Abstract

2

1

3 The female athlete triad is a condition where low energy availability is typically observed 4 together with menstrual dysfunction and/or low bone mineral density. How this condition 5 affects maximal work capacity in endurance athletes is not clear and the recovery time-course 6 of menses with increased energy availability with concomitant high training load is unknown. 7 This case-study of an amenorrheic elite road-cyclist reports resumption of normal menstrual 8 function after weight-gain during a 5-year period (2014-2019) while engaged in high training 9 load and competition. The athlete (VO_{2max} 3.54 L/min, 64 ml/min/kg, PPO 300 W, 5.4 W/kg) reported amenorrhea(2013-2015)/oligomenorrhea(2015-2018). Training load increased from 10 11 2014 to 2019 (584 to 818 h/year and 26707 to 41945 Training Stress Score/year). Regular 12 menses (every 23-35 days) resumed in June 2018, ~5-6 months after a weight gain episode. 13 During the period of menstrual dysfunction body mass was 51.3 ± 2.25 kg (mean $\pm 95\%$ CL), 14 and fat percentage 19% (Dual-energy X-ray Absorptiometry (DXA), 2016), and after weight 15 gain, 56.8 ±2.63 kg and fat percentage 25% (DXA, 2019). Crank-based power-meter data 16 showed absolute mean maximal power (MMP; watts) improvement over the 5s-4 h range 17 through the 2014-2019 period, while relative MMP (watts/kg) likely peaked in the 2015-16 season for 5min, 20min and 30min but remained mostly unchanged across seasons. Results 18 19 suggest that: 1)Best relative power-output associated with aerobic capacity (5min-1h) can be 20 achieved during menstrual dysfunction, 2)High performance achieved despite an increase in body mass, and 3)Resumption of menses is achievable while maintaining high training loads 21 22 when coupled with high energy availability.

23

- Key words: Female athlete triad, endurance performance, energy availability, menstrual
- 25 function

Introduction

The female athlete triad has been identified as a condition where chronic low energy availability (LEA), is typically concomitant with menstrual dysfunction and/or low bone mineral density (Nattiv et al., 2007). Elements of the triad are often observed in athletes from sports focusing on leanness and low body weight (Torstveit, 2005), likely as a consequence of not providing enough energy to maintain normal function of physiological processes (Loucks et al., 2011). While the effects of LEA on physiological processes such as those related to reproductive function and bone formation/resorption are well established (De Souza et al., 2019), it is less clear what other physiological effects linked to physical capacity may be (De Souza et al., 2014; Mountjoy et al., 2018). The 'Relative Energy Deficiency in Sport' (RED-S) model emphasizes negative effects of LEA on performance (Mountjoy et al., 2018), but there is currently little evidence supporting this.

Additionally, the recovery time-course for resumption of menses with changes in energy status is not well characterised. Evidence suggests that increased energy availability slowly restores the normal hormonal mileu of energy-disrupted women (Loucks & Verdun, 1998), but proofs for the effectiveness of increased energy on actual resumption of menses in amenorrhoeic athletes over prolonged periods is limited (Stickler et al., 2019). Moreover, the interaction between the energy status, menstrual function and the heavy training load of elite athletes has never been addressed longitudinally.

The current case report shows for the first time detailed information on body mass and body composition data in relation to reported menstrual status together with detailed training records and markers of physical performance through the use of crank-based power meter data of an

52 elite female cyclist over a period of 5 years, evidencing resumption of regular menses after a 53 prolonged period of menstrual dysfunction. 54 55 Athlete characteristics and methods 56 The athlete 57 58 The athlete was 23 years old in 2014. In mid-2014, after a 3.5 years break in training, she had 59 60 been competing in road cycling at a club-level for <8 months. Through 2014-2019 she progressed to compete at a national level in Australia and internationally in Oceania 61 62 consistently achieving podium finishes in major cycling road races and time-trials in these 63 circuits. Standard laboratory testing (Hawley & Noakes, 1992) determined 300 W and 5.39 W/kg of 64 absolute and relative PPO respectively, and 3.54 L/min and 63.6 ml/kg/min of absolute and 65 relative $\dot{V}O_{2max}$ respectively in June 2014. 66 The athlete read the case study in its entirety and provided written record of approval of this 67 68 manuscript. 69 **Body mass** 70 71 72 Body mass was recorded repeatedly by the athlete throughout the period of October 2014 73 through to June 2019 using bathroom scales (October 2014-July 2016, analog scale, unbranded, July 2016-June 2019 Tanita BC-582, Tokyo, Japan) in the morning upon waking and after 74 75 voiding, wearing minimal clothing, and recorded on-line (TrainingPeaks, Boulder, CO, USA).

76 These data were analysed utilising a dedicated tool to determine likelihood of individuals' 77 changes from a trend (sportsci.org/2017/wghtrend.htm). 78 79 80 Training log and data collection 81 82 Training logs were kept for all training/racing sessions from June 2014 to June 2019 including recordings of crank-based power-output, heart-rate, global positioning system (GPS)-based 83 84 speed and altitude, and rate of perceived exertion and relevant notes. Five different crank-based power-meter units were used through the recording period (SRM 85 86 (Jülich, Welldorf, Germany), Power2max (Saxonar GmbH, Nieder Seifersdorf, Germany; two 87 units), Pioneer (Pioneer, Tokyo, Japan) and 4iiii precision (Cochrane, Alberta, Canada)). 88 Integrity and consistency of units was checked when changed by comparing power data to 89 heart rate and climbing times. 90 Power data were analysed using specialised software (WKO4 TrainingPeaks, Boulder, CO, 91 USA) with training load was quantified using Training Stress Score (TSS) (Allen & Coggan, 2012). 92 93 94 Weight loss interventions 95 Two weight loss interventions lasting 6 weeks were devised for competitions (Figure 1). For intervention #1, a food-plan aimed at achieving ~1845 kcal/day (range 1040-3443 kcal/day, 96 depending on training demands) and ranges of macronutrients as follows: protein 1.9-2.8 97 g/kg/day, fat 0.45-1.85 g/kg/day, CHO 0.6-8.8 g/kg/day. During intervention #2, a color-coded 98 plan indicated carbohydrate amounts of meals on a meal-by-meal basis to self-select food 99

sources providing ~50-150 g CHO per-meal and achieve 3-10 g CHO/kg/day to match the

101	demands of training (Impey et al., 2018), and instructed to repeatedly ingest ~25 g of high
102	quality protein spread every ~3 h throughout the day (Areta et al., 2013; Moore et al., 2014),
103	minimise fat intake and manipulate fibre intake (Melin et al., 2016).
104	
105	Body composition
106	
107	Body composition was assessed using narrowed fan-beam Dual X-ray Absorptiometry (DXA)
108	(Lunar iDXAs, GE Healthcare, Madison, WI, USA).
109	
110	Low Energy Availability in Females Questionnaire (LEAF-Q)
111	
112	LEAF-Q (Melin et al., 2014) assessment was conducted in June 2019.
113	
114	Menses
115	
116	Menstrual function was assessed based on the athlete's records, recalls and reports of menstrual
117	bleeding.
118	
119	

120	Results
121	
122	Body mass, body mass index & body composition.
123	
124	Body mass records are reported on figure 1. From October 2014 up until November 2017,
125	average body mass recorded was 51.3 ± 2.25 kg (arithmetic mean $\pm 95\%$ CL). Between
126	November 2017 and February 2018 a body mass gain episode showed an increased to 58.2 kg
127	and maintained at 56.8 ± 2.63 kg thereafter showing a <i>very clear</i> (100% chance) increase above
128	the trend in body mass prior to body mass gain. For the respective periods body mass index
129	was 18.8 ± 0.83 and 20.8 ± 0.97 kg/m ² . Body composition results are detailed in table 1.
130	
131	Weight loss interventions
132	
133	Body mass reduced from 54 to 52.3 kg (1.7 kg decrease, 6-week intervention, rate of weight-
134	loss 0.28 kg/week) during intervention #1, and from 59.2 to 55.9 kg (3.3 kg decrease, 6-week
135	intervention, rate of weight-loss 0.56 kg/week), during intervention #2.
136	
137	Total Training Load and Mean Maximal Power
138	
139	The data presented represents a summary of 2384 cycling (96%) and 50 running (2%)
140	training log files between June 2014 and June 2019. In addition, the athlete completed a total
141	of 49 strength-training (2%) sessions.
142	
143	
144	

145	Data exclusion
146	
147	Data for 4iiii power-meter (14/12/2018-14/04/2019) was excluded from MMP analysis due to
148	reporting ~20 W higher in all durations, but was kept for TSS calculation.
149	
150	Training Load
151	
152	Total annual training hours increased between 2014 and 2017 from 584 to 806 h/year and
153	plateaued for the 2017-2019 period but TSS increased linearly at an average of 3809 TSS per
154	year (Figure 2).
155	
156	Mean Maximal Power
157	
158	Absolute MMP of all durations (5sec-4 h) showed mostly improvements in absolute power
159	(Watts) through the 2014-2019 period (Figure 3). Relative power (Watts/kg) seemed to peak
160	in the 2015-16 season for 5min, 20min and 30min durations while 1min and 2-4 h durations
161	MMP seemed to improve throughout this period.
162	
163	LEAF-Q Score
164	Total score was 9 points (0 points from injuries, 2 points from gastrointestinal function, and 7
165	points from menstrual cycle). A score over 8 qualified her as 'at risk'.
166	
167	
168	
169	

The athlete did not use birth-control hormonal replacement throughout the period, and reported late onset of menarche (17 years) and being amenorrhoeic from 2013 to 2015, oligomenorrheic from 2015 to 2018 reporting irregular cycles every 2-8 months with light bleeding. In late June 2018, the athlete reported one significantly heavier bleeding and regular periods of 23-35 days and 2-5 days bleeding since, therefore it is considered she entered into a state of eumenorrhea then.

Discussion

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

178

The main findings of this case-study are that 1) regular menses resumed after >4 years of menstrual dysfunction and ~5-6 months after body mass gain while maintaining high training load, 2) the highest relative MMP in durations 5min-1h were achieved during the period of menstrual dysfunction, while best absolute MMPs across a range of durations were achieved after body mass gain and during eumenorrhea, 3) A short (6-week) weight-loss intervention did not affect menses during the period of eumenorrhea. This is the first long-term longitudinal analysis of an elite female endurance athlete resuming normal menses after a prolonged period of menstrual dysfunction while concomitantly exposed to a high training load. These results are important for understanding the interaction between energy balance, body composition, training load and physical capacity. In this context, these findings support prior laboratory-based research highlighting the importance of adequate energy availability for maintenance of normal physiological function of a range of systems (Loucks et al., 2011), as suggested by the triad and RED-S models (Mountjoy et al., 2018), with field data. The menstrual disturbances observed through the period fell within a continuum ranging from amenorrhea to oligomenorrhea as it has previously been reported in exercising women (De Souza et al., 2010). These conditions are stipulated to happen due to physiological dysregulation when energy availability (EA) is reduced chronically under a threshold of ~30 kcal/kg/FFM/day (Loucks & Thuma, 2003). While this report includes no data on EA or hormonal status, the clinical signs documented of changes in body mass and composition, and menses frequency are considered as proxy markers of increase in energy availability (Hall, 2014) and re-adjustment of normal menstrual function, respectively.

The increase in body mass of ~5 kg during November 2017-February 2018 was unplanned and a consequence of the athlete's lifestyle change but indicates a significant increase in EA/energy surplus, followed by a period of maintenance of body mass ultimately resulting in resumption of regular menses ~5-6 months later (**Figure 1**). The sequence of events and the time-scales (months) are strongly suggestive of an increase in EA being what drove the resumption of menses. Acutely, increasing EA in energetically disrupted women results in a slow readjustment of the reproductive hormone circadian rhythm (Loucks & Verdun, 1998), while chronically, interventions increasing EA have shown to have the capacity to restore menses in exercising women after 23 days to 16 months (Łagowska et al., 2014; Mallinson et al., 2013; Stickler et al., 2019). It is noteworthy that the resumption of menses happened despite a high training load (figure 2), which is on the upper end of that reported in a group of female cyclists of different levels (Sherk et al., 2014) and closer to that of one of the most successful female endurance athletes recorded (Solli et al., 2017). This again supports the concept that it is low energy availability and not high training load that disrupts normal physiological function (Loucks et al., 1998). The maximal aerobic capacity of the athlete was comparable to that of female world-class cyclists (Martin et al., 2001), matching her high-level performance. Interestingly, the relative MMP for durations directly related to maximal aerobic capacity (5min to 1 h) seemed to peak in 2015-2016, when the athlete presented low body mass and was amenorrhoeic (Figure 1). It is remarkable that despite a significant increase in the body mass of the athlete (~5 kg or ~10%; Figure 1, table 1) that would be expected to decrease the relative power, a concomitant increase in absolute MMPs throughout the period (Figure 3, A, C & D) meant that relative MMP (Figure 3) remained practically unchanged (5min to 1 h) or even improved (30sec, 1min, \geq 2 h). It is unclear, however, if the MMP improvement was due to an enhanced adaptation to training with increased energy availability, a response to an increased training load (Figure 2), or a

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

combination of both. In any case, the relative MMPs ≤ 1 h remained mostly unchanged over the last 3 seasons, while the absolute MMPs saw mostly improvements, which can be equated with a competitive advantage, particularly for cycling performance on flat cycling stages. Accordingly, despite the athlete consistently achieved podium finishes and wins in races of Australia competing at National level and in Oceania since 2016 with most meaningful performances (higher *Union Cycliste Internationale* points) were achieved in 2018-2019. Finally, the intervention devised to decrease body mass during the period of eumenorrhea (intervention #2, Figure 1), resulted in no disruption of menses despite energy deficit, though we did not test if during this period the menses were ovulatory or anovulatory. This lack of perturbation of menses is in accordance to what has been shown in some individuals during short-term LEA (Lieberman et al., 2018) and in a case-study of periodic weight loss in an Olympic-level female middle distance runner (Stellingwerff, 2018), supporting the idea that periodised weight-loss may be an optimised approach to achieve peak performance while maintaining metabolic health. In conclusion, this report shows novel data on the resumption of menses in parallel with increased training load and increased physical capacity and provides new insights into the understanding of the female athlete triad. The findings suggest that while best relative power may be achieved in periods of menstrual dysfunction, a balanced approach to health and performance would likely include periodised events of weight loss that can improve power/weight ratio with little or no perturbation to normal reproductive function.

247

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

248

249

250

Acknowledgements

The author wishes to thank and acknowledge the athlete for the systematic approach to training and dedication to the sport, and Prof. J.P. Morton and Dr. A. J. McCubbin for support in this case study.

JLA reports no sources of funding for this study. JLA reports no conflict of interest.

Table 1. Athlete's body composition assessed with two dual-energy x-ray absorptiometry (DXA) scans 3 years apart in two different clinics using two units of the same brand and model of DXA scanner. DXA results are shown mainly to indicate the large change in fat mass. The change in this parameter well above any technical error of measurement between or within scan settings (Nana, 2013). The first scan corresponds to a period of oligomenorrhea and the second to a period of eumenorrhea. BMC, bone mineral content; BMD, bone mineral density; BMI, body mass index.

	Measurement date		Change	
	14/7/16	18/7/19	Absolute	%
Body fat %	18.8	25	6.2	
Body fat % Z score	-1.227	-0.524		
Body fat (kg)	9.9	14.8	4.91	49.8
Lean mass (kg)	42.66	44.37	1.71	4.01
BMC total (kg)	2.228	2.239	0.01	0.49
Total body BMD (g/cm ²)	1.102	1.121	0.02	1.72
Total body BMD Z score	0.7	0.6		
DXA total mass (kg)	54.8	61.4	6.6	12
$BMI (kg/m^2)$	19.5	22.4	2.9	13

268 Figure legends. Figure 1. Individual body mass measurements in kg between October 2014 and June 2019. 269 270 The figure specifies period of no menses (amenorrhea), irregular menses (oligomenorrhea) and 271 the period in which regular menses resumed (eumenorrhea). The insert in the figure reports the body mass (average ±SD) for the period prior to a body mass gain episode in 11/2017-02/2018 272 vs the body mass after regular menses resumed. *, represents a very clear (100% chance) 273 274 increase above the trend in body mass prior to body mass gain. WLI#1 & WLI#2, weight loss 275 intervention #1 and #2, respectively. 276 277 Figure 2. Yearly training load in hours and TSS from June of one year, to June of the 278 following year. TSS: Training stress score. 279 Figure 3. Mean maximal power of durations 5sec to 4 h, in absolute values (A, C and E) and 280 relative to body mass (B, D and F) for each year running from June of one year to June of the 281 282 following year.kg, kilograms; W, watts.

Figure 1.

286 Figure 2.

Figure 3.

291	References:
292	
293	Allen, H., & Coggan, A. (2012). Training and Racing with a Power Meter (2nd ed.).
294	VeloPress.
295	Areta, J. L., Burke, L. M., Ross, M. L., Camera, D. M., West, D. W. D., Broad, E. M.,
296	Jeacocke, N. A., Moore, D. R., Stellingwerff, T., Phillips, S. M., Hawley, J. A., &
297	Coffey, V. G. (2013). Timing and distribution of protein ingestion during prolonged
298	recovery from resistance exercise alters myofibrillar protein synthesis. The Journal of
299	Physiology, 591(9), 2319–2331. https://doi.org/10.1113/jphysiol.2012.244897
300	De Souza, M. J., Koltun, K. J., Strock, N. C., & Williams, N. I. (2019). Rethinking the
301	Concept of an Energy Availability Threshold and its Role in the Female Athlete
302	Triad. Current Opinion in Physiology, S2468867319300458.
303	https://doi.org/10.1016/j.cophys.2019.04.001
304	De Souza, M. J., Toombs, R. J., Scheid, J. L., O'Donnell, E., West, S. L., & Williams, N. I.
305	(2010). High prevalence of subtle and severe menstrual disturbances in exercising
306	women: Confirmation using daily hormone measures. Human Reproduction, 25(2),
307	491–503. https://doi.org/10.1093/humrep/dep411
308	De Souza, M. J., Williams, N. I., Nattiv, A., Joy, E., Misra, M., Loucks, A. B., Matheson, G.
309	Olmsted, M. P., Barrack, M., Mallinson, R. J., Gibbs, J. C., Goolsby, M., Nichols, J.
310	F., Drinkwater, B., Sanborn, C. (Barney), Agostini, R., Otis, C. L., Johnson, M. D.,
311	Hoch, A. Z., McComb, J. (2014). Misunderstanding the Female Athlete Triad:
312	Refuting the IOC Consensus Statement on Relative Energy Deficiency in Sport
313	(RED-S). British Journal of Sports Medicine, 48(20), 1461–1465.
314	https://doi.org/10.1136/bisports-2014-093958

315	Hall, K. D. (2014). Estimating human energy intake using mathematical models. <i>The</i>
316	American Journal of Clinical Nutrition, 100(3), 744–745.
317	https://doi.org/10.3945/ajcn.114.094441
318	Hawley, J. A., & Noakes, T. D. (1992). Peak power output predicts maximal oxygen uptake
319	and performance time in trained cyclists. European Journal of Applied Physiology
320	and Occupational Physiology, 65(1), 79–83.
321	Impey, S. G., Hearris, M. A., Hammond, K. M., Bartlett, J. D., Louis, J., Close, G. L., &
322	Morton, J. P. (2018). Fuel for the work required: A theoretical framework for
323	carbohydrate periodization and the glycogen threshold hypothesis. Sports Medicine,
324	48(5), 1031–1048. https://doi.org/10.1007/s40279-018-0867-7
325	Łagowska, K., Kapczuk, K., & Jeszka, J. (2014). Nine-month nutritional intervention
326	improves restoration of menses in young female athletes and ballet dancers. Journal
327	of the International Society of Sports Nutrition, 11(1), 52.
328	https://doi.org/10.1186/s12970-014-0052-9
329	Lieberman, J. L., De Souza, M. J., Wagstaff, D. A., & Williams, N. I. (2018). Menstrual
330	Disruption with Exercise Is Not Linked to an Energy Availability Threshold:
331	Medicine & Science in Sports & Exercise, 50(3), 551–561.
332	https://doi.org/10.1249/MSS.000000000001451
333	Loucks, A. B., Kiens, B., & Wright, H. H. (2011). Energy availability in athletes. Journal of
334	Sports Sciences, 29(sup1), S7–S15. https://doi.org/10.1080/02640414.2011.588958
335	Loucks, A. B., & Thuma, J. R. (2003). Luteinizing Hormone Pulsatility Is Disrupted at a
336	Threshold of Energy Availability in Regularly Menstruating Women. The Journal of
337	Clinical Endocrinology & Metabolism, 88(1), 297–311.
338	https://doi.org/10.1210/jc.2002-020369

339	Loucks, A. B., & Verdun, M. (1998). Slow restoration of LH pulsatility by refeeding in
340	energetically disrupted women. The American Journal of Physiology, 275(4 Pt 2),
341	R1218-1226.
342	Loucks, A. B., Verdun, M. & Heath, E. M.(With the Technical Assistance of T. Law, Sr. and
343	J. R. Thuma). (1998). Low energy availability, not stress of exercise, alters LH
344	pulsatility in exercising women. Journal of Applied Physiology, 84(1), 37-46.
345	https://doi.org/10.1152/jappl.1998.84.1.37
346	Mallinson, R. J., Williams, N. I., Olmsted, M. P., Scheid, J. L., Riddle, E. S., & De Souza, M.
347	(2013). A case report of recovery of menstrual function following a nutritional
348	intervention in two exercising women with amenorrhea of varying duration. Journal
349	of the International Society of Sports Nutrition, 10(1), 34.
350	https://doi.org/10.1186/1550-2783-10-34
351	Martin, D. T., McLean, B., Trewin, C., Lee, H., Victor, J., & Hahn, A. G. (2001).
352	Physiological Characteristics of Nationally Competitive Female Road Cyclists and
353	Demands of Competition: Sports Medicine, 31(7), 469–477.
354	https://doi.org/10.2165/00007256-200131070-00002
355	Melin, A., Tornberg, Å. B., Skouby, S., Faber, J., Ritz, C., Sjödin, A., & Sundgot-Borgen, J.
356	(2014). The LEAF questionnaire: A screening tool for the identification of female
357	athletes at risk for the female athlete triad. British Journal of Sports Medicine, 48(7),
358	540–545. https://doi.org/10.1136/bjsports-2013-093240
359	Melin, A., Tornberg, Å. B., Skouby, S., Møller, S. S., Faber, J., Sundgot-Borgen, J., &
360	Sjödin, A. (2016). Low-energy density and high fiber intake are dietary concerns in
361	female endurance athletes: Energy availability and dietary intake. Scandinavian
362	Journal of Medicine & Science in Sports, 26(9), 1060–1071.
363	https://doi.org/10.1111/sms.12516

364	Moore, D. R., Camera, D. M., Areta, J. L., & Hawley, J. A. (2014). Beyond muscle
365	hypertrophy: Why dietary protein is important for endurance athletes. Applied
366	Physiology, Nutrition, and Metabolism, 39(9), 987–997.
367	Mountjoy, M., Sundgot-Borgen, J., Burke, L., Ackerman, K. E., Blauwet, C., Constantini, N.,
368	Lebrun, C., Lundy, B., Melin, A., Meyer, N., Sherman, R., Tenforde, A. S., Torstveit,
369	M. K., & Budgett, R. (2018). International Olympic Committee (IOC) Consensus
370	Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update.
371	International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 316–331.
372	https://doi.org/10.1123/ijsnem.2018-0136
373	Nana, A. (2013). Reliability of dual-energy x-ray absorptiometry in assessing body
374	composition in elite athletes [Thesis, RMIT University].
375	https://researchbank.rmit.edu.au/eserv/rmit:160430/Nana.pdf
376	Nattiv, A., Loucks, A. B., Manore, M. M., Sanborn, C. F., Sundgot-Borgen, J., Warren, M.
377	P., & American College of Sports Medicine. (2007). American College of Sports
378	Medicine position stand. The female athlete triad. Medicine and Science in Sports and
379	Exercise, 39(10), 1867–1882. https://doi.org/10.1249/mss.0b013e318149f111
380	Sherk, V. D., Barry, D. W., Villalon, K. L., Hansen, K. C., Wolfe, P., & Kohrt, W. M.
381	(2014). Bone Loss Over 1 Year of Training and Competition in Female Cyclists:
382	Clinical Journal of Sport Medicine, 24(4), 331–336.
383	https://doi.org/10.1097/JSM.000000000000000000000000000000000000
384	Solli, G. S., Tønnessen, E., & Sandbakk, Ø. (2017). The Training Characteristics of the
385	World's Most Successful Female Cross-Country Skier. Frontiers in Physiology, 8,
386	1069. https://doi.org/10.3389/fphys.2017.01069
387	Stellingwerff, T. (2018). Case Study: Body Composition Periodization in an Olympic-Level
388	Female Middle-Distance Runner Over a 9-Year Career. International Journal of Sport

389	Nutrition and Exercise Metabolism, 28(4), 428–433.
390	https://doi.org/10.1123/ijsnem.2017-0312
391	Stickler, L. G., Hoogenboom, B. J., & Brown, J. (2019). The Impact of Nutritional
392	Intervention on Menstrual Dysfunction in Female Athletes: A Systematic Review. SN
393	Comprehensive Clinical Medicine, 1(9), 669–676. https://doi.org/10.1007/s42399-
394	019-00107-z
395	Torstveit, M. K. (2005). Participation in leanness sports but not training volume is associated
396	with menstrual dysfunction: A national survey of 1276 elite athletes and controls.
397	British Journal of Sports Medicine, 39(3), 141–147.
398	https://doi.org/10.1136/bjsm.2003.011338
399	