
Huang, Y, Li, B, Liu, Z, Yiu, S-M, Baker, T and Gupta, BB

 ThinORAM: Towards Practical Oblivious Data Access in Fog Computing
Environment

http://researchonline.ljmu.ac.uk/id/eprint/11946/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Huang, Y, Li, B, Liu, Z, Yiu, S-M, Baker, T and Gupta, BB (2019) ThinORAM:
Towards Practical Oblivious Data Access in Fog Computing Environment.
IEEE Transactions on Services Computing, 13 (4). pp. 602-612. ISSN 1939-
1374

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

ThinORAM: Towards Practical Oblivious Data
Access in Fog Computing Environment

Yanyu Huang, Bo Li, Zheli Liu∗, Jin Li, Siu-Ming Yiu, Thar Baker, Brij B. Gupta

Abstract—Oblivious RAM (ORAM) is important to applications that require hiding of access patterns. However, most of the existing
implementations of ORAM are very expensive, which are infeasible to be deployed in lightweight devices, like the gateway devices as
fog nodes. In this paper, we focus on how to apply the expensive ORAM to protect the access pattern of lightweight devices and
propose an ORAM scheme supporting thin-client, called “ThinORAM”, under non-colluding clouds. Our proposed scheme removes
complicated computations in the client side and requires only O(1) communication cost with reasonable response time. We further
show how to securely deploy ThinORAM in the fog computing environment to achieve oblivious data access to minimum client cost.
Experiments show that our scheme can eliminate most of the client storage and reduce the cloud-cloud bandwidth by 2×, with 2×
faster response time, when compared to the best scheme that aims at reducing client side overheads.

Index Terms—Data privacy, oblivious data access, Internet of Things, fog computing.

F

1 INTRODUCTION

FOg computing is designed as an extension of cloud
computing. It deploys the fog nodes (micro data centers

or high-performance data analytic machines) in network’s
edge in order to gain real-time insights from the data
collected or to promote data thinning at the edge, by dra-
matically reducing the amount of data that needs to be
transmitted to the cloud center. One typical use case is the
smart traffic light system, which can change its signals based
on surveillance of incoming traffic to prevent accidents or
reduce congestion. Without having to transmit unnecessary
data to the cloud, analytics at the edge can cut cost and
achieve real-time analysis.

In general, fog computing framework [1] has three lay-
ers: terminal layer, fog layer and cloud layer. Figure 1
illustrates a typical cloud-based service architecture [2] sup-
porting fog computing. IoT devices (terminals) [3], [4], [5],
[8], [9], [10] as weak computing equipment continuously
generate real-time data. The fog nodes are responsible for
storing, processing and analyzing these data. They usually
make some real-time analysis immediately based on the
collected data. But in many cases, they will also upload
some necessary data or intermediate results to the cloud for
further analysis or collaborative computing. When the fog
nodes require these historical data or intermediate results
to participate in the computations or decisions, the fog
nodes access them in the cloud server that provides certain

• Yanyu Huang, Bo Li and Zheli Liu are with the College of Cyber Science,
College of Computer Science, Tianjin Key Laboratory of Network and Data
Security Technology, Nankai University, China.
E-mail: onlyerir@163.com, nankailibo@163.com, liuzheli@nankai.edu.cn.
Corresponding author: liuzheli@nankai.edu.cn.

• Jin Li is with the School of Computer Science, Guangzhou University,
China. E-mail: jinli71@gmail.com.

• Siu-Ming Yiu is with the University of Hong Kong, China.
Email: smyiu@cs.hku.hk.

• Thar Baker is with the Liverpool John Moores University, United King-
dom. Email: t.baker@ljmu.ac.uk.

• Brij B. Gupta is with the National Institute of Technology Kurukshetra,
Kurukshetra, India. Email: bbgupta.nitkkr@gmail.com.

computing

Cloud

upload

…

Fog node IoT device

accessservice

Fig. 1. Cloud-based service architecture supporting fog computing.

services, such as query services.

1.1 The necessity of oblivious data access
Data privacy remains a major issue in the fog computing
environment because the IoT devices always collect per-
sonal information like locations, the number of heartbeats,
readings of smart meters, and so on. Some studies [6], [7] in-
dicate that these sensitive data should be encrypted during
uploading and downloading to the cloud. Considering that
IoT devices are resource-constrained and lack the ability to
perform encryption operations, Alrawais et al. [12] pointed
out that fog nodes can act as cryptographic computation
proxies for IoT devices. In other words, fog computing is
beneficial for solving many security and privacy issues of
IoT, and massive schemes [6], [7] have been proposed.

Unfortunately, more and more researchers realize that
just encryption alone is not enough to protect data pri-
vacy [16], [17]. Fog devices as the edge of the Internet
obviously also face many security and privacy threats [13],
[14], [15]. Some fatal attributes of access patterns, e.g., where,
when and how often fog devices accessing the encrypted data,
will leak sensitive information. In smart traffic system [11],
the privacy data such as location information of the vehicle
must be protected. Although the location data is encrypted
and stored in the cloud, if the storage location is fixed,
the cloud server can identify whether it is the operation
of the same vehicle by whether or not access to the same

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

data block. This leakage is where. Furthermore, when the
fog node rewrites or reads the same data block, the cloud
server may guess whether the vehicle is in a driving state.
This leakage comes from the access time of the encrypted
data block, which is when. Similarly, the frequency at which
the fog node reads and writes vehicle data also leaks the
frequency of use of the vehicle, which is how often.

To solve this problem, oblivious RAM (ORAM) [18], an
access pattern hiding mechanism is proposed. It is useful
for users to hide the data access patterns from untrusted
outsourcing storage. Although quite a number of ORAM
schemes have been proposed in the literature, most of them
are impractical due to high computational cost. Actually
this may be due to its nature: in order to hide the access
pattern, each ORAM access operation is accompanied by
accessing some dummy blocks to hide which block is in-
terested, which results in a large amount of data being
transmitted, shuffled and re-encrypted. These operations
also lead to huge storage for additional dummy blocks in
the server side (e.g., the cloud), which require a substantial
network bandwidth between the cloud and the client, and
large storage for cached data in the client side. These large
implementation overhead make ORAM schemes infeasible
for some emerging important areas, such as fog nodes or
limited bandwidth-constrained environment.

Motivation. Many existing ORAMs [19], [20], [21], [22] in
the literature were designed to make ORAMs efficient and
practical. However, they still cannot meet the requirements
of real-time analysis and rapid response in the fog envi-
ronment. It is very necessary to propose a lightweight and
“thin” ORAM that achieves: 1) O(1) network bandwidth; 2)
small block size; 3) constant client storage; 4) constant client
computational overhead.

1.2 ORAMs with small client cost

We first review some related ORAMs with small client cost,
which are shown in Table 1. Oblivistore [22] is one of the
fastest ORAM implementations known to date, but it still
requires a large client storage which consists of storage
cache (O(

√
N)), evict cache (O(

√
N)) and shuffle buffer

(O(
√
N)), where N is the number of real blocks. Ring

ORAM [21] is a simple and low latency ORAM construction
by leveraging the XOR technique to reduce the bandwidth
required by the server and the client. However, the client
still requires O(

√
N) + cN storage space, and frequent

encryption and access operations in the eviction procedure.
Onion ORAM [20] reduces the required block size by using
homomorphic encryption. However, homomorphic encryp-
tion leads to heavy client side computational cost and low
response time. By using a different approach, multi-cloud
oblivious storage (MCOS) [19], which is constructed based
on multiple clouds and partition of ORAM [29], can achieve
O(1) communication cost and as little as possible client
overhead.

Among these ORAMs, MCOS [19] is the most suitable
ORAM with small client cost. Its basic idea is to leverage
the computational ability among non-colluding clouds. More
specifically, it moves the frequent shuffle operation in the
client to the clouds. When reading a block, instead of down-
loading some dummy blocks and the interested block to the

TABLE 2
ORAM parameters and notations

Notation Meaning
N Number of real data blocks
K Number of clouds
L Number of levels in ORAM
Ci The i-th cloud

position[u] =
(cloud, p, l, offset, r)

u: The identifier of a block;
cloud: The cloud of u;
p: The partition of u;

l: The level of u;
offset: The offset of u
r: The random value

Q Hybrid-shuffle condition
B Block size

client, it selects one cloud to shuffle these blocks, adds an
onion layer of encryption and sends them to the other cloud.
Then, it fetches the interested block from the other cloud.
When writing a block, instead of downloading the blocks
in filled consecutive levels and shuffling them in the client,
it allows the cloud to directly shuffle them, add an onion
layer of encryption and store them to the other cloud. Using
this approach, one cloud observes the permutation while the
other observes the accesses to these blocks. However, they
cannot observe both the permutation and data access, thus
hiding the access patterns.

1.3 Contributions

In this paper, we consider the problems and challenges of
achieving the oblivious data access in lightweight devices,
and propose an ORAM scheme supporting thin-clients,
named “ThinORAM”. ThinORAM transfers most computa-
tion from the client to the server. It has fixed client storage,
O(1) communication cost and the removal of the client
complicated computations in reasonable response time. We
further discuss how to securely apply ThinORAM in the
fog computing environment (named “ThinORAM-F”) to
achieve oblivious data access with minimum client cost
(storage, computation, and communication).

Our experiments show that the proposed ThinORAM
has a satisfactory performance, which improves about 2×
in response time, reduces most of client storage size and
about 2× in network bandwidth between clouds, compared
to the best scheme (i.e., MCOS [19]) that aims at reducing
the client side overhead.

2 RELATED WORK

Some ORAM schemes had been proposed in past years. In
general there are three kinds of construction which are tree-
based ORAM [20], [21], partition-based ORAM [19], [22],
[29], [32] and Square root ORAM [27], [28]. Recent works
pay attention to tree-based ORAM but it either has a high
computational cost or has an intolerable communication
bandwidth. However, partition-based ORAM can achieve
practical application requirements by dividing the original
ORAM architecture into multiple shares.

All notations used throughout the rest of the paper are
summarized in Table 2.

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

TABLE 1
Comparison with ORAMs with small client cost. Denote N as number of blocks in ORAM and X as the fixed number of blocks in the client cache.

Schemes Client storage
Network bandwidth Computational

overhead Encryption
Eviction cache Shuffling buffer Others

ObliviStore [22] O(
√
N) O(

√
N) O(

√
N) O(logN) O(logN) SE

Ring ORAM [21] none none O(
√
N) + cN O(logN) O(logN) SE

OnionORAM [20] none none O(logN) O(1) ω̃(B log4 N) AHE

MCOS [19] O(
√
N) none O(1) O(1) O(logN) SE

ThinORAM O(X) none none O(1) O(logN) SE

ThinORAM-F O(1) none none O(1) O(logN) SE

Shuffle
Blocks

Server

ClientCache
slots

Shuffling buffer

Position
map Read

Write

…… ……

level 0
level 1
level 2

……

Fig. 2. Partition-based ORAM. Reading a block requires a real block
and some dummy blocks to be downloaded to the client. To defend
the linkability attack, the fetched block will be stored into a cache slot
of a fresh partition. Writing a block requires to download the blocks in
consecutive levels and shuffle them in the client.

2.1 Partition-based ORAM

The main idea of a partition-based ORAM (e.g., SSS [29] and
ObliviStore [22]) is dividing an entire ORAM into several
partitions evenly. Each partition represents a fully func-
tional ORAM which supports standard ORAM operations.
In these schemes, an ORAM with capacity of N blocks
is usually divided into O(

√
N) partitions, each of which

has O(
√
N) blocks. There are L := log

√
N + 1 levels

in a partition, where level i can store 2i real blocks and
2i or more dummy blocks, i ∈ {0, 1, ..., L − 1}. In client
storage, there are cache slots with capacity of O(

√
N) blocks

and a shuffle buffer with capacity of O(
√
N) blocks. The

framework of a partition-based ORAM is shown in Figure
2.

Take the SSS [29] as an example, the client can read or
write a block, which is taken as date access. Regular data
access consists of two steps: reading from a partition and
writing to a partition. The client reads the real block from the
specific level of the target partition and reads the dummy
blocks from other filled levels of this partition (one dummy
block from each of these levels). After that, the client will
write it into a random cache slot to defend the linkability
attack. If the purpose of this access is to write a block, the
fetched block will be changed to data need to be written.
The evict operation will randomly select a block from cache
slots and call the write function. When writing a data block
u back to a partition, it may cause a shuffle operation to
disrupt the order and positions of all the blocks.

2.2 Multi-cloud oblivious storage scheme
The MCOS [19] scheme has been proposed as a special
application of partition structure. It still divides the entire
ORAM into O(

√
N) partitions, but uses two non-collusion

clouds to store one partition. The access operation in M-
COS [19] is similar to that in SSS [29]. The main difference is
that MCOS achieves O(1) client-cloud bandwidth by using
two-cloud shuffle operation for both reading a block and
writing a block. When reading a block, one cloud will
shuffle all the blocks selected from the filled levels of a
partition, and send to the other cloud, where the client
will retrieve the interested from. When writing a block, one
cloud will permute, onion-encrypt all blocks in consecutive
filled levels, and send them to the other cloud, where these
blocks will be stored into the next level.

Limitations. Although MCOS [19] can be regarded as
the most suitable solution for the ORAM with small client
cost, there still exists two limitations:

1) Large client cache storage. Like other partition-based
ORAMs, it requires a large client cache for de-
fending the linkability attack and to ensure access
sequence of partitions cannot leak the users’ access
pattern. In general, the client cache is less than
0.15% of the ORAM capacity (i.e., less than 1.5GB
of data for an ORAM of 1TB in capacity). But this
amount of storage is still too big for thin-clients (e.g.,
sensors in the Internet of Things).

2) Low response time in each data access. To hide whether
access is read or write, the whole data access is made
up of reading a block and writing a block. When
reading a block, MCOS [19] utilizes two clouds to
return a single data block from several blocks. When
writing a block, the MOCS still requires a cloud to
shuffle blocks in consecutive levels, onion-encrypts
them and writes them to another cloud. Both the
cloud-cloud communication cost in the read opera-
tions and the frequent shuffle operations in the write
operations lead to the slow response time.

2.3 XOR technique
The XOR technique [32] can be used to retrieve a single
block in one cloud server obliviously. The main idea is
XORing several blocks into one result block. All blocks are
specific and can be recovered easily except the target one.
When recovering the target block, the receiver just needs to
XOR the result block with the specific blocks.

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

Let Enc(u0, r0), Enc(u1, r1),..., Enc(ux, rx) denote the
ciphertexts of x dummy block, where Enc is a randomized
symmetric cipher (e.g., AES) and Enc(ur , rr) a real block
which need to be received. The server can return a single
block by computing Enc(u0, r0) ⊕ Enc(u1, r1) ⊕ ... ⊕ Enc(ux,
rx) ⊕ Enc(ur , rr). Then the real block can be recovered by
the client when XORing the returned block with Enc(u0, r0)
⊕ Enc(u1, r1) ⊕ ... ⊕ Enc(ux, rx). For convenience, the client
can set the plaintext of dummy block as 0.

This technique can maintain the size of data blocks
and benefit to achieve constant communication. It has been
applied to distributed systems [30] and other ORAM imple-
mentations such as SR-ORAM [31].

2.4 Security definition
We improve the standard security definition for a multi-
cloud ORAM. For a complete access behavior, a server or a
cloud gains no information in addition to the access pattern
that occurs on its own cloud. That is to say, a server will
not know: 1) which data is being accessed; 2) how old it
is (when it was last accessed); 3) whether the same data
is being accessed (linkability); 4) access pattern (sequential,
random, etc); or 5) whether the access is a read or a write.

Definition 1. [Security definition]: Let ~y := ((op1, u1, data1),
(op2, u2, data2),..., (opM , uM , dataM)) denote a data request
sequence of length M , where each opi denotes a read(ui) or a
write(ui, data) operation. Specifically, ui denotes the identifier of
the block being read or written, and datai denotes the data being
written. Let A(~y, C) denote the sequence of accesses to the cloud
C given the sequence of data requests ~y. An ORAM construction
is said to be secure if for any two data request sequences ~y and
~z of the same length, there exists a security parameter λ and a
negligible function negl satisfies

Pr[A(~y, C) = 1]− Pr[A(~z, C) = 1] < negl(λ).

where Pr denotes probability.

3 THINORAM SCHEME

In this section, we show the details of our proposed “ThinO-
RAM” (constructed based on the idea of a partition-based
ORAM), which requires very little client storage, light client
computation and constant network bandwidth.

3.1 Storage structure
Server storage. ThinORAM divides the N blocks into
O(
√
N) partitions. Like most ORAMs, we set the block size

as 4KB. Different from MCOS [19], all the O(
√
N) partitions

will be uniformly distributed in K (K≥3) non-colluding
clouds. That is, ThinORAM adopts the “distributed storage”
structure, which is shown in Figure 3.

Client storage. In ThinORAM, we remove the shuffle
buffer and set the maximum size of evict cache Cache to be
X . The position map can be defined as tuples of (u, cloud, p,
l, offset, r), where r is the random value. For convenience, we
denote position[u] as the tuple of data block u in the position
map, denote Ci as the i-th cloud, and denote Cache[i] as the
i-th block cached in the Cache.

Initial data value. A dummy block has the default
value as the ciphertext of zero. Each data is encrypted by

Access(op, u, data*):
1: Ci ← position[u].cloud, p← position[u].p
2: if p == −1 then
3: Ci ← UniformRandom(C1...CK)
4: data← ReadCloud(Ci,⊥) // read a dummy block
6: data← ReadCache(u) // read from cache
7: else
8: data← ReadCloud(Ci, u) // read the real block
9: if op == write then

10: data← data∗

11: UnlinkEvict(u, data)
12: Return data

UnlinkEvict(u, data):
1: Cn ← UniformRandom(C1...CK) except Ci

2: position[u].cloud← Cn, position[u].p← −1
3: WriteCache(u, data)
4: if |Cache| == X then
5: r ← UniformRandom(0...X − 1))
6: (u, data)← Cache[r], Cn ← position[u].cloud
7: WriteCloud(Cn, u, data)

Fig. 4. Algorithms for data access and evict operations.

taking a random value as initial vector (IV). The top level is
initialized as dummy blocks.

3.2 Data access
There are three operations in a data access (as shown in
Figure 4):

• ReadCloud(Ci, u): Read a block u from the i-th cloud.
• WriteCloud(Ci, u, data): Write a chosen block with

identifier of u and value data to the i-th cloud.
• UnlinkEvict(u, data): Randomly select a block from

the client evict cache and evict it into its pre-specified
cloud. For each fetched block u, its related cloud will
be changed to a random other cloud, and then it will
be stored into the client evict cache. There are at least
three clouds for the consideration of security.

Single data access is made up of two steps: ReadCloud
and UnlinkEvict. ReadCloud will read an interested block
from a cloud. UnlinkEvict will re-specify the fetched block
to another random cloud, store it into the evict cache,
randomly select a block from evict cache and call WriteCloud
to write it to its pre-specified cloud.

3.2.1 Reading from a cloud
Instead of shuffle operation between clouds to read a s-
ingle block in MCOS [19], ThinORAM makes use of XOR
technique to generate a single block and returns it back to
the client. It maintains O(1) communication, meanwhile, it
reduces the response time and the cloud-cloud bandwidth
by avoiding the shuffling between the clouds.

The left part of Figure 3 shows an example of Readcloud,
i.e., read a data u from Cloud C1. The detailed algorithm
of Readcloud is shown in Figure 5. Firstly, the client looks
up the location of block u and sends the offset of block
u and other dummy blocks to the cloud. Then, the cloud
simply XORs the blocks according to the received offset,
then returns the resulting single block to the client. Finally,
the client encrypts each “000...000” with its corresponding

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

C1 Cn…
…Ci

Client

level	1
level	2

……

1. WriteCloud

Read

2.Shuffle

Client

1. ReadCloud
offsets

3. Done

3. write

4.Done

case	2

1. WriteCloud
2.Done

N blocks (distributed to more than three clouds)

case	1
Write

level	L

……

evict	cache

Clouds

4. Evict a
random block

2. XOR
blocks

Fig. 3. Illustration of ThinORAM. To read a block from Cloud C1, the cloud will be required to do XOR operation over all specified blocks of the
filled levels, and return the resulting single block to the client. The client will evict the read block to another random cloud immediately. To write a
block to Cn (case 1), because the hybrid-shuffle condition is not satisfied, the client will directly write it into an unfilled first level. Otherwise (case
2), when writing to Ci and trigger the hybrid-shuffle, the client will hybrid-shuffle both blocks in consecutive filled levels of the selected partition and
blocks from several first levels of other partitions, onion encrypt and write them to another random cloud (e.g., Cn).

ReadCloud(Ci, u):
Client:

1: (p∗, l∗, offset∗, r∗)← position[u]
2: if p∗ == −1 || u ==⊥ then
3: p∗ ← UniformRandom(0...

√
N

K
)

4: OffB← ∅
5: for l = 0, 1, ..., L− 1 do
6: if l 6= l∗ then
7: OffB← OffB

⋃
GetNextDummy(p∗, l)

8: else
9: OffB← OffB

⋃
offset∗

10: send OffB to the server
Server:
11: block ← blockAt(OffB[0])
12: for j = 1, ..., |OffB| − 1 do
13: block ← block ⊕ blockAt(OffB[j])
14: send block to the client

Client:
15: for l = 0, 1, ..., |OffB| − 1 do
16: if offset∗ 6= OffB[j] then
17: r ← getRndFromOffset(OffB[j])
18: block ← block ⊕ Enck(“000...000

′′, r)
19: block ← Deck(block, r

∗)
20: Return blocks

Fig. 5. Reading a block from a cloud.

random value, XORs it to retrieve the interested block, and
finally decrypts to get the real value.

3.2.2 Writing to a cloud
Instead of frequent shuffle operation between clouds to
write a block in MOCS, ThinORAM develops “hybrid-
shuffle” operation (details in Section 3.3) to reduce the
frequency of shuffle operations. The details are shown in
Figure 6.

When writing a block to Cn, ThinORAM will first judge
whether the hybrid-shuffle condition is satisfied. As shown

WriteCloud(Cn, u, data):
1: if NeedHybridShuffle(Cn) then
2: blks← HybridShuffle(u, data)
3: Cw ← randomOtherCloud(Cn)
4: StoreToCloud(blks, Cw)
5: else
6: p←randomPartition(Cn);

//select random partition p with unfilled first level in Cn

7: StoreToLevel(data, 0, p) //store data to first level

NeedHybridShuffle(Cn):
1: Let count as the number of all filled first levels
2: if count ≥ Q then
3: Return true
4: else
5: for p = 0, 1, ...,

√
N

K
do

6: l← firstFilledLevel(p)
7: if AcessNumber(l, p) ≥ 2l then
8: Return true
9: Return false

Fig. 6. Writing a block to cloud. If the hybrid-shuffle condition is satisfied,
ThinORAM will shuffle blocks from a partition and first levels in other
partitions, then store them to another cloud. Otherwise, it will store the
data directly to the first level of a random partition.

in Figure 3, if the condition is not satisfied (case 1), Thi-
nORAM will store the data directly to the first level of
a random partition. Otherwise (case 2), ThinORAM will
execute a hybrid-shuffle operation to shuffle the blocks in
both consecutive filled levels of this partition and filled first
levels of other partitions and store these shuffled blocks blks
to a random other clouds.

Assume we want to store the shuffled blocks to Cloud
Cn (shown in Figure 7), ThinORAM will first compute the
suitable level l as dlog |blks|e+ 1, select a partition p whose
level l is unfilled, and store them into this level. If there is
no such a partition, ThinORAM will select a partition whose

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

StoreToCloud(blks, Cn):
1: l← dlog |blks|e+ 1

2: for p∗ = 0, 1, ...,
√
N

K
do

3: if l is unfilled then
4: StoreToLevel(blks, l, p∗)
5: Return
6: p←MostAccessedTopLevel()
7: StoreToLevel(blks, L− 1, p)
8: //store to top level (replace the visited or dummy blocks)

MostAccessedTopLevel():
1: p← 0, l← L− 1
2: for partition p∗ = 1, ...,

√
N

K
do

5: if AcessNumber(l, p∗) > AcessNumber(l, p) then
6: p← p∗

7: Return p

Fig. 7. Store shuffled blocks to a cloud.

top level has been accessed the most, and merge the shuffled
blocks to the visited blocks or dummy blocks in its top level.

3.3 Hybrid Shuffle

Hybrid-shuffle condition. Denote Q as the number of filled
first levels allowed in a cloud. A hybrid-shuffle operation
would be executed, when the number of filled first levels
is up to Q. Another condition would also lead to a hybrid-
shuffle operation is that a partition has been accessed for
many times. In partition-based ORAMs, if more than half of
blocks are accessed in a level, the shuffle operation must be
executed to ensure enough dummy blocks can be used. The
details are shown in algorithm NeedHybridShuffle of Figure
6.

Hybrid-shuffle operation. The motivation of hybrid-
shuffle operation is to shuffle blocks in the first levels of
other partitions to ensure that most of the first levels are
empty. One hybrid-shuffle operation enables many subse-
quent write operations to be done directly on the first level.
Its security (analyzed in Lemma 2) is guaranteed by the
“unlinked ORAM operations”. As shown in Figure 11, there
are three steps.

Step 1: Select the partition to be shuffled.
The algorithm of MostAccessed (shown in Figure 11)

describes how to select a partition p to be shuffled. The
chosen partition must be accessed the most. It will compute
the shuffle-rate of each partition as AcessNumber(l, p)

2l
, that is,

the percentage of data blocks being accessed in the first
filled level l. ThinORAM will select the partition p with the
maximum shuffle-rate as the result.

Step 2: Collect blocks to be shuffled.
Three kinds of blocks will be collected into the set blks:

1) the block u to be written; 2) the unread blocks in the
consecutive filled levels of the selected partition p; 3) the
blocks in the filled first level of other partitions.

Step 3: Shuffle blocks and onion encrypts them.
For all the blocks in blks, ThinORAM will first permute

their positions randomly. After shuffling, ThinORAM will
onion encrypt them to protect the data privacy, like that
in MCOS [19]. Finally, ThinORAM saves these blocks as a
new block set blks′ and returns to WriteCloud function to be
stored to another random cloud.

HybridShuffle(u, data):
1: (p, l)← MostAccessed()
2: blks← ∅ ∪ data
3: for l∗ = l to L− 1 do
4: if level l∗ is filled then
5: blks← blks∪{unread blocks in level l∗}
6: else
7: break
8: for partition p∗ = 0 to

√
N

K
do

9: if level 0 is filled && p∗ 6= p then
10: blks← blks∪{unread blocks in level 0 of p∗}
11: blks′ ← Shuffle(blks)
12: Return blks′

MostAccessed(Cn):
1: p∗ ← 0; l∗ ← 0; rate∗ = 0.0
2: for partition p = 0, 1, ...,

√
N

K
do

3: l← firstFilledLevel(p)
4: rate← AcessNumber(l, p)

2l

5: if rate > rate∗ then
6: p∗ ← p; l∗ ← l
7: Return (p∗, l∗)

Fig. 8. Hybrid-shuffle operation.

4 ANALYSIS

4.1 Shuffle frequency analysis

In ThinORAM, shuffle operation is necessary to hide the po-
sitions of blocks when these blocks are transferred between
clouds. As mentioned before, single data access consists of
two important steps, that is, reading a block and writing a
block.

Theorem 1. In ThinORAM, large shuffle will happen after
O(Q) accesses, where Q is the hybrid-shuffle condition.

Proof. Let l denote the level number of the first filled level.
In ThinORAM, there are two cases leading to the shuffle
operation, we analyze the bounds respectively and evaluate
the low bound.

Case 1: The total number of blocks stored in Level 0 of all
partition is larger thanQ. In this case, after everyQ accesses,
regular shuffle will happen. Therefore, shuffle frequency of
ThinORAM would be FT = 1

Q .
Case 2: Similar to traditional ORAM like SSS [29], if there

exist continuous levels, all blocks in these levels including
the latest block will be shuffled to the next level. As men-
tioned in [29], the large shuffles happen very infrequently,
i.e., with exponentially decreasing frequency.

Based on the condition of Case 1 and Case 2, the frequen-
cy in Case 2 is lower than Case 1 obviously. So after O(Q)
accesses, large shuffle will happen.

4.2 Cloud-cloud bandwidth analysis

In the following analysis, the bandwidth we mention refers
to the bandwidth between the clouds.

Read Bandwidth. Let
−→
Qs denote the access sequence of

reading a block. In MCOS,
−→
Qs consists the access operations

of two clouds in a “non-distributed” storage structure. For
each read operation, MCOS requires the blocks in each filled
level of a partition to be transferred to a cloud for shuffling
and sends the resulted blocks to other clouds for fetching.

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Therefore, cloud-cloud bandwidth must be more than the
blocks read in a partition, which is the O(logN) blocks.
On the contrary, ThinORAM has none of cloud-cloud read
bandwidth for the XOR technique.

Therefore, we can conclude that read bandwidth of Thi-
nORAM is much smaller compared to MCOS [19].

Write Bandwidth. In MCOS, the bandwidth at i-th ac-
cess in an initially empty partition proceeds as follows:

Ai =

{
0 i is odd
(2j − 1) ·B i is even, i/2j mod 2 = 1

Therefore, the total download bandwidth after T ac-
cesses is: A =

∑T
i=1Ai. The amortized bandwidth cost is

O(logN) · B. In the worst case, the client has to download
about 2.3

√
N blocks to shuffle and return these padding

fresh dummy blocks, it is up to O(
√
N) ·B.

Claim 1. In ThinORAM, the cloud-cloud bandwidth for writing
is saved about (2blogQc − 2) · B, for applying the hybrid-shuffle
operation.

Proof. At i − th access in an initially empty partition, the
bandwidth is as follows:

Ai =


0, i < Q
0, (i-Q) mod (Q− 2blogQc) 6= 0

2blogQc ·B, (i-Q) mod (Q− 2blogQc) = 0

In a typical partition structure, the total number of blocks
between level 1 and level lB − 1 is 2blogQc − 2. Compared
with the typical structure, in ThinORAM, the bandwidth
(2blogQc − 2) ·B of writing these blocks is saved.

Similar to MCOS, the total download bandwidth after
T accesses is: A =

∑T
i=1Ai. The amortized bandwidth

cost is lower than O(logN) · B. The frequency of shuffle
will be reduced even under the worse case scenario of the
bandwidth.

In terms of storage capacity, ThinORAM keeps the top
level structure to deal with the worst case. The storage
capacity will be reduced to

√
N − 2blogQc + 2 blocks.

4.3 Security analysis

Let s be the security parameter, where ε is a function
negligible in s.

Lemma 1. Reading from a cloud leaks no information.

Proof. In the beginning, the client looks up the position map
to get a block from partition p of Ci. During this process,
the client fetches a dummy block from each filled level
except the level which contains the interested block, then
applies XOR operation to these fetched blocks. After that,
Ci sends the result to the client. In order to make sure there
are enough dummy blocks to support the normal read op-
eration, hybrid-shuffle operation in writeCloud is completely
necessary. When reading a block from partition p of Ci, Ci

only knows the behavior of reading a block from partition p
but not the location of this block or any other information.

Let read(Bi) denote a reading block Bi, the sequence of
reading a block can be denoted as Qs = {read(B1) , . . . ,

read(Bn)}. Even read(Bi) = read(Bj), it will still leak no
information, because the random of the WriteCache makes
adversary know nothing about where the block is between
these two reading operations. When read(Bi) 6= read(Bj),
the probability of recognizing these two independent oper-
ations is:∣∣∣∣Pr[

n⋂
i=1

read(Bi)]

∣∣∣∣ =
n∏

i=1
|Pr[read(Bi)]| ≤

n∏
i=1

(1
2) = 1

2n .

Lemma 2. Writing to a cloud leaks no information.

Proof. Write operation selects one or more filled levels from
Partition p which has been accessed for the most times than
other partitions on Ci and a number of blocks which come
from the first level of every partition on Ci, then execute
hybrid-shuffle and sends the result to another cloud (i.e.,
Cj).

If Ci is malicious, after several accesses, it can get some
accessed blocks. Let Bx be the original block, which exists
on Ci before sending to Cj for hybrid-shuffle and onion
encryption, By is the block which exists in Ci now,

∀i, j, s.t., |Pr[(Bx ∈ Ci) = (By ∈ Ci)]| < ε(s)

If Cj is malicious, under the non-colluding condition, it
cannot get Hybrid-shuffle key which is stored in Ci. So Cj

cannot link the latter blocks with the former blocks.

Lemma 3. Hybrid-shuffle leaks no information.

Proof. Let blk denote blocks need to be shuffled and let
C1 denote the cloud which performs shuffle operation. The
shuffled blocks blk′ will be stored in cloud C2. Let pos[blk]
denote the position of blocks blk and let Π denote shuffle
permutation according to keyed pseudorandom permuta-
tion (PRP) function.

Suppose C1 is malicious. All blocks blk and position
information pos[blk] are exposed to cloud C1. Cloud C1

generates a pseudo-random one-time shuffling key k to
ensure that after the shuffle procedure the pos[blk] and
pos[blk′] are completely unrelated. That is, there exists a
negligible function negl and a security parameter λ satisfies

Pr[Πk(pos[blk]) = 1]− Pr[Πk(pos[blk′]) = 1] < negl(λ).

The shuffled blocks blk′ will be stored in cloud C2 which
will not collude with cloud C1, which ensure the following
operation about blk′ is independent of cloud C1.

Suppose C2 is malicious. All the information acquired
by the cloud C2 is only the blk′ and position information
pos[blk′] after being shuffled. Cloud C2 can gain no infor-
mation about shuffle permutation Π without shuffling key
k. Subsequent data access can be considered random and
independent of data access prior to shuffle.

Lemma 4. Unlinked Evict can be applied securely to defend
linkability attack.

Proof. In partition-based ORAM, there exists linkability at-
tack. When writing a fetched block, it will reveal the parti-
tion in the process. In the next access, it may read a block
from the same partition. In that case, the cloud can deduce
with a certain probability that the two consecutive accesses
are for the same block. Since it cannot be ignored, there may
exist a weak linkability attack inside the cloud.

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

In ThinORAM, the probability that a cloud can distin-
guish whether the same block is accessed when the same
partition is accessed is

Pr[partition] =
1

logN

When the size of client cache is X , and in each access,
the client will choose a block in cache randomly for writing.
The probability that chooses the same block is

Pr[cache] =
1

X

Notice that in “HybridShuffle”, Q blocks will be shuffled
to another cloud including the latest one. If the written block
is shuffled immediately, the cloud will no longer get the
information of consecutive reads and writes. The probability
that does not execute “HybridShuffle” is

Pr[HybridShuffle] =
1

Q

Therefore, the probability that a cloud can successfully
identify that two adjacent accesses are on the same block is

Pr[same] = Pr[partition] ·Pr[cache] · (1−Pr[HybridShuffle])

=
1

logN
· 1

X
· (1− 1

Q
)

=
Q− 1

logN ·X ·Q
In summary, as X increases, the probability of identify-

ing the same block in adjacent accesses decreases. In order
to ensure less leakage, we will maximize the capacity of X .
However, it will bring heavy cost to the client. Therefore, we
have the upper bound of cache size. To maintain the same
degree of security with SSS [29], we define the upper bound
ofX asO(

√
N

logN). In practice, we can reduceX appropriately
to ensure that the client can operate normally, though this
will reduce the level of security.

5 APPLICATION OF THINORAM IN FOG COMPUT-
ING

5.1 Challenges of applying ThinORAM

In any kind of ORAMs, position map acts as the most
important role for storing the location information of each
block. It always occupies a large amount of client storage. To
reduce client storage, most ORAMs outsource the position
map to the clouds and look up it in a recursive way. How-
ever, this approach results in heavy offline bandwidth. Even
ThinORAM can achieve minimal client overhead, it is still
unsuitable for lightweight fog nodes or IoT devices. How
to configure position map is the first challenge for applying
ThinORAM in practical IoT applications.

From Claim 4, there exists a trade-off between evict cache
size and security in ThinORAM. The bigger the evict cache
size is, the higher the security is. We can adopt a big evict
cache size if we want to achieve the ideal security. But it
brings a heavy storage overhead (the upper bound is

√
N

logN)
for the client. How to balance the relationship between evict cache
size and security is our second challenge.

Fog
node

Fog
node

Untrusted clouds

…

IoT device IoT device

Oblivious
read

… …
Trusted
device

Oblivious
write

shuffle

N blocks (distributed to more than three clouds)

Server

Client
1

2

3

WriteCloud ReadCloud4

Lookup
position
map

Fig. 9. Illustration of ThinORAM-F

5.2 ThinORAM-F in fog computing
For the practical requirement, we inevitably need to deploy
a trusted device in the original fog environment which is
described in Section 1. The trusted device is the hardware
using trusted processors or acting as the trusted center (e.g.,
trusted gateway). It can securely store some sensitive data.

ThinORAM-F . Considering efficiency and security, we
move the position map in the cloud server to the trusted
center. The interaction between fog nodes and IoT devices
is considered as an internal operation of the client. We call
ThinORAM under this deployment as “ThinORAM-F”. The
framework of “ThinORAM-F” is shown in Figure 9, which
is similar to ThinORAM except that the fog nodes play the
role of the client.

Single data access in ThinORAM-F can be described as
follows: firstly, the client (fog nodes) obtains the position of a
target data block from position map in the trusted device. If
the target data block is in the cloud server rather than the fog
nodes, the fog nodes perform ReadCloud to fetch the block
in the cloud. Next, the client stores the fetched data block
into the trusted device and gets a new random data block
from the trusted device. Finally, it calls WriteCloud to write
the new data block to the cloud. If the shuffle operation is
triggered, the cloud shuffles data blocks into another cloud
following the rule which is the same as ThinORAM.

By storing the position map and evict cache into the
trusted device, ThinORAM-F can achieve the minimal
client storage and allow the fog nodes or IoT devices to
quickly look up the block’s position. The size of evict cache
is adjusted by the fog node configuration.

5.3 Performance Evaluation
5.3.1 Implementation details
We implemented both MCOS and ThinORAM-F in Java.
Like SEAL-ORAM [26], we use MongoDB to store and
access data blocks. In the server side, we initialize a partition
by using a collection and each block is stored as a docu-
ment in the corresponding collection. About cryptographic
algorithm, we adopt AES-CBC to encrypt all blocks. We
provide server and client programs to implement the actual
ORAM. Especially, we build the communication mechanism

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

TABLE 3
Comparison of network bandwidth.

Data access number 100 1000 5000 10000

ThinORAM-
F

write cloud 26.3k 348.7k 2139.7k 5357.8k
cloud to cloud 44.5k 700.9k 3787.4k 7344.4k

read cloud 35.3k 357k 1874.5k 3519.4k

MCOS [19]
write cloud 33.3k 341.5k 1635.3k 3164.6k

cloud to cloud 175.5k 1245.4k 8558.1k 14566.9k
read cloud 28.3k 286.2k 1411.3k 2895.2k

between the server and the client based on Java socket API.
The source code and test cases can be found in GitHup:
https://github.com/emigrantMuse/ThinORAM.git.

Deployment. Based on the three-layer architecture of the
fog computing mentioned in Section 1, we implemented the
configuration and simulation of the fog node and cloud
server. We deploy the server in three cloud providers and
rent one server per cloud. Each server has 1TB capacity,
4Mbps bandwidth, 4GB memory and 2 core CPU. And we
deploy the client in a gateway device with 1.8 GHz dual-
core processor, 256MB memory and 512MB flash installed
with Linux OS, to simulate fog nodes. Since the client of
ThinORAM is deployed on the fog nodes, the IoT device is
replaced by the data generation algorithm simulated by the
fog nodes in our experiments.

Test cases. In our experiments, we set N=40,000 and
Q=12. In data access, a block will be accessed randomly.
After reading a block, we change its data or leave it alterna-
tively. Then, we write it back to other cloud and shuffle in a
specified way described in Section 3.3.

5.4 Performance Evaluation
According to the results of experiments, we can conclude
that when compared to MCOS: 1) The shuffle frequency
in ThinORAM-F has been reduced by about 45×; 2) The
bandwidth between cloud and cloud in ThinORAM-F is
about 2-3× smaller than that in MCOS; 3) The response time
in ThinORAM-F has been improved about 2×.

Data access distribution. The distribution of data access
is shown in Figure 10, where the number of reading from
the cloud in ThinORAM-F is approximately equal to the
number of writing to cloud. Especially, the number of in-
teractions between the clouds is about twice that of read
and write operations. We note that communication between
cloud to cloud occupies the majority of access operations.

Shuffle frequency. Hybrid-Shuffle sets the parameter
Q to control the frequency of shuffling. The frequency of
shuffle operation decreases as Q increases shown in Figure
11. As shown in Figure 12, we know that the number of
shuffle operations in ThinORAM-F is far fewer than that
in MCOS. The shuffle frequency in ThinORAM-F is about
1/45× lower than the MCOS. By reducing the number of
shuffle operations, we can appropriately reduce the network
bandwidth and response time.

Response time. Figure 13 shows the comparison of
response time between ThinORAM-F and MCOS. We note
that ThinORAM-F has better performance than MCOS.
Under different visits, MCOS is 2× slower than ThinORAM-
F . The improvement comes from the followings: 1) XOR
operations take little time in read operation; 2) the frequency

of shuffle operations is reduced, and accordingly the com-
munication between the clouds is reduced.

Network bandwidth. Table 3 shows the detailed net-
work bandwidth in different number of data operations in
ThinORAM-F . The bandwidth is divided into three parts:
read cloud, write cloud and cloud to cloud. For ThinORAM-
F , the bandwidth for cloud to cloud accounts for the largest
proportion, which accounts for 60% of the total bandwidth.
The bandwidth for read cloud is approximately equal to
write cloud. As the data access number increases, the band-
width of read cloud is gradually greater than that of write
cloud. Compared with MCOS, read and write bandwidth
in ThinORAM-F is slightly less than the read and write
bandwidth in MCOS. The bandwidth for cloud to cloud
in ThinORAM-F is much smaller than the corresponding
bandwidth in MCOS, which is reduced by about 2-3×.

Based on our experiments, we can conclude that the
operations between clouds occupy the majority of the band-
width. In terms of the shuffle frequency and response
time, ThinORAM-F is much lower than those of MCOS.
ThinORAM-F requires lower bandwidth than MCOS and
its performance can meet the needs of practical applications.

6 CONCLUSIONS

To enable ORAM to be feasible in emerging areas such
as Internet of Things, there is a strong demand for a
“thin” client ORAM construction for storage-limited and
computation-limited devices. Based on this, we propose our
“ThinORAM” scheme under non-colluding clouds, which
has small client storage and low computation requirement
in the client side. Compared to other ORAMs, ThinORAM
can achieve the best (minimum) client-side overheads (s-
torage and computation), with the best response time, as
verified by our experiments. We believe that the advantages
of “non-colluding clouds” have not yet been fully explored.
We expect to see better schemes that can rely on this valid
assumption.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China (No.61672300), National Natural
Science Foundation of Tianjin (No. 18ZXZNGX00140) and
National Natural Science Foundation for Outstanding Youth
Foundation (No. 61722203).

REFERENCES

[1] H. Pengfei, D. Sahraoui, N. Huansheng, Q. Tie, “Survey on fog
computing: architecture, key technologies, applications and open
issues”, in Journal of network and computer applications, 2017, 98, pp.
27-42.

[2] L. Jiang, L. Da Xu, H. Cai, Z. Jiang, F. Bu, B. Xu, “An IoT-oriented
data storage framework in cloud computing platform”, in IEEE
Transactions on Industrial Informatics, 2014, 10(2), pp. 1443-1451.

[3] R. Swati Sucharita, P. Deepak, S. Suraj, M. Saraju P, Z. Albert Y,
“Building a sustainable Internet of Things: Energy-efficient routing
using low-power sensors will meet the need”, in IEEE Consumer
Electronics Magazine, 2018, 7(2), pp. 42-49.

[4] L. Rakesh Kumar, R. Amiya Kumar, T. Zhiyuan, S. Suraj, P. Deepak,
S. NVR, P. Mukesh, R. Rohit, T. Shankar Sharan, “Building Scalable
Cyber-Physical-Social Networking Infrastructure using IoT and
Low Power Sensors” in IEEE Access, 2018, 6, pp. 30162-30173.

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

1 0 0 5 0 0 1 0 0 0 2 5 0 0 5 0 0 0
1 0 0

1 0 0 0

1 0 0 0 0
Tim

es
 of

 da
ta

op
era

tio
n

D a t a a c c e s s N u m b e r

 R o u n d t r i p b e t w e e n c l o u d s
 W r i t e t o c l o u d
 R e a d f r o m c l o u d

Fig. 10. The distribution of data access. N=40000, Q=12. Each data
access will cause a reading operation and a writing operation.

2 3 4 5 6 7 8
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Tim
es

 of
 hy

bri
d s

hu
ffle

H y b r i d - s h u f f l e c o n d i t i o n (l o g 2 s c a l e)

 h y b r i d s h u f f l e

Fig. 11. The frequency of shuffle operation. N=40000, data access
number=300. The number of shuffles decreases as the size increases.

1 0 0 5 0 0 1 0 0 0 2 5 0 0 5 0 0 0
1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

Tim
es

 of
 sh

uff
le

D a t a a c c e s s n u m b e r

 H y b r i d S h u f f l i n g (T h i n O R A M)
 N o r m a l S h u f f l i n g (M C O S)

Fig. 12. Comparison in number of shuffle operation. The number of
shuffle operation in ThinORAM-F is about 1/45 times that of MCOS.

1 0 0 5 0 0 1 0 0 0 2 5 0 0 5 0 0 0 7 5 0 0 1 0 0 0 0
- 5 0 0 0

0
5 0 0 0

1 0 0 0 0
1 5 0 0 0
2 0 0 0 0
2 5 0 0 0
3 0 0 0 0
3 5 0 0 0
4 0 0 0 0
4 5 0 0 0

Re
sp

on
se

 tim
e (

ms
)

D a t a a c c e s s n u m b e r

 T h i n O R A M
 M C O S

Fig. 13. Comparison in response time. The ThinORAM-F is about 2×
faster than MCOS. Because each operation of MCOS requires cloud-cloud
communication.

[5] S. Rathin Chandra, S. Suraj, P. Deepak, Z. Albert Y, “Location of
Things (LoT): A review and taxonomy of sensors localization in IoT
infrastructure”, in IEEE Communications Surveys & Tutorials, 2018,
20(3), pp. 2028-2061.

[6] F. Tao, Y. Cheng, L. Da Xu, L. Zhang, B. H. Li, “CCIoT-CMfg:
cloud computing and internet of things-based cloud manufacturing
service system”, in IEEE Transactions on Industrial Informatics, 2014,
10(2), 1435-1442.

[7] Y. Yang, X. Liu, R. H. Deng, “Lightweight Break-glass Access Con-
trol System for Healthcare Internet-of-Things”, in IEEE Transactions
on Industrial Informatics, 2017, DOI:10.1109/TII.2017.2751640.

[8] L. Chang, R. Rajiv, Z. Xuyun, Y. Chi, G. Dimitrios, C. Jinjun, “Public
auditing for big data storage in cloud computing–a survey”, in
2013 IEEE 16th International Conference on Computational Science and
Engineering. IEEE, 2013, pp. 1128-1135.

[9] R. Rajiv, R. Omer, N. Surya, Y. Mazin, J. Philip, W. Zhenya, B. Stuart,
W. Paul, J. Prem Prakash, G. Dimitrios, others, “The next grand
challenges: Integrating the internet of things and data science”, in
IEEE Cloud Computing, 2018, 5(3), pp. 12-26.

[10] K. Alireza, K. Alireza, R. Rajiv, “Elasticity management of stream-
ing data analytics flows on clouds”, in Journal of Computer and
System Sciences, 2017, 89, pp. 24-40.

[11] W. WenQiang, Z. Xiaoming, Z. Jiangwei, L. Hock Beng, “Smart
traffic cloud: An infrastructure for traffic applications””, in 2012
IEEE 18th International Conference on Parallel and Distributed Systems.
IEEE, 2012, pp. 822-827.

[12] A. Arwa, A. Abdulrahman, H. Chunqiang, C. Xiuzhen, “Fog
computing for the internet of things: Security and privacy issues”,
in IEEE Internet Computing, 2017, 21(2), pp. 34-42.

[13] B. Flavio, M. Rodolfo, Z. Jiang, Addepalli, “Sateesh Fog computing

and its role in the internet of things”, in Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13-
16.

[14] S. Ivan, W. Sheng, “The fog computing paradigm: Scenarios and
security issues”, in 2014 Federated Conference on Computer Science and
Information Systems. IEEE, 2014, pp. 1-8.

[15] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In
Network and Distributed System Security Symposium (NDSS),
2012.

[16] M. S. Islam, M. Kuzu, M. Kantarcioglu, “Access Pattern disclosure
on Searchable Encryption: Ramification, Attack and Mitigation”, in
NDSS, 2012.

[17] D. Cash, P. Grubbs, J. Perry, T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in CCS, 2015, pp. 668-679.

[18] O. Goldreich, R. Ostrovsky, “Software protection and simulation
on oblivious RAMs,” in JACM, 1996, 43(3), pp. 431-473.

[19] E. Stefanov, E. Shi, “Multi-cloud oblivious storage,” in CCS, 2013,
pp. 247-258.

[20] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, D. Wichs,
“Onion ORAM: A constant bandwidth blowup oblivious RAM,” in
TCC, 2016.

[21] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, S.
Devadas, “Constants Count: Practical Improvements to Oblivious
RAM,” in USENIX Security, 2015.

[22] E. Stefanov, E. Shi, “Oblivistore: High performance oblivious
distributed cloud data store,” in NDSS, 2013.

[23] D. S. Roche, A. J. Aviv, S. G. Choi, “A Practical Oblivious Map
Data Structure with Secure Deletion and History Independence,”
in S&P, 2016.

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

[24] Y. Jia, T. Moataz, S. Tople, P. Saxena, “OblivP2P: An Oblivious
Peer-to-Peer Content Sharing System,” in USENIX Security, 2016.

[25] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, Y. Huang, “Practic-
ing oblivious access on cloud storage: the gap, the fallacy, and the
new way forward,” in CCS, 2015, pp. 837-849.

[26] Z. Chang, D. Xie, F. Li, “Oblivious RAM: a dissection and experi-
mental evaluation,” in VLDB, 2016, 9(12), pp. 1113-1124.

[27] G. Oded, O. Rafail, “Software protection and simulation on oblivi-
ous RAMs”, in Journal of the ACM (JACM), 1996, 43(3), pp. 431-473.

[28] Z. Samee, W. Xiao, R. Mariana, G. Adrià, D. Jack, E. David, K.
Jonathan, “Revisiting square-root ORAM: efficient random access
in multi-party computation”, in 2016 IEEE Symposium on Security
and Privacy (SP), IEEE, 2016, pp. 218-234.

[29] E. Stefanov, E. Shi, D. Song, “Towards practical oblivious RAM,”
in NDSS, 2012.

[30] S. Cetin, Z. Victor, E. Amr, L. Huijia, T. Stefano, “Taostore: Over-
coming asynchronicity in oblivious data storage”, in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 198-217.

[31] W. Peter, S. Radu, “Single round access privacy on outsourced
storage”, in Proceedings of the 2012 ACM conference on Computer and
communications security. ACM, 2012. pp. 293-304.

[32] J. Dautrich, E. Stefanov, E. Shi, “Burst ORAM: Minimizing ORAM
response times for bursty access patterns”, in USENIX Security,
2014, pp. 749-764.

Yanyu Huang received BS Degree of Infor-
mation Security from China University of Geo-
sciences, Wuhan, China, in 2016. Currently, she
studies for the master degree in computer sci-
ence at Nankai University. Her research interests
include applied cryptography, data privacy pro-
tection.

Bo Li graduated from the College of Computer
and Control Engineering at Nankai University
and received BS Degree of Engineering in 2017.
Currently, she studies for the master degree in
computer science at Nankai University. Her re-
search interests include applied cryptography,
data privacy protection.

Zheli Liu received the BSc and MSc degrees
in computer science from Jilin University, China,
in 2002 and 2005, respectively. He received the
PhD degree in computer application from Jilin
University in 2009. After a postdoctoral fellow-
ship in Nankai University, he joined the College
of Computer and Control Engineering of Nankai
University in 2011. Currently, he works at Nankai
University as an Associate Professor. His current
research interests include applied cryptography
and data privacy protection.

Jin Li received the BS degree inmathematic-
s from Southwest, University, in 2002 and the
PhD degree in information security from Sun Yat-
sen University, in 2007. Currently, he works at
Guangzhou University as a Professor. He has
been selected as one of science and technology
new star in Guangdong province. His research
interests include applied cryptography and se-
curity in cloud computing. He has published over
50 research papers in refereed international con-
ferences and journals and has served as the

program chair or program committee member in many international
conferences.

Siu-Ming Yiu received a BSc in Computer Sci-
ence from the Chinese University of Hong Kong,
a MS in Computer and Information Science from
Temple University, and a PhD in Computer Sci-
ence from The University of Hong Kong. He re-
ceived two research output prizes, one from the
department in 2013 and one from the faculty in
2006. He was selected for Outstanding Teaching
Award by the University in 2009, the Teaching
Excellence Award in the Department in 2001,
2003, 2004, 2005, 2007, 2009, and 2010. He

also received the Best Teacher Award of the Faculty of Engineering twice
(2005 and 2009). Before he joined the Department as a faculty member,
he has worked as an Analyst Programmer for a couple of years. Besides
basic research, he has been involving in various industrial projectsin-
volved in quite a number of industrial projects.

Thar Baker is a Senior Lecturer in Software Sys-
tems in the Department of Computer Science
at the Faculty of Engineering and Technology.
He has received his PhD in Autonomic Cloud
Applications from LJMU in 2010. Dr Baker has
published numerous refereed research papers in
multidisciplinary research areas including: Cloud
Computing, Distributed Software Systems, Big
Data, Algorithm Design, Green and Sustainable
Computing, and Autonomic Web Science. He
has been actively involved as member of edi-

torial board and review committee for a number peer reviewed inter-
national journals, and is on programme committee for a number of
international conferences. Dr. Baker was appointed as Expert Evaluater
in the European FP7 Connected Communities CONFINE project (2012-
2015). He worked as Lecturer in the Department of Computer Science
at Manchester Metropolitan University (MMU) in 2011.

Brij B. Gupta received the Ph.D. degree from
IIT Roorkee, India. He was a Post-Doctoral Re-
search Fellow in UNB, Canada. He is current-
ly working as an Assistant Professor with the
Department of Computer Engineering, National
Institute of Technology Kurukshetra, India. He
spent over six months with the University of
Saskatchewan, Canada, to complete a portion
of his research. He has visited several countries
to present his research. He has published over
45 research papers in international journals and

conferences of high repute. His research interest includes information
security, cyber security, cloud computing, Web security, intrusion detec-
tion, computer networks, and phishing. He is member of ACM, SIGCOM-
M, The Society of Digital Information and Wireless Communications
(SDIWC), Internet Society, and the Institute of Nanotechnology, and a
Life Member of the International Association of Engineers and the Inter-
national Association of Computer Science and Information Technology.
worldwide.

