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Highlights 

 Young and older adults exhibited more cautious stair descent in compact fluorescent lamp bulb 

light 

 Riskier stepping patterns were shown in young and older adults during stair descent in compact 

fluorescent lamp bulb light 

 High powered (100W) LED bulbs may offer a safer alternative to compact fluorescent lamp 

bulbs for use over stairwells 

 

Abstract 

Introduction: Poor lighting has been associated with stair falls in young and older adults. However, 

current guidelines for illuminating stairs seem arbitrary, differ widely between sources, and are often 

difficult to interpret.  
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Aims: Here we examined the influence of real-world bulb illumination properties on stair descent safety 

in young and older adults, with a view to generating preliminary evidence for appropriate lightbulb 

use/stair illumination. 

Methods: Stair tread illumination (lux) was measured in a standard UK home (2.23m ceiling) from a 

low (50W; 630 lm) and a high (103W, 1450 lm) power compact fluorescent lamp (CFL) bulb from the 

time they were turned on until they reached full brightness. This enabled modelling of their 

illumination characteristics during warm up. Illumination was also measured from a low (40W, 470 lm) 

and a high (100W, 1521 lm) power LED bulb at first turn-on. Computer-controlled custom lighting 

then replicated these profiles, in addition to a Bright control (350 lux), on an instrumented staircase 

descended (3×trials per light condition) by 12 young (25.3±4.4 years; 5 males), 12 higher ability older 

(HAOA: 69.6±4.7 years; 5 males) and 13 lower ability older (LAOA: 72.4±4.2; 3 males) healthy 

adults. Older adults were allocated to ability groups based on physiological and cognitive function. 

Stair specific confidence was assessed prior to the first descent in each new lighting condition, and 

whole-body 3D kinematics (Vicon) quantified margins of stability and foot clearances with respect to 

the step edges. Mixed ANOVAs examined these measures for within-subject effects of lighting (×5), 

between-subject effects of age (×3) and interactions between lighting and age.  

Results: Use of CFL bulbs led to lower self-reported confidence in older adults (20.37%, p=.01), and 

increased margins of stability (12.47%, p=.015) and foot clearances with respect to the step edges 

(10.36%, p=.003). Importantly, using CFL bulbs increased foot clearance variability with respect to the 

bottom step (32.74%, p=.046), which is where a high proportion of falls occur.  

Conclusion: Stair tread illumination from CFL bulbs at first turn on leads to less safe stair negotiation. 

We suggest high powered LED bulbs may offer a safer alternative. 

 

Keywords: Ageing; Falls risk; Illumination; Margin of stability; Stair ambulation 
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1 Introduction 

Stair falls are a leading cause of injury and mortality in older adults, and poor lighting has been 

associated with an increased risk of falls on stairs (Jacobs, 2016). However, evidence linking 
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illumination to fall risk during stair descent, when considering specific type and brightness of 

lightbulbs commonly found in home environments, is limited. For example, energy saving bulbs, such 

as compact fluorescent lamp (CFL) bulbs, can take minutes to reach full brightness, which may leave 

stairwells poorly lit initially. Light emitting diode (LED) bulbs, on the other hand, reach full brightness 

instantaneously, and may offer a safer alternative for use over stairwells. Yet, how CFL and LED bulbs 

impact on stair safety has not previously been examined. This was the focus of the present study.  

 

Descending stairs is challenging to stability. Indeed, an injurious fall is three times more likely during 

stair descent than during ascent (Startzell et al., 2000). During transfer between steps, the body’s centre 

of mass (CoM) is shifted outside of the base of support and lowered to the next step. This causes the 

upper body to accelerate forwards and downwards, and its momentum must be controlled at step-

contact through adequate hip, knee and ankle moments (McFadyen and Winter, 1988; Novak and 

Brouwer, 2011). Controlling foot trajectory with respect to step-edges is also an important part of stair 

descent (Cohen, 2000). Catching a heel or toe on a step edge can introduce a sudden change to the 

planned movement, and depending on the severity, may require rapid repositioning of the limb to 

prevent a fall.  

 

Older adults exhibit riskier movement patterns than young adults during stair descent, which may be 

indicative of a reduced ability to control balance. For example, they have shown smaller 

anteroposterior (AP) margins of stability than younger adults (Bosse et al., 2012), which is measured as 

the distance between the extrapolated CoM and the forward boundary of the base of support. A smaller 

margin of stability leaves less time to decelerate the CoM prior to initiating the next step, and could 

increase the chances of falling during a misstep. In addition, older adults have previously exhibited 

smaller (Hamel et al., 2005) and more variable foot clearances over step-edges when compared to 

young adults (Zietz et al., 2011), which could increase the risk of tripping. Given the reduced ability to 

recover from trips on flat ground (Pavol et al., 2001), older adults may also be at a greater risk of 

falling following a trip on stairs. Furthermore, injurious falls are more likely to occur in older adults 

(Jacobs, 2016). 

 

Poor lighting has been linked to increased incidences of falls on stairs. Reducing stair tread 

illumination from around 86 lux to 22 lux increased step accident rates from 11% to 22% (Carson et al. 
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1978; p.52-53, cited in Thorpe, 2005). This may be related to inability to delineate edges of steps/treads 

or visual cues such as step nosings or edge highlighters. Experimentally restricting light levels has also 

been shown to affect factors related to falls risk during stair descent. At low illumination levels, young 

adults increase their foot clearances with respect to step edges, whereas older adults do not (Hamel et 

al., 2005). Older adults thus have a smaller and more variable ‘margin for error’, which may increase 

the chances of a trip in poor light. In addition, both young and older adults exhibit slower descent 

speeds in poor light (Zietz et al., 2011), which may seem an intuitive adaptation when visual 

information is compromised. It is thus clear that adequate vision is an important component of stair 

descent with regard to foot step-edge clearances, and reduced visual function in older adults (e.g. acuity 

and contrast sensitivity) may play a role in older adults’ risky stepping behaviour in lower light, 

particularly considering older adults look at the steps for longer when compared to young adults in 

normal light (Zietz and Hollands, 2009). 

 

Previous studies of stair lighting and its influences on stair descent have some caveats. The increased 

foot step-edge clearance variability was shown with luminance transmission goggles instead of ambient 

light (Hamel et al., 2005), which may not be ecologically valid. The studies showing slower stair 

descent in poor light were limited to comparing very dark with very bright illumination (e.g. 1 lux 

compared 220 lux; Zietz et al. 2011), and may thus not be representative of light produced by real-

world bulbs, or only included older adults with vision problems (Shaheen et al., 2018). Furthermore, 

both of these studies focused on the middle phase of stair descent, where descent speed reaches a 

‘steady-state’ and lower limb trajectories seem only to be fine-tuned. However, more falls occur when 

walking on the top or bottom three steps (Templer, 1992) corresponding to the transitions onto and off 

stairs. Different strategies are required to safely make these transitions (Alcock et al., 2015), such as 

greater neuromuscular recruitment in the supporting limb, which has been suggested to lead to poor 

body sway regulation in older adults (Lee and Chou, 2007), and increases in executive demands are 

known in these transition phases (Miyasike-daSilva and McIlroy, 2012). Whilst it is known that foot 

clearances can become more variable in poor light during the transition phases in older adults (Hamel 

et al., 2005), the influence of ambient lighting on dynamic balance and stepping in these regions has 

not been examined. Another factor overlooked in lighting studies is confidence and anxiety. Anxiety 

has previously been shown to be associated with riskier stepping patterns during obstacle negotiation 

tasks (Young and Hollands, 2012), and increased confidence was observed in conditions when subjects 
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were able to preview the obstacles prior to stepping (Curzon-Jones and Hollands, 2018). If illumination 

levels can influence confidence and anxiety during stair descent, it may in turn be associated with 

altered balance and stepping patterns. Finally, current guidelines for illuminating stairs range between 

100 lux (Ireland Department of the Environment, 2010) and 300 lux (AARP, n.d.), and are typically 

only given in measures of illumination, which may be difficult to interpret for the average user. 

Therefore, there is a need to generate preliminary evidence for appropriate lightbulb use over 

stairwells. 

 

The aims of the present investigation were: 1) to examine the influence of real-world bulb illumination 

levels on confidence and anxiety, dynamic balance, and stepping characteristics during each phase 

(entry, steady-state, and exit) of stair descent; 2) to elucidate if and how older adults are adversely 

influenced by low illumination levels; 3) to generate preliminary evidence for appropriate lightbulb 

use/illumination over public and private stairwells.  

 

2 Methods 

2.1 Participants 

Twelve young (YA: 18-35 years) and 25 independent and community-dwelling older (≥65 years) 

healthy adults were recruited from the host institution and from local older adult groups (characteristics 

of participants reported in Table 1). A priori statistical power calculations (Gpower statistical software) 

using data from Hamel et al. (2005) indicate 14 participants per group was the required sample size 

(Effect size: d = 0.985, α = 0.05, power = 0.8) to identify age-related differences in foot clearance with 

respect to step edges during stair descent in low light. Older adults cognitive function was assessed 

with the Trail Making Test (described in Assessments) and all fell within normative values (Tombaugh, 

2004). Participants were included in the study if they could descend stairs in a step-over-step manner 

without walking aids (canes or crutches), and had no self-reported musculoskeletal or balance issues 

which might influence stair negotiation. The investigation was carried out in accordance with the host 

institution guidelines for research involving human participants, and all procedures, information to the 

participants, and consent forms, were approved by the host institution’s Research Ethics Committee. 

All participants gave written informed consent in accordance with the Declaration of Helsinki.  
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2.2 Assessments 

Older participants were categorised into ability groups based on visual, physiological and cognitive 

assessments. These were: 1) visual acuity and contrast sensitivity (FrACT); 2) Trail making test parts A 

and B to measure executive function; 3) three isometric knee extension maximal voluntary 

contractions, measured with a hand-held dynamometer (Bohannon, 1990); 4) Reaction time; 5) a lower 

limb matching task; 6) 30 s quiet stance on a foam mat; 7) a stair specific efficacy scale in which 

participants scored from 1-100% how confident they felt negotiating stairs in everyday life. Tests 4-6 

were measured according the protocol outlined by Lord et al. (2003); however, a Vicon system 

(detailed below) was used to collect kinematics. These assessments were chosen as they have all been 

associated with stair descent performance. For example, Tiedemann et al. (2007) showed that knee 

extension strength, lower limb proprioception, edge contrast sensitivity, reaction time, leaning balance, 

and fear of falling, were all significant and independent predictors of stair descent performance. 

Executive function can slow stair descent under dual task conditions (Gaillardin and Baudry, 2018), 

and visual function, as previously discussed, may be of particular importance in conditions of 

diminished light. 

 

The older participants were ranked from first to last (1 – 25) based on their scores for each test. For 

example, the person with the highest visual acuity was ranked as 1st for visual acuity, whilst the person 

with the lowest was ranked as 25th. This resulted in eight ranking tables (one for each assessment). 

Each older participant’s ranks across the assessments were then summed, resulting in one ranking table 

containing all older participants’ cumulative ranks. Those in the lower 50% percentile of this table were 

categorised as lower ability older adults (LAOA), and those in the higher 50% percentile were 

categorised as higher ability older adults (HAOA; Zietz et al., 2011). The results for all tests, and 

participant anthropometrics, are presented in Table 1.  

2.3 Staircase apparatus 

Participants descended a custom-made instrumented seven-step staircase with handrails on each side. 

The staircase had a top and bottom landing of sufficient length to complete an entry and exit phase (see 

protocol). Each step had a riser height of 19.5 cm, and a going length of 23.5 cm, which is within the 

current UK building regulations for commercial and private properties (Gov, 2010). The bottom four 

steps each contained a force-platform (FP; Kistler) sampling at 1080Hz. Whilst on the staircase, 
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participants wore a passive overhead safety harness operated by a trained belayer. See Fig 1. for layout 

of staircase.  

 

 

 

Table 1. Participant anthropometrics and assessment outcomes (±SD) 

 YA (n=12; 

7×males) 

HAOA (n=12; 

5×males) 

LAOA (n=13; 

3×males) 

Older adults 

combined (n=25) 

Age (years) 25.5±4.1*† 69.6±4.7 72.4±4.2 71.0±4.6 

Height (cm) 178.8±11.2*† 165.5±7 164.8±7.2 165.1±6.7 

Mass (kg) 80.8±18.2† 77.8±14.7 63.7±10.2 70.4±14.2 

Visual acuity (logMAR) -0.12±0.09† 0.04±0.21 0.15±0.22 0.09±0.22 

Contrast sensitivity (Weber) 1.93±0.14† 1.78±0.19 1.66±0.33 1.72±0.27 

Executive function (s) 17.8±6.5*† 19.6±8.1§ 41±22.8 30.7±20.2 

Lower limb matching (SD) 2.93±0.97† 3.14±1.74§ 4.71±1.49 3.96±1.78 

Knee extension torque (Nm) 126.2±44.5*† 75.4±35.3 63±20.6 67±28.7 

Quiet stance on foam mat (cm) 167.3±45.8 170.2±44.6 173±44.7 171.7±43.7 

Reaction time (s) 0.28±0.04† 0.32±0.06 0.35±0.06 0.34±0.06 

General stair confidence (%) 99.6±1.4† 92.3±9 88.2±9.4 90.2±9.3 

Significant difference (p<.05) between: *Young and HAOA; †Young and LAOA; §HAOA and LAOA. 

Executive function: time taken to complete trail making test part B, minus that for part A. Lower limb 

matching: SD of 5 successive trials. Knee extension torque: highest of three trials. Quiet stance on a 

foam mat: total path of the CoM. Reaction time: average of 10 successive trials. 
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Figure 1. Layout of staircase. A: top view; B: side view. The shaded areas in A denote trial start (right) 

and end (left) areas. The shaded area over the stairs in A are force platforms. The trapezoids over the 
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stairs in B represent the custom-lighting rig, with the safety belay rail above. All indicated geometries 

are to scale.  

2.4 Lighting  

To ensure real-world applicability of the results, illumination from four commonly available lightbulbs 

(Diall, London, UK) was measured and then replicated over our experimental staircase. The bulbs used 

were low and high-powered CFL and LED bulbs. CFLs are unique in that they take time to reach full 

brightness. LEDs, on the other hand, reach full brightness instantaneously. Stair tread illumination (lux) 

was thus measured (Digital instruments lux-1108, Taiwan) in a standard UK home environment (2.23 

m ceiling) from a low and a high power CFL bulb for two minutes yielding a warm-up curve for each. 

Lux was also recorded from a low and a high-power LED bulb at first turn-on. Power ratings for the 

CFL and LED bulbs were matched as closely as possible. Bulb characteristics are presented in table 2.  

 

Table 2: Bulb type, power ratings, and measured stair tread illumination. Note that the CFL bulbs were 

very dim (low illumination) when first turned on, and increased by only one lux in the average time 

taken to descend the stairs in each respective condition. This contrasts with the instantaneous 

illumination from the LED bulbs. 

Bulb Rating Illumination  

CFL Low 50 Watt 630 lumens 9 – 10 lux (4.11 s) 

CFL High 103 Watt 1450 lumens 19 – 20 lux (4.12 s) 

LED Low 40 Watt 470 lumens 35 lux 

LED High 100 Watt 1521 lumens 112 lux 

Bright control NA NA 350 lux 

 

A custom-made computer-controlled lighting rig (example code at https://github.com/N-M-

T/LUX_light_dimmer) replicated the bulb illumination characteristics listed in Table 2, in addition to a 

bright control, over the experimental staircase. This set-up enabled us to repeatedly match the warm-up 

characteristics of the CFL bulbs. The temperature rating (Warm white; 3000 Kelvin) matched the 

original CFL and LED bulbs as closely as possible. The lighting rig consisted of an array of halogen 

bulbs positioned over the top and bottom landings to generate an even distribution of light over the 
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staircase (Fig 1.).  Each array received power from independent dimmer circuits controlled with the 

computer. During an initial calibration, a LUX sensor was positioned at the top and bottom transition 

steps, and at the middle step, which fed-back measurements to the computer. The computer 

subsequently modulated power to each light array until an even distribution of light at these phases was 

achieved for each bulb profile. This power modulation was then repeated during testing to replicate the 

bulb characteristics. Whilst every effort was taken to ensure an even distribution of light, there will 

have been subtle variations in some regions of the staircase which could not be controlled for with the 

present set-up, e.g. at the extremes of the landings. There were also shadows cast directly underneath 

the hand rails (but not walls or steps). Such variations are likely typical on real-world stairwells.  

2.5 Testing protocol 

Data collection took place in a single session lasting approximately two hours. Participants completed 

the visual, physical and cognitive assessments prior to the stair trials, except for maximal knee 

extensions. These were completed after the stair trials to eliminate fatigue.  

 

For the stair trials, the participants were instructed to descend the stairs at a self-selected pace in a step-

over-step manner. A trial began with the participants standing stationary on the top landing with feet 

side-by-side, whilst maintaining their gaze on a visual target located ahead and above of the staircase. 

This ensured standardisation of visuomotor planning across participants prior to each stair descent. 

Participants were then instructed to descend, at which point they could look where they wanted. They 

initiated gait with any foot so long as it was consistent throughout the remaining trials, and they were 

free to use the handrails throughout to ensure ecological validity. At the bottom of the stairs, the 

participants continued along to the end of the bottom landing, before coming to a stationary position 

and standing with feet side-by-side. This ensured there were at least two full steps following the last 

data analysis point (described below). Prior to testing, participants were familiarised with the 

experimental environment, and performed three practice stair descents.  

 

There were three descent trials in each lighting condition. The three trials were performed 

consecutively in a block, which totalled five blocks (one for each lighting condition). There was a 2-5 

minute rest between blocks, which were performed in a random order to eliminate practice and/or 

fatigue effects. The light levels were changed at the beginning of each new block. The CFL bulb warm-
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up profile was reset prior to each CFL bulb trial (i.e. the CFL replicated light was set to minimum 

representing first turn on, and then got brighter during a stair descent. It was subsequently reset to 

minimum ready for the next trial). The participants were informed of the change in illumination, but 

were not exposed to it prior to testing. The changes to illumination were visible to the eye. 

2.6 State confidence and anxiety 

Prior to the first descent in each new lighting condition, the participants were asked to rate from 1-

100% how confident they felt about descending the stairs without falling or losing their balance. 

Following the first descent in each new lighting condition, participants were asked questions designed 

to probe their perceived anxiety, also rated on a scale of 1-100%. For worry-related anxiety: “how 

worried were you when descending the stairs in that light (e.g. about falling or losing your balance)?”; 

for somatic-related anxiety: “how physically anxious did you feel when descending the stairs in that 

light (e.g. tense or nervous)?”; and for focus-related anxiety: “how difficult was it to focus when 

descending the stairs in that light (e.g. distracting or intruding thoughts about falling)?”. These 

questions were adapted from a previous study of anxiety under conditions of postural threat (Johnson et 

al., 2019). 

2.7 Kinematics 

A 26-camera motion capture system (Vicon MX, Oxford Metrics, UK) collected whole-body kinematic 

data at 120Hz, with thirty-nine reflective markers placed on the feet, lower legs, thighs, pelvis, torso, 

head, upper arms, forearms and hands according to the conventional Plug-in Gait marker set. 

Additional markers (n=37) were placed in cluster arrangements on the lower limbs and head. This set-

up ensured at least three markers were visible on segments with markers prone to occlusions from step-

edges, the handrails and the harness. The heel markers (which are prone to catching on step edges) 

were removed to enable unhindered gait. They were then reconstructed in the movement trials based on 

their respective locations in relation to the rigid foot segment in the static calibration trial. Participants 

wore flat trainers/shoes and tight clothing.  

 

Kinematic data were labelled, filtered for small gaps (<100 ms: Woltering quintic spline), and exported 

as c3d files (Vicon Nexus 2.6, Oxford Metrics). Subsequent analyses were performed with Python 

(Python Software Foundation). Gaps bigger than 100 ms were filled with a rigid-body gap filling 

protocol leveraging the extended marker set. All marker trajectories were then filtered with a fourth 
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order zero-phase Butterworth filter (cut-off frequency 20Hz). Joint angles and whole-body CoM were 

calculated with the conventional gait model using pyCGM (Schwartz and Dixon, 2018). 

 

Gait events identified on the staircase included initial contacts on the top landing, initial contact and toe 

off on each step, and initial contacts on the bottom landing. Initial contacts on the landings were 

determined using the methods of Zeni et al. (2008) using local maxima of the heel referenced to the 

pelvis segment. During stair descent, for the steps with no FP, local minima in the CoM vertical 

velocity trace defined initial contacts, and local maxima in the trailing knee flexion angle trace defined 

toe-offs (Foster et al., 2014a). For the steps with FPs, >20N or <20N defined initial contact and toe-off, 

respectively (Zeni et al., 2008). Three phases of stair descent were subsequently analysed: entry phase, 

steady-state phase, and exit phase. Entry phase was defined as the time period between the last heel 

strike on the top landing and initial contact on step two. Steady-state phase was defined as the time 

period between initial contact on step two and that on step five. Exit phase was defined as the time 

period between initial contact on step five and the first heel strike of the swing limb on the bottom 

landing, i.e. when the participant reached the bottom landing and took one subsequent step forward. 

 

To examine the influence of illumination on stair descent safety, outcome measures which characterise 

dynamic balance and stepping were calculated. These were margin of stability (incorporating descent 

speed) and foot-step edge clearances. Margin of stability was defined as the distance between the 

extrapolated CoM (xCoM) and the forward boundary of the base of support. When the toe marker was 

within the confines of the step-edge, the toe marker defined the forward boundary. When the toe 

marker was outside the confines of the step-edge (foot overhang), the step-edge defined the forward 

boundary. Smaller (or more negative) margins of stability are considered to reflect a less dynamically 

stable pattern of stair descent (Bosse et al., 2012; Novak et al., 2016). 

 

xCoM was defined as: 

𝑥𝐶𝑜𝑀 = 𝑝𝐶𝑜𝑀 + 𝑣𝐶𝑜𝑀 ඥ(𝑔𝑙ିଵ)⁄  

where pCoM is the AP position of the CoM, vCoM is the instantaneous AP velocity of the CoM, g is 

acceleration due to gravity, and l is the absolute distance between the CoM and the ankle joint centre. 

Margin of stability was calculated at initial step contact. This is when the risk of falling during an 

overstep can be exacerbated by small margins of stability as the individual would have more forward 
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momentum to counter (Novak et al., 2016). Foot-step edge clearances were defined as the minimum 

horizontal and vertical distances between the toe and heel markers on the lead limb and the step edges. 

Mean and variability (SD) across three successive trials on each step were calculated and used for 

further analysis. Increases in foot clearance variability are suggested to increase the risk of catching the 

heel or toe on the step edge. 

2.8 Statistical analyses 

Two-way mixed ANOVAs examined stair descent outcome measures for within-subject effects of 

lighting (×5; CFL Low or High; LED Low or High; Bright), between-subject effects of age (×3; YA; 

LAOA, HAOA), and interactions between terms. Each step was treated separately, i.e. individual 

analyses were performed for each of the seven steps. In the case of significant interactions, the larger 

model was broken down into one-way ANOVAs, and post-hoc tests were conducted where appropriate. 

Post-hoc analyses were Tukey’s HSD tests to account for multiple comparisons. Where data were non-

normally distributed, main effects were cross checked with robust ANOVAs based on trimmed means 

(Field et al., 2012) and post-hoc analyses were Wilcoxon signed rank tests with Holm-Bonferroni 

corrections. ANOVA effect sizes reported were partial eta squared (n2
p), common indicative thresholds 

for which are: small (0.01), medium (0.06) and large (0.14; Field et al., 2012). Related post-hoc 

comparison effect sizes were Hedges’ gav, and for independent comparisons Hedges’ g. Common 

indicative thresholds for these are small (0.2), medium (0.5) and large (0.8; Lakens, 2013). All 

statistical analyses were performed with the R software package (R, software for statistical computing 

and graphics) with an alpha level of ≤0.05. 

3 Results 

3.1 Confidence and anxiety 

Self-reported confidence prior to the first descent in each new lighting condition is shown in Fig. 2. 

There was a significant interaction between lighting and age (F(4,132)=2.658, p=.01, n2
p=.139) on self-

reported confidence. One-way ANOVAs showed effects of lighting for both groups of older adults 

(F(4,88)=9.438, p<.001, n2
p=.3), whereas YA were unaffected. Post-hoc analyses revealed less 

confidence for all light levels when compared to Bright (p<.05), with the exception of LED Low 

(p=.09). There were no main effects of lighting, age, or interactions between lighting and age for the 

remaining confidence and anxiety outcome measures. 
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Figure 2. Self-reported confidence prior to the first stair descent in each new lighting condition. *Post-

hoc analysis revealed HAOA and LAOA both exhibited significantly less confidence in CFL Low 

compared to Bright, CFL High compared to Bright, and LED High compared to Bright. YA were 

unaffected.  Data are means ± SE 

 

3.2 Descent speed 

There were decreases to vCoM with CFL light in all phases of stair descent. For example, over step two 

(Fig. 3), there was a significant main effect of lighting (F(4,132)=4.803, p=.001, n2
p=0127). Post-hoc 

comparisons revealed reduced vCoM in CFL Low compared to Bright (p=.006, gav=.308). vCoM was 

also reduced in CFL High compared to LED High (p=.039, gav=.253) and Bright (p=.004, gav=.318). 
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Figure 3. vCoM during stair descent over step two in different lighting conditions. *Post-hoc analysis 

revealed HAOA, LAOA and YA exhibited significantly slower descent speeds in CFL Low compared 

to Bright; CFL High compared to LED High, and CFL High compared to Bright. Data are means ± SE. 

 

3.3 Margin of stability 

All participants exhibited increased margins of stability in CFL Low illumination during the transition 

phases of stair descent. For example, there was a main effect of lighting over step two (Fig. 4: A; 

F(4,132)=2.846, p=.027, n2
p=.079), which corresponds to the second step of the entry phase. Post-hoc 

comparisons revealed increased margins of stability in CFL Low compared to LED High (p=0.015, 

gav=0.269) and Bright (p=0.036, gav=0.254). There were also main effects of lighting on steps four and 

five (step five; Fig. 4: B; F(4,132)=3.423, p=.012, n2
p=.094). However, no significant post-hoc results 

were found. Finally, there was a main effect of lighting over step six, which corresponds to the first 
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step of the exit phase (Fig. 4: C; F(4,132)=4.358, p=.002, n2
p=0.117). Post-hoc comparisons revealed 

increased margins of stability in CFL Low compared to LED High (p=.002, gav=.269) and Bright 

(p=.032, gav=.208). No main effects of age or interactions between lighting and age were found for any 

step.  

 

 

Figure 4. Margin of stability (MoS) during stair descent under different lighting conditions. A: entry 

phase; B: steady-state phase; C: exit phase. *Post-hoc analysis revealed HAOA, LAOA and YA 

exhibited significantly increased margins of stability in CFL Low compared to LED High, and Bright. 

†Significant main effect of lighting on MoS, but no significant post-hoc comparisons. Data are means ± 

SE. 
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3.4 Vertical heel clearance 

Foot clearance data are presented in Tables 3 and 4. All participants increased their vertical heel 

clearances in CFL high and LED low light during the entry phase, and during CFL Low in the exit 

phase. For example, there was a main effect of lighting on vertical heel clearance over step one 

(F(4,136)=3.507, p=.009, n2
p=.093). Post-hoc comparisons revealed increased clearance in CFL High 

compared to Bright (p=.003, gav=.430) and LED Low compared to Bright (p=.047, gav=.351). There 

was also a main effect of lighting on vertical heel clearance during the exit phase over step seven 

(F(4,136)=2.328, p=.049, n2
p=.064). Post-hoc comparisons revealed increased clearance in CFL Low 

compared to Bright (p=.023, gav=.277). There were no changes during the steady-state phase. These 

clearances were also not affected by ageing, and there were no interactions between lighting and age. 

3.5 Vertical heel clearance variability 

There were no changes to vertical heel clearance variability during the entry and exit phases. However, 

there was a main effect of age on vertical heel clearance variability during the steady-state phase, over 

steps three and four (step three: F(2,34)=4.29, p=.022, n2
p=.201). Post-hoc comparisons revealed greater 

variability in HAOA (p=.041, g=.512) and LAOA (p=.021, g=.604) when compared to YA. Lighting 

played no role in these changes, however, and there was no interaction between lighting and age.  
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CFL Low CFL High LED Low LED High Bright
Measure HAOA LAOA YA HAOA LAOA YA HAOA LAOA YA HAOA LAOA YA HAOA LAOA YA

Vertical heel clearance (mm)
    Step one (entry phase)
        Mean 6.5±1.78 7.18±1.8 7.21±1.59 6.33±1.72* 7.56±1.78* 7.57±1.73* 6.43±1.66* 7.51±1.14* 7.01±1.91* 6.38±1.84 7.24±1.45 7.33±1.72 5.96±1.21 6.63±1.41 6.77±1.74
        Variability 1.09±0.57 1±0.52 1.18±0.61 0.98±0.46 1.13±0.69 1.26±0.89 1.58±0.82 1.21±0.52 1.32±0.73 1.22±0.82 1.38±0.68 0.95±0.5 1.11±0.88 1.14±1.01 1.31±1.21
    Step three (middle phase)
        Mean 6.16±1.49 6.48±3.32 6.64±1.76 5.83±1.36 6.67±1.47 6.5±1.77 6.06±1.7 6.45±2.01 6.21±1.61 5.69±1.82 5.86±1.82 6.33±1.82 5.73±1.8 6.27±1.22 6.68±1.83
        Variability 0.85±0.43 0.69±0.15 0.83±0.48 0.68±0.33 1.05±0.6
    Step seven (exit phase)
        Mean 8.77±7.48* 7.33±4.19* 8.87±5.24* 7.04±5.7 8.67±5.89 8.75±4.21 7.6±7.21 9.4±5.63 8.5±4.61 8.93±7.14 7.12±3.29 9.3±5.61 7.69±6 8.03±4.4 8.45±4.59
        Variability 2.12±0.73 1.5±1.77 2.56±2.11 1.6±1.24 2.07±1.87 1.66±1.17 1.9±0.9 2.35±1.97 1.36±1.15 2.18±2.89 1.54±1.16 1.9±1.53 1.54±1.36 1.76±2.13 1.95±1.05
Horizontal heel clearance (mm)
    Step one (entry phase)
        Mean 6.29±1.97 7.51±3.03 6.48±1.72 6.28±2.46 7.76±2.93 7.03±2.12 6.39±2.33 7.87±3.12 6.67±2.15 6.55±2.53 7.65±3.07 6.75±2.02 6.25±2.48 7.49±3.34 6.53±2.27
        Variability 1.11±0.58 1±0.64 0.68±0.44 0.67±0.48 0.79±0.47 0.75±0.67 1.01±0.5 0.77±0.55 0.62±0.37 0.85±0.44 0.96±0.8 0.69±0.54 0.88±0.58 0.87±0.76 0.83±0.38
    Step three (middle phase)
        Mean 7.8±2.41 7.71±3.19 8.05±2 7.74±2.52 8.92±2.81 7.93±2.09 7.61±2.42 8.12±2.87 7.98±2.22 7.95±2.99 7.63±3.06 8.05±2.53 7.2±2.58 8.09±2.61 8.17±2.38
        Variability 1.09±0.66 1.34±1.46 0.69±0.41 1.11±0.68 1.1±0.77 1.04±0.67 1.2±0.67 0.91±0.5 0.84±0.54 1.31±1.32 1.22±0.46 0.88±0.64 1.21±0.73 1.21±0.91 1.26±0.63
    Step seven (exit phase)
        Mean 5.22±3.58 5.14±2.52 6.05±2.43 4.7±3.41 5.56±3.06 5.94±2.46 4.87±3.77 6.13±2.85 5.88±2.49 5.2±3.54 5.04±2.1 6.14±2.49 5.26±3.65 5.45±2.49 5.69±2.4
        Variability 1.05±0.43 0.65±0.24 1.17±0.71 0.88±0.29 1.08±0.62 1.01±0.56 1.22±0.27 1.48±2.22 1.15±0.96 1.09±0.7 0.89±0.52 0.91±0.55 0.9±0.45 1.09±0.9 1.02±0.64

0.86±0.6§ 1.96±3.25§ 1.2±0.7§ 1.15±0.68§ 0.98±0.51§ 1.11±1.37§ 1.14±0.58§ 1.03±0.56§ 0.97±0.62§ 1.19±1§

 

Table 3: Mean and variability (calculated across three successive trials) of the smallest horizontal and vertical distances between the heel markers on 

the lead limb and the step edges. *Post-hoc analysis revealed HAOA, LAOA and YA exhibited significantly increased vertical heel clearances during 

CFL High and LED Low compared to Bright (step one); and during CFL Low compared to Bright (step seven). §Post-hoc analysis revealed HAOA 

and LAOA exhibited significantly increased foot clearance variability when compared to YA (step three). Data are presented as means ± SD.  

 

 

 

 

 

 

 



19 

CFL Low CFL High LED Low LED High Bright
Measure HAOA LAOA YA HAOA LAOA YA HAOA LAOA YA HAOA LAOA YA HAOA LAOA YA

Vertical toe clearance (mm)
    Step one (entry phase)
        Mean 7.46±1.59 6.94±1.32 6.9±1.48 7.32±1.88 7.06±1.06 7.31±1.85 7.41±1.81 6.79±1.63 6.92±1.54 7.17±1.52 6.9±1.6 6.9±1.66 6.73±1.34 6.81±1.4 6.95±1.87
        Variability 0.94±0.59 0.65±0.44 0.75±0.34 0.69±0.39 0.59±0.36 0.75±0.42 0.57±0.3 0.63±0.47 0.61±0.33 0.76±0.7 0.59±0.45 0.61±0.27 0.72±0.68 0.55±0.44 0.68±0.74
    Step three (middle phase)
        Mean 6.07±1.75 6.08±1.77 6.09±2.01 6.14±1.96 5.97±1.7 6.04±1.94 5.84±1.79 6.20±2.19 5.99±2.02 5.89±2.02 5.94±1.89 6.02±2.37 6.03±1.49 6.44±1.72 6.02±2.07
        Variability 1.04±0.55 1.08±0.79 0.79±0.36 1.01±0.61 0.78±0.35 0.79±0.43 1.25±0.37 1.24±1.81 0.74±0.41 1.09±0.42 0.99±0.38 0.76±0.38 0.73±0.51 0.73±0.45 0.76±0.39
    Step seven (exit phase)
        Mean 7.3±1.32 7.16±1.62 6.98±2.01 6.94±1.1 7.19±1.64 6.82±1.96 7.17±1.54 6.87±1.56 6.86±1.3 7.12±1.56 7.23±1.6 6.77±1.82 6.98±1.3 6.74±1.8 6.4±1.58
        Variability 3.03±2.36* 2.8±1.21* 1.9±1.06* 1.97±1.23 2.4±1.32 1.95±1.19 2.26±1.2 2.08±1.64 2.02±0.88 2.17±2.84 1.65±0.94 1.77±1.31 1.87±1.06 1.6±0.83 1.62±0.96
Horizontal toe clearance (mm)
    Step one (entry phase)
        Mean 27.94±1.93 25.68±5.89 26.37±2.8 26.37±2.8 27.37±2.06 27.24±1.98 26.63±2.48 26.29±4.58 26.51±2.36 26.92±2.55 26.97±4.34 26.12±3.11 25.99±4.55 27.27±2.41 25.68±3.03
        Variability 1.41±1.47 2±3.59 1.33±1.14 1.97±2.55 1.99±2.67 1.92±1.57 2.32±3.43 2.94±4.64 1.67±1.39 2.47±3.13 1.89±3.56 1.41±0.99 2.31±3.81 2.52±3.81 1.53±1.07
    Step three (middle phase)
        Mean 19.88±5.4 21.8±5.22 18.78±3.47 20.45±5.15 21.04±5.31 19.09±3.35 19.02±4.53 21.38±5.46 18.74±3.45 18.91±5.22 20.36±5.3 18.03±3.68 19.01±4.4 20.91±5.43 19.2±3.21
        Variability 2.08±1.61 2.5±1.51 1.37±0.73 1.85±1.22 1.78±1.15 1.66±0.8 2.23±1.09 1.57±1.08 1.49±0.56 1.87±1.43 1.89±0.92 1.47±0.58 1.99±1.25 1.66±1.1 1.4±0.9
    Step seven (exit phase)
        Mean 13.89±4.72 13.46±4.43 11.65±3.46 12.72±3.67 14.46±6.99 11.71±3.65 12.21±3.87 13.43±6.46 12.03±2.53 12.78±4.63 13.69±5.29 11.97±3.64 12.14±3.46 12.86±5.03 11.01±2.95
        Variability 0.89±0.55 1.1±0.5 0.71±0.36 0.77±0.48 0.81±0.47 0.87±0.44 1.13±0.53 0.98±0.79 0.81±0.45 0.68±0.38 0.75±0.59 0.7±0.38 0.79±0.51 0.62±0.4 0.65±0.4

 

Table 4: Mean and variability (calculated across three successive trials) of the smallest horizontal and vertical distances between the toe markers on the 

lead limb and the step edges. *Post-hoc analysis revealed HAOA, LAOA and YA exhibited significantly increased vertical toe clearance variability 

during CFL Low compared to LED High and CFL Low compared to Bright. Data are means ± SD.  
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3.6 Vertical toe clearance variability 

Importantly, vertical toe clearance variability was affected by lighting during the exit phase, as shown 

by a main effect of lighting over step seven (Fig. 5: F(4,136)=3.905, p=0.022, n2
p=0.062). Post-hoc 

comparisons revealed increased variability in CFL Low compared to LED High (p=.046, gav=.416) and 

CFL Low compared to Bright (p=.033, gav=.658). This change, however, was not influenced by age, 

and again, there was no interaction between lighting and age. 

 

 

Figure 5. Vertical toe clearance variability during stair descent over step seven (exit phase) in different 

lighting conditions. *Post-hoc analysis revealed HAOA, LAOA and YA exhibited significantly 

increased toe clearance variability in CFL Low and CFL High compared to Bright. Data are means ± 

SE. 
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4 Discussion 

This is the first study to examine the influence of real-world bulb illumination on confidence and 

anxiety, dynamic balance, and stepping characteristics in young and older healthy adults during all 

phases of stair descent. This was important to understand how specific lighting impacts stair safety. 

4.1 State confidence and anxiety 

Both groups of older adults reported less state confidence in lower light (CFL Low, CFL High and 

LED High) prior to descending the stairs for the first time in each condition, whereas young adults 

demonstrated no change in confidence across conditions. This shows that the light produced by these 

bulbs immediately after turn on decreased the older adults’ perceived ability to descend the stair safely. 

This coincides, to some extent, with the observation by Curzon-Jones and Hollands, (2018) of 

increased self-confidence reported in young and older adults when they were able to visually preview 

an obstacle prior to stepping, when compared with having to step without previewing the obstacle. In 

both cases, an improved ability to adequately view a step hazard (stairs with improved lighting or 

obstacles with a preview) had a significant effect on an individual’s confidence prior to the task. 

However, worry and somatic state anxiety measures were unaffected by lighting in either age group. 

This observation is also consistent with a lack of self-reported cognitive or somatic anxiety changes 

between obstacle stepping conditions with and without a visual preview (Curzon-Jones and Hollands, 

2018). The lack of observed changes in anxiety may be due to a small effect size, or the nature of the 

state-anxiety questions. I.e. perceived anxiety was probed after the completion of the first descent in 

each condition, and thus may have been biased by the successful completion of the task (no trips or 

falls occurred during testing) and protective strategies such as decreased descent speed and increased 

margins of stability. 

4.2 Margin of stability 

Margin of stability was increased in all participants in lower light. This change coincided with a 

reduction in the instantaneous velocity of the CoM at initial step contact, and ultimately reflects a more 

cautious stair descent strategy to improve dynamic stability. In support of this, previous studies have 

shown margins of stability during stair descent to be task-dependent. Novak et al. (2016) showed 

increasing margins of stability during descent of a staircase, the magnitudes of which were dependent 

on step length and height. Therefore, the more challenging and risky the staircase was, the more 
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cautious the strategy that was adopted. In our study, low illumination levels resulted in a similar 

adaptation. 

 

Adopting a more cautious pattern of stair descent in lower light is logical. Visual information about the 

external environment is directly dependent on the amount of light reaching the retinae, and vision is 

relied upon during stair negotiation (Zietz and Hollands, 2009). Poor illumination generated by the 

CFL bulbs is thus directly linked to visual information available about the staircase, e.g. edges of the 

steps, step height, and intended foot placement locations, and potentially a reduced ability to locate 

these visual cues. In conditions where visual information is less, or more difficult to extract, adopting a 

slower speed and increasing the margin of stability has two benefits. Firstly, it allows more time to plan 

an appropriate foot placement based on the spatial layout of the steps, thus ensuring a safer stepping 

pattern. Secondly, given that the chances of not accurately detecting the step edge are higher, it enables 

a safer posture in relation to the base of support should something go wrong. I.e. it would be easier to 

reduce the already lower CoM forward momentum. If the margin of stability at initial foot contact were 

too small, a forward loss of balance could occur during a misstep, and this would have more severe 

consequences when compared to falling laterally on stairs (Jacobs, 2016). 

 

Both age groups showed similar adaptations to margins of stability. Yet, Bosse et al. (2012) found that 

older adults exhibited smaller margins of stability when compared to younger adults, which was 

ultimately riskier. A likely explanation for this difference pertains to the demands of the staircases 

used. The staircase used by Bosse et al. (2012) had two steps, which could be considered as easier to 

negotiate. Therefore, it is likely that their older participants were not as cautious on the stairs when 

compared to ours owing to the increased number of steps on our bigger staircase. In support of this,  

Novak et al. (2016) (who also used more steps on a bigger staircase) showed older adults exhibited 

similar margins of stability to young adults during the entry and exit transitions, and increased margins 

of stability compared to young adults during the steady-state phase. 

4.3 Vertical heel clearance 

Vertical heel clearances tended to increase over step edges during the entry and the exit phases in lower 

light. This adaptation is likely related to the mechanisms of reduced visual information about the stairs 

described in Margin of stability. This shows that poorer illumination led to more cautious stepping 
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behaviour. These adaptations were typically made when compared to the Bright control condition, 

which suggests that the Bright condition induced the least cautious stepping pattern. The fact that the 

older adults seemed to adapt in line with the younger adults in lower light is promising, despite 

exhibiting more risky patterns in other areas, which will be discussed later. 

 

Why was foot clearance only increased during the entry and exit phases, but not the steady-state phase? 

One explanation is the known change in tasks demands associated with different phases of stair descent 

(Alcock et al., 2015; Lee and Chou, 2007). In the middle portion of stairs, the pitch angle typically 

remains consistent. This means the walker can aim to orientate their trunk at a relatively consistent 

angle and maintain a regular pattern of stepping. Indeed, descent speed typically reaches a steady-state, 

and foot clearances are fine-tuned to minimise energy cost (Hamel et al., 2005). In contrast, the entry 

phase requires motor planning for the final foot placement prior to entry into a sloped plane (Telonio et 

al., 2014). At this time, the first step depth must be judged and the foot guided, and the trunk must be 

reorientated to accommodate the change in pitch. Subsequently, the exit phase involves transition from 

a sloped plane to the level, which involves another reorientation of the trunk and a change in foot 

positioning. Indeed, increased demands in executive functioning are known in these transition phases 

(Miyasike-daSilva and McIlroy, 2012). In addition, both groups of older adults in the present study had 

significantly reduced executive function compared to the younger adults, which suggests they were 

operating at a higher proportion of their capacity. In lower light, thus, more cautious foot clearances to 

cope with the bigger demands (more resources taken from foot trajectory planning/control) would seem 

prudent when less visual information about the step edges is available.  

 

Whilst other young and older populations also did not increase their foot clearances during the steady-

state phase of stair descent in lower light (Zietz et al., 2011), it should be noted that Hamel et al. (2005) 

found that they did. With that said, their study used very dim lighting (1 lux). It could be that the young 

adults in their study were accommodating for a riskier situation which caused the increase. Differences 

between the methods (occlusion goggles disrupting peripheral vision) may also go some way to 

explaining the discrepancy between their study and ours.  
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4.4 Vertical heel clearance variability 

Whilst not influenced by lighting, the older adults demonstrated more vertical heel clearance variability 

during the steady-state phase when compared to the younger adults. This shows that the older adults 

could be at a greater risk of tripping even in normal light. Because the older adults generally had poorer 

visual acuity and contrast sensitivity when compared to the younger adults, one could hypothesise that 

poor vision might exacerbate detriments to foot clearance control in lower light, particularly seeing as 

though increasing edge contrast with step-edge highlighters has previously led to increased foot 

clearances (Zietz et al., 2011), and that stairs with high-contrast edge highlighters improved safety, 

particularly for those with age-related visual impairment (Foster et al., 2014b). Further investigation 

into the role of visual function for foot step-edge clearances in low light, or in conditions of peripheral 

visual field occlusion, may certainly be warranted.  

4.5 Vertical toe clearance variability 

The key finding from the present work is that vertical toe clearance variability increased over the 

bottom step in all age groups in CFL bulb light. Therefore, despite an increase in vertical heel 

clearance, a more risky stepping pattern was induced, and this could increase the chances of a trip. 

Since the bottom transition step is a common place for falls (Templer, 1992), ensuring adequate 

lighting in this region could be of paramount importance.  

 

Because the change occurred due to lower light, it is expected that diminished visual information 

played a role. Foveation of steps directly underneath a walker is typically low in good lighting 

conditions, and peripheral vision or ‘covert’ attention can be used to acquire information about the 

stepping surface whilst stepping over it (Miyasike-daSilva and McIlroy, 2012). Lower light may thus 

have had a detrimental influence on peripheral detection of the step edges used for online guidance of 

the limb in balance critical circumstances. This likely explains why foot clearance increased over the 

bottom step in the same light as a precautionary measure.  

 

One obvious question is why was the increased variability only apparent over the bottom step? We 

hypothesise this is related to planning. Transition steps are associated with increased demands 

(Miyasike-daSilva and McIlroy, 2012), and motor planning for stepping can occur prior to the stepping 

action (Patla and Vickers, 1997). In contrast to stair entry, which would allow planning during 
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overground gait, exit from the stairs must be planned whilst already descending the stairs. This could 

utilise more cognitive resources, which ultimately leads to bigger foot clearances (Hamel et al., 2005), 

particularly when visual attention is diverted (Telonio et al., 2014), and in our study, it led to more 

variability exacerbated by poor illumination. It should also be noted that despite there being a short rest 

period between changing the illumination, and the fact that a visual target was used to prevent 

visuomotor planning immediately prior to stair descent, the participants did descend our staircase over 

15 times in addition to the familiarisation trials. This might have increased the amount of 

somatosensory information regarding step height and position gained when completing a large number 

of trials, thus reducing the influence of planning on foot clearance variability.  

4.6 Lightbulb use 

The low powered CFL bulb illumination used in the present study, replicating a CFL bulb being turned 

on from cold immediately prior to stair descent, had only increased by around one lux in the time taken 

to descend the staircase, reaching a total of 10 lux. Whilst descending the stairs in this light, the older 

participants reported less confidence, and all of the participants adapted their movement patterns to 

accommodate a reduction in light from that produced by the brighter 100 Watt LED bulb. Importantly, 

all participants also exhibited more risky stepping patterns over the bottom step in the low powered 

CFL bulb light, which could increase the risk of a trip or a fall. Since a high proportion of falls are 

thought to occur during this phase, appropriate lighting here may be important. We therefore suggest 

that LED bulbs may offer a safer alternative to CFL bulbs for use over stairwells. In addition to 

reaching full brightness instantaneously, LED bulbs are also energy efficient and have a longer lifespan 

when compared to CFL bulbs. The higher power (100W) LED bulb generated over 100 lux on our 

typical UK home staircase. 100 lux has previously been recommended as a minimum illumination at 

the stair tread. Our findings support this with evidence, and may justify the higher cost associated with 

higher wattage LED bulbs to home owners and fall-prevention services. When purchasing bulbs, 

consideration should be given to the fact stair illumination may depend on environmental factors such 

as stair design, ceiling height and scattering of light. Thus, it will always be preferable to assess 

illumination at the stair tread. It should also be noted that for large commercial properties which use 

non-standard bulbs, the LED bulbs featured in the present work are not appropriate. Nevertheless, the 

minimum of 100 lux shown here supports recommendations from previous literature for illuminating 

such spaces.  
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5 Conclusions and future directions 

More cautious descent patterns were observed in both young and older participants in lower light, as 

evidenced by slower descent speeds, increased margins of stability and increased foot clearances. 

Importantly, there was an increase in foot clearance variability over the bottom step in young and older 

adults, which is where a number of falls are reported to occur. This indicates that the stair tread 

illumination from CFL bulbs at first turn on is ultimately sub-optimal for stair descent safety and that 

high-powered LED bulbs may offer an alternative that optimises stair walking safety. These findings 

can be used to guide further research of lighting and stair safety in different populations and settings, 

which will be important for generating evidence-based guidelines. Larger studies are also needed to 

assess real-world lightbulb illumination and incidences of falls (in commercial and domestic 

properties), which will elucidate whether certain bulbs or illumination are associated with real-world 

fall rates. Inconsistent step geometries found in the real world, which could further exacerbate light 

driven variability in foot clearances, should also be accounted for. This could be important to reduce 

the proportion of stair falls caused or related to poor lighting. 
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