it does 

not involve user intervention according to their preferences. Therefore, more efficient criteria 

are required to take into account user preferences. Additionally, as data traffic increases due to 

a large number of devices connecting to the network, WLAN networks provide multiple APs 

to support traffic growth by using a method called network densification. This method allows 

providers to increase the data traffic with the help of reusing spatial spectrum.  However, due 

to many small cells with multiple APs, the possibility of a handover will gradually increase. 

The hysteresis margin minimises the effect of the ping-pong HO with reasonable handover 

overhead. To further improve the handover process, the method of adaptive hysteresis margin 

is utilised which exploits the velocity of the STA and the radio channel in order to self-optimise 

the hysteresis margin during handover decision making [30].  

2.4.2.2 Decision function-based algorithm strategies (DF) 

In general, the HO decision function can be based on both the cost function and utility function. 

Usually, a DF strategy includes the sum of the weighted function of some parameters, such as 

monetary cost, QoS, trust, preference, compatibility and capacity parameters. The general 

formula for the cost function of a wireless network is:  
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𝑓𝑛 =  ∑ ∑ 𝑤𝑠,𝑖 
𝑖𝑠

. 𝑃𝑛𝑠,𝑖  2.1 

In equation 2-1  𝑝𝑛𝑠,𝑖 is the cost of the i-th parameter to carry out service S on network n, ws,i 

is the weight (importance) assigned using the i-th parameter to perform the services [21].  

The network with the lowest cost is then chosen as the target network. Therefore, this cost 

function-based policy model estimates dynamic network conditions and includes a stability 

period (a waiting period before handovers) to ensure that a handover is worthwhile for each 

STA. In [31] the authors proposed a VHO Decision Function-based algorithm that relies on a 

cost function that first checks all available networks, and then calculates the cost of each of 

them, focusing on battery consumption, bandwidth and network delay. The algorithm chooses 

the network that offers the highest service at the lowest cost. The Generalized Mechanism of 

Decision Function-based strategies is presented in Figure 2-5[27] [31].   
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Figure 2-5: Generalized Mechanism of Decision Function as in  [31] 

The second decision function is based on the utility, which is the level of accessibility of the 

service in the network. The main measure in this algorithm is the users’ satisfaction related to 

different properties of the network [27]. An average data rate has been proposed in [32]. In 

detail, this technique utilises a utility function for each candidate network and its available 

resources at the first phase of the scheme, which is the scanning phase. Based on this, a 

relationship can then be established between the resulting utility function and resources, which 

allows the mobile users to make a handover decision and a network selection. It is important 

to consider that these schemes do not necessarily always guarantee a network selection. This 

is due to the fact that utility-based schemes are not as independent as the considered criteria.  
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2.4.2.3 QoS and User-centric algorithm strategies (UC) 

In these strategies, the HO decision takes into account different features like bandwidth, 

cellular cost, and coverage area. In [27] they divided QoS into the following three main 

categories in order to make the optimal decision: user profile, available bandwidth and Signal-

to-Interference-Noise Ratio (SINR) as explained below. 

 User profile: In order to reach end-to-end seamless mobility with QoS assurance for 

the clients, Calvagna et al. [33] proposed vertical HO strategies where the decision was 

based on user preferences such as QoS and cellular monetary cost. In detail, two HO 

schemes have been presented among GPRS and WLAN. In [5] the authors propose an 

HO decision that considers the expected completion time of data transfer, and the 

consumer surplus, which is the difference between the actual price charged and the 

monetary value of the data transferred. 

 Available bandwidth: This HO strategy is based on finding the optimum user 

preference in terms of available bandwidth [34]. As an STA connects to one of the 

available WLANs, the proposed scheme firstly checks the level of RSS at the STA, 

which is compared with a predefined threshold. The HO is performed to another 

preferred network only if the new network provides higher bandwidth. 
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 Signal-to-Interference and Noise Ratio (SINR): The SINR is defined as the ratio of 

the power of a certain signal of interest to the sum of the interference power which 

comes from other interfering signals and the power of some background noise. In [27] 

the authors rely on the SINR computation to check the performance of the system based 

on the throughput by using the following equation:  

Where B is the channel bandwidth, R is the maximum achievable data rate, N includes the 

overall interference and the noise power and Y is the overall received signal power through the 

bandwidth. This mechanism based on QoS is presented in Figure 2-6. 

Network Scanning

New Networks Available

Measure RSS bandwidth, 
SINR

If current (RSS, SINR, Bandwidth) < 
New (RSS, SINR, Bandwidth)

Initiate Handover new 
Network

Yes

No

 

Figure 2-6: Generalized Mechanism of QoS-based Schemes 

𝑅 = 𝐵 ∗ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅) = 𝐵 ∗ 𝑙𝑜𝑔2 (1 +
𝑌

𝑁
) 

 2-2 

https://en.wikipedia.org/wiki/Interference_(communication)
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2.4.2.4 Multiple Attributes Decisions (MAD) strategies  

In these strategies, a selection is made from a limited number of candidate networks, depending 

on different criteria such as Multiple Attributes and Multiple Objectives [2]. Work presented 

in  [27], [35] classifies MAD strategies into three categories as follows:  

 Grey Relational Analysis (GRA):  Generally, this technique will grade the nominee 

networks, and the highest rank from the list will be chosen as the best candidate 

network. 

 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS): This 

technique also lists the nominee networks, and the decision algorithm will choose the 

closest network to the ideal solution avoiding the poorest case solution.  

 Simple Additive Weighting (SAW): In this technique, the algorithm will calculate the 

weight of all attributes, in order to sum up to the overall score, then the highest score 

will be chosen. 

In terms of network selection techniques, a combination of GRA and TOPSIS techniques can 

be used to find a trade-off between network conditions, service application and user preferences 

[21], [36]. Generally, there are three logical function blocks within these techniques that start 

by collecting data, then process such data, and finally make a decision based on the obtained 

data. In these works, the results for UMTS/WLAN system revealed that the combination of 

these techniques can work efficiently. The limitation of the GRA, TOPSIS and SAW 

algorithms is because of the complexity of bidding adjustments in the handover process which 

introduces delays during the handover decision making phase. 
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2.4.2.5 Fuzzy logic and neural network-based algorithm strategies  

Another HO category found in the literature uses Fuzzy Logic Control theory (FLC) in the 

decision making process [10].  In this category, the FLC HO algorithms are characterised by 

the capability to monitor and analyse different parameters such as RSS, load and bandwidth in 

the case of both real-time and non-real-time applications. For instance, FLC HO algorithms 

through this capability, combine different attributes with multiple criteria providing the best 

AP selection as proposed in [37]. Further, the authors use imprecise information along with 

user preferences for making the decision of an efficient HO. The imprecise information 

includes price, bandwidth, SNR, sojourn time, seamlessness and battery consumption while 

the user preferences are the weights assigned for services such as voice and file download. The 

FLC algorithm consists of three steps. In the first step, the imprecise information and the user 

preferences are fed to the fuzzifier which converts data into either fuzzy, crisp or fuzzy and 

crisp. Then in the second step, the inference system utilises the rules from the knowledge base 

and provides a decision in the form of fuzzy logic (e.g. degree of being true). Finally, in the 

third step, the defuzzifier provides quantifiable output in the form of crisp logic (e.g. Boolean 

logic) which is finally used for the HO. The authors in [38] and [39] proposed a multi-criteria 

HO decision based on FLC and neural networks. Specifically, they used a neural network to 

analyse the FLC parameters (e.g., RSS, network load and the distance between STAs and cells) 

in order to obtain the optimal HO decision. The authors categorise parameters into three types 

as network-specific, user-specific and device related parameters. A large number of parameters 

allows for making better HO decisions. The network related parameters are usage cost, network 

security, transmission range and the capacity while the user related parameters include network 

conditions and energy consumption. The authors include device related parameters to provide 
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support for compatibility issues and other technical information. Additionally, the authors 

exploit the capability of the neural network in terms of processing a large number of parameters 

to make an efficient HO decision.  

2.4.2.6 Cooperative Vertical Handover Strategies 

The traditional HO struggles to offer a good quality of service due to the lack of intelligence, 

which causes delays as well as a packet loss. Recently, solutions have proposed to address the 

seamless VHO challenge using a cooperation technique. In [25] and [15] for instance, the 

authors propose the deployment of an agent into APs and STAs to gather information from the 

environment in order to make the best decision in a seamless way. The authors of [25] claim 

that using an agent will reduce the packet loss and latency in the HO process. The agent takes 

into account all the possible elements such as network coverage area, network security 

bandwidth, QoS, network load, monetary cost and user preferences. Therefore, it cooperates 

with STAs and APs to select the best network depending on all these factors. In fact, the 

preferences of users are the most important factor in this case. Work in [40] proposes a mobile 

agent relying on a decision-making mechanism including three phases as follows: a) context 

management framework, b) programmable platform, c) service deployment. The first phase 

aims to gather information from different networks, the second phase involves choosing the 

best modules to employ, while the last phase consists of managing the work of the agent on the 

mobile

2.4.2.7 Context-Based Vertical Handover Strategies  

Context-based schemes can rely on any information that is pertinent to the situation of an entity 

(person, place or object) [27]. This concept is based on the information gathered from the 
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network and STAs in order to make better decisions [41]. Crucial to this strategy is the 

evaluation of the change of the radio environment context and the management of the gathered 

information in order to make the optimal decision on whether or not it is necessary to switch 

to the next candidate. The author in [8] has divided context-based schemes into the following 

four categories below:  

(i) Mobile Agent-Based Schemes: In this scheme, a programmed agent is located on a 

programmable platform that is responsible for installing the appropriate modules for 

contextual exchange. In [42], the authors propose a mobile agent that could offer a 

distributed HO decision. Specifically, the author presented the following three types of 

agent: multi-access provider (MAP), wireless provider agent and terminal device agent. 

The main function of a MAP is to support the activity of other agents in both the STA and 

wireless networks. The MAP usually runs two types of agents on the STA, which includes 

a profile agent that is responsible for checking application needs and QoS. The second 

agent is the connection manager agent, which is responsible for execution [8]. The author 

demonstrated that there are many advantages of using this method, such as intelligent 

context collection, optimised blocking rate, as well as being able to adapt to a variety of 

wireless network connections. However, many issues as a result of using this method can 

also occur. For example, large numbers of agents are needed, and there is also increased 

communication overhead, high handover latency and issues about deployment in the real 

world.  

(ii) Context-Aware analytic hierarchy process (AHP): This technique breaks down the 

problem of HO selection into a number of sub-problems, where each sub-problem will be 

assigned a weight value. Breaking down the problems will give more accurate results in 

terms of the HO decision, which will give the highest QoS that satisfies the user 
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requirements. In this scheme, a predefined objective-based handover decision and network 

selection are carried out with the help of a scoring mechanism and merit functions. This 

strategy could improve performance in terms of power consumption, network revenue and 

HO drop rate [15]. In [40], the author presents a case study for the HO between WLAN 

and UMTS using a AHP strategy. This study presents a flexible, efficient and seamless 

HO decision. In [43] the authors present another VHO method based on AHP to enhance 

the QoE and QoS. The authors consider the evaluation of both the network and STA by 

using a merit function. The priority in this method focuses on user preferences. Moreover, 

modifying QoS monitoring is combined with the merit function to cut down power 

depletion on nodes [27]. This scheme has benefits in terms of improving HO latency, 

throughput and packet loss. However, there are some limitations of this scheme which 

include a lack of intelligence in the HO process and high resource consumption.  

(iii) Context-Aware Cooperation Scheme Media Independent HO (MIH) Based Context-

Aware Scheme: The author in [44] employs the cognitive cycle to include in the handover 

process adaptability, cognisance and seamless HO. The authors divide the mechanism into 

the following four functions: 

a. Context Acquisition Function (CAF): this function is responsible for gathering the 

information related to the radio resources. 

b. Context Information Provider (CIP): this function is responsible for gathering the 

necessary information about the user location and end-users to support mobility 

management. 

c. Context Matching: this function combines CIP and CAF to reach an optimal QoS 

based on user preferences and application. 
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d. Mobility Management: the last function is responsible for the execution of a 

seamless HO.  

These functions prepare the STA to quickly switch to suitable networks with better QoS. 

The authors claim that the techniques are scalable due to using advanced resource 

allocation, which enhances user experiences [20]. There are many advantages of using 

context-aware cooperation, one of them is the distributed HO decision, which is more 

efficient. Moreover, it provides improved QoS with respect to bandwidth for example, 

which makes it more suitable for real-time streams. However, this method could cause a 

security provision issue, as well as a higher packet loss and high signalling cost. Another 

issue faced by this scheme is the increased complexity during HO.  

(iv)  Media Independent HO (MIH) Based Context-Aware Scheme: This scheme uses a 

technique that again collects information from both the client and the network but also 

stores their neighbourhood information. This method uses link layer intelligence to carry 

out a cooperative HO decision. The MIH function provides a variety of services to the 

STAs by utilising different interface layers (lower and upper). Details of these services are 

outlined below [27]:  

a. Media Independent Event Service (MIES): this service is responsible for gathering 

information network Status and provides a variety of triggers such as quality link 

status. 

b. Media Independent Command Service (MICS): this service is responsible for the 

network reconfiguration at the high-level layers by a set of comments and manages 

the lower layers. 
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c. Media Independent Information Service (MIIS): this service is responsible for 

discovering the neighbourhood networks using MAC address and channel 

information.  

Finally, MIH is defined as a distributed HO decision due to the use of predefined triggers 

that consider application and users. This reduces the latency of HO with optimal network 

selection and less packet loss. However, this scheme is valid in a simple scenario with a 

limited number of connected users and does not work well in large scale scenarios because 

it includes high resource consumption with supplementary signalling such as overhead 

messages. 

2.5 Limitation of Current Handover Techniques  

As we have explained in chapter 2, the state of the art presents different techniques addressing 

HO decision making. On the other hand, the existing HO methods do not meet the requirements 

of STA applications, due to the lack of intelligence of current networks, especially considering 

the massive increase in mobile devices and the evolution of applications. Our literature review 

also shows that although there exist many works addressing HO, these contributions are 

proposed with the assumption that the wireless network is small in size implemented in a simple 

scenario with a very limited number of users. However, in the near future, wireless networks 

are expected to become more dense due to the increasing number of mobile devices such as 

laptops, smartphones, tablets as well network providers [3], [45]. Moreover, the variety of 

wireless network technologies such as wireless metropolitan area network (WMAN), WLAN 

and cellular (3G or 4G) makes the network environment a much more complex structure. Note 

also that, according to [46], the delay in the current standard HO process is up to 2 seconds, 

which is not tolerable for applications such as Voice over IP and Video Streaming. 
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Furthermore, Quality of Experience (QoE) recently became a common metric to measure user 

satisfaction [47]. The QoE represents the measurement of network system performance as 

perceived by the user. Therefore, QoE also needs to be considered when designing HO strategy 

in order to reach satisfactory services for the users.  

The HO is, therefore, a challenging task, especially in the case of real-time applications that 

require large amounts of data such as live videos streams. We can summarise the limitations 

of the current HO strategies found in the literature as follows: 

 Lack of QoS and QoE Awareness: Many of the HO approaches found in the literature 

focus on the process of moving the device from one network to the other, while 

neglecting the effect of such process on the service provided to the STA. Such limitation 

results from the lack of awareness of the requirements of the STA as well as the 

limitation of the monitoring process. 

 Complexity and Lack of Flexibility: Although certain existing HO solutions are able 

to capture the performance requirements of the STA, the implementation of these 

solutions often results in high density. Moreover, such approaches, which focus on a 

specific performance metric and a specific wireless technology, cannot be adapted to 

support other performance metrics or work on different wireless technologies.  

 Scalability: Most of the HO solutions found in the literature are distributed where only 

the IEEE 802.11 AP and the STA are involved in the process. Although these 

approaches could provide good performance in small size networks, they do not scale 

well with the size of the network. This is particularly important in the large WLAN that 

we see deployed today in university campuses and public spaces. 

We believe that these limitations could be addressed by introducing centralised and intelligence 

controller into the network that will assist the HO process and add the QoS and QoE 
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requirement. SDN is a promising model for centralised yet scalable management of networking 

resources and operations. Therefore, this intelligent network will be built using the centralised 

SDN concept, where the SDN controller is the central entity that can monitor the performance 

of the Large network and in which the HO algorithms will be implemented.  

2.6 Quality of Experience (QoE) 

QoE in this context can be defined as an overall measurement of the network system 

performance, which depends on the perceived acceptability of service from the user’s point of 

view. For instance, the Mean Opinion Score (MOS) is a QoE metric providing the human user's 

view of the quality of the network [48]. Specifically, the MOS is an arithmetic mean of all the 

individual scores achieved by the result of subjective tests and can range from 1 (worst) to 5 

(best). Herein, the MOS provides a quantitative analysis of the more general form of QoE 

whereas the QoS is the actual bandwidth offered by the network to the user. The meaning of 

each score is illustrated in Table 2-4 in terms of quality and impairment. Specifically, the 

qualities range from Bad, which corresponds to a Very Annoying impairment to Excellent that 

corresponds to an Imperceptible impairment. An extended QoS to QoE mapping will be 

described in Table 6-1. 

Table 2-4: Mean opinion scores and corresponding Qualities, Impairments and Video 

MOS Quality Impairment Video 720p, 24fps 

5 Excellent Imperceptible >9 Mbit/s 

4 Good Perceptible but not annoying 5.8-9 Mbit/s 

3 Fair Slightly annoying 4.5-5.8 Mbit/s 

2 Poor Annoying 3.4-4.5 Mbit/s 

1 Bad Very annoying 3.4 Mbit/s 
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2.7 Summary  

In this chapter, we presented different research works regarding the HO, resource allocation 

and mobility management in both homogeneous and heterogeneous wireless networks. Our 

narrative starts with a background to introduce IEEE 802.11 and the deployment of WLANs. 

Then we explained the techniques in vertical and horizontal HO. Moreover, we explained the 

typical HO phases which are the information gathering phase, decision phase and finally the 

execution phase. Then, we discussed the existing solutions in this area in detail, and finally, we 

explained the limitations of the current existing HO techniques and solutions, and how this 

limitation could be addressed by introducing a centralised intelligence into the network that 

will assist the HO process and add the QoS and QoE. This centralised approach will be based 

on SDN. The following chapter will present existing mobility management approaches in 

distributed and centralised network architectures. Furthermore, we highlight the limitations of 

a distributed network architecture and indicate the need for centralised mobility management. 

Finally, we will introduce the SDN and SDWN concept and we will present our proposed 

architecture based on this approach. 
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 Problem Formulation and Proposed 

Architecture Design 

3.1 Introduction 

As shown in the HO literature review, existing HO solutions exhibit a number of limitations 

that affect the performance of mobile devices and ignore their requirements [22], [23]. These 

issues are caused by a lack of awareness within the wireless network of the performance 

requirement of the users’ devices, the distributed nature of most handover solutions, and their 

density and poor scalability. Therefore, this chapter will discuss existing distributed and 

centralised approaches for mobility management. Subsequently, it will show the limitations of 

distributed architectures that dictate the importance of a centralised network and introduce 

SDWN as a promising model for the centralised approach. 

3.2 Mobility Management and Handover limitations in IEEE 802.11 

Due to the rapid growth of IEEE 802.11 wireless LAN users and their mobility, new concerns 

are emerging related to the high throughput demanded by the end users, the quality of service 

(QoS) and the need for a seamless handover during the movement from one AP to the other 

and load sharing. As a result, it is observed that the ubiquitous delivery of rich internet services 

requires efficient and cost-effective mobility management. The traditional IEEE 802.11 

technology has fundamental limitations which make the wireless infrastructure challenging 

during the period of handling control between multiple APs. The major limitations of 

traditional standards IEEE 802.11 technology are discussed below [49]. 
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3.2.1 Tightly coupled infrastructure 

In the traditional IEEE 802.11 infrastructure, the control layer and the data layer are tightly 

coupled together. 802.11 works on two layers of the OSI model i.e. the data link and physical 

layer. The data is formatted in these layers and controlled in order to conform to 802.11 

standards. As a result, the control of the network and data transformations are integrated 

together in 802.11 networks. This poses a problem during the integration of new services and 

applications in the network. Eventually, it becomes challenging to implement efficient 

handover algorithms for mobile users which are based on the real-time network state. 

3.2.2 Centralised mobility management 

Traditional IEEE 802.11 technology-based APs do not provide support for centralised mobility 

management during the handover process even when proprietary solutions are used. For 

instance, in Cisco centralised network mobility management is provided when users switch 

APs and load balancing is achieved in terms of finding optimised routes between APs which is 

in contrast with the load balancing in users’ handover process.  Additionally, when users move 

from one AP to the other, they go through a process of authentication before using the services 

of new AP. This authentication process for the new AP adds an extra overhead. This overhead 

has less impact when the user is idle. However, during a VoIP call or while using time-

constrained services, the authentication process has several effects such as the user loses the 

connection if the authentication process takes a long time.  

3.2.3 Signal interference among APs 

Areas with a high density of users require multiple APs in order to provide seamless services 

with the perfect connection to the users during mobility. STAs using the IEEE 802.11 standards 
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scan the network and receive a list of available SSIDs. The STAs connect to a particular SSID 

based on the signal strength of that AP which is known as RSSI. However, this causes the 

signals from multiple APs to overlap with each other which results in decreasing the throughput 

due to the loss of data packets. Wi-Fi technology lacks the capability of load sharing and 

develops imbalanced networks. This results in inefficient use of Wi-Fi network resources.  

3.3 Distributed and centralised mobility management approaches 

Currently, two approaches i.e. distributed and centralised are adopted for control and wireless 

network management. The mobility management solutions in flat and decentralised IEEE 

802.11 Wi-Fi technology-based networks are carried out using a mobility anchor. The purpose 

of the mobility anchor is to track the location of the mobile user and tunnel the traffic to a 

predefined Wireless LAN Controller which is specific to that network. When a mobile user 

moves around from one AP to another, the previous traffic route is preserved in order to prevent 

a reconnection delay [50]. The mobility management approach based on mobility anchors has 

some drawbacks. However, the mobility anchor can become a barrier in the case of a large data 

transmission which causes degradation in QoS for the mobile users. Another problem 

encountered by mobility anchor is the single point of failure. If the mobility anchor stops 

functioning or there is a cyber-attack, the service to all the mobile users gets affected. 
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Figure 3-1: Mobility management in PMIPv6 

In distributed networks, two types of mobility management methods are used. One method is 

based on specific protocols such as MIPv4/MIPv6/DSMIPv6/PMIPv6 [51]. In this approach, 

location messages are transferred between the mobility anchor and the mobile users through 

Mobile Access Gateway (MAG) as shown in Figure 3-1. Tunnels are used to provide 

communication services between the mobile user and the mobility anchor. The tunnels work 

as channels to encapsulate all the data traffic and communicate between two nodes in the 

network. During the movement, the mobile user’s previous address is mapped to the new proxy 

address by the new AP. The binding between two addresses which are from home network and 

the new foreign network allows rerouting of the traffic to the mobile user in the new network.  

The other method is based on the HIP, SMIH6, LISP [52] and is also known as the Identifier / 

Locator separation technique.  Mobility management is enabled here by updating the protocol 

stack at the mobile users and the routing tables. This approach utilises two namespaces to 

specify the location and identity of the mobile user i.e. Route Locator (RLOC) and End-point 

Identifier (EID) as shown in Figure 3-2. A database is used to provide a mapping between 
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RLOC and EID. In the first approach of mobility management, mapping is provided between 

the actual IP address while in the second approach the location information is separated from 

the identity and mobility is managed through the location information. The existing distributed 

frameworks and methods developed for mobility management basically separate the location 

and routing to different entities in the network. 

 

Figure 3-2: Location-based mobility management approach 

Due to certain problems, these frameworks which are based on the above methods, i.e.  MIPv4 

or HIP, are still not used in their full extent. For instance, they require the active participation 

of a mobile user during mobility management and add new software, which can affect the 

energy consumption of mobile devices. Another problem is the increase in complexity of the 

handover mechanism. In a distributed network, a delay in the handover can occur due to the 

excess of messages between the mobile devices and the network. Though the IEEE 802.11 Wi-

Fi standard allows the embedding of additional software or optimisation algorithms for 

mobility management, the limitations in the processing capabilities of Access Points and 

information about the network restrict deployment of efficient mobility management 

approaches.  
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On the other hand, the methods based on centralised paradigms are either vendor-specific or 

do not provide full capabilities for network management. The drawbacks of existing 

approaches demand a novel mobility management architecture that allows mobility 

management flexibly and optimally with the assistance of an open programming interface and 

enables network administrators to develop new Radio Resource Management (RRM) solutions 

[53].  

Fortunately, emerging solutions based on SDN provides similar functionalities such as 

programmable routing to traditional wired networks. As such, SDN provides a promising 

approach to solve the problems of mobility management, which separates the control layer 

from the data layer in the network. The control layer provides the functionality to monitor the 

location of mobile devices and update the routing tables directly without exchanging lots of 

messages. Consequently, this could significantly reduce delays in the handover process. 

Another major benefit of SDN based mobility management is that it does not involve the 

mobile devices in HO decision making process, thus reducing the complexity and the 

requirement for new software in every terminal. The proposed approach takes the benefits of 

SDN technology in terms of separation of the control layer and data layer with the centralised 

controller and enables efficient handover during mobility management. The centralised 

controller performs heavy processing of switching users between APs and removes the 

communication overhead burden from the mobile nodes. This provides the benefit to the 

mobile devices in terms of seamless handover, better QoE and long battery life with less power 

consumption.  
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3.4 Software Defined Network and Software Defined Wireless 

Networking 

This section will explore the SDN and SDWN concept along with OpenFlow and the use of 

wireless virtualisation. Additionally, we will explain some current SDN-based mobility 

management techniques in this section. 

3.4.1 Software Defined Networking Model 

Software-Defined Networking (SDN) is a networking paradigm that promotes the separation 

between the control plane and data plane, thus, allowing the centralisation of network 

management into a single entity[54]. As illustrated in Figure 3-3, the SDN controller is able to 

program data plane switches and implement different networking policies using an application 

programming interface, which is often supported by the OpenFlow protocol [55], [56]. 

OpenFlow is considered one of the first SDN standards that define the communication protocol 

in SDN environments that enables the SDN Controller to directly interact with the forwarding 

plane agents. 
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Figure 3-3: General Representation of the SDN Architecture 

SDN exhibits certain features that make it an attractive approach to address the seamless 

mobility challenge, such as reduced network complexity, granular network control and 

improved scalability.  

One of the main features of SDN is its monitoring and measurements functionality. SDN offers 

flexibility and reliability in terms of network monitoring, which is also a key component in the 

HO as part of the information gathering phase [57]. The methods of traditional monitoring and 

measurement are divided into two techniques, Passive and Active. Passive techniques will 

measure the network traffic by observation only, while Active methods measure the traffic by 

injecting additional packets into the network and monitoring their behaviour [19].  In the 

specific case of SDN, the controller receives per-flow monitoring statistics through OpenFlow 

[58], which is a protocol used as an interface between the control plane and data plane. This 



42 

 

allows the SDN controller to have an overall vision of the network and all the flows, which 

makes the monitoring more effective and could help improve the performance of HO in 

wireless networks. 

For example, in [57] the authors propose an extendable and flexible network monitoring 

framework by using a generic RESTFUL API, which gives a higher accuracy of the statistics 

of the network per-flow for seamless HO strategies. Therefore, using OpenFlow will give the 

possibility to monitor and measure all the flows, and increase the controller awareness of each 

flow requirement in terms of QoE or QoS [59]. 

OpenFlow is one of the main protocols used to interface the data plane and control plane. The 

main feature of this protocol is the flexibility of programming the packet forwarding tables, 

allowing programmers to control the flow tables in OpenFlow switches in order to manage the 

network resources. The idea of the OpenFlow switches is to give full responsibility to manage 

the data plane to the controller, while the OpenFlow switches manage the data plane by 

dropping or forwarding packets according to the flow table. Each flow table has a set of actions, 

counters and match fields. The set of actions is responsible for handling the packet flow, while 

the counters are responsible for providing the monitoring and measurement statistics. Finally, 

the match fields are used to match against packet header fields [60]. Table 3-1 illustrates 

OpenFlow match fields. Each OpenFlow switch has a predefined match field compared with 

every received packet [61] in order to take a decision, such as forwarding or dropping the 

packet. There are many types of tools used for OpenFlow based controllers, such as 

OpenDaylight [62], beacon [63], NOX [64] POX [65] and Floodlight [66]. 
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Table 3-1: OpenFlow Match Fields 

Ingress port into 

OpenFlow switch 

Ethernet source 

address 

Ethernet destination 

address 
Ethernet segment type 

VLAN identifier VLAN priority IP source address IP destination address 

IP protocol IP type of service TCP/UDP source port 
TCP/UDP destination port 

3.4.2 Software Defined Wireless Networking (SDWN) 

To date, SDN has been used in many environments, however, it took many years to deploy 

SDN also in a wireless environment. This is because the wireless network environment is more 

challenging than many wired networks due to the dynamicity issue of interference between the 

signals, which requires more control traffic [59]. Moreover, the increasing consumption of data 

is directly proportional to the increase in users and the quality of the application. 

Using SDWN provides the wireless network with more flexibility and ease of use for instance 

in terms of load balancing, STA traffic awareness and handover management. These services 

could be provided by one of the SDWN framework programmable WLANs such as Odin.  Odin 

[67] is an architecture and set of technical instructions based on open industry standards, which 

describes best practices for developing virtualised, converged wireless network.  Odin provides 

virtual machine mobility, automated management of SDWN systems maximising high-

availability, energy efficiency, and scaling of networks to thousands of physical devices 

without over-subscription, which will reduce the capital and operating expense by 15% - 25% 

according to [68]. Furthermore, Odin allows wireless network operators to provide services to 

the users as network applications through the Light Virtual AP (LVAP) abstraction [53]. Figure 

3-4 shows the Odin architecture.  
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Figure 3-4: Odin Architecture 

The Odin architecture involves the following three main elements: a controller, a set of 

applications and multiple agents. The controller is placed on the top of OpenFlow and has a 

global view of the WLAN to manage application flows [67]. The APs and switches will be run 

by Odin agents using the OpenFlow protocol. Those agents could be installed in any supported 

APs or Switches such as Netgear R6100 and TP-Link Archer which is required to design new 

hardware.  Below the Odin elements are defined: 

I. Odin controller: The controller maintains a view of the whole network and enables 

network applications to programmatically orchestrate the underlying physical 

network[69]. It exposes an interface to the application layer through the north-bound API 

that allows applications to programme the controller, for instance, changing HO policy, 

then the controller will interpret the commands to the agents via the south-bound API. 



45 

 

II. Odin Agent: The agent is deployed and run on each AP. It provides an interface between 

the controller and the AP and performs functions, such as monitoring, and reporting 

measurements collected from the AP to the controller every 0.02sec as an interval time. 

III. Application: the applications in Odin could work ether reactively such as with a 

Handover or proactively such as for load-balancing by accessing statistics from different 

layers such as OpenFlow statistic and the statistics collected by the agents. 

Additionally, the author in [70] proposed the Light Virtual AP (LVAP) abstraction for the first 

time. The idea of the LVAP is to establish a continuing connection between flows and APs by 

creating a separate LVAP for each AP using a unique BS SSID. The benefit of using this unique 

SSID is to avoid re-association. Figure 3-5 shows the LVAP concept. 

SDN Controller

LVAP BSSID 2

STA

LVAP BSSID 2

STA STA

 

Figure 3-5: Light Virtual AP 

The author in [64] introduced Network Virtualisation as a technique that allows separating 

traffic flows into separate subspaces to share the network resources. This could also be called 

network slicing. Many slices or subspaces can run on one device. Recently, many SDN works 
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support the slicing concept directly such as FlowVisor [71] and Open Visorx [72]. In [71], the 

controller creates a layer between the data plane element and the control plane in order to have 

multiple controllers on a single shared data plane.  

Finally, the author in [72] has introduced Virtual Network Functions (VNFs). The VNF layer 

is based on building blocks in the VNF architecture. These blocks are a software 

implementation of network functions built on top of SDN. VNF can be connected or combined 

together like building blocks to offer a full-scale network communication service, this is also 

known as service chaining. For example, Virtualized Firewall Function for IP and Virtual 

Router. 

3.4.3 Existing SDN Techniques 

In the previous sections, the concepts of SDN and SDWN have been presented. In this section, 

we summarise five studies, which we believe are the most related to our proposed architecture. 

Specifically, these studies cover the use of SDWN in terms of network radio management, QoS 

awareness, QoE awareness, traffic management, data-aggregation and load balancing. In [73] 

the authors propose a framework in order to offer fair resources sharing. The idea is based on 

dividing the service into two classes, one for low data rate Stations (STAs) and the second for 

high data rate STAs. These classes were divided by using a slicing concept, with two OpenFlow 

switches connected through an SDN controller. The Slicing decision is based on latency, BW 

requirement and location. Simulation results show the proposed solution has the best result in 

terms of delay. However, this approach has a lack of user awareness and preferences, which 

has made this approach valid in specific simple scenarios only. 

Similarly, work is presented in [74] where the author considers the QoE as a requirement, using 

specific flow parameters (Jitter, packet loss rate, and link BW). They propose a dynamic 
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monitoring strategy so that the controller can manage to reassign a new IP address to the nodes 

once any problem is deduced’ through the performance. This solution is promising the users a 

high QoE, but this solution relies on adaptive streaming which makes it difficult to measure 

the QoE, and that introduces a delay in the decisions making.   

The author in [75] proposes flexible traffic management between providers’ service and STAs. 

In addition, the author discusses the scalability in his proposal based on supporting multiple 

parallel sessions through a single OpenFlow gateway.  The author was focusing only on the 

last mile connection between the providers and the gateway, deliberating the large-size network 

in regard to supporting multiple concurrent sessions through a single way. The only limitations 

in his proposal were that he didn’t consider home networks and end-users as well, which can 

bring further flexibility performance. Thus, more work needs to be done at the end-users and 

home network. 

In [76] the author proposes an architecture that extends the SDN and OpenFlow functionality, 

in order to support APs and STAs in a wireless network environment. In detail, the author adds 

some new commands, rules and actions in order to support resource allocation efficiency and 

a flexible routing scheme in mesh network. In his work he proposes a mesh router that consists 

of multiple virtual interfaces with a unique SSID to support OpenFlow data.  Nonetheless, his 

solution was causing a delay through the HO process. 

An architecture for load balancing based on SDN has been proposed in [77], using an 

OpenFlow switch and a centralised controller to allow real-time monitoring. Once the QoS of 

individual STAs starts degrading due to overburden at the APs, the monitoring tool will inform 

the controller, and the controller will relocate the STAs according to the available BW and the 

capacity of the APs. This solution was based on the available BW only and does not take into 

account other parameters such as delay or latency, and that results in a poor performance on 
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the congested network. Table 3-2 summaries the existing architectures and compares them with 

other state-of-the-art methods in terms of OpenFlow, virtualisation and STAs awareness. 

Table 3-2: SDN comparison 

Architecture Advantage Enable 

Open 

Flow 

Virtualis

ation 

STA 

involve

ment 

Disadvantage 

Optimal Slice 

[73]  

Slicing strategy 

based on the STAs 

requirement 

Yes YES No End users not 

considered (QoE)  

QoE-aware 

[74] 

QoE aware SDN-

based video 

streaming protocol 

No No No complex algorithm 

which is causing 

delay in the 

decision  

Traffic 

management 

[75]  

Supporting 

multiple parallel 

sessions in 

Scalability network 

Yes No No uncompleted work 

at the end user and 

home network 

SDWN [76] flexible routing and 

data-aggregation,  

Yes No Yes HO Delay 

OpenFlow 

Load [77] 

Network 

management and 

load balancing 

Yes Yes Yes Poor performance 

on the congested 

network 

The existing proposed architectures in the literature based on SDN provide promising 

performance. However, they are most suitable for specific scenarios. For instance, some of the 

architectures provide flexible traffic management only in the last mile connection and do not 

consider the access network. Other solutions focus on the load balancing for real-time 

monitoring between controller and OpenFlow switch. The load balancing is performed by 

relocating STAs to APs by observing the available BW only while not taking other parameters 

such as latency and jitter into the consideration which causes lack of QoS awareness. Therefore, 

it is essential to propose a solution that overcomes the limitations of existing architectures and 

assists in HO process and adds QoS and QoE requirements. This can be achieved by 
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introducing intelligence in the centralised and scalable management of SDN networks, which 

is described in detail in the following sections.  

3.5 Proposed Architecture Design  

In this section, we present the design of the proposed SDWN architecture that will support our 

QoS and QoE-aware HO algorithms. The SDWN offers an extension of SDN to support 

flexible, fast and scalable management of the WLAN network. This architecture will enable 

the programmability to manage the data plan and HOs in unlicensed frequency. Specifically, a 

controller is considered for a WLAN network using the SDWN concept. Figure 3-6 shows the 

proposed architecture, including the controller, called the HO Management controller in the 

context of this project, and which implements HO algorithms based on FLCT.  

The controller manages all the APs, thus facilitating the execution of the HO.  Moreover, the 

centralised nature of SDWN enables the controller to obtain a global view of the network 

through monitoring and measurements, which will support the HO process. 

3.5.1 The Control Layer  

This layer consists of the controller, which is responsible for translating the application layer 

commands to the Infrastructure layer and also includes the monitoring manager, the 

Information Central Base (ICB) and HO manager. The main role of the monitoring manager is 

providing real-time monitoring to collect data from the managed APs and STAs such as 

bandwidth, Signal-to-Interference-plus-Noise Ratio (SINR), delay, and jitter. The ICB is 

responsible for storing the information collected by the monitoring tool. The HO manager uses 

such data to assist the wireless devices in the HO process, allowing them to always connect to 

the most suitable AP based on our algorithm. The monitoring information is sent to the 

application layer from the controller through the north-bound interface.  
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Figure 3-6: SDWN Architecture for QoE-Aware HO 

3.5.2 Application Layer 

This layer consists of all the applications built on the top of the SDWN. Such applications have 

the ability to access both lower layers (Control layer and Infrastructure layer) in order to 

manage the whole network functionalities. With the help of the information gathered through 

the controller, the applications abstract the network view and assist in the decision-making 

process. The proposed Handover algorithms are one example of these applications including 

the QoE Oriented Handover Algorithm, which is illustrated in chapter 4, the Optimised 

Handover Algorithm, which is illustrated in chapter 5, and finally, the priorities Based 

Handover Algorithm which is illustrated in chapter 6.  
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3.5.3 Infrastructure Layer 

This layer consists of all the data plane elements such as APs, switches and STAs, and ruled 

by the controller to respond to orders such as the forwarding of packets, HO management, and 

wireless parameter tuning. Moreover, it provides control with live monitoring by constantly 

gathering network status. The infrastructure layer enables data forwarding and processing 

functionalities in the network such as processing of data paths. This is a physical layer which 

is monitored by the SDN controller through virtualisation. 

3.5.4 North-bound API 

A North-bound API is an application program interface that allows the components of the 

network to interact and communicate with a higher-level component through the controller. It 

defines the upward flow and is drawn at the top of the layer or component. The North-bound 

interface is regarded as output-oriented and often implemented in telecommunication and 

large-scale networks. The North-bound interface mostly uses protocols and languages such as 

Simple Network Management Protocol (SNMP) and Transaction Language 1 (TL1). The 

interface also provides support for higher level network management named as Operational 

Support System (OSS) by forwarding information related to alarm, performance, inventory, 

provisioning, configuration and security.  

3.5.5 South-bound API 

In contrast, a South-bound API allows the controller to interact and communicate with low-

level components in the network. It has a direct connection with the lower component’s North-

bound interface. In the SDN paradigm, the South-bound interface enables communication 

between a controller, switches and the routers. So, the advantage of the South-bound interface 
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is that it provides effective control over the network. The South-bound interface enables routers 

to send requests relayed from the North-bound interface and learn about the network topology. 

In this way, the SDN can modify network configurations according to the real-time 

requirements. OpenFlow and Cisco’s OpenFlex interfaces are well-known examples of a 

South-bound interface.  

3.5.6 Information Central Base 

The Information Central Base (ICB) represents a central database which stores the information 

collected by the HO controller related to the network performance and user requirements. The 

main role of the ICB is to keep track of active flows that are currently connected to the network. 

In more detail, the ICB stores all the requirements in terms of QoS and the link capacity in 

terms of the available bit rate for the flows within the network [78]. 

3.5.7 Fuzzy Logic Control Theory 

The Fuzzy Logic Control Theory (FLCT) is a functionality implemented in the application 

layer, which represents the main component of the HO strategy. This functionality is explained 

in detail in section 2.4.2.5 and we have implemented it in our approach for following reasons: 

1) it has the capability of combining different attributes with multiple criteria and 2) it can 

handle imprecise data. FLCT consists of the membership function, membership degrees, and 

Fuzzy Handover Decision (FHOD). All these elements and their roles in the algorithms are 

described in the rest of this section. 

First, the FLCT receives the real-time measurements as a set of parameters from the controller 

called membership values, which are the crisp values of bandwidth, Delay, Jitter and SINR. 

These values will be mapped between 0.0 (i.e., completely false) and 1.0 (i.e., completely true) 
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[39] in order to compute the so-called membership function for each parameter. Hence, it 

represents a set of values included between 0 and 1, which corresponds to a certain membership 

value. The membership functions of all the membership values represent the membership 

degree for a particular AP. While the FHOD represents a score used for each AP during the 

decision making and achieved through the membership degrees.  All the details on the inclusion 

of these components in our FLCT-based algorithms will be provided in chapter 4. 

3.6 HO Algorithm 

The algorithm takes into account this set of parameters in order to enhance the overall QoE and 

QoS performance. All the STAs will be connected to the network and the controller will 

monitor the status of STAs and APs. Figure 3-7 shows the interaction of the FLCT algorithm 

with STAs and the Information Central Base. 
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HO Algorithms
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Trigger Info 
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Collected data

HO requestSelected AP
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Figure 3-7: Interaction of FLCT algorithm with STAs and information central base 
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Figure 3-8 illustrates the messages exchanged among the entities included in the proposed 

architecture. The STAs will keep the system aware of the current status of their connection by 

measuring the experienced values of QoE and QoS, and send them periodically to the AP they 

are connected to (i.e., Current AP in the figure). 

 This Current AP will send updated information to the controller regarding 1) the 

status of the STAs and 2) the information related to its current status, such as available 

bandwidth and number of connected STAs. 

 The controller will evaluate the current state of the AP and if it meets the STA 

requirements or not. Specifically, if the current AP does not meet the requirements 

checked in the ICB, the controller will implement the FLCT rules, which will be 

explained in the next subsection, to select the optimal AP. 

 The controller will send the decision through the handover acknowledge switch 

message illustrated in Figure 3-8 to the currently attached AP and the new APs called 

Target APs.  

 The Current AP will send an acknowledge switch beacon to the STA and an HO 

confirmation message. 

 The STA will send an association request to the targeted AP, which will repeat with 

an acceptance message as an HO confirmation. 
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Figure 3-8: Signalling messages exchanged for the proposed Handover 

3.7 Methodology 

Based on our literature review and analysis, the proposed research methodology is based on 

the iterative and incremental approach illustrated in Figure 3-9 which divides the work into the 

7 sections defined below: 

 Background and state of the art: We have presented a review of the IEEE 802.11 

standard evolution, SDN, its wireless version SDWN and all related technologies. 

Additionally, a survey of various approaches on the HOs mechanisms. 

 Analysis of the research problem and Identification: In this section we summarised the 

problems and the limitations of the existing works. 
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 Initial proposal: In this section, we stated the novel contributions which will enhance 

HO processes. 

 Designing network architecture: In this section we proposed the design of the 

networking architecture based on the proposed approach including the implementation 

of the algorithms. 

 Analytic modelling and implementation: This section represents the implementation of 

the work and the analytical simulation results. 

 Result validation: The collected results will be validated at this stage, which will also 

present feedback for necessary modification. 

 Improve the proposed work: In this section the feedback from the validation results will 

be taken in order to enhance the performance by adding modification in order to 

improve the proposed work. 

1. Background and state of the art

2. Analysing research problem and 
Identification

3. Initial  proposal

4. Designing network architecture 

5. Analytic modelling and 
implementation

6.Result validation

7.Modification to 
improve the 

proposed work 

 

Figure 3-9: The proposed methodology 
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3.8 Summary 

In this chapter, we have explained the limitations of mobility management in IEEE 802.11 

along with current distributed and centralised network approaches, moreover, we have 

explained the need for a centralised network, and introduced SDN and SDWN as a promising 

model for the centralised approach. Background information of SDN and SDWN has been 

explained in the chapter, moreover, we have reviewed many studies and solutions based on 

SDN and SDWN. Also, in this chapter, we presented the proposed SDWN architecture that 

will support our QoS and QoE-aware HO algorithms. Finally, we introduced the proposed HO 

Algorithm based on FLCT. In the following chapter, we present the Quality of Experience 

Oriented Handover Algorithm. 
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   Quality of Experience Oriented 

Handover Algorithm 

4.1 Introduction  

This chapter presents our approach for a Quality of Experience Oriented Handover Algorithm 

in Wi-Fi environments. Existing HO methods do not meet the requirements of modern 

applications for mobile nodes due to the lack of awareness of the Quality of Service (QoS) and 

Quality of Experience (QoE) requirements of mobile users. Based on our proposed architecture 

in chapter 3, we introduce a Quality of Experience Oriented Handover Algorithm, which 

utilises Fuzzy Logic Control Theory (FLCT) at the application layer. This solution is based on 

the SDWN concept, where the Wi-Fi network is centrally controlled and the wireless Access 

Points (APs) are programmable. The proposed HO algorithm will assist wireless users to find 

the AP that can best support the application in terms of its QoS and QoE requirements and the 

use of FLCT provides promising performance results when compared to the 802.11 standards 

and another approach proposed in the literature. 

4.2  Handover Strategy based on FLCT 

In order to model the HO problem as FLCT, we need to first define the set of input parameters 

to be included. Specifically, the membership values considered in our HO strategy are SINR, 

bandwidth, jitter, and delay. As we will explain in subsection 4.3.2, a proper combination of 

these metrics will allow us to respect the use of QoE requirements during an HO.      
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4.2.1  FLCT Membership Functions 

The first step toward the execution of the proposed FLCT-based HO strategy is the conversion 

of the membership values from their original format to the membership function. These 

conversions are explained in the rest of this subsection [79].  

 Membership Function for SINR: is denoted 𝜇1, and calculated according to the following 

steps. First, the controller monitors and captures the 𝑆𝐼𝑁𝑅 values obtained by an STA 

through the following equation: 

𝑆𝐼𝑁𝑅 = ϒ/(𝐼 + 𝑁𝑜) 4-1 

Here ϒ is the total amount of received signal power, 𝐼 is the interference from other devices, 

and 𝑁𝑜 is the total white noise.  

Then, the membership function for 𝑆𝐼𝑁𝑅 is computed as below:  

 𝜇1(x) = {

0                           0 ≤ 𝑥 ≤ 𝑆𝑅𝑡ℎ

 
𝑆𝑅𝑥 − 𝑆𝑅𝑡ℎ

𝑆𝑅𝑚𝑎𝑥 − 𝑆𝑅𝑡ℎ
      𝑆𝑅𝑥 > 𝑆𝑅𝑡ℎ

 

4-2 

 

Here 𝑆𝑅𝑥 represents the function of the 𝑆𝐼𝑁𝑅𝑥 at the AP, 𝑆𝑅𝑡ℎ  denotes the threshold of the 

𝑆𝐼𝑁𝑅 level to be selected in each simulation, and 𝑆𝑅𝑚𝑎𝑥  denotes the maximum 𝑆𝐼𝑁𝑅 level 

that can be obtained by an STA.  𝜇1(x) for a certain selected 𝑆𝑅𝑡ℎ is shown in Figure 4-1. 

 

Figure 4-1: The membership function  𝜇1 

 Membership Function for Bandwidth:  is called  𝜇2, and is computed as follows: 
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 𝜇2(x) = {

𝐵(𝑥)

𝐵𝑚𝑎𝑥
         0 ≤ 𝑥 ≤ 𝐵𝑚𝑎𝑥

0                     𝐵(𝑥) > 𝐵𝑚𝑎𝑥

 4-3 

Here 𝐵(𝑥) is the function of the amount of unused bandwidth, x, at the AP, and 𝐵𝑚𝑎𝑥 denotes 

the maximum amount of bandwidth that the AP can provide. Figure 4-2 illustrates  𝜇2(x).   

 

Figure 4-2: The membership function  𝜇2 

 Membership Function for Jitter:  is called 𝜇3 and denotes the function of the actual Jitter 

x at the AP. The membership function of the jitter is computed as follows: 

 𝜇3(𝑥) = {
 1 − 

𝐽(𝑥)

𝐽𝑡ℎ
                 0 ≤ 𝑥 ≤ 𝐽𝑡ℎ

0                     𝐽(𝑥) > 𝐽𝑡ℎ

 4-4 

Here 𝐽(𝑥) represents the function of the Jitter, and 𝐽𝑡ℎ  is the threshold of the jitter to be selected 

in each scenario. An example of the membership function for the jitter for a certain value of 𝐽𝑡ℎ  

is shown in Figure 4-3.  

 

Figure 4-3: The membership function  𝜇3 
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 Membership Function for Delay: is called 𝜇4 and is the function of the actual delay x at 

the AP. The membership function of the delay is defined as follows: 

 𝜇4(𝑥) = {
 1 − 

𝐷(𝑥)

𝐷𝑡ℎ
       0 ≤ 𝑥 ≤ 𝐷𝑡ℎ

0                    𝐷(𝑥) > 𝐷𝑡ℎ

 4-5 

Here 𝐷(𝑥) represents the function of the Delay x and 𝐷𝑡ℎ is the threshold to be chosen in each 

case. An example of the membership function for the Delay and for a certain value of 𝐷𝑡ℎ is 

shown in Figure 4-4.  

 

Figure 4-4: The membership function  𝜇4 

4.2.2 FLCT Membership Degrees and FHOD 

After the computation of the membership functions, we can calculate the membership degree. 

First, we consider n candidate APs for the HO execution and then we can define the 

membership degrees for all the APs illustrated in Table 4-1.  

Table 4-1: Membership for all APs 

 AP 1 AP 2 …… AP n 

SINR  𝜇1,1 (x)  𝜇1,2 (x) ……  𝜇1,n (x) 

BW  𝜇2,1 (x)  𝜇2,2 (x) ……  𝜇2,n (x) 

Jitter  𝜇3,1 (x)  𝜇3,2 (x) ……  𝜇3,n (x) 

Delay  𝜇4,1(x)  𝜇4,2 (x) ……  𝜇4,n (x) 
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As such, element 𝑢𝑘 illustrated in equation (4-6) includes all the membership functions for the 

generic 𝐴𝑃𝑘 (1 ≤ k ≤ n), that will form the basis in calculating the value of the membership 

degree for𝐴𝑃𝑘. 

𝑢𝑘  =  

[
 
 
 
 
µ1,𝑘(𝑥)

µ2,𝑘(𝑥)

µ3,𝑘(𝑥)

µ4,𝑘(𝑥)]
 
 
 
 

   (4-6) 

Let us now define the weight vector W for the membership functions related to  𝐴𝑃𝑘 represented 

by the following equation:  

𝑊 = (𝑊1, 𝑊2, 𝑊3, 𝑊4) (4-7) 

Vector W can be rewritten as follows:  

𝑊 = (𝑤1, 𝑤2, 𝑤3, 𝑤4) = [
𝜎1

∑ 𝜎𝑖  
4
𝑖=1

,
𝜎2

∑ 𝜎𝑖  
4
𝑖=1

,
𝜎3

∑ 𝜎𝑖   
4
𝑖=1

,
𝜎4

∑ 𝜎𝑖   
4
𝑖=1

] (4-8) 

Where 𝜎𝑖 denotes the standard deviation of the membership function of parameter value i, 

which is defined through the following equation:  

𝜎𝑖 = √ 
1

𝑛 − 1
 ∑[µ𝑖,𝑘 (𝑥) − 

1

𝑛
 ∑ µ𝑖,𝑘  (𝑥)]2  

𝑛

𝑘=1

 

𝑛

𝑘=1

 (4-9) 

By using equations (4-6) and (4-7), we can define the FHOD for 𝐴𝑃𝑘 as below:  

𝐹𝑘(𝑥) = 𝑊𝑢𝑘 (4-10) 

This equation can also be rewritten as follows: 

𝐹𝑘 (𝑥) =  𝑤1µ1,𝑘  (𝑥) + 𝑤2µ2,𝑘 (𝑥) + 𝑤3µ3,𝑘  (𝑥) + 𝑤4µ4,𝑘 (𝑥)  (4-11) 
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Now we can define 𝑈 as the membership degree matrix for the 𝑛 APs denoted as follows: 

 𝑈 =  

[
 
 
 
 
µ1,1(𝑥) µ1,2(𝑥) … µ1,𝑛(𝑥)

µ2,1(x) µ2,2(x) … µ2,n(x)

µ3,1(x) µ3,2(x) … µ3,n(x)

µ4,1(x) µ4,1(x) … µ4,1(x)]
 
 
 
 

  (4-12) 

Finally, from equations (4-7)-(4-12), we can obtain the following equation, which will allow 

us to define the FHOD values for each of the 𝑛 APs:  

𝐹 = 𝑊𝑈  (4-13) 

4.2.3 HO Algorithm based on FLCT 

The FHOD values defined by eq. (4-13) will be considered to evaluate each AP during the 

execution of the FLCT-based algorithm. During the decision-making phase, the HO algorithm 

is executed by the controller to assign the best 𝐴𝑃𝑘 (1 ≤ k ≤ n) for a certain STA only if it can 

satisfy the following two conditions:  

𝐹𝑘(𝑥) = max{𝐹1(𝑥), 𝐹2(𝑥),…  𝐹𝑛(𝑥)}  

𝐹𝑘 (𝑥)– 𝐹𝑗(𝑥) ≥  𝐹𝑇𝐻 

(a) 

(b) 

(4-14) 

where, 𝐹𝑗(𝑥) = 𝑀𝑎𝑥𝐹1(𝑥), 𝐹2(𝑥),…𝐹𝑘 − 1(𝑥),𝐹𝑘 + 1(𝑥),… . , 𝐹𝑛(𝑥). In detail, condition 

(a) is obtained by eq. (4-11), where the controller will select the highest value from the AP’s 

candidate rank. Additionally, condition (b) will help to choose a candidate AP which is ≥ FTH   

that is considered as a threshold for the FHOD. In our solution, FTH is defined to guarantee a 

minimum value of Mean Opinion Score (MOS), indicated as MOSTH (MOS threshold) and 

which will be defined based on the use case. The MOS is a metric usually considered as a tool 

to define the QoE and that provides the human user's view of the quality of the network [18]. 

Specifically, the MOS is an arithmetic mean of all the individual scores achieved by the result 
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of subjective tests and can range from 1 to 5 which was illustrated previously in Table 2-4. The 

FHOD is evaluated using the MOS scores which will depend on our pre-defended rules as 

shown in Table 4-2. For instance, in the case when all the parameters scores high (H), the MOS 

will be considered as (H), when all the parameters scores medium (M) the MOS will be 

considered as (M), and when all parameters scores Low (L) the MOS will be considered (L). 

The rest of the mixed conditions are illustrated in the table below.  

Table 4-2: QoE Rules 

Rules 

Number 

Jitter BW Delay  SINR MOS 

1  H  H  H  H  H  

2  H  L  H  L  L  

3  L  H  L  H  H  

4  L  L  L  L  L  

5  M  L  M  H  H  

6  M  H  M  L  L  

7  L  M  H  M  M  

8  H  M  L  M  M  

9  M  M  M  M  M  

Focusing now on the algorithm implemented in the proposed architecture, each time that a 

generic STA m connected to the network experiences a MOS lower than MOSTH due to another 

STA connecting to the same AP, the network triggers the algorithm. Hence, the HO 

management controller executes the FLCT-based algorithm to assign STA m to the AP 

satisfying conditions (a) and (b). Specifically, when the HO algorithm is triggered, the HO 

management controller computes the FHOD values by using equations (4-6)-(4-13) in the 

FLCT and for the set of candidate APs available for STA m retrieved from the ICB. Afterwards, 

the HO management controller will choose the best AP, i.e., the AP satisfying conditions (a) 

and (b). 
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4.3 Performance Evaluation 

In this section, we illustrate the implementation of the proposed HO in the SDWN architecture 

in two scenarios. In the first scenario, we have used a simple wireless network, consisting of 

two APs and 5 STAs. The aim of this experiment is the validation of the algorithm.  In the 

second scenario, we considered a more complex environment consisting of 4 APs and 25 STAs. 

This validates the algorithm in a dense scenario and moreover, includes a comparison against 

a solution found in the state of the art [80]. In general, the implementation of both scenarios is 

divided into the following three processes: 

1. Monitoring and information gathering process. This module gathers all the information 

requirements from the STAs and APs that will allow it to compute the membership values 

(bandwidth, SINR, delay and jitter). Note that all this information will be stored in the ICB 

and updated every time a new STA joins the network.  

2. Weight vector and membership degree process. Every time the execution of the HO is 

triggered for a connection of a new STA, the controller will determine an FHOD value for 

each candidate AP by calculating the weight vector and membership degree for all the 

membership values according to equations (4-6)-(4-13).   

3. Fuzzy Decision-Best Selection process. This module executes the HO using FLCT which 

selects the AP that guarantees the conditions dictated by equations (4-14). 

4.3.1 Evaluation of the FLCT-based HO in a simple wireless network. 

The proposed SDWN-based architecture, which implements the FLCT-based HO, has been 

designed and assessed using OPNET, according to the scenario described in Figure 4-5, we 

consider a WLAN consisting of two APs managed by an SDWN controller and five STAs that 

need an AP allocation.  
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Figure 4-5: Simulated Simple Scenario-based on the SDWN 

The WLAN simulated in this scenario is based on IEEE 802.11g which offers a maximum 

bandwidth of 54Mbps as a standard. However, in order to demonstrate the effectiveness of the 

proposed algorithm, we assume that the network is also serving other devices and that the 

capacity available to the STAs is limited to 1Mbps, in order to demonstrate and evaluate the 

algorithm performance in the congested network. We assume that STAs are running Voice over 

IP (VoIP) applications which have the traffic characteristics in Table 4-3. 

Table 4-3: Traffic Characteristics 

Characteristic Value 

VoIP encoder G711 

Voice frames per Packet 1 

Type of service Best Effort (0) 

Bit rate (kbps) 64 

Voice Frames per Packet 1 
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As illustrated in Figure 4-5, in the simulated scenario, STA1 is located in an area of overlap 

between the two APs. STA1 is initially associated with AP1 together with other STAs (i.e. 

STA2, STA3 and STA4 in the Figure). During the simulation, and after approximately 100 

seconds, STA1 establishes a VoIP call and, then after 5 minutes STA2, STA3 and STA4 also 

establish a VoIP call via the same AP. The value of MOSTH for this experiment is set to 3.1. 

We have chosen 3.1 MOS to guarantee the minimum requirements for the fair/slightly 

annoying service which is described previously in Table 2-4. For instance, when the service 

decreased below the 3.1 MOS, the user will experience bed connection due to the high jitter, 

dropped packets or the delay. Therefore the minimum requirements in our simulation is 3.1 

MOS. During the first 5 minutes, therefore, STA1 maintains its connection with AP1, as it 

experiences MOS greater than MOSTH. However, once nodes STA2, STA3, and STA4 start 

establishing VoIP connections, STA1 experiences a decrease of its MOS to a value below the 

threshold. Therefore, the controller executes the FLCT-based algorithm to discover a better 

service from a neighbouring AP, in this case, AP2. Through the information received by the 

STAs and the data stored in the ICB, the controller will execute the FLCT-based algorithm 

described in the previous sections, connecting STA1 to AP2 based on the results achieved 

(4-14) through Eq.(4-15). 
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Figure 4-6: STA1 traffic as a function of time 

 

Figure 4-7: STA1 MOS value as a function of time 

Figure 4-6 and Figure 4-7 present the performance results of STA1 in terms of received traffic 

(i.e., packets received per second) and MOS as functions of the simulation time. Both figures 

show the temporal evolution of the performance results during 15 minutes. In order to 

demonstrate the effectiveness of the algorithm, we compare it with IEEE standard 802.11g 

which is represented by the orange line in the figure. The IEEE standard 802.11g depends on 

the RSS only, while our proposed solutions depend on QoE, which is represented by the four 
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parameters SINR, Delay, BW and Jitter. For instance, the QoE value will depend on the 

variation of the four parameters values as we have explained it in Table 4-2 previously. These 

results demonstrate the improvement achieved in terms of received traffic and MOS for STA1 

through the proposed algorithm and how it overcomes the IEEE standard in a simple network 

scenario. In the next section, we will demonstrate the proposed solution in a more complex 

scenario.  

4.3.2 Evaluation of the FLCT-based HO in a complex wireless network 

Another experiment has been done to the proposed SDWN-based architecture in order to 

demonstrate the performance of the algorithm for the overall network. In this scenario, we 

implemented a complex wireless network which includes 4 APs and 25 STAs running two 

different types of applications during 15 minutes. In total, 12 STAs will run VoIP while 13 

STA will run Video. As is described in Figure 4-8, we considered a WLAN consisting of 4 

APs managed by the HO management controller and 25 STAs that need an AP allocation. 

Through the simulation, 2 STAs (1-1 and 1-19) are located in the overlapped area. After 100 

seconds, those STAs establish a VoIP call and video conferencing application, then after 

approximately 4 minutes the rest of the STAs establish a VoIP call and video conferencing 

application. The value of MOSTH for this experiment is set to 3.1. As we have stated above, we 

simulated only 25 SATs to demonstrate the proposed algorithm. In order to trigger the HO 

algorithm, we assume that each AP capacity is limited to 2Mbps. In that case, the 25 users will 

cause a congested network (bottleneck) where the controller will be able to activate the HO 

algorithm and reallocate the users to the best possible service. 
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Figure 4-8: Simulated Scenario based on the SDWN 

We assume two different types of applications running in the STAs, Voice over IP (VoIP) and 

Video Streaming, which have the traffic characteristics in terms of codec, bit rate, resolution, 

and corresponding achievable MOSs illustrated in Table 4-4. 

Table 4-4: Traffic Characteristics 

Application codec Bitrate 

(kbps) 

Resolution 

(pixels) 

MOS 

VoIP G7.11 64 ---------- 4.0 

Video H.264 438 525*384 4.0 

As illustrated in Figure 4-8, STA1 and STA19 are located in areas of overlap among APs and 

are initially associated with AP1 and AP4, respectively. During the simulation, after 

approximately 100 seconds, STA1 and STA19 both establish a VoIP call and then, after 5 
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minutes, the rest of the STAs connected to the same APs as STA1 and STA19 and establish 

VoIP calls and Video streaming applications. As will be explained in the next subsection, these 

new session establishments will trigger the proposed algorithm. In order not to downgrade the 

MOS below a fair value, we have chosen MOSTH in condition (b) equal to 3.1, which 

corresponds approximately to 39.68 kbps in terms of VoIP and to 271.5 kbps in terms of video. 

Moreover, to benchmark the performance of our proposed HO algorithm, we compare it against 

the following reference strategies: 1) a case in which an HO is not executed at all as foreseen 

in the 802.11 standards; and 2) the HO algorithm proposed in [81], which fairly distributes the 

STAs in the network based on the AP load and RSSI, and is called Load-RSSI-based in the 

next section. 

4.3.3 Performance Results 

During the first 5 minutes, STA1 and STA19 maintain their connection with their current APs 

experiencing a MOS greater than MOSTH. After the rest of the nodes start establishing VoIP 

and video streaming connections in AP1 and AP4, STA1 and STA19 start experiencing a 

decrease of their MOSs until they reach a value below the threshold. Therefore, the controller 

executes the FLCT-based algorithm to discover and assign a better AP, in this case, AP2 for 

STA1 and AP3 for STA19.  

Figure 4-9 presents the performance results of our algorithm against the state of the art for 

STA1 and STA19 in terms of their average throughput (i.e., bits received per second), and 

Figure 4-10 presents MOS as functions of the simulation time. Both figures show the temporal 

evolution of the performance results during 10 minutes. These results demonstrate the 

improvements achieved in terms of throughput and MOS for STA1 and STA19 through the 

proposed algorithm.  
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Specifically, from Figure 4-9, we can observe that our algorithm outperforms the 802.11-based 

strategy (called standard here), and the Load-RSSI-based solution in terms of throughput. For 

instance, at the end of the simulation, the average throughput experienced by both STA1 and 

STA19 is around 40Kbits for our algorithm, while it is around 32Kbits and 27Kbits for the 

Load-RSSI based and 802.11-based solution, respectively. Additionally, from Figure 4-10 we 

can observe that our proposed approach outperforms the 802.11-based and the Load-RSSI 

based solutions also in terms of MOS.  For instance, at the end of the simulation, the MOS is 

2.5 for our algorithm, while it is 1.5 for the Load-RSSI-based solution and 1 for the 802.11-

based one. 

Finally, the result of the accumulated throughput experienced by all the STAs connected to the 

network is presented in Figure 4-11. This figure shows a gain of approximately 17% and 8% 

in terms of the accumulated throughput for the overall network achieved by applying our 

algorithm compared to the 802.11-based and the Load-RSSI-based solution, respectively. The 

gain was a result of our proposed algorithm that is able to identify STAs below the threshold 

and relocate them to the best candidate AP.  

 

Figure 4-9: STA1 and STA19 traffic received as a function of time 
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Figure 4-10: STA1 and STA19 MOS value as a function of time 

 

 

Figure 4-11: Accumulated throughput experienced by all the STAs 

4.3.4 Limitation of the QoE-Oriented Approach 

The proposed approach provides good performance in terms of QoS and QoE in a small-scale 

network which is not highly dense. However, in large scale networks due to increased density, 

it is observed that the nodes start disconnecting and reconnecting in a short period of time 
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causing a ping-pong effect which we explained early in section (2.4.2.1). The ping-pong effect 

degrades the performance and reduces the QoS and QoE received by the end STAs because it 

costs lots of unnecessary overhead messages. Therefore, in the following chapter, we propose 

an improved HO algorithm which reduces the ping-pong effect by using Adaptive Hysteresis 

Values (AHV). 

4.4 Summary 

In this chapter, we presented a Quality of Experience Oriented Handover Algorithm for Wi-Fi 

environments, which supports seamless HO considering the user’s QoS and QoE requirements. 

The proposed solution implements an algorithm at the application layer based on Fuzzy Logic 

Control Theory (FLCT) that considers the QoE of the users in order to ensure the best AP 

connection. Moreover, an assessment has been done compared to the existing 802.11 standard 

and another approach presented in the literature in order to highlight the effectiveness of the 

proposed algorithm in terms of throughput. For instance, our simulation campaign has 

successfully demonstrated that the proposed FLCT-based HO algorithm improves on the 

standard by a gain of 17% and the other algorithm by a gain of 8%. However, though the FLCT 

algorithm provides better performance, we observed this algorithm does not scale well to larger 

networks. Consequently, the high density of APs and STAs causes redundant or ping-pong HO. 

Therefore, in the following chapter, we propose an Optimised handover algorithm for dense 

WLANs which utilises Adaptive Hysteresis values with FLCT to reduce redundancy and ping-

pong HO effect. 
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 Optimised Handover Algorithm for 

Dense WLAN Environments 

5.1 Introduction 

This chapter presents an Optimised Handover Algorithm for Dense WLAN Environments 

which improves the previous version based on FLCT and is designed to be effective in large 

network environments with a high density of APs and STAs, which increases the chances of 

the Ping-Pong HO effect.  

We, therefore, extend the proposed SDWN architecture with an optimised handover algorithm 

that considers QoE and QoS by applying an optimised HO algorithm for Wi-Fi networks based 

on Fuzzy Logic Control Theory (FLCT) and Adaptive Hysteresis values (AHV). Through 

SDWN, networks are monitored and controlled centrally and the virtual Access Points (APs) 

are programmable. The proposed HO algorithm solution will guarantee the best possible 

connectivity to the users in terms of their QoE and QoS requirements. The use of FLCT, which 

in our solution includes QoS, QoE and AHV dynamic values in the HO algorithm, shows 

promising performance results by selecting the best candidate AP, reducing the redundant HO, 

and reduces the messaging overhead. 

5.2  Enormously Dense Wireless Networks 

High-density wireless networks are areas that provide service to hundreds or even thousands 

of wireless devices in a limited area. For instance, high density wireless indoor and outdoor 

networks include stadiums, airports and train stations, exhibition halls, shopping malls and e-

learning environments like universities. These networks differ in their common characteristics 
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such as the type of network, the applications, traffic conditions and usage. For example, in e-

learning networks, the APs are installed in classrooms and the corridors; the teachers and 

students (STAs) use services such as streaming video for demonstrations, file transfer and 

sharing, and downloading software applications. The provision of wireless services in these 

places present a number of challenges during the design process of wireless networks. These 

challenges are related to the total anticipated number of wireless devices connected to the 

network, separation between devices and the mobility of users. The increasing demand for 

wireless users in these networks is limiting the capabilities of current wireless technologies and 

causing an excess of HOs and the ping-pong HO effect. Airports are a good example of dense 

networks due to many factors, such as a high number of APs installed by the service providers 

and also a high number of passengers connecting to WLANs. Another factor is the needs of 

the high capacity in terms of BW; in fact, according to Laurent in [82], 50% of the passengers 

use Video High Definition (VHD) which requires a high BW of approximately 100Mbps. Add 

to that, many passengers use online gaming, virtual private networks (VPNs) that require only 

low latency, and BW of approximately 20Mbps. Another negative factor in dense networks is 

the distribution of the APs as the distance between them can cause interference, which results 

in a performance decrease of the provided services. All those factors could result in the 

degradation of user QoS/QoE, especially in the case of real-time applications, which can 

require numerous seamless HOs. Figure 5-1 illustrates an example of signal strengths captured 

in a dense residential area, which represents another typical example of these environments. In 

this figure, we have used the Wi-Fi analyser app called NetSpot, which is installed in Android 

devices to measure the local Wi-Fi environment. From the figure it is clear how the 2.4 GHz 

bandwidth is densely populated in this area, creating massive potential interference, which can 

cause performance degradation and the consequent undesirable redundant HO. Therefore, the 
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introduction of the Optimised Handover Algorithm for Dense WLAN Environments will 

enhance the network performance in terms of unnecessary HO by taking into account both QoS 

and QoE requirements and the use of AHV. 

 

Figure 5-1: Example of signal strengths captured in a residential area 

5.3 Adaptive Hysteresis Values 

As we have mentioned in the previous section, redundant HOs become challenging especially 

in a dense network environment, such as campuses, airports and business centres. Therefore, 

new techniques are needed in order to optimise the handover decisions. In [83] we have 

presented an HO technique based only on QoE, which is efficient in small network areas. 

Therefore, we now introduce a new element in our HO approach in order to reach the most 

optimal HO decision through the AHV values at the edge of QoE levels. 

The QoE level at the current or candidate APs is included in a range of different values because 

of the movement of the STAs, or the nature of the currently running application. For this reason, 

we introduce the Adaptive Hysteresis Value (AHV). AHV is the margin provided for 

maintaining the minimum difference between the QoE received from the current AP and the 

target AP. It is calculated in real-time, associated with the difference between the minimum 

and maximum QoE in an overlapped area and is derived as follows [84]:  
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𝐴𝐻𝑉 =  𝑚𝑎𝑥 { 𝐴𝐻𝑉𝑚𝑎𝑥  × (1 − 10
 𝑄𝑜𝐸𝑎𝑐𝑡− 𝑄𝑜𝐸𝑚𝑖𝑛
𝑄𝑜𝐸𝑚𝑖𝑛−𝑄𝑜𝐸𝑚𝑎𝑥  )𝑒𝑥𝑝 ; 𝐴𝐻𝑉𝑚𝑖𝑛} (5-1) 

Where 𝑄𝑜𝐸𝑎𝑐𝑡 is the actual 𝑄𝑜𝐸 at the STA which is ranging from 1 to 4 MOS,  𝑄𝑜𝐸𝑚𝑎𝑥 and 

 𝑄𝑜𝐸𝑚𝑖𝑛 are maximum and minimum 𝑄𝑜𝐸 values, respectively, which could be offered by the 

APs in the overlapped area. The value of the exponent (exp) is equal to 4 and 𝐴𝐻𝑉𝑚𝑖𝑛 is the 

minimum 𝐴𝐻𝑉 that can be set up equal to 0. The parameters exp and 𝐴𝐻𝑉𝑚𝑖𝑛can influence the 

performance of the 𝐴𝐻𝑉adaptation. However, the investigation of the optimal setting of both 

parameters is out scope for this thesis. Therefore, we have chosen the values according to the 

authors in [84][85]. 

The minimum and maximum 𝑄𝑜𝐸 values also must be measured for the utilisation of the 𝐴𝐻𝑉. 

 𝑄𝑜𝐸𝑚𝑖𝑛 refers to the AP that could offer a minimum 𝑄𝑜𝐸 level, where the STA is able to 

receive the service between fair and poor, which is no less than 2.5 in terms of the Mean 

Opinion Score (MOS). The 𝑄𝑜𝐸𝑚𝑎𝑥 refers to the highest value of 𝑄𝑜𝐸 that the candidate AP 

could offer, and this can be determined by using Eq. (4-6)-(4-13). The role of the AHV in the 

Optimised AP Selection algorithm will be provided in Section 5.4. 

5.4 Optimised AP Selection 

The FHOD values defined through Eq. (4-13) will still be considered to evaluate each AP 

during the execution of the Optimised AP Selection algorithm and the 𝐴𝐻𝑉𝑠 defined by Eq. 

(5-1). In detail, the AHV will be evaluated for each individual STA and then added as an 

Adaptive offset value in the decision-making phase, as defined in condition (c) in Eq.(5-2). 

Then, the HO algorithm is executed by the controller to assign the best 𝐴𝑃𝑘 for a certain STA 

only if it can satisfy the following conditions:  
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𝐹𝑘(𝑥) = max{𝐹1(𝑥), 𝐹2(𝑥),…  𝐹𝑛(𝑥)}  

𝐹𝑘 (𝑥)–  𝐹𝑗(𝑥) ≥  𝐹𝑇𝐻 

𝐹𝑘 > 𝐹𝑐 + 𝐴𝐻𝑉 

(a) 

(b) 

(c) 

(5-2) 

 where, 𝐹𝑗(𝑥) = 𝑀𝑎𝑥𝐹1(𝑥), 𝐹2(𝑥),…𝐹𝑘 − 1(𝑥),𝐹𝑘 + 1(𝑥),… . , 𝐹𝑛(𝑥)and,   𝐹𝑐   is the 

current connected AP. 

In Eq.(5-2), the condition (a) is obtained by Eq. (4-11) and allows the controller to select the 

highest value from the APs candidates’ ranks. While condition (b) ensures that the candidates 

AP is ≥  𝐹𝑇𝐻. Finally, the condition (c) is obtained by Eq.(5-1) and allows the controller to 

calculate the AHV, which avoids redundant HOs by adding the adaptive offset value for each 

individual STA. Finally,  𝐹𝑇𝐻 represents the minimum guaranteed value of MOS. 

Focusing now on the algorithm implemented in the proposed architecture, each time that a 

generic STA m connected to the network experiences a MOS lower than 𝐹𝑇𝐻, called 𝑀𝑂𝑆𝑇𝐻 

from now on, due to another STA connecting to the same AP, the network triggers the 

algorithm. Therefore, the HO management controller executes the Optimised AP Selection 

algorithm to assign to STA m to the AP satisfying conditions (a), (b) and (c). In detail, when 

the HO algorithm is triggered, the HO management controller first calculates the FHOD values 

by using equations (4-6)-(4-13) in the FLCT and for the set of candidate APs available for the 

STA achieved from the ICB. Afterwards, the HO management controller will select for STA 

m the best AP satisfying conditions (a), (b) and the final condition (c), which is responsible for 

avoiding the ping-pong effect. 
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5.5 Performance Evaluation 

5.5.1 Simulated Scenario 

Figure 5-2 illustrates the scenario implemented using OPNET to assess the proposed SDWN-

based architecture, which provides HO functionality based on our Optimised AP Selection. In 

detail, the WLAN is again based on IEEE 802.11g which offers a maximum bandwidth of 

54Mbps as a standard and consists of 25 APs controlled by the Handover management 

controller and 250 STAs that need an AP connection. The simulation configuration parameters 

are illustrated in Table 5-1 below [86]. 

Table 5-1: Simulations parameters 

Parameters Value 

AP coverage area Circular with one cell, R = 25 meters 

Overall AP coverage area 500x500 

Number of APs 25 

Number of STAs 250 

MAC Type 802.11g 

Transmit Power 0.005 Watts 

Reception Power threshold -95 dBm 

AP beacon interval 0.02sec 

We Define the received power threshold (receiver sensitivity) value of the radio receiver as -

95 dBm for arriving WLAN packets. Packets with a power less than the threshold are not 

sensed and decoded by the receiver. Hence, such packets don't change the receiver's status to 

busy and they are not detected by the WLAN MAC through its physical sensing mechanism. 
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Figure 5-2: Simulated Scenario based on the SDWN 

We again assume two types of applications are running in the STAs, i.e., Voice over IP (VoIP) 

and Video Streaming. The traffic characteristics in terms of codec, bit rate, resolution, and 

corresponding achievable MOS shown in Table 5-2. 

Table 5-2: Traffic Characteristics 

Application codec Bit rate (kbps) Resolution 

(pixels) 

 Ideal 

MOS 

VoIP G7.11 64  

525*384 

 4.0 

Video H.264 438  4.0 

As illustrated in Figure 5-2, in the simulated scenario each cell has an AP located in the middle. 

Once the simulation starts, each of the 250 STAs is created every 5 to 10 seconds, running 
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VoIP or Video applications. STAs have been distributed randomly and uniformly in the 25 

cells covered by the APs, as will be described in the following subsection, these new session 

establishments trigger the proposed solution. We have chosen 𝑀𝑂𝑆𝑇𝐻  threshold in condition 

(b) equal to 3.1, in order not to decrease the MOS below a fair value, which for instance 

corresponds approximately to 271.5 kbps in terms of video, and 39.68 kbps in terms of VoIP. 

Moreover, to benchmark the performance of our proposed HO algorithm, we compare it with 

our previous work based on FLCT [83]. Note that our previous algorithm based on FLCT 

provided improvements over the IEEE 802.11 standards and the state of the art such as the 

work presented in [83]. 

5.5.2 Simulation Results  

As previously stated, the STAs have been created uniformly every 5 to 10 seconds in random 

locations. Then, after approximately 130 to 150 STAs have joined the network, the algorithm 

was triggered when the volume of new connections caused a sufficient reduction of the MOS 

below the predefined threshold for certain STAs. Once the MOSs of the affected STAs reached 

a value below the threshold, the controller executes the HO algorithm to discover and assign a 

better AP for such STAs.  

Figure 5-3 and Figure 5-4 present the performance results of our Optimised AP Selection 

algorithm against the FLCT-based one in terms of MOS and average throughput at the STAs 

(i.e., bits received per second), as functions of the number of STAs. Both figures show the 

temporal evolution of the performance results from the first STA joining the network, until the 

last one. These results demonstrate the improvements achieved in terms of throughput and 

MOS for the overall network through the proposed algorithm.  
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Specifically, from Figure 5-3, we can observe that our proposed approach outperforms the 

FLCT-based one in terms of MOS.  For instance, at the end of the simulation, the MOS is 2.5 

for our algorithm, while it is 1.8 for the FLCT -based one. The proposed algorithm maintains 

to keep the users above the 3.1 MOS. However, the network will be over-congested just after 

approximately 140 flows joined, therefore, the MOS will keep decreasing with the increase of 

the flows. 

 

Figure 5-3: Overall MOS value as a function of number of flows. 

In Figure 5-4, we can observe that our algorithm outperforms the FLCT-based one also in terms 

of average throughput (i.e., bits received per second) received at the STAs. For instance, at the 

end of the simulation, the overall network throughput experienced is around 2.3x104 Kbits for 

our algorithm, while it is around 1.5x104 Kbits for an FLCT-based solution.  
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Figure 5-4: Average throughput received at STAs 

In Figure 5-5, we present the result in terms of the end-to-end delay.  This figure illustrates a 

gain of roughly 25% in terms of the end-to-end delay achieved by applying our proposed 

solution compared to the FLCT-based approach. 
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Figure 5-5: End-to-End Delay 

Finally, Figure 5-6 illustrates the overall numbers of HO and the Number of handovers per 

application (VoIP and Video). We can observe that our algorithm reduces the HO by around 

20% compared with FLCT Best AP Selection. The gain of that is reducing the overhead 

messages which consume about 20% from the overall throughput according to [87].  

 

Figure 5-6: Overall numbers of HO 

From the results illustrated in the figures above, we can see that our new algorithm outperforms 

the FLCT-based HO considered in the previous chapter in terms of overall MOS, average 

throughput received and End-to-End delay. However, this approach still cannot ensure a good 

service for all or part of the users, due to over-congestion of the network. Therefore, in the 

following chapter, we will present a further extension of the algorithm, which will overcome 

this problem providing the users characterised with high priority with a guaranteed service. 

5.6 Summary 

In this chapter, we proposed an optimised handover algorithm based on SDWN, considering 

the user’s Quality of Experience (QoE) requirements, based on FLCT and AHVs. This 
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algorithm performs well in dense WLAN environments. In detail, this solution implements an 

algorithm that considers the QoE of the users in order to ensure the best AP connection and 

specifically adopts the AHV to avoid unnecessary ping-pong handovers. Moreover, we 

compared the results with our FLCT-based approach, demonstrating how the new version 

outperforms it and therefore also the IEEE 802.11standards. The proposed algorithm works 

effectively in large dense networks and limits redundant HOs. However, dense environments 

with a large number of connected users are still severely affected during congestion. Therefore, 

in the following chapter, we propose a new algorithm which utilises the concept of priority to 

categorise users. The priority-based Handover algorithm makes smart decisions and guarantees 

the best services to high priority users. Additionally, these algorithms also ensure reasonable 

QoE to low priority users by limiting the high bandwidth services. 
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 Priority Based Handover Algorithm 

6.1 Introduction 

In this chapter, we propose a Priority Based Handover Algorithm by extending our proposed 

Software Defined Wireless Network (SDWN) architecture, which utilises the concept of 

prioritising users to make a smart decision during the process of HO. The Optimised Handover 

Algorithm for Dense WLAN Environments from chapter 5 underperforms during congestion 

due to the high density of users and APs in the WLAN network. According to Ozyagci et al 

[88], the overall throughput falls if the network is over-congested because of the increased 

number of collisions, which is the case of dense networks. Figure 6-1 illustrates the effect of 

this density over the throughput. In detail, the figure shows how the throughput eventually 

decreases due to the increasing number of WLANs per area. Therefore, to overcome this 

problem of over-congestion, in this chapter, we present an algorithm based on SDWN that 

extends our previous algorithms. Specifically, this algorithm will prioritise a certain class of 

users to avoid the effect of the over-congestion.  

 

Figure 6-1: Throughput as a function of users and AP density [88] 
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6.2 High and Low priority-based Solution 

In this approach, all users can be classified as high or low priority users. In the case of high 

priority, the users receive a guaranteed service, while low priority users are affected more 

during the high traffic periods. However, as we will explain in the rest of this chapter, the 

proposed solution will also try to optimise the service for low priority users. For instance, in a 

university campus, a high priority can be given to staff while the students and visitors can be 

considered low priority users. Similarly, this solution can be extended to any high-density 

traffic area such as airports, where the high priority users could enjoy, for instance, a premium 

service with an extra cost. 

In this extended algorithm, the controller is able to make a smart decision to provide services 

to the users through the evaluation of QoS parameters such as BW, Jitter, SINR, and Delay. 

Specifically, the process involves calculating the status of the network in terms of these 

parameters and for each low and high priority user, which is currently connected to an AP. The 

controller makes the final decision by combining the statistics related to QoS parameters with 

the priority of the users to provide them with services accordingly. The aim is to ensure that 

high priority users always get guaranteed services and high QoE. 

We, therefore, propose the High Priority algorithm at the application layer to provide services 

to the users based on their priorities. The new approach based on two algorithms, Priority and 

Multi Criteria Decision Making (MCDM) along with FLCT, enables high priority users to get 

better QoE while also maintaining an acceptable QoE for the low priority users. The priority 

algorithm is responsible for evaluating the QoE of all the connected users during high traffic 

periods and identify low priority users which are receiving QoE below an acceptable threshold 

of 3.1. The low priority users will be sent to a trust queue where the new MCDM algorithm 
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comes into play to relocate low priority users from the queue to candidate APs based on their 

capacity and the distance from the user. 

6.3 High Priority-based algorithm 

In this section, the algorithm 1 (Priority) is implemented and calculates the QoS of the users. 

In the following section, algorithm 2 (MCDM) is assembled with algorithm 1 in order to 

enhance the services for low priority users and show that the two algorithms provide higher 

performance. In detail, Algorithm 1 is responsible for monitoring and calculating the QoE of 

all the users in a given time period and evaluates if such a QoE is below the defined threshold, 

while Algorithm 2 is responsible for making the reallocation decision for those users with QoE 

lower than the threshold. The proposed algorithms rely on the following parameters: 

 𝑈: is a set including all the users connected to the network with any kind of priority, 

i.e., high or low. 

 𝑈⍬: is a set that contains all the users connected to the network with any kind of priority 

and experiencing a QoE below the threshold. 

 𝑈⍬𝐿:  is a set that contains all the low priority users located in APs where high priority 

users experience QoE below the threshold. 

 𝑈𝑇𝑟𝑢𝑠𝑡𝑄: is a set that contains low priority users. 

 ⍬: is the threshold, which is set to a MOS value of 3.1.  

Algorithm 1 starts by initialising the current parameters (bandwidth, jitter, delay, SINR) for all 

the users included in set 𝑈 by using equations (4-1)-(4-6) (lines 1-6 of Algorithm 1). Note that 

in our simulated scenario, we will consider half the users with high priority and half the users 

with low priority. In the next step, Algorithm 1 calculates the QoE in terms of MOS based on 



90 

 

the above-mentioned parameters for all connected users included in set 𝑈  (line 7 of Algorithm 

1). 

Table 6-1: QoS to QoE Mapping extends the previous Table 2-4 to indicate how the MOS is 

mapped to various levels of QoE according to the conditions as we described in Table 4-2 

which specify the QoE rules in mixed scenarios. Afterwards, the controller seeks users with 

QoE < ⍬ during an interval time of 0.2 seconds (lines 8-10 of Algorithm 1). All these users are 

included in the set 𝑈⍬ (line 13 of Algorithm 1). For each AP providing services to the high 

priority users included in 𝑈⍬, the controller separates the low priority users moving them from 

𝑈⍬ to 𝑈⍬𝐿  (line 15 of Algorithm 1). If the controller does not find any high priority user below 

the threshold, it restarts the process. The purpose of separating all low priority users from the 

pool of connected users is to always maintain the minimum value of 3.1 QoE for high priority 

users.  

Table 6-1: QoS to QoE Mapping 

QoS Parameter MOS 

Excellent = 5 Very good = 4 Average = 3 Fair = 2 Poor = 1 

Delay ≤ 2ms  ≤ 4ms ≤ 8ms ≤ 15ms ≥15ms 

SINR ≥ = 20dB ≥ = 15dB ≥ = 9dB ≥ = 3dB ≤  = 0dB 

Jitter ≤ 20ms ≤ 80ms ≤ 140ms ≤ 200ms ≤ 400ms 

BW Video H.320 ≥ 900kb/s ≥ 625kb/s ≥ 450kb/s ≥ 220kb/s ≤ 80kb/s 

BW VoIP G.711 ≥ 64kb/s ≥ 50kb/s ≥ 37kb/s ≥ 24kb/s ≤ 24kb/s 

For each user, i included in 𝑈⍬𝐿 , if it can connect to only its current AP, is moved to the set 

𝑈𝑇𝑟𝑢𝑠𝑡𝑄  and it can have only limited resources, i.e., only web browsing (lines 16-18 of 

Algorithm 1). In the case that user i can connect to other APs, i.e., it is located in overlapped 

areas, it is moved to the set 𝑈𝑇𝑟𝑢𝑠𝑡𝑄  and the controller triggers Algorithm 2 to perform the low 
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priority users’ reallocation which is explained below (line 20 of Algorithm 1). Note that these 

users can be moved again to 𝑈⍬𝐿  if resources become available, e.g., a high priority user leaves 

the connection. In the following section we will explain Algorithm 2 in detail. 

 

6.3.1 Low-Priority User Relocation 

Algorithm 2 is based on the principle of Multi-Criteria Decision Making (MCDM). The 

MCDM is the process of selecting the best option from a set of finite decision options. The 

MCDM is used to make decisions by the evaluation of multiple conflicting criteria. In this case, 

such a set is defined by the set of candidate APs for the users included in 𝑈𝑇𝑟𝑢𝑠𝑡𝑄, i.e. the APs 

providing coverage in the area in which the users are located. The candidate APs provide 
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services to the users and these are required to select while relocating low priority users. 

Therefore, candidate APs represent the conflicting criteria in the MCDM scenario. The APs 

are evaluated based on a) the distance from each user included in 𝑈𝑇𝑟𝑢𝑠𝑡𝑄   which denotes (DS) 

and b) their capacity which denotes (C). The distance between the user and the AP is estimated 

based on the signal strength (RSSI) received by the user, which starts decreasing whenever the 

user moves far from the AP. 

 The purpose of selecting these two parameters DS and C is to best describe the capabilities of 

the candidate APs in terms of providing the best QoS to the low-priority users included in 

𝑈𝑇𝑟𝑢𝑠𝑡𝑄 . The controller starts Algorithm 2 by initialising the parameters DS and C (line 1-4). 

In the next step (line 5-9), it constructs a decision matrix with the 𝑛 candidate APs and their 

calculated parameters DS and C. Therefore, for each AP 𝑛 among the candidate APs, the 

controller computes the matrix using 𝐷𝑆𝑛  and 𝐶𝑛. Then, the decision matrix, which is called 

DC, has the form of mxn and is initialised using the DS and C (line 7 and 8). Here, m represents 

the number of users connected to the AP and the n indicates the two parameters DS and C. 

Next, the DC is standardised and later normalised in order to convert different dimension 

parameters into dimensionless parameters. After the normalisation, all the parameters will have 

equal effect in the algorithm. This allows making comparison among multiple conflicting 

criteria. 
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The standardisation is performed by calculating 𝑊, which is the root of the sum of the square 

of the values in the DC, using two nested loops (lines 12-18 of Algorithm 2). The first loop 

iterates through the rows of the DC while the second loop iterates through the columns. Firstly, 

the sum of the square of the values is computed across each row of the decision matrix (as 

shown in line 15 of algorithm 2) and assigned to variable 𝑡 on each iteration of the second loop. 

Then, after all the iterations of the second loop, the square root is computed for variable 𝑡 and 

assigned to 𝑊𝑚𝑥1 (see line 17 of Algorithm 2). The 𝑊𝑚𝑥1 is a one-dimensional array, where, 

m represents the number of rows in the decision matrix.  

Subsequently, each value in the decision matrix is divided by 𝑊𝑚𝑥1 to normalise the values. 

The Eq below computes the normalised DC: 

𝐷𝐶′𝑚𝑥𝑛 =
𝐷𝐶𝑚𝑥𝑛

𝑊𝑚𝑥1
 (6-1) 

The normalisation will convert different dimension parameters into same scale parameters 

which will have an equal effect in the algorithm. After the normalisation process, the ideal and 

negative ideal solutions are calculated using the DC. 

 In this algorithm, the ideal solution is represented when candidate AP has the least distance 

from the user and has a high capacity. The opposite of the ideal solution is assumed as the 

negative ideal solution. As Algorithm 2 proceeds (30-32), the distance of each candidate AP is 

measured from these ideal solutions using Euclidean distance measure as shown below.  

𝐷𝑆𝑖 = √(𝐷𝑆i1 − 𝐷𝑆i2)2 + (𝐶i1 − 𝐶i2)2  (6-2) 

Where i is a subset of DS when DS is minimum and C is maximum. While the negative ideal 

solutions is: 
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𝐷𝑆𝑛 = √(𝐷𝑆n1 − 𝐷𝑆n2)2 + (𝐶n1 − 𝐶n2)2  (6-3) 

Similarly, n is a subset of DS when DS is maximum and C is minimum. Finally, the candidate 

APs are ranked based on their relative nearest distance from the ideal solution.  

As a result, when Algorithm 2 finds an ideal solution, it performs relocation and assigns 

𝑈𝑇𝑟𝑢𝑠𝑡  users to the selected AP. The user will be able to get better QoS from the AP which is 

nearest to the user and has a high capacity. At this stage, Algorithm 2 finalises its operation 

and returns to Algorithm 1 for further execution (line 36-38). Hence, our contribution lies in 

proposing a method to construct a decision matrix based on ideal and negative ideal solutions, 

which assists in relocating low priority users efficiently. 

6.4 Simulated Scenario 

We have compared the obtained results with our previous FLCT-based and Optimised AP 

Selection algorithms. Figure 6-2 illustrates the simulated scenario, which consists of 25 APs 

and 250 STAs. The type of applications that we have again considered are VoIP and Video 

streaming. In this simulation, we have created 50% of the users as High priority and 50% as 

Low priority users. Specifically, every 5-10 seconds we created one Low priority and one High 

priority and distributed them uniformly. The algorithm is triggered only when the received QoE 

drops below the threshold which will occur just after 130-150 flows to join the network. 
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Figure 6-2: Simulated scenario 

Figure 6-3 illustrates the result in terms of MOS. Note that we have calculated the MOS for 

High and Low Priority STAs separately. The blue line shows how the high priority STAs are 

always above the threshold. However, this result shows a massive drop in the service provided 

for Low Priority STAs which are represented by a black line. This result has been compared 

with our previous FLCT-based algorithm, which is represented by a yellow line, we call it here 

FLCT Best AP Selection, and finally the orange line for Optimised AP Selection.  
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Figure 6-3: MOS 

Figure 6-4 shows the end-to-end delay of all the packets received by the STAs. The figure 

shows how the proposed solution keeps the delay for the high-priority STAs below 200 ms, 

while for the Optimised AP Selection it is about 400 ms and for the FLCT Best AP Selection, 

it is about 600 ms. However, the Low-priority STAs experience a delay reaching up to 900 ms.  

 

Figure 6-4: Delay 
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Figure 6-5 shows the average throughput received at STAs. The orange and the yellow lines 

again represent the average throughput received at STAs in FLCT-based AP Best Selection 

and Optimised AP Selection respectively. Here the blue line denotes average throughput 

received at the high priority STAs only in the simulated scenario, while the black line represents 

the average throughput received at the low priority STAs only. 

 From this figure, we can observe that STAs with higher priority, get the highest throughput 

compared with the rest of the solutions. The low priority STAs receive the lowest throughput 

compared to the FLCT Best AP Selection and Optimised AP Selection algorithms. 

 

Figure 6-5: Average throughput received at STAs 

This result shows that the network could not be further optimised when it becomes over-

congested. Moreover, the figures above illustrate the importance of using the prioritisation, 

which guarantees to high-priority users a satisfactory QoE. However, the low-priority users are 

severely affected during this process because they experience a reduction of their QoE. 
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6.5 Summary 

This chapter presents a priority-based handover algorithm which is implemented in the 

application layer. The two algorithms (priority and MCDM) optimise the QoE for the users 

according to their priorities. Specifically, the concept of prioritising users is introduced in order 

to always provide the best QoE to the high priority users at the expense of low priority users. 

However, the proposed algorithms also attempts to maintain an acceptable QoE for low priority 

users. This is achieved by relocating low priority users to the best candidate APs through the 

MCDM algorithm. The results of the new approach based on these two algorithms are 

compared with FLCT-based and Optimised AP Selection. The results indicate that the approach 

based on our new priority and MCDM algorithms outperforms FLCT-based and Optimised AP 

Selection and provides better QoE to the high priority users. In the following chapter, we 

conclude the research work presented in the thesis and provide future directions to further 

improve our work. 
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  Conclusions and Future works 

This chapter summarises the solutions developed in the thesis and highlights the novel 

contributions in section 7.1.  Additionally, this chapter discusses how the work could be carried 

out in the future in section 7.2. 

7.1 Thesis Summary 

In this thesis, we presented and highlighted the limitations of horizontal Handover (HO) 

solutions in Wi-Fi networks. An extensive body of work regarding HOs can be found in the 

literature, in terms of resource allocation and mobility management in both homogenous and 

heterogeneous wireless networks.  

In Chapter 1 we presented an introduction that illustrates the massive increase of the smart 

devices along with the prediction of the data consumption for the next years and we presented 

the motivations behind the research done for this thesis. Then, we introduced our objectives 

and the novel contributions of the thesis. Finally, in Chapter 1, we presented the methodology, 

which is based on the top-down method in order to overcome the proposed research problem. 

In Chapter 2 we illustrated the existing solutions dealing with wireless HOs. This includes the 

concept of the HO, which is made up of the information gathering phase, the decision phase 

and the execution phase, and the technical details of many HO approaches found in the 

literature. Then, we discussed in detail the limitations of the existing solutions, such as the lack 

of awareness of the requirements of the STAs as well as the monitoring methods. Note that, 

although certain existing HO solutions are able to capture the performance requirements of the 

STAs, their implementation often results in high complexity. Moreover, such approaches, 



101 

 

which focus on a specific performance metric and on a specific wireless technology, cannot be 

adapted to support other performance metrics, or work on different wireless technologies. 

Furthermore, we introduced the concept of Quality of Experience (QoE), which has recently 

become a common metric used in the literature to measure the users’ satisfaction. Therefore, 

QoE is also a crucial parameter to be considered when designing HO strategies in order to 

guarantee satisfactory services for the users. Finally, in Chapter 2, we explained how the 

limitations found in the literature could be addressed by introducing centralised and smart 

functionalities into the network that assist the HO process taking into account these QoE and 

Quality of Service (QoS) requirements.  

In Chapter 3 we explained in detail the concept of centralised and distributed networks and 

why in this thesis we considered a centralised approach. In addition, we reviewed many studies 

and solutions based on the centralised Software Defined Network (SDN) and Software Defined 

Wireless Network (SDWN) approaches. Finally, we illustrated the novel architecture designed 

and developed for this thesis based on the SDWN paradigm able to support QoS and QoE-

aware HO algorithms.  

In Chapter 4, we introduced our QoE Oriented Handover algorithm, which relies on the Fuzzy 

Logic Control Theory (FLCT) concept. In addition, we discussed in detail how this algorithm 

can support seamless HO considering the user’s QoS and QoE requirements. Moreover, in 

Chapter 4 we showed how our solution successfully improves the standard by a gain of 17% 

and another algorithm considered in the state of the art by a gain of 11%. Additionally, we 

explained the main limitation of this algorithm, which provides limited scalability in the case 

of large networks.  

In Chapter 5, we presented the Optimised Handover Algorithm for Dense WLAN 

Environments. Moreover, we explained the concept of the Adaptive Hysteresis Value (AHV) 
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and how it helps avoid unnecessary HOs. In addition, we described how this algorithm works 

efficiently in dense WLAN networks and we showed a gain of roughly 33% in terms of the 

end-to-end delay achieved by applying our proposed solution compared to the FLCT-based 

approach. Finally, we discuss how this algorithm is negatively affected in dense environments 

with a large number of connected users. 

In Chapter 6 we then introduced our Priorities Based Handover Algorithms, which utilise the 

concept of users’ prioritisation that can make smart decisions during the process of HO. 

Specifically, the concept of users’ prioritisation is introduced in order to always provide the 

best QoE to users with high priority. In this chapter, we explained the two algorithms that we 

have used in this approach. According to our proposed algorithms presented in chapter 4 and 

5, the throughput was roughly 35kbps. However, the new solution based on the Priorities Based 

Handover Algorithms uses the priority concept for low and high priority users and provides 

considerably higher throughput reaching 45kbps as compared to previously proposed 

algorithms.  

7.2 Future Works 

This subchapter addresses the future work that will extend the solutions presented in this thesis 

in order to provide new innovative approaches such is using scenarios in a more dynamic 

environment including users mobility. Specifically, future work can be summarised as follows: 

I. Extend the proposed algorithms to support heterogeneous networks in dynamic 

areas: The current architecture has been designed to support homogeneous networks 

managed by the same network provider. Therefore, this architecture will be extended 

in order to also support vertical HO strategies by involving LTE networks supporting 

users at the movement which is considered more challenging in the HO process. 



103 

 

Therefore, the new architecture will be tailored for two different network environments, 

i.e., WLAN and LTE. In this context, the designed SDWN controller will be extended 

in order to handle the following LTE components: 

 Home Subscriber Server (HSS), which is the main data store of the system. 

Specifically, it stores all the information about the subscribers such as user 

profile, identification, registration and network authorisation information [89]. 

 Proxy Call Session Control Function (P-CSCF), which will act as a proxy 

server for the users, i.e., for receiving and forwarding from and to users the 

Session Initiation Protocol (SIP).  

 Interrogation Call Session Control Function (I-CSCF), which is responsible 

for routing the request to the right server once the request obtains 

authentication and authorisation [90].  

 Serving Call Session Function (S-CSCF), which is the heart of the core 

network and will act as an SIP registrar server, controlling and routing paths 

for mobile terminated sessions.   

 LTE gateway switch and WLAN gateway switch, which will act as bridges 

between LTE and WLAN networks.  

The extended architecture will require three SDWN controllers. The first controller will 

be on top of the WLAN network, the second controller will be on top of the LTE one. 

A third controller, called the super controller, will act as a bridge between the WLAN 

network and LTE network. The role of the super controller will be managing operations 

between WLAN and LTE such us roaming authorisation, handover, tracking area 

location and real-time monitoring of all the users’ status and requirements.  

II. Extend the proposed solutions by including Machine Learning (ML)-based 

approaches: We believe that using ML along with MIMO and beamforming will allow 

us to enhance this work. Specifically, the use of MIMO will increase the capacity 
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dramatically alongside using the beamforming techniques. The beamforming technique 

is described as antenna arrays with a signal processing algorithm. Those antennas used 

for transmitting and receiving signals in massive MIMO systems. The gained beams in 

the spatial dimension are generally formed by balancing the weighting of the antennas 

according to set rules. The different antenna weights lead to constructive interference 

in some directions and destructive interference in other directions due to the phase and 

gain differences between the signals in different antennas. Additionally, the ML 

concept will improve the HO decision through prediction techniques, which will help 

to optimise the network management complexity by reducing, for instance, the 

messages exchanged among the modules of the proposed architecture during the HO 

execution. ML techniques will also allow us to predict in advance when users will 

require an HO and how much resources they will need. These ML techniques include 

statistical as well as advanced Deep Learning techniques. As the data volume will 

increase in the future, the Deep Learning techniques will be able to learn the correlation 

between various factors i.e. bandwidth and latency and provide high prediction 

accuracy for the most efficient HO. In addition, the ML concept will improve the 

proposed algorithms by including self-awareness and self-organisation, which will 

improve the network management in terms of reducing the cost of installation, 

operations, administrations and maintenance activities.  

7.3 Concluding Remarks 

The approach presented in this thesis introduces an SDWN Architecture for Wireless Network 

Engineering to Support a Quality of Experience Aware Handover. As a result, many of the 

existing HOs limitations are associated with lack of awareness of QoS and QoE requirements 

and they do not scale well with the size of the network.  By using a centrally controlled network, 
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and QoS and QoE awareness, we were able to identify the user requirements and use MOS as 

the score to maintain user satisfaction. This novel approach provides numerous enhancements 

over existing solutions by guarantee the best possible connectivity to the users in terms of their 

QoE and QoS requirements. Additionally, we considered a large-scale network where the 

network is over-congested. We have optimised the HO via reducing the ping-pong effects and 

reducing the unnecessary HO. We have achieved this optimisation via taking into consideration 

Adaptive Hysteresis Value (AHV). This algorithm has been designed to address dense network 

environments and outperforms existing methods. However, dense network environments with 

a large number of connected users are still severely affected during over-congestion. Therefore, 

it was essential to introduce a concept of prioritising users. It prioritises a certain class of users 

to avoid the effect of the over-congestion and guaranteed high QE service into the high priority 

users. The results illustrate that the approach based on priority outperforms the state of the art 

and provides better QoE to the high priority users despite the over-congestion situation. 
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