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ABSTRACT
The discrepancy between estimates of the Hubble constant (H0) measured from local (z � 0.1) scales and from scales of the
sound horizon is a crucial problem in modern cosmology. Peculiar velocities (vpec) of standard candle distance indicators can
systematically affect local H0 measurements. We here use 2MRS galaxies to measure the local galaxy density field, finding a
notable z < 0.05 underdensity in the SGC-6dFGS region of 27 ± 2 per cent. However, no strong evidence for a ‘Local
Void’ pertaining to the full 2MRS sky coverage is found. Galaxy densities are used to measure a density parameter, �φ+−,
which we introduce as a proxy for vpec that quantifies density gradients along a supernova (SN) line of sight. �φ+− is found
to correlate with local H0 estimates from 88 Pantheon Type Ia supernovae (SNe Ia; 0.02 < z < 0.05). Density structures on
scales of ∼50 Mpc are found to correlate strongest with H0 estimates in both the observational data and in mock data from the
MDPL2-Galacticus simulation. Using trends of H0 with �φ+−, we can correct for the effects of density structure on local H0

estimates, even in the presence of biased vpec. However, the difference in the inferred H0 estimate with and without the peculiar
velocity correction is limited to < 0.1 per cent. We conclude that accounting for environmentally induced peculiar velocities of
SN Ia host galaxies does not resolve the tension between local and CMB-derived H0 estimates.

Key words: methods: statistical – transients: supernovae – galaxies: luminosity function, mass function – cosmological param-
eters – cosmology: observations – cosmology: theory.

1 IN T RO D U C T I O N

The Hubble constant at the present epoch (H0) parametrizes the
current rate of expansion of the Universe. A knowledge of the
precise value of H0 is crucial to Lambda cold dark matter (�CDM)
simulations and their extensions, to our description of the present-day
Universe and to predictions of its ultimate fate.

A key problem in modern-day cosmology is the persistent tension
between measurements of H0 when probed on different scales. Using
measurements of anisotropies in the cosmic microwave background
(CMB) and calibrating using a �CDM cosmology, the Planck
Collaboration VI (2018, henceforth P18) obtain the most stringent
estimate of H0 from the physics of the sound horizon to date, finding
H0 = 67.36 ± 0.54 km s−1 Mpc−1. Alternatively, measurements of
H0 on local scales of our Universe find larger values of H0 (Riess et al.
2016, 2018b). Riess et al. (2019, henceforth R19), using Large Mag-
ellanic Cloud (LMC) Cepheids to calibrate Type Ia supernova (SN Ia)
photometry, give an estimate of H0 = 74.03 ± 1.42 km s−1 Mpc−1,
a result that lies in 4.4σ tension with that of P18.

Increasing numbers of works in the literature cite physical effects
as the cause of the Hubble tension (see, e.g. Di Valentino, Linder &
Melchiorri 2018; Agrawal et al. 2019; Vattis, Koushiappas & Loeb
2019). Indeed, R19 note that the H0 discrepancy may point towards
a problem for �CDM, given the reliance of sound-horizon-scale
results on the assumption of the standard cosmology.

� E-mail: T.M.Sedgwick@2013.ljmu.ac.uk

An alternative source of the Hubble tension could instead relate
to local systematics: The cosmic distance ladder, utilized on local
(typically, z � 0.1) scales (and e.g. in R19), offers a direct and
largely model-independent measure of H0. However, a problem faced
on these scales is that peculiar velocities, due to the inhomogeneity of
the local Universe, are non-negligible when compared to recession
velocities. The component of an object’s velocity due to cosmic
expansion must be sufficiently decoupled from peculiar velocity for
an accurate calculation of H0. Peculiar velocities are, on local scales,
solely gravitationally induced motions (Peebles & Shaviv 1982), and
as a result, these velocities are expected to be strongly correlated with
the galaxy density field.

There exists in the literature debated evidence for a ‘Local Void’,
or underdensity at our location in the Universe. The contrast and
isotropy of such an underdensity has been investigated using various
phenomena, including SNe Ia (Zehavi et al. 1998; Conley et al.
2007; Jha, Riess & Kirshner 2007), clusters (Giovanelli et al.
1999; Hudson et al. 2004; Böhringer et al. 2015), and galaxies
(Shanks et al. 1984; Ratcliffe et al. 1996; Huang et al. 1997;
Busswell et al. 2004; Keenan, Barger & Cowie 2013) to probe
the local density. Whitbourn & Shanks (2014, henceforth WS14)
find a particularly significant galaxy underdensity, most prominent
in the direction of the 6dFGS South Galactic Cap region (SGC-
6dFGS) in which a deficit of ∼40 per cent is estimated for z

< 0.05. This region has been cited as underdense independently
from the galaxy samples of the 6dFGS Redshift Survey (Busswell
et al. 2004) and Two-Micron All-Sky Survey (2MASS; Frith et al.
2003).
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The above studies probe the density on a regional basis, and a stem
of this debate is whether the local underdensity found in numerous
works would persist across the full sky (Shanks, Hogarth & Metcalfe
2018, 2019; Riess et al. 2018a,c; Kenworthy, Scolnic & Riess 2019).
Recent work from Böhringer, Chon & Collins (2019) finds a local
X-ray cluster underdensity that pertains to the full sky. The existence
of such an isotropic void would be expected to induce a bias towards
peculiar velocities away from the observer, typically increasing local
H0 estimates away from the true value. Whilst past studies have
attempted to calculate the expected error in H0 estimates from the
measured density contrast (see, e.g. Shanks et al. 2019), estimating
the offset from the true H0 often relies on a modelling of the void
(Enqvist & Mattsson 2007; Kenworthy et al. 2019).

In this work, we first attempt to form an independent, near-full
sky picture of the local galaxy density field for comparison with
previous studies. We then introduce a method for the empirical
estimation of peculiar velocities using the galaxy density field. To
bypass assumptions related to the geometry of the Local Void, we
instead directly search for correlations between the density field
and SN Ia H0 estimates. In doing so, we demonstrate that peculiar
velocities are more tightly linked to gradients in the density field
along the SN LOS than to the absolute density of the SN region.
Ultimately, we are able to quantify the fractional effect of the galaxy
density field on the local H0 estimate.

The structure of this work is as follows: Section 1.1 presents
the Hubble constant estimator used in this study. Section 2 outlines
the data sets used. Section 3.1 presents the methodology for the
calculation of the local galaxy density field. Section 3.2 then
discusses the application of the aforementioned H0 prescription to
a sample of SNe Ia. We then introduce a density parameter using
our galaxy density field, which is designed to act as a proxy for
peculiar velocity. We test correlations of this parameter with our
aforementioned SN Ia H0 estimates in Section 4.2.1. In Section 4.2.2,
we repeat our analyses using mock data to compute a mock density
field where line-of-sight (LOS) velocities are known, in order to
test our observational results and assess sources of uncertainty in
the observations. We conclude this section with final estimates of
the fractional effect on the local H0 measurement due to peculiar
velocities.

1.1 Estimator for the locally derived Hubble constant

In this paper, the estimator for the measured Hubble constant is given
by

H0,est = H0,fid
DC,fid(zcmb)

DC,est
= c

∫ zcmb
0 [E(z)]−1 dz

DC,est
, (1)

where the terms with subscript ‘fid’ correspond to the fiducial
cosmology applied to calculate distances as a function of zcmb, and
DC, est is the estimated comoving distance of the standard candle
[DC = DL/(1 + zhelio) assuming a flat cosmology]. The CMB-frame
redshift is given by

1 + zcmb = (1 + zhelio)(1 + zsun,comp) = (1 + zcos)(1 + zpec), (2)

where zsun,comp is from the component of the Sun’s motion toward the
source in the CMB frame, with zsun = 0.001 23 (Lineweaver et al.
1996; Fixsen 2009), and the other subscripts refer to the heliocentric,
cosmological, and peculiar redshifts of the observed source.

Defining velocity as v = cln (1 + z) (more useful and accurate than
the historical cz; Baldry 2018), a straightforward and transparent
approximation for DC, comoving distance, can be obtained using the
usual present-epoch deceleration parameter (q0) (see Appendix A).

Figure 1. The fractional error in the estimated Hubble constant due to
peculiar velocities and erroneous cosmological assumptions. The solid lines
show the fractional error with a 0.2 offset in q0 between the true and fiducial
cosmologies. The dot–dashed lines show the fractional error for systematic
offsets of 200 km s−1 between CMB-frame velocities and cosmological
recession velocities, while the dotted lines show the same with a reduced
systematic offset of 50 km s−1. The shaded region depicts 0.02 < z < 0.05,
which is ultimately the focus for H0 estimates in this work.

From equations (1) and (A6), an accurate approximation for the
Hubble constant estimator is then given by

H0,est � vcmb

DC,est

(
1 − q0,fidvcmb

2c

)
, (3)

with vcmb = vcos + vpec. From this equation, the effect of peculiar
velocities and choice of fiducial cosmology on the estimated Hubble
constant is evident. The effects of cosmological assumptions on the
results of this work are shown in Section 4.3.

Sources of uncertainty for estimating the Hubble constant include
(i) calibration of the standard candle scale, (ii) photometric measure-
ments, (iii) bandshifts (k-corrections), (iv) evolution, (v) differences
between the true cosmology and the fiducial cosmology, and (vi)
peculiar velocities. Any systematic uncertainty from the first two
is generally independent of redshift, while the uncertainty from
the cosmology (or bandshift or evolution) increases approximately
proportional to vcmb. The uncertainties from peculiar velocities
are approximately proportional to 1/vcos because vcmb = vcos(1 +
vpec/vcos).

Fig. 1 illustrates the differences in the H0 estimate arising from
redshift-dependent uncertainties. The impact of peculiar velocities, in
particular any non-zero average, pushes one to measure H0 at vcos >

20 000 km s−1. However, in order to limit the degeneracy with q0

and uncertainties that scale proportional to vcos, it would be useful to
measure H0 at lower recessional velocities. Either way, it is important
to control for any systematic peculiar velocity offsets in the standard
candle sample. It is the aim of this paper to test and account for
peculiar velocity biases.

2 DATA

In order to quantify the effects of the galaxy density field on SN
Ia peculiar velocities, and hence on local H0 measurements, we use
three key data sources:
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(i) The 2MASS Redshift Survey (2MRS). Our galaxy sample with
which to measure the galaxy density field must have redshifts and
cover a large solid angle on the sky, in order to minimize biases
due to cosmic variance. As such we utilize the 2MRS from Huchra
et al. (2012), built from the Extended Source Catalogue (XSC) of
the 2MASS (Skrutskie et al. 2006). The result is a galaxy redshift
sample of 44 599 galaxies with mK ≤ 11.75 mag (henceforth, the K-
band magnitude refers to the extinction-corrected 2MASS isophotal
Vega magnitude measured in an elliptical aperture defined at 20
mag arcsec2) and with |b| ≥ 5◦ (|b| ≥ 8◦ for 330◦ < l ≤ 30◦,
i.e. towards the Galactic bulge), giving 97.6 per cent completeness
within these limits (Huchra et al. 2012), i.e. away from the Zone
of Avoidance (ZoA). This high completeness coupled with redshift
information allows the construction of a three-dimensional picture
of the local galaxy density field.

(ii) The Pantheon SN Ia sample. To test for correlations of the local
galaxy density field with H0 measurements from SNe Ia, we make
use of the Pantheon SN Ia sample (Scolnic et al. 2018). This sample
compiles photometry and spectroscopic redshifts for 1048 SNe Ia. In
this work, we ultimately utilize 88 SNe Ia that overlap with the 2MRS
footprint, are at least 50 Mpc from the ZoA in three-dimensional
Cartesian space, and occupy the redshift range 0.02 < z < 0.05, the
range for which our galaxy density field is best constrained. This is in
order to produce the most reliable H0 estimates or fractional H0 error
when corrected for peculiar velocities, as discussed in Section 4.2.1.

(iii) The MDPL2-Galacticus simulation. To test for the effects of
sample volume, sample size, and cosmic variance on the strength
of correlations of SN Ia H0 estimates with the density field, we
will repeat our analyses using the mock data products of MDPL2-
Galacticus (Knebe et al. 2018), produced by running the Galacticus
semi-analytical code (Benson 2012) on the MultiDark Planck 2
(MDPL2) hydrodynamical simulation (Klypin et al. 2016). Details
are described in Stoppacher et al. (2019) and in the above works,
but to summarize: the result is a 1 h−3 Gpc3 box containing 38403

dark matter particles, whose SDSS ugriz luminosities are traced
over cosmic time. In this work, we make use of the z = 0 redshift
snapshot, using corresponding z-band galaxy luminosities to impose
a detection-limit on the galaxy sample, in order to construct mock
galaxy density fields, used for comparison with the 2MRS K-band
observational counterpart. We will also use these simulations to test
for the cosmic variance on our results, and to estimate how likely our
observed local density structure is within the present-day Universe.

3 ME T H O D O L O G Y

3.1 Measuring the 2MRS galaxy density field

As discussed in Section 1, we aim to quantify the effects of the
galaxy density field on SN Ia peculiar velocities, and hence, on the
local estimate of H0. We therefore proceed to construct the galaxy
density field from the 2MRS Galaxy Catalogue.

This catalogue is flux-limited at mK ≤ 11.75. As a result, we
require a knowledge of the galaxy luminosity function from which
to estimate the completeness of the sample as a function of redshift.
Correcting for this completeness above a chosen luminosity value
yields estimates of volume-limited number densities with redshift.
We choose this minimum luminosity boundary to be LK = 10.5
(where LK here and henceforth refers to the luminosity in logarithmic
units of the solar K-band luminosity quoted by Cohen, Wheaton
& Megeath 2003). This gives volume-limited number densities for
z � 0.02, and is chosen as a trade-off between the maximization
of statistics whilst limiting reliance on the completeness estimation

Figure 2. 2MRS galaxy K-band luminosities versus CMB-frame redshift.
The dashed line indicates the flux limit as a function of redshift. Number
densities as a function of redshift will be corrected to the number expected
with LK > 10.5 (see the text for details). LK = 10.5 is marked with the
dot–dashed horizontal line.

method that will be outlined. The K-band luminosity distribution of
the sample as a function of redshift is shown in Fig. 2.

To improve the accuracy of the nearby galaxy density field, for
which peculiar velocity is most troublesome for the determination
of galaxy distance, we replace the 2MRS redshift in two cases:
first, if the galaxy is matched within 5 arcmin (on the sky) and
150 km s−1 of a galaxy from the Updated Nearby Galaxy Catalogue
of Karachentsev, Makarov & Kaisina (2013), we utilize this catalogue
distance. Secondly, if galaxies are matched within 0.5

′
of a member

of the Extended Virgo Cluster Catalogue (EVCC; Kim et al. 2014), a
distance of 16.5 Mpc is assumed. If either case applies, we compute
and use the redshift implied from the comoving distance via a 737
cosmology (H0 = 70, �m = 0.3, �� = 0.7). Henceforth, the ‘fiducial
cosmology’ means 737 unless explicitly noted.

Galaxy K-band luminosities are calculated using equation (4),
where MK,	 is the solar K-band Vega-mag absolute magnitude of
3.28, and k(z) is the k-correction computed as k(z) = −6.0log (1 +
zhel) following Kochanek et al. (2001):

LK = 5 log(DL,fid(zcmb)/10 pc) + MK,	 − mK + k(z)

2.5
. (4)

To estimate the K-band luminosity function, we employ the
parametric maximum-likelihood method of Sandage, Tammann &
Yahil (1979, henceforth the STY method). The method is well
described in the literature, (see, e.g. Loveday et al. 1992), but in
short, we first assume that the galaxy luminosity distribution is
well described by a single-Schechter function (Schechter 1976). We
estimate the probability of observing a galaxy of a given luminosity
at a given redshift. The single-set of Schechter function parameters
L∗ (the ‘knee’) and α (the faint-end slope), which maximizes the
product of these probabilities over the entire galaxy sample is our
best maximum-likelihood estimate.

The best-fitting Schechter function is then used to estimate the
completeness of galaxy number density at a given redshift. This
is achieved by computing the ratio between the number density
integrated above the flux limit corresponding to this redshift, and the
integrated number density brighter than our reference luminosity of
LK = 10.5. For demonstrative purposes, Fig. 3 shows the luminosity
distribution for the broad redshift range of 0.02 < z < 0.05, as well
as the maximum-likelihood Schechter function fit. For this redshift
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Figure 3. In blue is a histogram of the observed 0.02 < z < 0.05 K-
band luminosity distribution of 2MRS galaxies. The dashed line shows the
maximum-likelihood single-Schechter fit determined using the STY method.
The dotted line shows the luminosity limit for z = 0.05. The dot–dashed line
corresponds to LK = 10.5.

Figure 4. Likelihood values for combinations of the single-Schechter func-
tion parameters α and L∗, from the STY method applied to the 2MRS K-band
luminosities. Likelihood values are in units of the maximum likelihood in
each panel. The three panels show three different CMB-frame redshift ranges
of width 0.01, as indicated.

range, the STY method finds that the likelihood is maximized using
parameters [L∗, α] = [11.02, −0.91]. Next, we assess the best-fitting
Schechter parameters in smaller redshift bins in order to quantify any
parameter evolution.

Fig. 4 shows the redshift evolution of these best-fitting parameters.
In redshift bins of width 0.01, likelihood values as a fraction of the
maximum likelihood for each bin are assessed as a function of L∗

and α. 1.8σ and 1.9σ separations in L∗ and α, respectively, are found
for 0 < z < 0.01 when compared with 0.01 < z < 0.02. Comparing
the latter bin with the 0.02 < z < 0.03 result, separations of 0.35σ

and 1.08σ are found. We conclude that consistency is found within
2σ for the parameter values and hence adopt a fixed α value for the
full redshift range. We use the value corresponding to the inverse-
squared error weighted (henceforth error-weighted) mean over all
redshift bins out to z = 0.1, of α = −0.99.

Figure 5. The maximum-likelihood inferred values of the single-Schechter
parameter L∗ as a function of CMB-frame redshift, when using a fixed α =
−0.99 value. L∗ is computed in redshift bins of width 0.002. The error-
weighted best-fitting line is shown as the dashed blue line. The slope is
consistent with that expected due to luminosity evolution, shown by the red
dot–dashed line, made by connecting the L∗ values of Kochanek et al. (2001)
and Beare et al. (2019) (see the text).

A correct assessment of luminosity versus redshift is crucial to
analyses of the local density field. A lack of correction for this
effect may result in an overestimation of galaxy number densities,
which would worsen with increasing redshift. Such a slope to galaxy
number density could lead to an overestimate of the local outflow,
which would lead to an underestimation in local H0 estimates.

Galaxy luminosities may be expected to evolve since z = 0.1,
primarily due to changes in mass-to-light ratio. The faint-end slope
of the LF, α, is not expected to evolve as significantly in this redshift
range (see, e.g. Madau & Dickinson 2014). Irrespective of any α

evolution, however, we can use the fact that L∗ and α are somewhat
degenerate in order to treat any evolution as purely in luminosity, and
as such this likely wraps in changes to α. (Furthermore, we find in
Section 4.1 that the choice of α does not affect results significantly.)
Repeating the Schechter fit determination as a function of redshift
but with a fixed α value, we quantify the positive trend of L∗ with
redshift, shown in Fig. 5. The blue dashed line shows the error-
weighted regression fit, equating to L∗ = 1.080(z − 0.03) + 10.973,
which has a Spearman rank correlation coefficient (rs) of 0.558 and
a p-value (p) of 0.001.

An indication of expected luminosity evolution is shown as the red
dashed line by connecting the inferred K-band L∗ value of Kochanek
et al. (2001) (z < 0.01) with the z = 0.3 value of Beare et al. (2019),
who adopt α = −1.00. Our trend of L∗ with redshift is consistent
with estimates of luminosity evolution found in the literature.

We next correct galaxy luminosities for evolution as a function of
CMB-frame redshift, such that the evolution-corrected luminosity,
L′

K , is given by L′
K = LK + δL, where δL = −1.080(z − 0.03). The

sample is now re-selected with L′
K > 10.5.

With galaxy luminosities corrected for evolutionary effects, the lu-
minosity function is well-approximated by the same single-Schechter
function for the full redshift range (0 < z < 0.1), with parameters [L∗,
α] = [10.97, −0.99]. The sample completeness above L′

K = 10.5 as
a function of redshift, C(z), is estimated using equation (5), where
L′

min is the maximum of 10.5 and LK + (mK − 11.75)/2.5 + δL.
Completeness as a function of redshift is shown in Fig. 6. Galaxy
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Figure 6. Estimated completeness of L′
K > 10.5 galaxy number statistics in

the 2MRS galaxy sample, as a function of CMB-frame redshift.

counts are weighted by the inverse of C(z), where

C(z) =
∫ ∞

L′
min

φ(L′)dL′∫ ∞
10.5 φ(L′)dL′ . (5)

The volume-limited number density of galaxies in a redshift shell
is estimated using equation (6), where

∑
wN is the sum of weights

corresponding to galaxies within the shell, and V is the shell volume,
dependent on the solid angle spanned by the survey region:

φ(z′) =
∑

wN

V
. (6)

3.2 A proxy for peculiar velocity from the galaxy density field

Equation (1) shows that the local H0 estimate inferred from a
standard candle depends directly on the velocity of the object in
the frame of the CMB. This velocity is the sum of components due
to the expansion of the Universe (vcos), and any peculiar velocities
(vpec). Hence, local H0 estimates depend not only on cosmological
expansion but also on vpec as demonstrated in Fig. 1.

In Section 4.1, we will present galaxy number densities as a
function of redshift, but for the successive stages of our analysis,
we will require a knowledge of the three-dimensional galaxy density
field. As mentioned in Section 1, the observed peculiar velocity is the
LOS component of solely gravitationally induced motions on these
scales. But it is not only the absolute density in an SN Ia region that
determines its peculiar velocity, but also the density gradient along
the LOS (see, e.g. Peebles 1980; Lahav et al. 1991).

We require a density parameter that captures this LOS density
gradient. This is achieved by measuring the density around the SN
region in two hemispheres: The density of galaxies in a hemisphere
between the SN and observer is denoted by φ−, and the density
of galaxies in a hemisphere beyond the SN is denoted by φ+.
The parameter �φ+− is then the LOS density gradient in an SN
environment, and can be written as

�φ+− = φ+ − φ−
φ+ + φ−

. (7)

To determine the contributions of galaxies to �φ+−, galaxy and
SN positions are first converted into three-dimensional Cartesian
coordinates using RA, Dec., and comoving distance derived from
CMB-frame redshift, using the fiducial cosmology. We then measure
the angle made between the LOS and the SN-galaxy directional
vector. Let us define a function ηi. If the cosine of this angle is
positive, ηi = 1, and a galaxy i contributes to φ+. Otherwise, ηi =
−1 and the contribution is to φ−. �φ+− can now be re-written as

�φ+− =
∑

i ηiwN,i exp(−|�rgal,i − �rsn|2/2σ 2))∑
i wN,i exp(−|�rgal,i − �rsn|2/2σ 2))

. (8)

Here, wN,i are the weights on contributions from each galaxy,
i, determined previously with the STY method for our density
versus redshift analysis. �rgal,i is the LOS vector from observer to
each galaxy, and �rsn is the LOS vector from observer to SN. The
parameter σ controls how sharply contributions to �φ+− decrease
as a Gaussian with SN-galaxy separation. We will refer to this
parameter throughout this work, along with another parameter, R,
which represents the sphere radius out to which we consider density
contributions.

We highlight the parameters R and σ because we aim to test
for correlations for H0 with �φ+−. We will investigate whether
particular values of R and/or σ maximize the strength of correlations,
and, in doing so, aim to reveal the scales of density structure that
control peculiar velocities in SN environments.

Our method of estimating a proxy for peculiar velocity directly
from the galaxy density field produces an independent test for the
effects of density flows on H0 estimates without the use of flow
models, often utilized in the literature (e.g. Hudson et al. 2004; Neill,
Hudson & Conley 2007; Scolnic et al. 2018). We are able to assess
the effects of peculiar velocity with no assumptions for the geometry
of any density structure, and can assess the impact of structure on a
wide variety of scales.

4 R ESULTS AND DI SCUSSI ON

4.1 Regional 2MRS galaxy densities

The top panel of Fig. 7 shows galaxy number densities as a function
of CMB-frame redshift for the sky coverage of 2MRS, equating to a
∼91 per cent coverage of the sky (see Section 2). Number densities
are quoted in logarithmic units of the global density, φglobal, itself
calculated in this work as the error-weighted mean density for 0
< z < 0.1, with a value of 10−2.49 Mpc−3 bin−1. Densities are
given for redshift bins of width 0.002. Poisson errors are shown,
demonstrating the well-constrained nature of density structure out to
at least z ∼ 0.08. For the full 2MRS coverage, our z < 0.05 integrated
underdensity equates to only 6 ± 1 per cent. As such, although we
cannot make a strong statement for redshifts exceeding those of the
2MRS galaxy survey, we find no evidence for a void pertaining to
the full sky out to at least z = 0.1.

As a comparison with previous studies of the galaxy den-
sity field, we calculate densities for the regions of NGC-SDSS
(150◦ < RA <220◦, 0◦ < Dec. <50◦) and SGC-6dFGS (330◦

< RA <50◦, −50◦ < Dec. <0◦), regions of focus in WS14, who
also utilize 2MASS photometry, coupled with redshifts from SDSS
and 6dFGS for the two regions, respectively. Their densities are
plotted as the grey-filled regions in the bottom two panels of Fig. 7,
along with our results. Also plotted are the REFLEX-II/CLASSIX
cluster densities from Böhringer et al. (2015, 2019).

A comparison with WS14 shows consistency for densities in the
NGC-SDSS region. We obtain an integrated z < 0.05 underdensity
of 8 ± 3 per cent for this region. WS14 found their largest underden-
sities in the SGC-6dFGS region. Calculating the integrated number
density for z < 0.05, they obtain a 40 ± 5 per cent underdensity in
this region. We find an equivalent underdensity in this region of
27 ± 2 per cent (Poisson error only), which is a 2.4σ tension.

In light of this discrepancy, we test our density measurements for
the effects of our assumptions for the luminosity function, used to
correct for LK > 10.5 galaxy incompleteness beyond z ∼ 0.02. We
find that a deviation in the Schechter function slope of α = 0.1 either
side of the adopted α = −0.99 produces a 3 per cent deviation to the
z < 0.05 integrated density, and as such cannot be the main source
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The effects of v pec in SN Ia environments on H0 3733

Figure 7. Galaxy number densities as a function of CMB-frame redshift in logarithmic units of the global density. Black, red, and blue circles depict densities
for the full 2MRS survey region, the NGC-SDSS region, and SGC-6dFGS region, respectively. Shown as green points are |b| > 20◦ CLASSIX cluster densities
(top panel), CLASSIX cluster densities in the NGC-SDSS region (middle panel; Böhringer et al. 2019), and REFLEX-II cluster densities in the SGC-6dFGS
region. Grey-filled regions depict number densities found by WS14.

of the discrepancy. Note also that Fig. 7 shows our SGC-6dFGS
result deviates most from the WS14 result for z < 0.02, the redshift
range for which our sample is complete for LK > 10.5, i.e. where
no completeness corrections are required. Furthermore, we estimate
sample completeness using an evolving LF for z � 0.02, whereas
WS14 use a fixed LF to model completeness for the full redshift range
of 0 < z < 0.1. It is worth noting, however, that Whitbourn & Shanks
(2016) still find a significant local underdensity, consistent with their
previous analysis, when instead using an LF fitted simultaneously
with the galaxy density distribution, albeit with a steeper faint-end
slope to their LF than found in this work.

Comparing to other recent results in the literature, Jasche & Lavaux
(2019) use physical Bayesian modelling of the non-linear matter
distribution and find no clear evidence for an underdensity in the
direction of the SGC-6dFGS region, with an underdensity of 3 ±
11 per cent. Böhringer et al. (2015) find a REFLEX-II cluster under-
density in the SGC-6dFGS region of 55 ± 10 per cent. Cluster bias is
well known to exaggerate voids and this is clear from Fig. 7. Correct-

ing for cluster bias they deduce a z < 0.05 underdensity comparable
with that of this work, of 20 ± 8 per cent. In Appendix B, we investi-
gate the SGC-6dFGS underdensity in more detail, using simulations
to estimate how common such underdensities are in the Universe.

To summarize, we find no evidence for a significant void that
pertains to the full sky, out to the z = 0.1 limit of the 2MRS galaxy
survey. However, Fig. 7 shows that we reproduce well the regional
density structures found by WS14, albeit with different amplitudes of
the underdensity of certain structures on scales of z < 0.05. Notable
density structures reproduced in this work include the void in the
direction of NGC-SDSS centred on z ∼ 0.015 , for which we obtain
a density ∼0.5φglobal, as well as the overdensity on smaller scales
(z ∼ 0.004) in the same sky direction, of order 10 times that of
the global density. Such density structures would be expected to be
consequential for the peculiar velocities of SNe Ia in these regions
(see, e.g. Peebles 1980; Clutton-Brock & Peebles 1981). As such,
quantifying and correcting for these effects is our main focus for the
remainder of this work.
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4.2 Correlations of H0 with �φ+−

4.2.1 Pantheon SNe in the galaxy density field

We can estimate H0 from individual SNe Ia based on their red-
shifts and distance moduli (found by Scolnic et al. 2018), using
equation (1). Note that this estimator is not sensitive to the fiducial
value of H0 assumed, and only slightly sensitive to differences in
the assumption for q0: as quantified in Section 4.3. However, since
our goal is to determine the effects of peculiar velocity, we choose
to present the majority of results in terms of the fractional change
in H0, which is not sensitive to the well-documented issue of SN Ia
distance calibration. The only exception is in Section 4.3, where
for completeness, we give absolute H0 estimates by calibrating
SN Ia distance moduli on the BAO-derived cosmic distance scale
(Anderson et al. 2014).

We calculate the fractional error in H0 from the zero peculiar
velocity case by performing an error-weighted linear fit of �φ+− to
H0. The fractional error in H0 is then given as (H0 − c)/c, where
c is the �φ+− = 0 intercept of the regression line. We use SNe
with redshifts in the range 0.02 < z < 0.05 for this fit, as this range
meets several useful criteria for our analyses: We see a trade-off
between uncertainties due to peculiar velocity and due to q0 (see
Fig. 1); both the galaxy and SN statistics are high; the best-fitting
Schechter function parameters required to infer the density field are
best-constrained; and it may be interesting to examine the effects
of well-defined structures on peculiar velocities, found in this range
(e.g. in NGC-SDSS and SGC-6dFGS). In short, this redshift range
will produce the most reliable estimates of fractional H0 error due to
peculiar velocity. Of the 1048 Pantheon SNe, 111 are found in this
range.

For each SN, if the nearest path to the edge of the 2MRS survey
(i.e. to the ZoA) is shorter than R, the SN is removed from the sample
to prevent edge effects. We also remove galaxies within 10 Mpc of
the SN position. This is because the typical galaxy group velocity
dispersion is a continuous scale from tens of km s−1 (for groups of a
few dwarf galaxies) to thousands of km s−1 (for the richest clusters).
Hence, the inferred LOS group radius is of the order ∼10 Mpc for
large groups. The positions of these galaxies relative to the SN are
uncertain. Indeed, if included, these galaxies would also carry the
most weight in our density prescription.

In Fig. 8, the six panels show the differing strength of correlation
of fractional H0 error due to peculiar velocity with �φ+−, as the
sphere radius, R, and the density smoothing length, σ , are varied.
In each panel, the correlation is found to be roughly linear, and so
an error-weighted regression line is calculated. The corresponding
Spearman rank correlation coefficient (rs) and p-value (p) are shown
in each panel. We find that the maximum significance of correlation
between H0 estimates and �φ+− (maximum rs and minimum p)
arises for [R, σ ] = [50 Mpc, 50 Mpc].

The results shown adopt the cut within 10 Mpc of the SN, as
discussed. This cut was found to reduce the p-value of the H0 versus
�φ+− fit by ∼ 5 per cent. Using instead a 5- or 20-Mpc cut, we see
in both cases an ∼ 10 per cent rise to the p-value when compared to
the preferred 10-Mpc cut.

For the 0.02 < z < 0.05 Pantheon sample, 88 out of 111 SNe
are sufficiently far from the galaxy survey edge to assess the
density within 50 Mpc of the SNe. For these 88 SNe, we find
[rs, p] = [0.2739, 0.0016]. Therefore, for the remainder of this work,
when referring to �φ+−, we are using [R, σ ] = [50 Mpc, 50 Mpc]
for its calculation. This result suggests that peculiar velocities are
driven primarily by supercluster scale structure. In Section 4.2.2, we
investigate and discuss this suggestion in more detail.

We also investigate alternative prescriptions for our density pa-
rameter; we test for the change to correlations if galaxies within 10
Mpc of the SNe are instead included in the density measurements,
and we test correlations of the resultant density parameter with
fractional H0 error arising when using an inverse-squared weighting
with separation. The observed peculiar velocity results from the net
LOS component of the gravitational force, and so an inverse squared
weighting is expected to be most appropriate; We also test for the
effects of modifying the density weights to also account for the
luminosity of the galaxies, assuming that luminosity traces the galaxy
mass. However, each of these prescriptions for �φ+− are found to
correlate more weakly with fractional H0 error than a Gaussian-
smoothed number-density based calculation, albeit marginally in the
case of the 10 Mpc cut. For the remaining tests, this is likely due
to the uncertainty in estimating the total (stellar + halo) galaxy
mass from the luminosity. An overweighting of individual galaxies
can lead to a catastrophic miscalculation of the peculiar velocity
proxy.

It was highlighted in Section 3.2 that over or underdensity alone
does not always result in significant peculiar velocities, and that
galaxies at a density peak or trough, may experience a small net force
upon them and hence a small peculiar velocity. This is demonstrated
using �φ+− (using [R, σ ] = [50 Mpc, 50 Mpc]), in Fig. 9, which
shows the parameter as a function of sky position in Galactic co-
ordinates. In each panel, the same process for calculating �φ+−
around SN Ia positions is applied to the whole sky, for different
tomographic slices through the density field, at various steps of
vcmb = cln (1 + zcmb).

Referring back to Fig. 7, we saw a significant underdensity centred
on zcmb ∼ 0.015, in the NGC-SDSS region. This redshift corresponds
to a recession velocity in the CMB-frame of ∼ 4000 km s−1. Note
then that in Fig. 9, �φ+− is close to zero in the vcmb = 4000 km s−1

panel. On the other hand, at the redshifts corresponding to the 2000
and 6000 km s−1 velocity slices (0.007 and 0.020, respectively),
objects are expected to be flowing away from the trough of under-
density towards the overdense peaks at z ∼ 0.003 and z ∼ 0.024. This
causes measurable effects on the values of �φ+− in the NGC-SDSS
region, seen in Fig. 9, with significant blueshift and redshift in the
vcmb = 2000 and 4000 km s−1 panels, respectively. This demonstrates
how �φ+− is able to capture expected peculiar velocity information
due to density gradients.

Another notable structural influence is the Perseus Cluster, situated
at [l, b, zcmb, vcmb ] ∼ [150◦, –13◦, 0.017, 5000 km s−1] (Piffaretti
et al. 2011): Infall to the cluster is seen to cause positive �φ+−
(peculiar-velocity-induced redshift) for the vcmb = 4000 km s−1

slice, and negative �φ+− (peculiar-velocity induced blueshift) for
the vcmb = 6000 km s−1 slice.

4.2.2 Mock data from MDPL2-Galacticus

Note that in Fig. 8, the mean value of �φ+− lies close to zero,
implying that the 0.02 < z < 0.05 Pantheon SN sample is minimally
biased in the sign of peculiar velocities. We also saw that �φ+− is
correlated with locally inferred fractional H0 error estimates. We next
turn to mock data from the MDPL2-Galacticus simulation (Knebe
et al. 2018) in order to test, firstly, whether trends of fractional H0

error with �φ+− are consistent with the observations; secondly,
whether the strength of correlation is limited by the ability of �φ+−
to capture peculiar velocity information, or instead by observational
photometric uncertainties, not present in the models; and, finally,
what the cosmic variance is in the �φ+− distribution, given our
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The effects of v pec in SN Ia environments on H0 3735

Figure 8. Estimates of fractional error in H0 for 0.02 < z < 0.05 Pantheon SNe as a function of �φ+−. In each panel, �φ+− is computed with different values
for the Gaussian smoothing scale of density, around the SN (σ ), and of the maximum separation from the SN considered in the density calculation (R). The
error-weighted line-of-best fit to the data is shown for each σ–R combination, as well as the Spearman’s rank correlation coefficient (rs) and p-value (p).

access to arbitrary observer positions. This cosmic variance result
gives us an estimate of the error on our observational peculiar velocity
corrections.

As discussed in Section 2, we utilize a 1 h−3 Gpc3 box with 38403

dark matter particles traced to the current epoch, using the z = 0
redshift snapshot. Each particle has three-dimensional positions (�r)
and velocities (�v). We then use the particles’ mock z-band stellar
luminosities to impose a detection limit. Lz is here defined as the
logarithm of the luminosity in units of 4.4659e13 W Hz−1. The
limit is then set to Lz = 8.843 such that global ‘galaxy’ density
matches the global LK > 10.5 density found for the 2MRS galaxy
sample.

To calculate �φ+− and local fractional H0 errors from the mock
data, the observer’s position in the 1 h−3 Gpc3 box is randomized,
and the particle coordinates are redefined such that the observer lies
at the origin. Next, galaxies lying at redshifts 0.02 < z < 0.05 from
the observer, are selected at random as SN Ia hosts.

Peculiar velocities relative to the observer for all galaxies above the
mock flux limit, including the SN hosts, are calculated as follows:

vpec = �r · �v
|�r| . (9)

Galaxy redshifts due to cosmic expansion (zcos) are inferred using the
comoving distances DC = |�r| associated via the fiducial cosmology.
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3736 T. M. Sedgwick et al.

Figure 9. The density parameter �φ+− (see the text), plotted as a function of sky position, in Galactic coordinates. The parameter is assessed at four velocities
in steps of 2000 km s−1, where v = c ln (1 + z), and approximately corresponding to distances from the observer. Objects in regions with �φ+− > 0 are
expected to flow away from the observer faster than the Hubble flow, and slower than the Hubble flow when �φ+− < 0.

Mock observed redshifts (zcmb) are then calculated using

ln (1 + zcmb) = ln (1 + zcos) + vpec

c
. (10)

Fractional H0 errors from the SNe are obtained using a modifica-
tion of equation (1):

H0,est = H0,fid
DC,fid(zcmb)

DC,fid(zcos)
. (11)

�φ+− is finally calculated about the CMB-frame redshift-inferred
SN positions, as was the observational data, using the resultant mock
density field. Fig. 10 shows rs values corresponding to linear fits of
H0 to �φ+−, where each fit is to 1000 random SN positions from
the simulation. Values of 10 < R < 200 Mpc are sampled, in equal
logarithmic steps.

In black, mock-observed galaxy redshifts were used to produce the
galaxy density field, to test for the effects of redshift-space distortions
on correlations. SNe with 0.02 < z < 0.05 were chosen to match
the observations. rs is shown as a function of sphere size, R, within
which �φ+− is calculated. The solid black line shows �φ+− when
all galaxies contribute equally to the density. We observe that the
maximum correlation of fractional H0 error versus �φ+− comes for
R ∼ 50 Mpc. When using a weighting of density contributions such
that σ = 50 Mpc, we see that rs rises significantly as scales of 50
Mpc are approached, and then improves marginally as this sphere
size is increased further.

A benefit of the simulations is that we can repeat these tests but
using the real-space positions of galaxies, as shown in blue. We
observe once again a peak at R = 50 Mpc in the unweighted case, but
the most significant correlation when [R, σ ] = [200 Mpc, 50 Mpc].
rs is increased using real-space galaxy positions. As would be

Figure 10. Spearman rank correlation coefficients, rs, corresponding to
linear fits of fractional H0 error to �φ+− for mock SNe positions in the
z = 0 snapshot of the MDPL2 Galacticus simulation, as a function of R
or σ in Mpc (used to calculate �φ+−). rs is shown as a function of R with
the exception of the green solid line, where rs is shown as a function of σ .
Unless stated, SNe are drawn from the simulation at redshifts 0.02 < z <

0.05 and the galaxy sample is luminosity limited at Lz > 8.843 (see the text
for details).
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expected, the real-space and redshift-space results differ most when
considering the density on small scales.

We test for the effects of the 0.02 < z < 0.05 SN selection
by instead including z < 0.02 SNe. We also alleviate the galaxy
luminosity cut to Lz > 7.0, to test for the effects of increasing
the number of tracers of the density field. These results are shown
in yellow and magenta, respectively. In both cases, no significant
change to the amplitude of rs as a function of �φ+− is found. In
the case of including z < 0.02 SNe, this implies that although we
are forced to omit these lowest redshift SNe in the observations
due to uncertainties in peculiar velocity, they are not crucial for an
assessment of �φ+−. In the case of the increased number of tracers,
this implies that the density field is already sufficiently sampled for
Lz > 8.843, and hence so too is the 2MRS sample.

We saw that using a finite value of σ increased values of rs for large
sphere radii, R. As such, we test the effects of fixing R = 200 Mpc, and
instead vary σ between 10 and 200 Mpc. The result, shown in green
in Fig. 10, reveals that a density weighting corresponding to σ ∼ 40
Mpc produces the maximum significance of correlation between
fractional H0 error and �φ+−. Note that we make qualitatively
identical conclusions to those found in Fig. 10 when plotting the
p-value associated with a correlation against R and σ .

The underlying result of these analyses is that density gradients
on supercluster scales ∼50 Mpc are most strongly correlated with
estimates of fractional H0 error. This result is in concordance
with expectations from the well-known J3(r) integral (see, e.g.
Peebles 1981). The two-point correlation function of galaxies to-
gether with linear theory predicts that the largest contribution to
peculiar velocities comes from density structures on these scales
(Clutton-Brock & Peebles 1981). It is also noted that this scale
size is established to maximize angular diameter distance biases via
gravitational deflection (Kaiser & Peacock 2016), which is albeit a
small gravitational lensing effect. These factors support conclusions
that the correlations between density structure on supercluster scales
and H0 are in fact due to real gravitational effects.

We note that a sphere size of R = 200 Mpc is not appropriate for
the case of the observations, as a large fraction of the 0.02 < z < 0.05
Pantheon SNe lie within 200 Mpc of the ZoA. In the observations,
as spheres around SNe that overlap the survey edge may produce
unreliable �φ+− measurements, one may expect that this is why
the prescription [R, σ ] = [50 Mpc, 50 Mpc] was instead found to
be optimal. We reiterate, however, that in the z-space simulations, rs

flattens out for R > 50 Mpc, suggesting that the trend of fractional H0

error with �φ+− would not improve significantly in the observations
were we able to access a greater volume. As a result, we expect that
we have found close to the maximum coherence of fractional H0

error with �φ+− with the [R, σ ] = [50 Mpc, 50 Mpc] prescription.
For the next stage of our analysis, we again use the mock redshift-

space galaxy density field, [R, σ ] = [50 Mpc, 50 Mpc], and for 100
random observer positions in the box, we each time draw 88 mock
SNe from the simulation, in order to match to the number of Pantheon
SNe that are observed at 0.02 < z < 0.05 and at least 50 Mpc from
the ZoA. This enables us to test for the effects of sample size on our
H0 versus �φ+− correlation.

For each iteration, a linear fit of fractional H0 error to �φ+− is
taken. Fig. 11 shows with red dashed line the mean gradient and
intercept values, averaged over the 100 iterations. The intercept
is allowed to vary for each iteration, but the mean intercept over
iterations is set to 0 at �φ+− = 0. The red filled region shows
the standard deviation in the regression line parameters over the
iterations. The 88 0.02 < z < 0.05 Pantheon SNe are shown as blue
points, and the blue dashed line depicts the regression line to the

Figure 11. Top panel: fractional H0 errors for 0.02 < z < 0.05 SNe as a
function of �φ+−, using [σ , R]=[50 Mpc, 50 Mpc] (see the text and Fig. 8).
Blue points show 88 observed Pantheon SNe, where the median uncertainty
on fractional H0 error is shown as the blue error bar at the top-left of the panel.
Red points represent 2000 mock SNe from the MDPL2-Galacticus model,
each viewed from a random observer position. The blue dashed line shows
the error-weighted line of best fit to the observational data. The red dashed
line and filled region depict the mean and standard deviation in the best-fitting
line, respectively, to the mock data when matching the observational sample
size of Nsn = 88, averaged over 100 Monte Carlo iterations and observer
positions. The secondary x-axis (top panel) shows estimates of vpec as a
function of (�φ+−), inferred from the gradient of the linear fit of vpec to
�φ+− in the mock data. Bottom panel: probability distributions of �φ+−
for 2000 simulated SNe (red) and 88 Pantheon SNe (blue). Poisson errors on
the observed result are shown as blue error bars.

data seen in Fig. 8. The observational and simulated results show
excellent consistency for the slope of local fractional H0 error with
�φ+−. Note that we also assumed a 737 cosmology when calculating
fractional H0 errors in the models. However, once again, the results
are not sensitive to the fiducial H0 assumed.

The mean slope for the simulations, of S = 0.061 ± 0.021, im-
plies with 3σ confidence that the observer will find a positive trend
of H0 estimates with �φ+− at a random observer position in the
Universe when using an SN sample of matching statistics to the
Pantheon sample. This is consistent with the observation slope of
S = 0.065. Although separate from the analysis of fractional H0

offset due to peculiar velocity, note that the mean intercept in the
simulations is found to be c = 69.99 km s−1 Mpc, with a root mean
square (rms) deviation from the fiducial H0 = 70 km s−1 Mpc−1

of 0.26 km s−1 Mpc−1, showing that a regression fit reproduces the
fiducial H0 at �φ+− = 0, and hence when there is zero peculiar
velocity. The rms error from the model is an estimate of the cosmic
variance in the trend of H0 estimates with �φ+−. The mean values
of rs and p are 0.4010 and 0.0006, respectively.

In the simulations, we are free from uncertainties from SN
photometry and from light-curve fitting techniques, which result in
the larger spread in observational fractional H0 errors compared with
results from the model. This highlights the fact that uncertainty in
the SN photometry is what limits the significance of our observed
correlation to rs = 0.2739, rather than the ability of �φ+− to capture
peculiar velocity information.
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Recalling that the mock sample used for these calculations is
luminosity limited, we repeat tests for the trend of fractional H0

error versus �φ+−, but with a flux-limit and corresponding galaxy
weighting procedure employed, as seen in Section 4.1, to test for
the effects of galaxy weighting on our observational correlations.
We choose the mock flux limit to be at a magnitude of mz = 15.89,
such that the galaxy sample starts to become incomplete at a redshift
z = 0.0202, as found for the observations. We find that there is no
significant change to the slope of fractional H0 error versus �φ+−
when using a mock flux limit, nor does the cosmic variance on
the intercept increase. This implies that the weighting of galaxy
statistics as a function of redshift, required for our observational
density calculations, has a negligible effect on the magnitude and
uncertainty of H0 estimate corrections.

Reverting to the luminosity-limited sample, we also show in
Fig. 11, as the red points, �φ+− versus fractional H0 error for
2000 simulated SNe. Here, the observer’s position is changed for
each observation. These data follow tightly the mean regression line
found for the mock data using Nsn = 88. The bottom panel shows
the probability distribution of the 2000 �φ+− values in red, showing
that the mean �φ+− value over all observer positions is close to zero.
The blue probability function shows that the distribution of �φ+−
values from Pantheon SNe is consistent with the model distribution,
within the Poisson errors shown.

We can use our knowledge of SN Ia peculiar velocities in the mock
data to relate this velocity to its proxy, �φ+−. For the 2000 randomly
selected SNe, we find that the regression line vpec = 618.5�φ+− best
approximates the relation. Using this scaling, we plot an estimate of
peculiar velocity as a secondary x-axis in the top panel of Fig. 11.
Our scaling, coupled with the �φ+− distribution shown in the bottom
panel of Fig. 11 implies that the 1σ deviation from zero peculiar
velocity is ∼ 120 km s−1, i.e. 68 per cent of SN positions are estimated
to have an absolute peculiar velocity less than this value. From this
scaling, the observational SN positions are estimated to have a mean
absolute peculiar velocity of ∼ 100 km s−1, with a standard deviation
of ∼ 75 km s−1.

In conclusion we have found, using the MDPL2-Galacticus sim-
ulation, reassuring consistency for the trend of fractional H0 error
estimates versus �φ+− when compared with the observational results
from the Pantheon SN sample and 2MRS galaxies. We have used
these simulations to compute the expected cosmic variance in the
trend of fractional H0 error with �φ+−, to inform us of the expected
uncertainty on any H0 estimates when corrected for density effects.

The error-weighted mean value of fractional H0 error for the 88
Pantheon SNe is found to be 6 × 10−4. Given that the fractional
error is defined to be zero at φ+− = 0, this means that in the case
of this SN sample, peculiar velocities affect the mean estimate of H0

by <0.1 per cent. This result shows that with a large number of SNe
and sufficient sky coverage, the net effect of peculiar velocities on
the mean H0 estimate from SNe is negligible.

4.3 Calibration of SN Ia distance moduli and an estimate of H0

The main focus of this paper has been the fractional effect on H0

measurements from peculiar velocities. However, for completeness,
we estimate an H0 value from our 0.02 <z < 0.05 sample of Pantheon
SNe.

To estimate H0 with equation (1), we rely on the accuracy of our SN
distance moduli. To calibrate the distance moduli, we utilize the z =
0.57 angular diameter distance (DA) result of Anderson et al. (2014),
derived from detections of baryon acoustic oscillations (BAO) in the
clustering of galaxies. DA can be represented as 1421 ± 20 Mpc

(rd/rd, fid), where rd, fid = 149.28 Mpc is the fiducial sound horizon
scale used by Anderson et al. (2014). This can be converted into an
equivalent distance modulus using DL = DA(1 + z)2, leading to μ =
(42.72 ± 0.03) + 5log (rd/rd, fid) mag.

We next turn to a higher redshift portion of the Pantheon sample,
in order to have a sample covering the redshift of the BAO result.
To avoid an assumption for MB,fid (the fiducial stretch and colour-
corrected SN Ia absolute magnitude), which is degenerate with H0,
we perform a linear fit of the corrected apparent magnitude (μB

+ MB,fid) against the logarithm of CMB-frame redshift, for 118
SNe in the redshift range 0.45 < z < 0.70. We then determine
the offset to μB + MB,fid required for this fit to intercept the BAO-
derived distance modulus at z = 0.57. We find that μB + MB,fid

+ 19.45 ± 0.04 + 5log (rd/rd,fid) coincides with the BAO result,
and so correct the lower redshift SN distance moduli accordingly.
This calibrates the SNe distance moduli using the BAO scale with
negligible dependence on cosmology or peculiar velocities since we
interpolate to the z = 0.57 BAO result using only data from 0.45 <

z < 0.70.
Returning to the now calibrated 0.02 < z < 0.05 subsample,

from equation (1), the set of H0 estimates uncorrected for peculiar
velocities can be found. The error-weighted mean value of H0

before peculiar velocity correction is H0 = (67.47 ± 1.00) ×
(rd,fid/rd) km s−1 Mpc−1.

In Section 4.2.1, we estimated the observational slope, S, of
fractional H0 error versus �φ+−, and in Section 4.2.2, the uncertainty
in this result due to cosmic variance, given our SN sample size.
ConvertingS into units of km s−1 Mpc−1, we can calculate individual
peculiar-velocity corrected values as H0,corr = H0 − S�φ+−. The
error-weighted mean H0 measurement over the SN sample is our
best estimate for the present-day value of the Hubble parameter.

We utilize a 104 iteration MC technique to compute our best-
estimate and its uncertainty. We vary the density-corrected SN H0

measurements for each iteration given uncertainties in the slope, S,
estimated from the simulations. We also fold in uncertainties in the
SN photometry and in the re-calibration of SN distance moduli to the
BAO-inferred distance scale. We calculate the error-weighted mean
of the 88 individual H0 estimates for each iteration. Our best estimate
is then given by the mean and standard deviation of this average over
the iterations.

We infer that H0 = (67.41 ± 1.02) × (rd,fid/rd) km s−1 Mpc−1, as
shown by the solid blue range in Fig. 12. This result is consistent with
that obtained by P18, who find H0 = 67.40 ± 0.50 km s−1 Mpc−1.
Conversely, our result lies in 3.8σ tension with the result of R19,
who find H0 = 74.03 ± 1.42 km s−1 Mpc−1, using LMC Cepheid
standards to calibrate the distance scale and constrain distance moduli
of SNe Ia residing in Cepheid hosts. We conclude that the Pantheon
SN sample is large enough and surveys a large enough volume that the
sign of peculiar velocities is unbiased, and therefore that accounting
for estimated peculiar velocities of Pantheon SNe does not resolve
the Hubble tension.

The corrected H0 distribution for the individual SNe is also shown,
as the filled histogram. It is once again clear from comparison with the
uncorrected distribution that the net effect of peculiar velocities on
the average H0 estimate is small when averaged over a large number
of SNe at different sky positions, with a negligible reduction to the
mean H0 value of only 0.06 × (rd, fid/rd) mag via this correction.

The component of the error in our H0 estimate due to peculiar ve-
locity corrections has a magnitude of 0.26 × (rd,fid/rd) km s−1 Mpc−1

when accounting for the model-estimated cosmic variance in the
slope of H0 versus �φ+−. The vast majority of this error is found to
stem from noise in the vpec versus �φ+− relation, which introduces

MNRAS 500, 3728–3742 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/3/3728/5960170 by guest on 16 June 2021



The effects of v pec in SN Ia environments on H0 3739

Figure 12. Top panel: a comparison of H0 estimates. In blue are the
results of this work derived from SNe with distance moduli calibrated on
the BAO-inferred cosmic distance scale (see the text), and corrected for
peculiar velocity effects. The blue solid range indicates the 1σ uncertainty
on our best H0 estimate from 88 Pantheon SNe, where errors account for
uncertainties in SN photometry, in SN distance calibration, and in the cosmic
variance of peculiar velocity effects. This result assumes q0 = −0.55. For
comparison, the dotted and dashed ranges depict the change to this result,
assuming instead q0 = 0 and q0 = −0.7, respectively. In green is the R19
H0 measurement from a combination of LMC DEBs, masers in NGC 4258
and Milky Way parallaxes. In pink is the P18 result from the CMB and
�CDM. Bottom panel: the unfilled (filled) histogram represents the error-
weighted probability density function (PDF) of individual H0 estimates from
the SNe using equation (1), before (after) corrections for the effects of peculiar
velocities.

error in the H0 estimate versus �φ+− relation. Variations in the H0

distribution over observer positions are found to have a relatively
negligible contribution to the error.

The resultant error in our best H0 estimate using Pantheon SNe is
the quadrature sum of (i) an error of 0.95 × (rd,fid/rd) km s−1 Mpc−1

from BAO-based calibrations of SN distance moduli; (ii) an error of
0.33 × (rd,fid/rd) km s−1 Mpc−1 from SN photometric uncertainties;
and (iii) an error of 0.26 × (rd,fid/rd) km s−1 Mpc−1 from our
corrections of the H0 estimates for peculiar velocity effects. Thus, for
comparable SN samples and for future samples with larger statistics
and coverage, density effects are not expected to be the main cause
of the Hubble tension. Instead, the majority of the uncertainty on the
local H0 estimate stems from uncertainties in the calibration of SN
Ia photometry.

All the results discussed have adopted [q0, �m, ��] = [ −
0.55, 0.7, 0.3]. For comparison, using instead [q0, �m, ��] =
[0, 0.67, 0.33] causes a 0.68 × (rd,fid/rd) km s−1 Mpc−1 drop in
our best estimate H0 to 66.73 km s−1 Mpc−1. Adopting [q0, �m,
��] = [ − 0.7, 0.2, 0.8] causes a 0.42 × (rd,fid/rd) km s−1 Mpc−1

rise, giving H0 = 67.83 × (rd,fid/rd) km s−1 Mpc−1. These results
are shown as the blue dotted and dashed ranges in the top panel of
Fig. 12, respectively, and demonstrate that errors from SN distance
calibration dominate the error budget as opposed to errors associated
with the fiducial cosmology at these low redshifts.

Finally, we emphasize that even though we calibrated the SNe to
the inverse distance ladder, the same relative effects on the result due
to peculiar velocities would be evident were the SNe calibrated to
the local distance ladder.

5 SU M M A RY A N D C O N C L U S I O N S

Using the K < 11.75 flux-limited 2MRS of galaxies (Huchra et al.
2012), and assuming that the K-band luminosity distribution is well
approximated by a Schechter function, we use the STY maximum-
likelihood method (Sandage et al. 1979) to infer a best-fitting
Schechter function to the data with parameters [α, L∗] = [–0.99,
10.97], fitting the data well as a function of redshift when accounting
for galaxy luminosity evolution effects. This yields LK > 10.5 sample
completeness as a function of redshift, allowing a reconstruction
of the galaxy density field. Whilst we find region-specific density
structure that is qualitatively consistent with the findings of WS14
and Böhringer et al. (2019), we find no strong evidence for a
‘Local Void’ that pertains to the whole sky, out to the z = 0.1 redshift
limit of the 2MRS galaxy survey, in agreement with Carrick et al.
(2015).

We have introduced a density parameter, denoted here as �φ+−,
which quantifies density gradients along an LOS. �φ+− is a proxy
for peculiar velocities as a function of location in the local Universe.
Using a sample of 88 SNe Ia from the Pantheon sample (Scolnic et al.
2018), in a redshift range 0.02 < z < 0.05, we see the clear effects
of the density field on H0 estimates, from trends of fractional H0

error versus �φ+−. We find from this empirical method that density
gradients on the scale of superclusters (∼ 50 Mpc) have the strongest
effects on local fractional H0 errors.

We use the present-day snapshot from the MDPL2-Galacticus
Simulation (Knebe et al. 2018) to repeat our analysis with a
mock galaxy density field and SN sample, which is free from
photometric uncertainties, and find remarkably consistent results
with the observations for the trend of fractional H0 errors with
�φ+−. Maximum coherence between fractional H0 error and �φ+−
is again found for density structure on the scale of superclusters
(∼ 50 Mpc), coincident with expectations from the behaviour of the
correlation function of galaxies (see, e.g. Clutton-Brock & Peebles
1981), increasing confidence that these strong correlations are in fact
due to real gravitational effects.

We find that the 0.02 < z < 0.05 Pantheon sample has enough SN
statistics and survey volume that the mean peculiar velocity of these
SNe lies close to zero. As a consequence, the average offset in H0

estimates due to galaxy density effects is also close to zero. We use the
simulations to estimate the cosmic variance in the peculiar velocity
distribution when matching to the sample size and sky coverage of
the observations, finding that the mean peculiar velocity for such a
sky coverage and sample size lies close to zero over practically all
observer positions. However, should one wish to estimate H0 using
local SN surveys that are not all-sky, we note that our method would
be able to correct for the effects of the density field on H0 estimates,
irrespective of peculiar velocity biases.

In terms of the methods of this work, analyses of biases in frac-
tional H0 error estimates can be built upon with various improvements
to assessments of the galaxy density field. These improvements could
include: a replacement of 2MRS with 2M++ galaxies (Lavaux &
Hudson 2011); an assessment of the density structure within the
‘Zone of Avoidance’ (Hubble 1934); and increased magnitude depth
of all-sky near-IR galaxy surveys from, for example, the UKIRT
Hemisphere Survey (Dye et al. 2018), the VISTA Hemisphere Survey
(Sutherland et al. 2015), and LSST (Ivezić et al. 2019). Assessments
of galaxy cluster densities from deep X-ray surveys such as eROSITA
(Merloni et al. 2012) also promise to put state-of-the-art constraints
on the local density structure. With the ability to probe the density
field over a larger redshift range, one can also examine evidence
for voids out to cosmological distances for tens of thousands of
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galaxies or clusters, as well as the relationship of any structure with
standard-candle H0 estimates. Note that as advances in photometric
precision and distance calibration techniques arrive, studies of the
effects of the density field and resultant peculiar velocities will
become increasingly important for local measurements of the Hubble
constant.

AC K N OW L E D G E M E N T S

TMS acknowledges support from an STFC DTP studentship, jointly
supported by the Faculty of Engineering and Technology at LJMU.
CAC acknowledges support from LJMU and STFC for resources to
conduct the research described here.

This publication has made use of the following resources:

(i) The Two Micron All Sky Survey, which is a joint project of
the University of Massachusetts and the Infrared Processing and
Analysis Center at the California Institute of Technology, funded by
the National Aeronautics and Space Administration and the National
Science Foundation.

(ii) The CosmoSim data base, a service by the Leibniz-Institute
for Astrophysics Potsdam (AIP). The MultiDark data base was
developed in cooperation with the Spanish MultiDark Consolider
Project CSD2009-00064. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) and
the Partnership for Advanced Supercomputing in Europe (PRACE;
www.prace-ri.eu) for funding the MultiDark simulation project by
providing computing time on the GCS Supercomputer SuperMUC
at Leibniz Supercomputing Centre (LRZ; www.lrz.de). The Bolshoi
simulations have been performed within the Bolshoi project of the
University of California High-Performance AstroComputing Center
(UC-HiPACC) and were run at the NASA Ames Research Center.

DATA AVAILABILITY

2MRS data were obtained at tdc-http://www.harvard.edu/2mrs.
MDPL2-Galacticus data were obtained via SQL query at www.co
smosim.org. Pantheon SN data were obtained at archive.stsci.edu/
prepds/ps1cosmo. Data products of this paper will be shared on
reasonable request to TMS.

RE FERENCES

Agrawal P., Cyr-Racine F.-Y., Pinner D., Randall L., 2019, preprint (arXiv:
1904.01016)

Anderson L. et al., 2014, MNRAS, 441, 24
Baldry I. K., 2018, preprint (arXiv:1812.05135)
Beare R., Brown M. J. I., Pimbblet K., Taylor E. N., 2019, ApJ, 873, 78
Benson A. J., 2012, New Astron., 17, 175
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APPENDI X A : A SECOND-ORDER H UBBLE
LAW

The Hubble law is often stated such that the recession velocity is equal
to the Hubble constant times the distance, with the most common
approximation for velocity given by cz. However, a more useful
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Figure A1. Different views of the Hubble law. The relations shown are for: a
coasting cosmological model (q0 = 0), a flat �m,0 = 0.3 model (q0 = −0.55),
and a flat �m,0 = 0.2 model (q0 = −0.7).

expression for velocity (e.g. Cappellari 2017; Emsellem et al. 2019)
is given by

v = c ln(1 + z) . (A1)

This is more accurate for pure LOS velocity and means that the
peculiar velocity and cosmological terms, and frame corrections, are
additive (Baldry 2018). A common misconception is to assume cz
terms are additive. Coupled with different distance definitions, there
are thus many versions of a Hubble law.

Fig. A1 shows four different views of the Hubble law using these
approximations for velocity with luminosity distance (DL) and LOS
comoving distance (DC). For each version, curves are shown for
three model cosmologies, all with flat geometry and with H0 =
70 km s−1 Mpc−1. Two are �CDM models, for which the decel-
eration parameter q = �m/2 − ��, while the other is a ‘coasting’
model with w = −1/3. Notably, none of these versions of the Hubble
law are accurate except in the case of (d) v = c ln(1 + z) = H0 DC

for the coasting model (Sutherland & Rothnie 2015). Note this exact
law also is valid for a non-flat coasting model such as an empty
universe [though in this case, DL = (1 + z)DC]. Below we show a
derivation of a second-order Hubble law that is natural in this view
with a transparent dependence on q0.

For demonstration purposes, we consider a flat universe with a
single type of fluid with equation of state w such that

q = 1 + 3w

2
and E(z) = (1 + z)q+1. (A2)

The comoving distance is then given by

DC = c

H0

∫ z

0

dz

E(z)
= c

H0

∫ z

0

dz

(1 + z)q+1
. (A3)

Using the logarithmic shift ζ = ln (1 + z), this becomes

DC = c

H0

∫ ζ

0

(1 + z)

E(z)
dζ = c

H0

∫ ζ

0
e−qζ dζ , (A4)

and after integrating (q = 0),

DC = c

H0

[
1

q
(1 − e−qζ )

]
. (A5)

For a non-constant q, the above result is valid only over a small
change in ζ . For small ζ = v/c, using a second-order Taylor series
expansion, we obtain a second-order Hubble law:

DC � c

H0
ζ

(
1 − q0ζ

2

)
= v

H0

(
1 − q0v

2c

)
. (A6)

This form tends to the exact law with q0 → 0, and the right-
hand term [1 − (q0/2)(v/c)] represents an average of (1 +
z)/E(z) assuming constant acceleration (cf. the quadratic fitting
function given by Sutherland & Rothnie (2015) for improved
precision).

For �CDM cosmologies, the approximation is accurate to within
0.1 per cent at z � 0.1. Note that regardless of the accuracy of
the Hubble law, v accurately represents the integral of the velocity
differences along the LOS, precisely in the case of fundamental
observers. This is evident from the additive nature of terms in ζ or v

(Baldry 2018).

A P P E N D I X B: ST U DY I N G TH E S G C L O C A L
UNDERDENSI TY VI A SI MULATI ONS

In Section 4.1, we concluded that we find no evidence for a
‘Local Void’, which pertains to the full sky out to the z = 0.1 limit of
the 2MRS survey. However, we found a significant underdensity in
the direction of the SGC-6dFGS region, which was 27 ± 2 per cent
underdense integrated below z < 0.05.

In Section 4.2.2, we demonstrated a useful property of the MDPL2-
Galacticus simulations: we were able to estimate the cosmic variance
of peculiar velocity effects on H0 estimates by mimicking our
observational analysis from variety of mock observer positions.
Using a similar method, we can test for how ‘common’ the SGC-
6dFGS underdensity is, by testing how often an underdensity of
this amplitude is observed at different observer positions in the
simulation. We place the observer at 106 random positions in the
1 h−3 Gpc3 box.

Figure B1. Top panel: local galaxy densities as a function of redshift in the
SGC-6dFGS region, in logarithmic units of the global density. In blue is the
binned density at z. In yellow is the cumulative (integrated) density out to
z. Redshift bins are of width 0.002. Bottom panel: the fraction of 106 SGC-
6dFGS-sized regions from the MDPL2-Galacticus simulation, which have a
density less than that observed in SGC-6dFGS, as a function of redshift. The
simulated densities use a mock detection limit matching the observations,
and observer position is randomized for each iteration.
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Fig. B1 re-iterates that the main contribution to SGC-6dFGS un-
derdensity occurs at z ∼ 0.05. For integrated densities out to z ∼ 0.03,
the percentage of mock observed positions that produce a density
at least as underdense as found in SGC-6dFGS is approximately
40 per cent. This implies such an underdensity is common place
at most positions in the universe at current epochs. For clarity,
were we to compare the simulated densities to the global density,
we would find this percentage stays close to 50 per cent across the
redshift range, as the density at a given redshift is equally likely to
be overdense as underdense at a random observer position.

However, what is striking about the results of Fig. B1 is that
the SGC-6dFGS underdensity at z ∼ 0.05 is extremely unlikely to
arise from the vast majority of mock observer positions: The number
of the 106 positions finding such an integrated underdensity out to
z = 0.05 is of the order 100, or 0.01 per cent. This either implies
that our position in the Universe is particularly special, that the

large-scale structure in the simulation is unrealistic, or that there
is an unknown observational systematic in the direction of SGC-
6dFGS. Given that several more studies, including Whitbourn &
Shanks (2014), find the z = 0.05 SGC-6dFGS underdensity to be
of notably high amplitude, a quantification of such a systematic
in future work would be of great interest. However, we note that
the correspondence with the X-ray REFLEX clusters result argues
against it being a systematic associated with the galaxy surveys. The
tension between measurements of the local underdensity and the
current cosmological model highlights the great potential in future
work using deeper and more complete extra-galactic samples with
new facilities such as eROSITA.
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