
Bell, PC, Reidenbach, D and Shallit, J

 Unique Decipherability in Formal Languages

http://researchonline.ljmu.ac.uk/id/eprint/11801/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Bell, PC, Reidenbach, D and Shallit, J (2019) Unique Decipherability in 
Formal Languages. Theoretical Computer Science, 804. pp. 149-160. ISSN 
0304-3975 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Unique Decipherability in Formal Languages

Paul C. Bella,∗, Daniel Reidenbachb, Jeffrey O. Shallitc,1

aDepartment of Computer Science, Liverpool John Moores University, Liverpool,
Merseyside, L3 3AF, United Kingdom

bDepartment of Computer Science, Loughborough University, Loughborough, Leicestershire,
LE11 3TU, United Kingdom

cSchool of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

We consider several language-theoretic aspects of various notions of unique de-
cipherability (or unique factorization) in formal languages. Given a language
L at some position within the Chomsky hierarchy, we investigate the language
of words UD(L) in L∗ that have unique factorization over L. We also consider
similar notions for weaker forms of unique decipherability, such as numerically
decipherable words ND(L), multiset decipherable words MSD(L) and set de-
cipherable words SD(L). Although these notions of unique factorization have
been considered before, it appears that the languages of words having these
properties have not been positioned in the Chomsky hierarchy up until now.

We show that UD(L),ND(L),MSD(L) and SD(L) need not be context-free
if L is context-free. In fact ND(L) and MSD(L) need not be context-free even
if L is finite, although UD(L) and SD(L) are regular in this case. We show that
if L is context-sensitive, then so are UD(L), ND(L), MSD(L) and SD(L). We
also prove that the membership problem (resp., emptiness problem) for these
classes is PSPACE-complete (resp., undecidable). We finally determine upper
and lower bounds on the length of the shortest word of L∗ not having the various
forms of unique decipherability into elements of L.

Keywords: codes, unique decipherability, numerical decipherability, set
decipherability, multiset decipherability

1. Introduction

Let L be a formal language over an alphabet Σ. We say that w ∈ L∗

is uniquely decipherable (or has unique factorization) if there exists a unique
factorization of w into elements of L (formal definitions of this, and other notions
of decipherability, are given in Section 2.2). If every element of L∗ has unique

∗Corresponding author
Email addresses: p.c.bell@ljmu.ac.uk (Paul C. Bell), D.Reidenbach@lboro.ac.uk

(Daniel Reidenbach), shallit@uwaterloo.ca (Jeffrey O. Shallit)
1Supported by NSERC grant no. 105829/2013

Preprint submitted to Elsevier September 16, 2019



factorization into elements of L, then L is called a uniquely decipherable (UD)
code. Every source message encoded by a UD code can therefore be decoded in
its entirety. Codes are important in a number of contexts — for example in the
transmission of messages, where we may attempt to minimize data traffic if the
items of data to be encoded have an a priori known frequency distribution.

The situation may arise, however, where we only require the facility to ex-
tract some partial information from an encoded message, without necessarily
being able to retrieve the entire message. This naturally leads to various weaker
notions of unique factorization of encoded messages. Three of the most com-
mon, and those studied in this paper, are numerically decipherable (ND) codes,
multiset decipherable (MSD) codes and set decipherable (SD) codes.

The concept of a numerically decipherable (ND) code was introduced by
Weber and Head [15], where a language L is called an ND code if every element
w ∈ L∗ has the property that all possible factorizations of w over L use exactly
the same number of factors, but the actual factors themselves are unimportant.
A motivating example given by Weber and Head is that of sending a stock
inventory between two parties, where the number of items is important but the
actual items themselves can be ignored. They showed that determining whether
a given finite set L of n words with a total length of t over an alphabet Σ is an
ND code can be decided in time O(nt) and in O((n+ |Σ|)t) space [15]. In fact,
the algorithm can also be used to determine if L is a UD and SD code (defined
below), with the same space and time bounds.

The notion of a multiset decipherable (MSD) code was introduced by Lempel
[10]. An MSD code L allows unique factorization of words in L∗ if the order of
transmission of the codewords is ignored; thus each factorization of an element
of L∗ uses the same multiset of elements and they are permutations of each
other. Lempel gave motivating examples of online compilations of inventories,
construction of histograms and updating of relative frequencies where the order
of elements is not important, only the multiplicity of code words.

An MSD code is called proper if it is an MSD code, but not a UD code (a
similar terminology can be defined for SD and ND codes). Lempel proved that
for n ≥ 4 and |Σ| ≥ 2, there exists a finite set L of n elements over alphabet Σ
such that L is a proper MSD code, but every MSD code of just two words is a
UD code [10].

Another variation on unique factorization named set decipherable (SD) codes
was introduced by Guzmán [5], and was also explored by Blanchet-Sadri and
Morgan [3]. A language L is an SD code if every factorization of an element of
L∗ over L uses the same set of elements. Thus, a message encoded by an SD
code can be uniquely deciphered up to both commutativity of elements and the
number of occurrences of elements. A motivating example here, given in [5], is
that of two rival parties, willing to reveal to each other the presence or absence
of certain items without revealing the exact count.

Let CO denote the set of all codes. Guzmán showed [5] that UD ⊂ MSD ⊂
SD ⊂ CO, where we note that all inclusions are strict and thus there exist
proper MSD and SD codes. On the other hand, certainly UD ⊆ SD ⊆ ND
and there do exist ND codes that are not SD codes (see Example 13), so these

2



containments are proper. These containments are shown in Figure 1. Also note
that ND and SD are incomparable, since Example 13 exhibits a finite language
L that is an ND code but not an SD code, and Example 20 (from [5]) exhibits
a language L′ that is an SD code but not an ND code.

ND

UD SDMSD

Figure 1: Proper containments of classes UD, ND, MSD and SD.

Another aspect of codes that has been studied in the literature concerns the
minimal length of codewords. The McMillan sum µ : 2Σ∗ → Q of a finite code
C over an alphabet Σ is defined as follows:

µ(C) =
∑
w∈C
|Σ|−|w|.

It is known that every finite UD code L satisfies µ(L) ≤ 1; see [4]. This gives
some indication that code words cannot become “too short”. A UD code L
is called full if µ(L) = 1. Blanchet-Sadri and Morgan showed [3] that no SD
code contains a full UD code as a proper subcode. Lempel conjectured [10] that
MSD codes satisfy Kraft’s inequality, but this was later disproved by Restivo
[12]. Kraft’s inequality is not further considered in this paper.

Although codes and their properties have been studied extensively (see, for
example, [2, 9]), in this paper we look at some novel aspects of unique factoriza-
tion. Namely, we consider the language of words possessing the various types of
unique factorization, and position the resulting language in the Chomsky hier-
archy. We also consider the length of the shortest word not having the desired
property, if it exists.

A preliminary version of this paper appeared in [1]. In the present version,
we improve the upper bound on the maximal length of a minimal word having
subset-invariant factorization, if any such word exists, from O(m2n2) to O(m2n)
and study various complexity issues in Section 7.

2. Notation and preliminaries

2.1. Basic notation

As usual, we let Σ denote a finite alphabet, Σ∗ denote the set of all words
over Σ, and Σ+ denote the set of all nonempty words over Σ. A subset L ⊆ Σ∗ is
called a language. We denote by L∗ the set {w1w2 · · ·wk|k ≥ 0 with each wi ∈
L} and by L+ the set {w1w2 · · ·wk|k ≥ 1 with each wi ∈ L}. A code is a

3



nonempty subset C ⊆ Σ+. Each element of C is called a codeword. A message
over C is a concatenation of the codewords of C. Given a word w ∈ Σ∗, we
let suff(w) denote the set of all suffixes of w. The reader unfamiliar with these
notions can consult [2].

2.2. Variants of unique factorization

We now formally define uniquely decipherable (UD), numerically decipherable
(ND), multiset decipherable (MSD) and set decipherable (SD) codes.

Definition 1 (UD code). Given L, we say that w ∈ L∗ is uniquely decipherable
if w has a unique factorization over elements of L. More precisely, w is uniquely
decipherable if whenever

w = u1u2 · · ·um = v1v2 · · · vn
for u1, u2, . . . , um, v1, v2, . . . , vn ∈ L, then m = n and ui = vi for all 1 ≤ i ≤ n.
Given a language L, we define UD(L) to be the set of all elements of L∗ that
are uniquely decipherable over L. If L∗ = UD(L), then L is called a UD code.

Note that UD codes are the standard type of code studied in the theory of
codes, see [2]. We now define some additional variants of such codes.

Definition 2 (MSD code). Given a language L we say w ∈ L∗ is multiset
decipherable if whenever w = u1u2 · · ·um = v1v2 · · · vn for

u1, u2, . . . , um, v1, v2, . . . , vn ∈ L,

then m = n and there exists a permutation σ of {1, . . . , n} such that ui = vσ(i)

for 1 ≤ i ≤ n. In other words, we consider two factorizations that differ only
in the order of the factors to be the same. We define MSD(L) to be the set
of w ∈ L∗ that are multiset decipherable. We may equivalently say that w is
multiset decipherable if all factorizations of w over L have the same multiset,
hence the terminology. If L∗ = MSD(L), then L is called an MSD code.

Definition 3 (ND code). Given L, we say that w ∈ L∗ is numerically decipher-
able if all factorizations of w into elements of L consist of the same number of
factors. More precisely, w is numerically decipherable if whenever

w = u1u2 · · ·um = v1v2 · · · vn
for u1, u2, . . . , um, v1, v2, . . . , vn ∈ L, then m = n. Given a language L, we define
ND(L) to be the set of all elements of L∗ that are numerically decipherable over
L. If L∗ = ND(L), then L is called an ND code.

Definition 4 (SD code). Given a language L, we say w ∈ L∗ is set decipherable
(or has subset-invariant factorization) over L if there exists a subset S ⊆ L such
that every factorization of w into elements of L uses exactly the elements of S
— no more, no less — although each element may be used a different number
of times. More precisely, w has subset-invariant factorization if there exists
S = S(w) ⊆ L such that whenever w = w1w2 · · ·wk with w1, w2, . . . , wk ∈ L,
then S = {w1, w2, . . . , wk}. We let SD(L) denote the set of w ∈ L∗ that are set
decipherable. If L∗ = SD(L), then L is called an SD code.

4



We call a UD code L a prefix (suffix) code if there does not exist w1, w2 ∈ L
with w1 6= w2 such that w1 is a prefix (suffix) of w2. It is clear that for every
prefix or suffix code L, we have L∗ = UD(L).

The paper is split into several sections. We classify the various types of
unique factorization according to the position of L in the Chomsky hierarchy in
Section 3 for unique decipherability, in Section 4 for numerically decipherability,
in Section 5 for multiset decipherability, and in Section 6 for set decipherabil-
ity. In Section 7 we consider the complexity of membership and emptiness for
these types of factorizations. We show that if L is a context-free language,
then UD(L),ND(L),MSD(L),SD(L) are all context-sensitive languages. Fur-
thermore, given a context-free grammar (CFG) G for L, we can constructively
produce a context-sensitive grammar (CSG) for each of UD(L),ND(L),MSD(L)
and SD(L), and therefore the corresponding membership problem is decidable.

We also show that if L is context-free then the emptiness problem for UD(L)
is undecidable, whereas if L is context-sensitive, then the membership problem
for UD(L),ND(L),MSD(L) and SD(L) is PSPACE-complete.

3. Uniquely decipherable (UD) codes

We begin with the following proposition, which is folklore.

Proposition 5. If L is regular, then so is UD(L).

Proof. If L contains the empty word ε then no elements of L∗ are uniquely
decipherable, and so UD(L) = ∅. So, without loss of generality we can assume
ε 6∈ L.

To prove the result, we show that the relative complement L∗ − UD(L) is
regular (regular languages themselves being closed under complement). Let L
be accepted by a deterministic finite automaton (DFA) M . On input x ∈ L∗,
we build a nondeterministic finite automaton (NFA) M ′ to guess two different
factorizations of x and verify they are different. The machine M ′ maintains the
single state of the DFA M for L as it scans the elements of x, until M ′ reaches
a final state q. At this point M ′ moves, via an ε-transition, to a new kind of
state that records pairs of states of M . Transitions on these “doubled” states
(denoted [p, q] for states p, q ∈ Q) still follow M ’s transition function in both
coordinates, with the exception that if either state is in F , we allow a “reset”
implicitly to q0. Each implicit return to q0 marks, in a factorization, the end of
a term. The final states of M ′ are the “doubled” states with both elements in
F .

More precisely, assume M = (Q,Σ, δ, q0, F ). Since ε 6∈ L(M), we know
q0 6∈ F . We create the machine M ′ = (Q′,Σ, δ′, q0, F

′) as follows: we let
Q′ = Q ∪ Q×Q and

δ′(q, a) =

{
{δ(q, a)}, for all q ∈ Q;

{δ(q0, a), [δ(q0, a), δ(q, a)]}, if q ∈ F .

5



Writing r = δ(p, a), s = δ(q, a), t = δ(q0, a), we also set

δ′([p, q], a) =


{[r, s]}, if p 6∈ F , q 6∈ F ;

{[r, s], [t, s]}, if p ∈ F , q 6∈ F ;

{[r, s], [r, t]}, if p 6∈ F , q ∈ F ;

{[r, s], [t, s], [r, t], [t, t]}, if p ∈ F , q ∈ F .

Finally, we set F ′ = F × F . To see that the construction works, suppose that
x ∈ L∗ has two different factorizations

x = y1y2 · · · yjyj+1 · · · yk = y1y2 · · · yjzj+1 · · · z`

with yj+1 a proper prefix of zj+1. Then an accepting path starts with singleton
sets until the end of yj . The next transition goes to a pair having first element
δ(q0, a) with a the first letter of yj+1. Subsequent transitions eventually lead to
a pair in F × F .

On the other hand, if x is accepted, then two different factorizations are
traced out by the accepting computation in each coordinate. The factorizations
are guaranteed to be different by the transition to [δ(q0, a), δ(q, a)].

Example 6. Let L = {b, ab, ba}. A DFA recognising L is simple to describe;
see Fig. 2a. (We have omitted the single dead state.) Applying the proce-
dure of Proposition 5 allows us to construct an NFA to recognise the relative
complement L∗ −UD(L), as shown in Fig. 2b.

a

0

1

2

3

a

b

b

(a) DFA for L

b
0

1

2

3

a

b

b

a

a

a

b

3,1

2,3

1,3 3,2

2,2

3,31,1

a

b

b

aa

ab

b

b

a

a

a

b

a

b

a

(b) NFA for L∗ − UD(L)

Figure 2: Language L and L∗ − UD(L)

Remark 7. There is a shorter and more transparent proof of Proposition 5, as
follows. Given a DFA for L, create an NFA A for L∗ by adding ε-transitions from
every final state back to the initial state, and then removing the ε-transitions

6



using the familiar method (e.g., [7, Theorem 2.22]). Next, using the Boolean
matrix interpretation of finite automata (e.g., [16] and [13, §3.8]), we can asso-
ciate an adjacency matrix Ma with the transitions of A on the letter a. Then,
on input x = a1a2 · · · ai, a DFA can compute the matrix Mx = Ma1Ma2 · · ·Mai

using ordinary integer matrix multiplication, with the proviso that every entry
that is 2 or more is changed to 2 after each matrix multiplication. This can be
done by a DFA since the number of such matrices is at most 3n

2

where n is
the number of states of M . Then, accepting if and only if the entry in the row
and column corresponding to the initial state of A is 1, we get a DFA accepting
exactly those x having unique factorization into elements of L. While this proof
is much simpler, the state bound it provides is quite extravagant compared to
our previous proof.

Proposition 8. Suppose L is accepted by a DFA with n states. If L is not a
UD code, then there exists a word x ∈ L∗ with at least two distinct factorizations
into elements of L, with |x| < n2 + n.

Proof. Our construction in the proof of Proposition 5 gives an NFAM ′ accepting
all words with at least two different factorizations, and it has n2 + n states. If
M ′ accepts anything at all, it accepts a word of length at most n2 + n− 1.

Proposition 9. For all n ≥ 2, there exists an O(n)-state DFA accepting a
language L that is not a UD code, such that the shortest word in L∗ having two
factorizations into elements of L is of length Ω(n2).

Proof. Consider the language Ln = b(an)∗ ∪ (an+1)∗b. It is easy to see that
Ln can be accepted by a DFA with 2n + 5 states, but the shortest word in L∗n
having two distinct factorizations into elements of Ln is b an(n+1) b, of length
n2 + n+ 2.

In fact, there are even examples of finite languages with the same property.

Proposition 10. For all n ≥ 2, there exists an O(n)-state DFA accepting a
finite language L that is not a UD code, such that the shortest word in L∗ having
two factorizations is of length Ω(n2).

Proof. Let Σ = {b, a1, a2, . . . , an} be an alphabet of size n + 1, and let Ln be
the language of 2n words

{a1, an} ∪ {biai+1 : 1 ≤ i < n} ∪ {aibi : 1 ≤ i < n}

defined over Σ.
Then it is easy to see that Ln can be accepted with a DFA of 2n+ 2 states,

while the shortest word having two distinct factorizations is

a1ba2b
2a3b

3 · · · an−1b
n−1an,

which is of length n(n+ 1)/2.

7



Remark 11. The previous example can be recoded over a three-letter alphabet
by mapping each ai to the base-2 representation of i, padded, if necessary, to
make it of length `, where ` = dlog2 ne. With some reasonably obvious reuse of
states this can still be accepted by a DFA using O(n) states, and the shortest
word with two distinct factorizations is still of length Ω(n2).

Theorem 12. If L is a context-free language, then UD(L) need not be context-
free.

Proof. Our example is based on two languages (see, for example, [11]):

(a) PALSTAR, the set of all strings over the alphabet Σ = {0, 1} that are the
concatenation of one or more even-length palindromes; and

(b) PRIMEPALSTAR, the set of all elements of PALSTAR that cannot be written
as the concatenation of two or more elements of PALSTAR.

Clearly PALSTAR is a context-free language (CFL). We see that UD(PALSTAR) =
PRIMEPALSTAR, which was proven in [11] to be non-context-free.

4. Numerically decipherable (ND) codes

We now investigate numerically decipherable codes, where uniqueness is de-
fined for a word if all factorizations of that word over a given language have the
same number of factors (see Definition 3 for formal details). We start with a
motivating example.

Example 13. Let L = {ab, bab, abb}. Then ND(L) = L∗. This follows since
every w ∈ L∗ with more than one factorization over L must contain a word of
the form ab(bab)kbab = (abb)k+1ab for k ≥ 0, with the number of factors in each
case being k+ 2. Note that L is not a UD code, however, since ab · bab = abb ·ab
has two factorizations. Therefore L is a proper ND code.

We now prove an analogous result to Proposition 5 for ND codes, noting that
if L is regular, then ND(L) sits higher in the Chomsky hierarchy than UD(L).

Theorem 14. If L is regular then ND(L) need not be a CFL.

Proof. We define regular language L by the following rational expression:

L = a0+b+ 1 + c(23)+ + 23d+ a+ 0 + b1+c(23)+ + a0+b1+c2 + 32 + 3d.

Consider ND(L) and intersect with the regular language a0+b1+c(23)+d.
Then there are only three possible factorizations for a given word here. They

look like (using parentheses to indicate factors)

• (a0ib)1 · 1 · 1 · · · 1(c(23)k)(23d), having j + 3 terms if j is the number of
1’s;

8



• (a)0 · 0 · · · 0(b1jc(23)k)(23d), having i + 3 terms if i is the number of 0’s;
and

• (a0ib1jc2)(32)(32) · · · (32)(3d), having k + 2 terms, if k is the number of
(32)’s.

So if all three factorizations have the same number of terms we must have
i = j = k − 1, giving us

{a0nb1nc(23)n−1d : n ≥ 1},

which is not a CFL.

With some more work, we may even find examples as in Theorem 14 where
L is finite, as we now show.

Theorem 15. If L is finite, then ND(L) need not be a CFL.

Proof. For expository purposes, we give an example over the 21-letter alphabet

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, a, b, c, d, e, f, g, h, i, j, k, l}.

Define

L1 = {0ab, cd, ab, cd123, efgh, efgh4, 5ijkl, ijkl, 6, 78}
L2 = {0abc, dabc, d1, 23e, fg, he, h45ij, klij, kl678}
L3 = {0a, bcda, bcd12, 3ef, ghef, gh45i, jk, li, jkl67, 8},

and set L := L1 ∪ L2 ∪ L3.
Consider possible factorizations of words of the form

0(abcd)m123(efgh)n45(ijkl)p678

for some integers m,n, p ≥ 1. Every factorization of such a word into elements
of L must begin with either 0ab, 0abc, or 0a. There are three cases to consider:

Case 1: the first word is 0ab. Then the next word must begin with c, and there
are only two possible choices: cd and cd123. If the next word is cd then since
no word begins with 1 the only choice is to pick a word starting with a, and
there is only one: ab. After picking this, we are back in the same situation, and
can only choose between cd followed by ab, or cd123. Once cd123 is picked we
must pick a word that begins with e. However, there are only two: efgh and
efgh4. If we pick efgh we are left in the same situation. Once we pick efgh4
we must pick a word starting with 5, but there is only one: 5ijkl. After this we
can either pick 6 and then 78, or we can pick ijkl a number of times, followed
by 678.

This gives the factorization

(0ab)((cd)(ab))m−1(cd123)(efgh)n−1(efgh4)(5ijkl)(ijkl)p−1(6)(78)

9



having 1 + 2(m − 1) + 1 + (n − 1) + 1 + 1 + (p − 1) + 1 + 1 = 2m + n + p + 2
terms.

Case 2: the first word is 0abc. Then the next word must begin with d, and
there are only two choices: dabc and d1. If we pick dabc we are back in the same
situation. If we pick d1 then the next word must begin with 2, but there is only
one such word: 23e. Then the next word must begin with f , but there is only
one: fg. Then the next word must begin with h, but there are only two: he
and h45ij. If we pick he we are back in the same situation. Otherwise we must
have a word beginning with k, but there are only two: klij and kl678. This
gives the factorization

(0abc)(dabc)m−1(d1)(23e)((fg)(he))n−1(fg)(h45ij)(klij)p−1(kl678)

having 1 + (m− 1) + 2 + 2(n− 1) + 1 + 1 + (p− 1) + 1 = m+ 2n+ p+ 2 terms.

Case 3: the first word is 0a. Then only bcda and bcd12 start with b, so we must
choose bcda over and over until we choose bcd12. Only one word starts with 3
so we must choose 3ef . Now we must choose ghef again and again until we
choose gh45i. We now choose jk and li alternately until jkl67. Finally, we pick
8.

This gives us a factorization

(0a)(bcda)m−1(bcd12)(3ef)(ghef)n−1(gh45i)((jk)(li))p−1(jkl67)(8)

with 1 + (m− 1) + 2 + (n− 1) + 1 + 2(p− 1) + 2 = m+ n+ 2p+ 2 terms.

So for all these three factorizations to have the same number of terms, we
must have

2m+ n+ p+ 2 = m+ 2n+ p+ 2 = m+ n+ 2p+ 2.

Eliminating variables we get that m = n = p. So when we compute ND(L) and
intersect with the regular language 0(abcd)+123(efgh)+45(ijkl)+678 we get

{0(abcd)n123(efgh)n45(ijkl)n678 : n ≥ 1},

which is clearly a non-CFL.

Remark 16. The previous two examples can be recoded over a binary alphabet,
by mapping the i’th letter to the string baib.

5. Multiset decipherable (MSD) codes

We now consider multiset decipherable codes, where uniqueness is defined
for a word if all factorizations of that word over a given language have the same
multiset of factors (see Definition 2 for formal details). We again start with a
motivating example.

10



Example 17. Consider L = {a3, a4}. Then

MSD(L) = {a3, a4, a6, a7, a8, a9, a10, a11, a13, a14, a17}.

We can also find examples of finite languages which are proper MSD codes,
as the following example from [10] shows.

Example 18. [10] Let L = {aab, aba, aabaa, baaababa}. Then MSD(L) = L∗;
thus L is an MSD code, but L is not a UD code since

aab · aabaa · aba · baaababa = aabaa · baaababa · aab · aba.

As was the case for numerical decipherability, if L is a finite language, then
MSD(L) need not be context-free.

Theorem 19. If L is finite then MSD(L) need not be a CFL.

Proof. Let Σ = {a, b, c}. Define L = {A,B, S1, S2, T1, T2} ⊆ Σ+ as follows:

A = aa, B = aaa, S1 = ab, S2 = ac, T1 = ba, T2 = ca.

Let R = aa(ab)+(ac)+aa(ba)+(ca)+aaa, and consider words of the form

w = aa(ab)r(ac)saa(ba)t(ca)qaaa ∈ L∗ ∩R

with r, s, t, q ≥ 1 and the following two factorizations of w:

ASr1S
s
2AT

t
1T

q
2B = aa · (ab)r · (ac)s · aa · (ba)t · (ca)q · aaa (1)

BT r1 T
s
2S

t
1S

q
2AA = aaa · (ba)r · (ca)s · (ab)t · (ac)q · aa · aa (2)

We now show that w must be of one of these two forms. Since w has prefix
aaab, it must start with either AS1 or BT1. If it starts with AS1 = aa · ab,
the next factors must be Sr−1

1 to match (ab)r, so we have ASr1 . We then see
(ac)s, which can only match with Ss2 . Next, we see aaba; thus we must choose
AT1 = aa ·ba. We then have (ba)t−1, which can only match with T t−1

1 , and then
(ca)q, matching only with T q2 . Finally, the suffix is aaa which can only match
with B as required.

If w starts with BT1 = aaa ·ba, the next part is (ba)r−1, which only matches
with T r−1

1 . Then we see (ca)s, so we must use factors T s2 . We then see (ab)t and
(ac)q, matching with St1 and Sq2 respectively. Finally we have aaaa matching
only with AA as required.

If r = t and s = q, then the number of each factor (A,B, S1, S2, T1, T2) in
factorizations (1) and (2) is identical. Therefore, w always has more than one
factorization (of type (1) or (2)); however, that factorization is not unique up
to multiset if r 6= t or s 6= q. Therefore

MSD(L) ∩R = {aa(ab)r(ac)saa(ba)t(ca)qaaa | (r = t) ∧ (s = q)}
= {ASr1Ss2AT r1 T s2B : r, s ≥ 1},

which is not a context-free language. Thus, since R is regular, we see that
MSD(L) is not context-free.

11



6. Set decipherable (SD) codes

We finally consider the notion of set decipherability, whereby an element of
L∗ is set decipherable if all its factorizations use the same set of elements (see
Definition 4 for formal details). We begin with a motivating example from [5].

Example 20. [5] Let L = {x1, x2, x3, x4} ⊆ {a, b}∗ where x1 = a, x2 =
aba, x3 = bbabb, x4 = babbab. Guzmán [5] proved that L∗ = SD(L); thus L
is a SD code, since every word w ∈ L∗ with non-unique factorization must use
all four factors of L. On the other hand, we see that

x1x4x4x3x2 = a · babbab · babbab · bbabb · aba
= aba · bbabb · a · bbabb · babbab
= x2x3x1x3x4x1,

and thus L is not a UD, ND or MSD code.

We now note that unlike for numerical and multiset decipherability, when L
is a finite language then the set SD(L) of words of L∗ which are set decipherable
is in fact regular.

Theorem 21. If L is finite then SD(L) is regular.

Proof. On input x we nondeterministically attempt to construct two different
factorizations into elements of L, recording which elements of L we have seen so
far. We accept if we are successful in constructing two different factorizations
(which will be different if and only if some element was chosen in one factoriza-
tion but not the other). This NFA accepts L∗ − SD(L). If L is finite, it follows
that SD(L) is regular.

In more detail, here is the construction. States of our NFA are 6-tuples of
the form [w1, s1, v1, w2, s2, v2] where w1, w2 are the words of L we are currently
trying to match; s1, s2 are, respectively, the suffixes of w1, w2 we have yet to
see, and v1, v2 are binary characteristic vectors of length |L|, specifying which
elements of L have been seen in the factorization so far (including w1 and w2,
although technically they may not have been seen yet). Letting C(z) denote the
vector with all 0’s except a 1 in the position corresponding to the word z ∈ L,
the initial states are [w,w,C(w), x, x, C(x)] for all words w, x ∈ L. The final
states are of the form [w, ε, v1, x, ε, v2] where v1 6= v2. Transitions on a letter a
look like δ([w1, as1, v1, w2, as2, v2], a) = [w1, s1, v1, w2, s2, v2]. In addition there
are ε-transitions that update the corresponding vectors if s1 or s2 equals ε, and
that “reload” the new w1 and w2 we are expecting to see:

δ([w1, ε, v1, w2, s2, v2], ε) = {[w,w, v1 ∨ C(w), w2, s2, v2] : w ∈ L},
δ([w1, s1, v1, w2, ε, v2], ε) = {[w1, s1, v1, w, w, v2 ∨ C(w)] : w ∈ L},

where ∨ here denotes the binary ‘or’ operator applied componentwise to binary
vectors.

12



A modification to the previous construction also shows that the shortest
word failing to have subset-invariant factorization is bounded polynomially:

Proposition 22. Suppose |L| = n and the length of the longest word of L is
m. Then if some word of L∗ fails to have subset-invariant factorization, there
is a word with this property of length O(m2n).

Proof. We give an NFA N recognising L+ − SD(L). Let u ∈ L+ be a minimal
length word in L+ − SD(L). By the definition of subset-invariant factorization,
there exists a wi ∈ L such that u = a1a2 · · · ak1 = b1 · · · bk′2wibk′2+1 · · · bk2 , where
ai ∈ L−{wi} and bj ∈ L for each 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2. In other words, u
has a factorization where wi is used, and another factorization where it is not
used.

We define n superstates Si of N for 1 ≤ i ≤ n. Superstate Si tries to find
two factorizations of an input word, one of which uses wi and one of which
does not. We keep track of two separate factorizations of the input word, which
we denote v1 and v2, where v1 ∈ (L − {wi})∗ and v2 ∈ L∗. The NFA has ε
transitions to the start state of each Si. We now describe the states of Si.

States in Si are of the form (v1, v2, k), where k ∈ {1, 2}, at least one of
v1 or v2 equals ε, v1 ∈ suff(wj) for some wj ∈ L − {wi} and v2 ∈ suff(wj′)
for some wj′ ∈ L. The start states of Si are {(wj , ε, 1)|wj ∈ L − {wi}} and

{(ε, wj′ , 1)|wj′ ∈ L}. We define the following transitions in Si, where
u−→

denotes a transition labelled by a word u and k ∈ {1, 2}:

(v1, ε, k)
v1−→ (ε, v′2, k) if ∃v′2 ∈ Σ∗ where v1v

′
2 ∈ L;

(v1, ε, k)
v′1−→ (v′′1 , ε, k) if ∃v′1, v′′1 ∈ Σ∗ where v1 = v′1v

′′
1 and v′1 ∈ L;

(ε, v2, k)
v2−→ (v′1, ε, k) if ∃v′1 ∈ Σ∗ where v2v

′
1 ∈ L− {wi};

(ε, v2, k)
v′2−→ (ε, v′′2 , k) if ∃v′2, v′′2 ∈ Σ∗ where v2 = v′2v

′′
2 and v′2 ∈ L− {wi};

(v1, ε, 1)
v1−→ (ε, v′2, 2) if ∃v′2 ∈ Σ∗ where v1v

′
2 = wi;

(v1, ε, 1)
v′1−→ (v′′1 , ε, 2) if ∃v′1, v′′1 ∈ Σ∗ where v1 = v′1v

′′
1 and v′1 = wi.

The final state of N is (ε, ε, 2). We also add ε transitions from (ε, ε, 2) to
{(wj , ε, 2)|1 ≤ j ≤ n and j 6= i} and {(ε, wj′ , 2)|1 ≤ j′ ≤ n} in order that,
having read a word without subset-invariant factorization, we can recognise the
extensions of this word that still belong to L∗ and for which the first component
continues to omit wi from its factorization.

In superstate Si, we thus see that we have 4(m+1)n states. If there exists a
word u ∈ L+−SD(L), then there is some wi ∈ L for which u has a factorization
containing/not containing wi. After reading in word b1 · · · bk′2 , we can reach state
(v1, ε, 1) where v1 ∈ suff(wp) for some wp ∈ L − {wi}. This is since b1 · · · bk′2
can be factored over L exactly (thus we have ε in the second component) and
the first component is the suffix of some element of L − {wi} that is yet to be
matched. At this point, when we read v1, we can transition to u′′ = (ε, v′2, 2) if
there exists v′2 ∈ Σ∗ where v1v

′
2 = wi. Otherwise, we transition from (v1, ε, 1)

13



to (v′′1 , ε, 2) after reading v′1, if there exists v′1, v
′′
1 ∈ Σ∗ where v1 = v′1v

′′
1 and

v′1 = wi. After this point, we know we have read wi in exactly one factorization
(denoted by the element 2 of the state). Thus, reaching (ε, ε, 2) implies the read
word has two factorizations, the second of which contains wi.

If we visit the same state in Si more than once, then a shorter word u′ ∈ L+−
SD(L) exists (which is a contradiction since u is assumed shortest). Since states
in Si are connected by words of length no more than m, and we have 4(m+ 1)n
states in Si, then a minimal solution word is no longer than O(m2n).

To further illustrate the method shown in the previous proof, we introduce
the following example.

Example 23. Let L = {1, 4, b2, b23, b34, 1b, 2b2, 3b3, 4b4}. It is clear that we
have the following two factorizations of u = 1b2b23b34 over L:

1 · b2 · b23 · b34

1b · 2b2 · 3b3 · 4

Note that wi = 2b2 ∈ L is a factor appearing in one factorization, but not the
other. Then we find the following path in the corresponding NFA (in superstate
Si) defined in Corollary 22:

(1, ε, 1)
1−→ (ε, b, 1)

b−→ (2, ε, 1)
2−→ (ε, b

2
, 2)

b2−→ (3, ε, 2)
3−→ (ε, b

3
, 2)

b3−→ (4, ε, 2)
4−→ (ε, ε, 2)

The next result shows that we can achieve a quadratic lower bound for the
shortest word in L∗ lacking set-decipherability.

Proposition 24. There exist examples with |L| = 2 and longest word of length
m for which the shortest word of L∗ failing to have subset-invariant factorization
is of length m(m− 1).

Proof. Consider the finite language Lm = {am−1, am} ⊆ {a}∗ for some m > 1.
The shortest word of L∗m lacking subset-invariant factorization is a(m−1)m, since
a(m−1)m = (am−1)m = (am)m−1. No shorter subset-invariant factorization of
a(m−1)m over Lm can exist since m and m+ 1 are relatively prime.

Proposition 24 thus defines a class of languages Lm for m ≥ 1 consisting of
two words of length Θ(m) for which the shortest word lacking subset-invariant
factorization has length Θ(m2).

In contrast to unique decipherability, if L is a regular language, then SD(L)
need not be context-free, as we now show.

Theorem 25. If L is regular then SD(L) need not be a CFL.

Proof. We use a variation of the construction in the proof of Theorem 19. Let
L = (ab)+(ac)+aa + (ba)+(ca)+ + aa + aaa. Then (using the notation in the
proof of Theorem 19), if

w = aa(ab)r(ac)saa(ba)t(ca)qaaa ∈ SD(L) ∩R

14



with r, s, t, q ≥ 1 then there are two different factorizations of w:

w = aa · (ab)r(ac)saa · (ba)t(ca)q · aaa
= aaa · (ba)r(ca)s · (ab)t(ac)qaa · aa,

which are subset-invariant if and only if r = t and s = q. So

SD(L) ∩ R = {aa(ab)r(ac)saa(ba)r(ca)saaa : r, s ≥ 1},

which is not a CFL, and thus neither is SD(L).

7. Complexity results

We have so far studied classifications of UD(L),ND(L),MSD(L) and SD(L)
for given language classes L. We now investigate a variety of upper bounds for
these forms of unique decipherability.

Theorem 26. Let L be a context-sensitive language. Then the following lan-
guages are all (constructively) context-sensitive: UD(L),ND(L),MSD(L) and
SD(L).

Proof. Since L is a CSL, there exists a linear bounded automaton (LBA) M0

that decides it. We construct a nondeterministic LBA M to decide L∗∩XD(L),
where XD ∈ {UD,ND,MSD,SD}, i.e. the relative complement of XD is decided
by M . By the Immerman-Szelepcsényi theorem [8, 14], the class of context-
sensitive languages is (constructively) closed under complement, and therefore
XD(L) is also context-sensitive.

Let the input alphabet of M0 be Σ. The LBA M accepts a word w ∈ Σ∗ iff
w ∈ L∗ ∩ XD(L). Assume that M has multiple work tapes at its disposal, by
the standard method of increasing the tape alphabet size by a constant factor.
The LBA M works in three stages:

Stage 1. Verify that w ∈ L∗. We modify M0 to create a machine M ′0 with
a new (possibly nondeterministic) ε edge from each final state to each initial
state, so M ′0 decides L∗. If w 6∈ L∗ we reject. Otherwise, we proceed to Stage 2.

Stage 2. Guess two factorizations of w. We use two (initially empty) work
tapes τ and ρ to store two guesses at independent factorizations of w. Let ◦ be
a symbol such that ◦ 6∈ Σ. The LBA reads each letter of w sequentially and
appends it to both τ and ρ. After appending each letter except the final letter
of w, the machine may nondeterministically append a ◦ symbol to τ and/or to
ρ. Thus the word w is written on τ and ρ with ◦ spacer symbols.

Stage 3. Verify unique factorization of w is violated by τ , ρ. The machine first
ensures that the word on τ is not equal to that on ρ (this is trivial, so we give
no details). Then, let τ also denote the word written on work tape τ and write
τ = τ1 ◦τ2 ◦· · ·◦τk1 such that τi ∈ Σ∗ for 1 ≤ i ≤ k1. Define ρ = ρ1 ◦ρ2 ◦· · ·◦ρk2
such that ρj ∈ Σ∗ for 1 ≤ j ≤ k2.

15



We now independently apply M0 to each τi and ρj for 1 ≤ i ≤ k1 and
1 ≤ j ≤ k2 to ensure that each such word belongs to L (otherwise, the LBA
rejects). If each τi ∈ L and ρj ∈ L, then ρ and τ store two distinct factorizations
of w over L, with factors split by the ◦ symbol and thus w is not uniquely
decipherable so the machine accepts. If in addition k1 6= k2, then w is not
numerically decipherable. To determine if w is set or multiset decipherable, we
can use two additional work tapes to write the set of factors used in ρ and τ , or
to keep track of the number of times each factor is used (respectively).

Example 27. Let L = {ab, bab, abb} be the language of Example 13. Given
w = abbabbabbab ∈ L∗ ∩ UD(L), let us consider how w may be parsed by the
LBA M of Theorem 26 at the end of Stage 2:

Input : abbabbabbab

τ : ab ◦ bab ◦ bab ◦ bab
ρ : abb ◦ abb ◦ abb ◦ ab

Since τ 6= ρ, and each factor belongs to L, then w 6∈ UD(L). We also note
that w 6∈ MSD(L) and w 6∈ SD(L) is shown by the same factorization.

If L is a context-sensitive language specified by a given LBA, Theorem 26
shows that the membership problem for each of UD(L),ND(L),MSD(L), and
SD(L) lies in PSPACE. In the next proposition, we strengthen this to show that
membership in these classes is actually PSPACE-complete.

Proposition 28. Suppose L is a CSL, given by an LBA M . Then the mem-
bership problem for each of the classes UD(L),ND(L),MSD(L) and SD(L) is
PSPACE-complete.

Proof. Theorem 26 shows that if L is a context-sensitive language, then so are
{UD(L),ND(L),MSD(L),SD(L)}, and thus membership is in PSPACE.

For the hardness result, note that the membership problem for an arbitrary
CSL is PSPACE-complete, but this does not immediately imply that member-
ship in UD(L),ND(L),MSD(L), or SD(L) is PSPACE-hard to determine.

Let # be some new symbol such that # 6∈ Σ, where Σ is the alphabet of L.
Let L# denote (by abuse of notation) the concatenation of the languages L and
{#}. Note that UD(L#) = (L#)∗ since L# is a prefix code (since # 6∈ Σ), and
thus L# is uniquely decipherable. This implies that L# is also numerically,
multiset and set decipherable and therefore ND(L#) = MSD(L#) = SD(L#) =
(L#)∗. Now, a word w ∈ L if and only if w# ∈ UD(L#) (and similarly for
ND(L#),MSD(L#),SD(L#)).

Theorem 29. Let L be a CFL given by a CFG G. Then determining if any of
UD(L), ND(L), MSD(L) or SD(L) is empty is undecidable.

Proof. We will reduce from the Post correspondence problem (PCP). The result
follows from a modification of the proof of [7, Theorem 9.20], where it is proven
that the ambiguity problem for CFLs is undecidable. Given a context-free

16



language L, the ambiguity problem is to determine if there exists some word
w ∈ L with more than one leftmost derivation for the CFG that generates L.

Let Σk = {a1, a2, . . . , ak} and Σ2 = {0, 1}. Given an instance of PCP
h, g : Σ∗k → Σ∗2, we form a CFG, G as follows: the start variable is S, and the
rules are

S → A |B |#
A→ h(a1)Aa1#

B → g(a1)Ba1

A→ h(ai)Aai |h(ai)ai

B → g(ai)Bai | g(ai)ai

for 2 ≤ i ≤ k. Without loss of generality, we may assume that a solution to
this instance starts with the element a1, and this element is used only once (by
assuming that it is a ‘Claus instance’ of PCP [6]).

(⇒) We must prove that each element in L(G)∗ has a unique factorization
if and only if there does not exist a solution to the PCP instance. Assume that
there exists a solution to the PCP instance, w = a1w2w3 · · ·wn ∈ Σnk where
w2, w3, . . . , wn ∈ {a2, . . . , ak}. Then the following word is derivable in L(G)∗ in
the following two ways:

[h(a1)h(w2) · · ·h(wn)wn · · ·w2a1#] = [g(a1)g(w2) · · · g(wn)wn · · ·w2a1][#],

where we use [ ] to denote a factor.
In the first derivation, we use exactly one element of L(G), and in the second

derivation we have two elements of L(G). This proves that if there exists a
solution to the PCP instance, then some element of L(G)∗ has more than one
factorization over L(G) (under all four notions of factorization that we consider).

(⇐) If no solution to the PCP instance exists, then every element of L(G)∗

has a unique factorization into members of L(G), which is easy to see [7]. The
modification we made to rules S → A |B |# and A→ h(a1)Aa1# do not change
this.

8. Conclusions

In this paper we studied various notions of factorizations for formal lan-
guages. Table 1 summarizes the results regarding the position of each of the
various types of factorization in the Chomsky hierarchy with respect to the lan-
guage L chosen. By CSL-CFL we mean that the resulting language is a CSL,
and need not be a CFL.

We are also interested in determining, where possible, good upper and lower
bounds for the length of the shortest word that violates particular types of
factorization for given language classes. In Table 2 we summarize our results for

17



L UD(L) ND(L) MSD(L) SD(L)

Finite Regular CSL-CFL CSL-CFL Regular

Regular Regular CSL-CFL CSL-CFL CSL-CFL

CFL CSL-CFL CSL-CFL CSL-CFL CSL-CFL

CSL CSL-CFL CSL-CFL CSL-CFL CSL-CFL

Table 1: Comparison of various factorizations

L
UD(L) SD(L)

Lower Upper Lower Upper

Finite Ω(k2) O(n2) Ω(km2) O(km2)

Regular Ω(n2) O(n2) - -

Table 2: Bounds of the shortest length words violating UD(L) and SD(L)

upper and lower bounds on the length of the shortest word not satisfying UD(L)
or SD(L). In this table, n denotes the number of states in a DFA recognising
L, if L is regular, and m denotes the longest word in L and k = |L|, if L is a
finite set of words. If L is regular, then SD(L) need not even be context-free, as
we show in Theorem 25, and therefore we do not specify bounds in this case.

Acknowledgments

The idea of considering numerically decipherable codes was inspired by a
talk of Nasir Sohail at the University of Waterloo in April 2014.

[1] P. C. Bell, D. Reidenbach, and J. Shallit. Factorizations in formal lan-
guages. In I. Potapov, ed., Proc. 19th International Conference on Devel-
opments in Language Theory, DLT’15, Lecture Notes in Computer Science,
Vol. 9168, Springer, 2015, pp. 97–107.

[2] J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclope-
dia of Mathematics and Its Applications, Vol. 129. Cambridge University
Press, 2010.

[3] F. Blanchet-Sadri and C. Morgan. Multiset and set decipherable codes.
Computers and Mathematics with Applications 41 (2001), 1257–1262.

[4] R. G. Galagher. Information Theory and Reliable Communications. Wiley,
New York, 1968.

[5] F. Guzmán. Decipherability of codes. Journal of Pure and Applied Algebra,
141(51), (1999), 13–35.

18



[6] V. Halava, T. Harju, and M. Hirvensalo. Undecidability bounds for integer
matrices using Claus instances. International Journal of Foundations of
Computer Science 18 (5) (2007), 931–948.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation, 2nd edition. Addison-Wesley, 2001.

[8] N. Immerman. Nondeterministic space is closed under complementation.
SIAM Journal on Computing 17 (1988), 935–938.

[9] H. Jürgensen and S. Konstantinidis. Codes. In G. Rozenberg and A.
Salomaa, eds., Handbook of Formal Languages, Vol. 1: Word, Language,
Grammar, Springer-Verlag, 1991, pp. 511–607.

[10] A. Lempel. On multiset decipherable codes. IEEE Transactions on Infor-
mation Theory 32 (1986), 714–716.

[11] N. Rampersad, J. Shallit, and M.-w. Wang. Inverse star, borders, and
palstars. Information Processing Letters 111 (2011), 420–422.

[12] A. Restivo. A note on multiset decipherable codes. IEEE Transactions on
Information Theory 35 (1989), 662–663.

[13] J. Shallit. A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, 2009.

[14] R. Szelepcsényi. The method of forcing for nondeterministic automata.
Bulletin of the EATCS 33 (1987), 96–100.

[15] A. Weber and T. Head. The finest homophonic partition and related code
concepts. In I. Pŕıvara, B. Rovan, and P. Ruzicka, eds., Proc. 19th Inter-
national Symposium on Mathematical Foundations of Computer Science,
MFCS’94, Lecture Notes in Computer Science, Vol. 841, Springer, 1994,
pp. 618–628.

[16] G.-Q. Zhang. Automata, Boolean matrices, and ultimate periodicity. In-
formation and Computation 152 (1999), 138–154.

19


