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Abstract

Quantum Clustering is a powerful method to detect clusters with complex
shapes. However, it is very sensitive to a length parameter that controls the
shape of the Gaussian kernel associated with a wave function, which is employed
in the Schrödinger equation with the role of a density estimator. In addition,
linking data points into clusters requires local estimates of covariance which
requires further parameters. This paper proposes a Bayesian framework that
provides an objective measure of goodness-of-fit to the data, to optimise the
adjustable parameters. This also quantifies the probabilities of cluster mem-
bership, thus partitioning the data into a specific number of clusters, where
each cluster probability is estimated through an aggregated density function
composed of the data samples that generate the cluster, having each cluster an
associated probability density function P (K|X); this probability can be used
as a measure of how well the clusters fit the data. Another main contribution
of the work is the adaptation of the Schrödinger equation to deal with local
length parameters for cluster discrimination by density. The proposed frame-
work is tested on real and synthetic data sets, assessing its validity by measuring
concordance with the Jaccard score.

Keywords: Quantum Clustering, Mixture of Gaussians, Probabilistic
framework, Unsupervised assessment, Manifold Parzen window.

1. Introduction

Quantum Clustering (QC) is an appealing paradigm inspired by the Schrö-
dinger equation [1] to identify and track connected regions, so clustering the
data. The method is effective for modelling anisotropy and heteroscedasticity,
since the use of gradient descent rather than distances for allocating points into
clusters has the effect of linking together nearby points. However, the method
is sensitive to the length scales that are inherent in the Schrödinger equation,
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which requires parameter searches. Although some works have proposed meth-
ods like cluster consistency [2] for this purpose, they are intrinsically limited by
the use of a single length scale to fit data that may have variable density.

The high sensitivity associated with the length scale, called σ, is initially
due to the fact it appears explicitly in the Schrödinger equation, but above
all it is because it controls the shape of the Gaussian kernel associated with a
wave function, which is employed in the Schrödinger equation with the role of
a density estimator. This dependency of the length scale will be amplified with
the second derivatives involved in the computation of the potential function,
needed to allocate points into clusters.

The original quantum clustering algorithm [1] generates a potential function
V (x) as the ground state of the time-independent Schrödinger equation:

HΨ ≡
(
−σ

2

2
∇2 + V (x)

)
Ψ(x) = EΨ(x) (1)

where H is the Hamiltonian, E the energy eigenvalue and the wave function
Ψ acts as a density estimator. In the original formulation, the wave function
was constructed as a Parzen estimator with a given length scale parameter,
σ. The allocation of data points to clusters was determined by the application
of gradient descent using the potential function. The wave function provides
a parametrisation of local data density. This need not be Gaussian and may
involve B-splines [3], Vector Quantisation [4] or the Epanechnikov kernel [5, 6].
However, exponential distributions are generally preferred due to their smooth-
ness since the wave function has to be differentiable up to third order.

Clearly the length scale of the exponential functions, σ, is of critical impor-
tance as it determines the overlap between the wave function components from
neighbouring observations. This has a critical impact on the shape and smooth-
ness of the resulting potential function, affecting the number of local minima
and, consequently, also the final number of clusters. The dependence on the
bandwidth selection of the Parzen window has led to different approaches to es-
timate the local covariance, first using k-nearest neighbours (KNN) [2, 7], then
with sample covariance estimators [8, 9, 10]. However the efficiency of KNN
estimators varies considerably depending on the structure of the data [11].

Recent works have addressed the non-linear or non-spherical clustering prob-
lem from different perspectives, like using spectral clustering based on different
similarity metrics instead of Euclidean distances or, considering semi-supervised
learning. For instance [12, 13] propose a density-based algorithm similar to DB-
SCAN [14] but assuming local consistency —nearby points should have similar
local density— and global consistency —high density regions should have the
same structure or label— to define a density-adaptive metric based on the sensi-
tivity of the local density. Another work [15] makes use of a supervised pairwise
constraints to perform a spectral clustering based on Hidden Markov Random
Fields (HMRF). Finally, [16] considers the Minimax distance based on mini-
mum spanning tree clustering. Another clustering point of view in recent works
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is through multi-task multi-view approach [17], where manifold learning tech-
niques [18] are combined with graph-based methods [19] to get insights of the
data structure. However, the main advantages of our approach with respect to
these recent works stem from the fact that it is completely unsupervised and
can identify the most appropriate hyperparameters automatically. It should be
highlighted that while both classical and nature-inspired clustering algorithms
use projective methods, quantum clustering defines an energy surface, which
is the potential function, and data points slide along this surface to converge
together in clusters, thus being a completely alternative way of facing unsuper-
vised learning problems.

This paper addresses the need for an objective function to guide the optimi-
sation of the adjustable parameters. We cast the quantum clustering paradigm
in a probabilistic framework that defines a log-likelihood function to measure
goodness of fit to the data. This enables parameter optimisation to be car-
ried out reliably and systematically without prior knowledge of the data struc-
ture. Experiments with real-world data sets and challenging synthetic data sets
demonstrate the effectiveness of the proposed approach even in the presence of
anisotropy and heterocedasticity.

The method has only one free parameter, which is the number of nearest
neighbours used in local covariance estimation. This underlines Probabilistic
Quantum Clustering (PQC) as a plausible unsupervised method for the detec-
tion of complex data structure in low dimensional data. The proposed approach
also indicates the presence of hierarchical data structure, identified by local min-
ima in the objective function of goodness of fit.

Re-casting the method in a probabilistic framework has the further advan-
tage of quantifying the probability of cluster membership and identifying the
presence of outliers, which offers potential for use in novelty detection.

Another relevant contribution of the paper is the use of local length scales
to discriminate clusters using density information. Indeed, as the gradient is
sensitive to data density, it is capable of modelling high density clusters even
when located inside clusters with lower density.

The rest of the paper is structured as follows: section 2 introduces the
original QC and extends it into the proposed probabilistic framework. Section 3
describes the data sets that we considered to evaluate our proposal, reporting
and discussing the achieved experimental results in section 4. Section 5 analyses
the complexity of the method, concluding the paper in Section 6 with a critical
summary of PQC, the drawn conclusions and possible directions for further
work.

2. Methods

2.1. Current implementations of Quantum Clustering

In the original formulation of Quantum Clustering, QCσ, a wave function
composed of radial kernels centred on the data points generates a convex poten-
tial function from the steady-state eigenfunction of the Schrödinger equation.
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Cluster allocation consists in identifying local basins of attraction in the poten-
tial function, by gradient descent (GD).

The wave function is parameterised as a mixture of Gaussians:

Ψ(x) =

n∑
i=1

ψi (x) =

n∑
i=1

e−
(x−xi)

2

2σ2 (2)

where n is the sample size and σ a global length scale comprising a single
hyperparameter to adjust. The Gaussian normalisation factor is redundant as
it will cancel out in the calculation of the potential function. The expression for
the potential function is:

V (x) = S +
σ2

2

∇2Ψ(x)

Ψ(x)
(3)

where S is an arbitrary constant offset.
Introducing the following notation for the expected value of function F at

discrete data points i with respect to the wave function ψi:

〈Fi〉Ψ ≡
∑
i Fiψi∑
i ψi

(4)

then the QCσ potential simplifies to the second-order moment of the distance
from the data points:

V (x) = S +
σ2

2

∇2Ψ(x)

Ψ(x)
= S − d

2
+
〈 (x− xi)

2

2σ2

〉
Ψ

(5)

where d is the input space dimension and with gradient given by:

∇V (x) =

〈
(x− xi)

σ2

〉
Ψ

(
1 +

〈
(x− xi)

2

2σ2

〉
Ψ

)
−〈

(x− xi) (x− xi)
2

2σ4

〉
Ψ

(6)

Data points are allocated to clusters by sliding from their initial positions
into basins of attraction corresponding to local minima in the potential function,
by gradient descent:

yi(t+ ∆t) = yi(t)− η(t)∇V (yi(t)) (7)
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where η(t) is an adjustable gain parameter.
We considered ADAM, a variant of Stochastic Gradient Descent (SGD)

with an adaptive momentum term [20], which is suitable for sparse gradients
that commonly occur with sparse data. Nowadays, there are many variants of
SGD [21]. This work does not claim that ADAM is the most suitable choice
for the QC problem, maybe other SGD variants could achieve a similar perfor-
mance. The reason to eventually choose ADAM is twofold: first, the learning
rates of each parameter —in our case, space dimension— are adapted as a func-
tion of the squared gradients, which speeds up the convergence in sparse regions
where the potential gradient is too small; second, ADAM makes use of an ex-
ponential moving average of the past gradients —computing the mean and the
variance— to update the gradient term, something similar to a momentum term
that helps to avoid local minima.

The stopping criteria are thresholds for minimum change in either position
or the value of the potential function. The smaller the value of the length scale,
the higher the number of clusters detected. The application of this method
is illustrated with a synthetic data set with four two-dimensional clusters that
combine anisotropy and heteroscedasticity (artificial data set #1). Each cluster
has 100 data points.

Figure 1a shows the cluster allocation by SGD with a length scale of σ20%,
which corresponds with the mean value of all the possible values of σ, con-
sidering K-nearest neighbours with K = 20%N , being N the sample size. The
corresponding gradient directions and contour lines are shown in figure 1b; QCσ
with a single length scale results in a too large value to accurately capture the
high density cluster and in a too small value for the sparse cluster at the bottom
of the plot which breaks up into multiple local minima.

Information about local density can be included by defining σ as a function
of the KNNs (QCknn) instead of having a unique length scale. In particular,
it can be typically expressed as a percentage of the total sample size: K =
%KNN [2, 7, 11], i.e. the number of observations to estimate σ is parameterised
as a percentage of K-nearest neighbours:

σi ≡
1

K

K∑
j ∈ knn(xi)

dist(xi,xj) (8)

Note that the length scale of the original model (QCσ) is the mean of these

length scales: σ = 1
N

∑N
i=1 σi. The variable length scale also allows to decouple

the terms of the Schrödinger equation, being the kinetic term:

Ti =
σ2
i

2
∇2ψi =

(
(x− xi)

2

2σ2
i

− d

2

)
ψi (9)

The new potential and gradient terms become:
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V (x) = E +

∑
i
σ2
i

2 ∇
2ψi∑

i ψi
= E − d

2
+
〈 (x− xi)

2

2σ2
i

〉
Ψ

(10)

∇V (x) =

〈
(x− xi)

σ2
i

〉
Ψ

(
1 +

〈
(x− xi)

2

2σ2
i

〉
Ψ

)
−〈

(x− xi) (x− xi)
2

2σ4
i

〉
Ψ

(11)

In contrast to QCσ, the estimation of the length scale from nearest neigh-
bours results in a wave function with a very pronounced peak in the high density
region. The shape of QCknn potential is more complex than that obtained by
QCσ, as it is now smooth in sparse regions and steep in dense areas, as required.
Figure 1c shows the cluster allocation by SGD over this potential with accurate
discrimination of the high density cluster against the surrounding sparse clus-
ter. The potential also adapts to the local density changes, creating a sharp
sink around the highest density peak; this region will be isolated in the cluster-
ing allocation by SGD, allowing a cluster discrimination by local densities. In
this example, 20% is an appropriate parameter value; if σ were much smaller it
would produce an over-fitted potential, generating too many sub-clusters. The
value of the Jaccard Score (JS) with QCknn (0.862) is much better than for
QCσ (0.556).

Adjusting the length scale via nearest neighbours is clearly effective for de-
tecting clusters with very different densities and also to accommodate outliers
with smooth and flat gradients that do not lead to an unnecessary fragmenta-
tion in low density regions. It partially solves the problem of heteroscedasticity
but the amount of neighbours considered in the model is still a hyperparameter
to be determined. There is a trade-off between too few neighbours resulting in
an over-fitted density function with too many clusters, and too large a neigh-
bourhood leading to a biased density function with too few clusters.

A natural extension to QCknn is to consider the local non-spherical covari-
ance matrices to set the value of the variable length scale, thus producing a wave
function and a derived potential that could fit better the density distribution
QCcov:

Σi =
1

Nk − 1

Nk∑
j ∈ knn

(xj − xi)
T

(xj − xi) (12)

where, in reference to the notation of equations 12 and 13, Σi refers to the
covariance matrix of (sample)i, not to be confused with the summation symbol∑n
i .
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Figure 1: Cluster allocations by SGD (left) resulting from the gradients of the potential
function (right) for artificial data set #1. The rows correspond to QCσ , QCknn and QCcov ,
respectively. In all cases the length scales have been computed using a quantile of 20%. These
solutions have Jaccard scores of 0.556, 0.862 and 0.805, respectively.
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Now the kernels are normalised with multivariate Normal distributions:

Ψ(x) =
1

n

n∑
i=1

ψi (x)

=
1

n

n∑
i=1

1√
|2πΣi|

exp

(
−1

2
(x− xi)

T
Σ−1
i (x− xi)

) (13)

Obviously, this approach may result in degenerate covariance matrices caus-
ing singularities in the covariance-inverse estimation. Moreover, if data are very
anisotropic, the positive effect of superposition in the wave function is consid-
erably reduced, resulting in a wave function that is less smooth which creates
an excessive number of local minima. These disadvantages can be mitigated
if all the local covariance matrices are restricted to be diagonal and replacing
diagonal elements whose value is close to zero by a given arbitrary small thresh-
old. As a result of a less smooth potential that leads to more local minima,
some spurious clusters appear (figure 1e), thus degrading JS up to 0.805. The
problems shown by QCcov will be addressed in section 2.2, with our proposed
QCprobcov .

2.2. Probabilistic Quantum Clustering, QCprobcov

The probabilistic frameworkQCprob aims at interpreting the normalised mix-
ture of Gaussians shown in eq. (13) as a joint probability distribution for the
co-occurrence of the test point x and the data point xi. This represents a gen-
erative model with a Gaussian kernel over each data point. The purpose of the
PQC algorithm is to link together joint distributions of neighbouring points to
form clusters.

Assigning to all observations an equal prior, once data have been assigned
to clusters, the joint probability of observation of a test point x in a particular
cluster k is given by:

P (k,x) =
1

n

#k∑
i∈k

ψi (x) (14)

where n is the sample size, which automatically fulfils the consistency require-
ment that:

K∑
k=1

P (k,x) = P (x) (15)

being K the total number of clusters, and #k the number of observations in
cluster k.

A key difference with respect to current implementations of quantum clus-
tering is that there are two steps involved in cluster allocation:

a) Application of gradient descent to allocate individual observations into
clusters, which partition the data by setting the indices i in eq. (14);
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therefore, the probability of cluster membership for each data point is
given by P (k,x).

b) Reallocation of the observations using the maximum value of the proba-
bility of cluster membership, i.e., selecting the cluster index k for which
P (k|x) is maximal.

The probability of k follows by marginalizing the joint probability over R:

P (k) =

∫
R
P (k,x)dx =

∫
R

∑#k
i∈k ψi (x)

n
dx

=

#k∑
i∈k

∫
R ψi (x) dx

n
=

#k∑
i∈k

1

n
=

#k

n

(16)

Once the joint probability is defined, the Bayes’ rule is applied to obtain the
conditional probabilities used above:

P (k|x) =
P (k,x)

P (x)
=

∑#k
i∈k ψi (x)∑K

k=1

∑#k
i∈k ψi (x)

(17)

P (x|k) =
P (k,x)

P (k)
=

∑#k
i∈k ψi (x)

#k
n

(18)

Note that the probabilistic framework allocates clusters to data from any-
where in input space, enabling the model to be used for unseen data. It is
possible that following the second step fewer clusters will be allocated than
the initial number identified by gradient descent. This will be dictated by the
maximal values for the probabilities of cluster membership.

The gradient descent step is only applied once to set the probabilistic func-
tions which then generalise to training and test data sets; hence, the probabilistic
cluster allocation draws a probability map that defines the boundaries between
clusters, which may have complex shapes. The aim is to connect together regions
of similar data density, separating the clusters with values of different density,
which may be less where data are sparse, or higher where heteroscedasticity
means that one cluster is spatially entirely contained within another.

The experimental results show only a small effect on the cluster allocation,
with a difference in JS of less than 2% when comparing QCknn with its prob-
abilistic counterpart. Figures 2b and 2c depict the probability maps using the
four clusters detected in the QCknn solution shown in figure 2a. Differences
are greater in the case of QCcov, with the probabilistic cluster allocation closer
to the true labels than the SGD approach, with JS=0.882, i.e., the highest JS
among all the experiments carried out, and with the selection of only four of
the seven clusters detected in figure 1e, as desired.
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Figure 2: Top left figure shows the probabilistic cluster allocation with QCprob
knn 20%

(JS=0.850).

Top right figure shows its probability map of cluster membership, P (K|X). A top-down
projection can be observed in the bottom left figure, where only the highest cluster membership
regions are observed. The bottom right figure depicts maxK P (X|K), which is useful for
outlier detection.

A further advantage of the probabilistic approach is the identification of
outliers, by simply thresholding maxk P (k|x). This is potentially of value to
defend against unwanted extrapolation of the clustering structure, as well as
providing a probabilistic framework for novelty detection.

2.3. Performance assessment

Optimisation of length scales and other adjustable parameters in quantum
clustering currently lacks a systematic methodology based on an objective mea-
surement of the goodness-of-fit of the clusters to the data, a common limitation
of unsupervised learning.

We propose the use of the probabilistic framework not only for cluster allo-
cation but also to define the fit to the data, by maximising the log-likelihood
for the probability of cluster membership. This measure will then be used to
optimise the value of the only hyperparameter in the model, which is the pro-
portion of neighbours used to estimate the local covariance matrix at each data
point. This is parameterised as the ratio %KNN.
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As shown in eq. (17), each observation is allocated to the cluster kw with
the highest probability P (kw|xi):

P (kw|x) =
P (kw,x)

P (x)
=

P (kw,x)∑
k P (k,x)

(19)

Aggregating over the complete data set, the overall likelihood of cluster
membership:

LL(K|X) = log

(
n∏
i

P (kw|xi)

)
=

n∑
i

log (P (kw|xi)) (20)

To normalise the score in the range [0, 1], the Average negative Log-Likeli-
hood (ALL) is used:

ALL(K|X) =
−
∑n
i log (P (kw|xi))

N
(21)

Its value clearly depends on the length scale parameter, %KNN, because the
length scale controls the number of clusters and the smoothness of the potential
function. The lower the ALL, the better the model fitting with the exception
of the trivial solution corresponding with a too large value of the length scale
that leads to a single cluster covering all of the data (ALL = 0).

The ALL provides an unsupervised figure of merit which is highly correlated
with the supervised JS. Therefore, it can be used as a measure of the clustering
performance without the need of prior information about the number of clusters
or their composition. Figure 3 shows ALL and JS for different length scales in
QCprob, to illustrate their correlation. It also reveals the hierarchical structure
of the data, where an abrupt change in ALL means a significant change in the
data structure. The bottom plot of figure 3 shows how the number of clusters
depends on the length scale, although the QCprob considerably cushions the
fluctuation compared with the original QC.

2.4. Extended ALL score with Energy threshold

The extended ALL score improves ALL by setting a threshold Eth to merge
clusters according to the maximum potential difference between their centroids.
By default, the ALL score uses a fixed Eth that depends on the SGD convergence
criteria in the last iteration:

Eth(default)
= max

(
εV ,max

(
∆V (xitermax)

))
(22)

This Eth takes the maximum value between the minimum SGD precision, εV ,
and the last SGD update. Figure 4 shows the extended representation of ALL,
including its relationship with variations of Eth that is no longer a fixed value;
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Figure 3: Comparative plot of ALL (top) and Jaccard score (middle) versus %KNN, using

QCprobcov in artificial data set #1. The lower values of ALL coincide with the higher values of
Jaccard score. Also ALL points out how the structure of the data is changing when %KNN
varies. The bottom figure depicts the number of clusters per length scale solution.

for low Eth values, being Eth = 0.001 the default value, the figure 4 presents the
same pattern of ALL observed in figure 3. To avoid confusion with non-trivial
solutions, scores associated with a trivial solution are assigned to the highest
ALL score. The interpretation of the ALL plots is partly subjective, as the
plots give an indication of the clustering structure in the data which may be
multi-level when the data are hierarchical. Therefore, one can consider that
ALL score is a useful tool for finding the hyperparameters associated with good
solutions of the problem. The following steps must be taken to identify such
solutions (the procedure is also described in more detail in algorithm 1):

a) Starting with the lowest Eth value, like default Eth = 0.001, look for a
local minimum in the direction of %KNN axis giving priority to the lowest
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values of %KNN.

b) Local minima must have a stable valley in the direction of Eth, any solution
within this valley is a good solution.

c) Repeat the process if there are more local minima in the direction of
%KNN, in ascending order.

d) Looking at the Eth direction, if there is a stable region of low ALL values,
wide enough to cover several values of Eth and %KNN, that region contains
a meaningful solution. Solutions with a high Eth must be taken with
caution because they might correspond to solutions with a few number of
clusters, produced after merging clusters hierarchically.

Figure 4: Extended ALL score versus %KNN and Eth for data set #1. The ALL scores always
diminish when Eth increases, because it is an implicit reduction of the number of clusters.
That explains why the ALL score is less reliable when there are few clusters, because the trivial
solution, with a unique cluster, always leads to ALL equal to zero. To avoid confusion with
non-trivial solutions, scores associated with a trivial solution are assigned with the highest
ALL score.

3. Data sets

Two challenging artificial data sets and two real-world data sets were em-
ployed to test the theoretical hypotheses and evaluate the clustering perfor-
mance.
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Algorithm 1 Procedure of PQC hyperparameter selection from ALL plot

1: Inputs: collection of PQC models fitted to X and characterised by their
hyperparameters %knn and Eth

2: ALL← function (%knn,Eth) . Goodness of fit score for each model
3: Plot ALL as a function of %knn and Eth

4: procedure LocalMinimaKnn(ALL,%knn,Eth)
5: E′th ← min(Eth)
6: ∆E′th ← Small Eth variation
7: Parameters1 ← Empty list
8: for %knn′ ← min(%knn),max(%knn) do
9: if ALL (%knn′, E′th) is local minimum then

10: if ALL (%knn′, E′th + ∆E′th) ≈ ALL (%knn′, E′th) then
11: Model with (%knn′, E′th) is a meaningful solution
12: Parameters1 ← Append (%knn′, E′th)
13: end if
14: end if
15: end for
16: return Parameters1

17: end procedure

18: procedure LocalMinimaEth(ALL,%knn,Eth)
19: ∆E′th ← Small Eth variation
20: ∆%knn′ ← Small %knn′ variation
21: Parameters2 ← Empty list
22: for %knn′ ← min(%knn),max(%knn) do
23: for E′th ← min(Eth),max(Eth) do
24: if ALL (%knn′ ±∆%knn′, E′th ±∆E′th) is ≈ absolute minimum

then
25: Model with (%knn′, E′th) is a meaningful hierarchical solution
26: Parameters2 ← Append (%knn′, E′th)
27: end if
28: end for
29: end for
30: return Parameters2

31: end procedure

32: SelectedParameters← Parameters1 + Parameters2 . Solutions to check
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3.1. Data set #1 (artificial): Local densities

This data set, already employed in section 2 to illustrate the characteristics
of the different methods presented in the paper, has two main characteristics
which challenge clustering algorithms: first, there are two clusters with cigar
shapes; second, there are two clusters partially overlapped but with different
local densities. The original QC was able to detect anisotropic clusters, but
it is less able to discriminate clusters with different local densities. The data
set is two-dimensional to aid visualisation and comprises four clusters with 100
observations each.

3.2. Data set #2 (artificial): Two spirals

This is a two-dimensional spiral data set with standard deviation in the first
spiral of 0.1 and 0.025 in the second spiral. Each cluster has 200 observations.

3.3. Data set #3 (real): Crabs

This well-known data set was used in the original QC paper [22]. It describes
five morphological measurements on 50 crabs of each of two colour forms and
both sexes, of the species Leptograpsus variegatus collected at Fremantle, W.
Australia. Therefore, there are 200 observations and four different labels, two
for gender and two for each species. To compare the results with the original
paper, principal component analysis (PCA) has been applied, selecting only the
two first principal components (PCs).

3.4. Data set #4 (real): Italian olive oil

This data set consists of 572 observations and 10 variables [23]. Eight vari-
ables describe the percentage composition of fatty acids found in the lipid frac-
tion of these oils, which is used to determine their authenticity. The remaining
two variables contain information about the classes, which are of two kinds:
three “super-classes” at country level: North, South, and the island of Sardinia;
and nine collection area classes: three from the Northern region (Umbria, East
and West Liguria), four from the South (North and South Apulia, Calabria, and
Sicily), and two from the island of Sardinia (inland and coastal Sardinia). The
hierarchical structure of this data set makes it especially appealing for testing
clustering algorithms.

4. Results

This section evaluates the extent to which the ALL score can determine
the most suitable %KNN to maximise the JS, highlighting the peculiarities of
each data set and particularly comparing the results of QCprobknn and QCprobcov . As
ALL tends to be smaller as the number of clusters decreases, when several local
minima appear in ALL, the ones associated with lower %KNN values should
have priority over the ones with higher %KNN values, as shown in algorithm 1.

The tables of results include the following information:
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• Column 1: data set number and QC model.

• Column 2: score employed to select the quantile (%KNN), firstly the su-
pervised choice according to the best JS, then the unsupervised option
based on the local minima found in ALL, and finally checking if the ex-
tended ALL has a stable region increasing the Eth parameter.

• Column 3: the Eth parameter; by default is used Eth = 0.001, but then the
extended ALL plot is analysed to find stable ALL regions with solutions
of higher hierarchical order.

• Column 4: length scale parameter in quantiles (%KNN)

• Column 5: number of clusters (#K)

• Column 6: ALL score

• Column 7: Jaccard score - for the Olive oil data set, there are two possible
classifications, with three or nine regions.

• Column 8: Cramer’s V score - for the Olive oil data set, there are two
possible classifications, as above. The Cramer’s V -index (Cv) is a nor-
malised version of the standard chi-square test for contingency tables; Cv
measures the concordance between different cluster allocations.

• Column 9: Pearson’s linear correlation coefficient between ALL score with
Eth = 0.001 and the Jaccard score.

• Column 10: The p-values associated to the correlation coefficient.

4.1. Data set #1: Local densities

Table 1 shows that both models, QCprobknn and QCprobcov , perform similarly for

this data set. QCprobknn has the correct number of clusters, four, with a JS = 0.85,
however QCprobcov with five clusters has a slightly better value, JS = 0.88. In both
cases, the ALL corresponds with the JS. Besides, there is not a stable region of
low ALL with high Eth values, so no hierarchical solution was considered.

4.2. Data set #2: Two spirals

Results are shown in table 2 and figures 5–8. Figure 5 shows that JS is quite
low. Actually, JS is not a good metric for this data set as it does not give any
relevance to the fact that the spirals are not mixed, it only measures similarity
with the true labels. To address this issue, Cv was used (Cv < 1 when the
spirals were mixed). Cv shows that the spirals are not mixed until 25% KNN
for QCprobcov , but they are fragmented into sub-clusters. Length scales greater
than 25% KNN make the potential too smooth thus making potential wells mix
the spirals.

If guided only by the ALL score in figure 5, two local minima would be
selected, the first one at 7.5%KNN and the second one at 35%KNN, keeping
Eth with the default value (0.001). Both solutions are illustrated in figure 6.
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Table 1: Data set #1: Local densities. The supervised solution with best JS matches the
unsupervised solution proposed by ALL.

Data #1

Density
Score Eth %KNN #K ALL JS Cv ρEth p-val

QCprobknn

Best JS 0.001 17.5 4 0.082 0.85 0.94 -0.81 1.5E-5

Best ALL 0.001 17.5 4 0.082 0.85 0.94 - -

ALL stable

at high Eth
No - - - - - - -

QCprobcov

Best JS 0.001 17.5 5 0.092 0.88 0.96 -0.87 6.0E-7

Best ALL 0.001 17.5 5 0.092 0.88 0.96 - -

ALL stable

at high Eth
No - - - - - - -
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Figure 5: ALL, Jaccard score, Cv and number of clusters obtained by QCprobcov for data set #2.
ALL splits the graph into two regions separated by a value of KNN equal to 22.5%; at the
left side, the spirals are not mixed but broken up; while at the right side the spirals are mixed
but there are only two clusters. Obviously, an external supervision would prefer non-mixed
spirals.
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Figure 6: QCprobcov solutions with Eth = 0.001 (default initial value equal to the precision of
the SGD stopping criteria). The left figure uses a 7.5%KNN, here the spirals are not mixed
but each one is fragmented into sub-clusters. The right figure uses 35%KNN, where the length
scale is too big to preserve the spirals not mixed. There are two clusters but the spirals are
mixed. These cases show the need of the extended ALL plots.

In order to find the optimal solution (JS = 1), where the spirals are neither
mixed nor fragmented, the value of Eth should be increased until reaching a
region of low ALL values, as shown in figure 7. The best solution depicted in
figure 8, is achieved in regions with low values of %KNN (< 20) and high values
of Eth (∈ [10−1, 100]).

Although ALL is not highly correlated with JS along the Eth axis direction,
a stable region of low ALL with high Eth implies an underlying hierarchical
structure that produces a good JS. Since the JS is not ideally suited for this
data set, the expected inverse correlation with ALL is not present in Table 2.
The stability region varies depending on the QC model, but can be inspected
visually using the ALL plot.

Table 2: Data set #2: Two spirals. In this case, the supervised solution with best JS (only
varying %KNN) has a poor performance without modifying the Eth parameter. ALL of the
stability region proposes a solution with JS=1.

Data #2

Spirals
Score Eth %KNN #K ALL JS Cv ρEth p-val

QCprobknn

Best JS 0.001 47.5 1 0.510 0.50 - 0.60 0.005

Best ALL1 0.001 7.5 14 0.237 0.16 1.00 - -

Best ALL2 0.001 35.0 2 0.229 0.33 0.06 - -

ALL stable

at high Eth
[0.2, 0.8] [2.5, 10] 2 6.8E-5 1.00 1.00 - -

QCprobcov

Best JS 0.001 22.5 6 0.354 0.36 0.99 0.19 0.412

Best ALL1 0.001 7.5 13 0.223 0.17 1.00 - -

Best ALL2 0.001 35.0 2 0.190 0.33 0.06 - -

ALL stable

at high Eth
[0.5, 1.5] [2.5, 20] 2 1.0E-5 1.00 1.00 - -
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Figure 7: Extended ALL score showing the stability region for high Eth values. This region
offers a solution based on low length scales where the sub-clusters are merged hierarchically
to form the two spirals without being mixed. The ALL plot indicates three regions of interest:
local minima with small length scale (blue arrow), local minima with higher length making
a too smooth potential (green arrow), and the stable region of high Eth offering the most
interesting solution (red arrow).
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4.3. Data set #3: Crabs

For the Crabs’ data set, ALL also obtains the appropriate %KNN corre-
sponding with the best JS. Table 3 shows that QCprobknn leads to Js = 0.70 and
QCprobcov to Js = 0.74, respectively. In relation to the extended ALL score there
are no stable hierarchical solutions.

Table 3: Data set #3: Crabs. The supervised solution with best JS matches with the unsu-
pervised solution proposed by ALL.

Data #3

Crabs
Score Eth %KNN #K ALL JS Cv ρEth p-val

QCprobknn

Best JS 0.001 17.5 4 0.110 0.74 0.90 -0.83 5.7E-6

Best ALL 0.001 17.5 4 0.110 0.74 0.90 - -

ALL stable

at high Eth
No - - - - - - -

QCprobcov

Best JS 0.001 15.0 4 0.126 0.70 0.89 -0.88 2.8E-7

Best ALL 0.001 15.0 4 0.126 0.70 0.89

ALL stable

at high Eth
No - - - - - - -

4.4. Data set #4: Olive oil

Table 4 shows the main results for this data set. For the QCprobknn , the
first ALL local minimum is closer to the real classification of nine regions but
ALL does not identify the best length scale available, as it proposes 7.5%KNN
(JS=0.55) instead of 2.5%KNN (JS=0.73). The second ALL local minimum
obtains a similar JS to the best possible one, although the length scale is quite
different: 22.5%KNN instead of 12.5%KNN. Despite not matching exactly with
the highest JS, the information provided by the two minima is of paramount
relevance, as they point out the two underlying structures, namely, three and
nine clusters. The ALL-JS correlation is quite poor, partly due to the fact that
ALL is compared with two different JS curves.

Nonetheless, the QCprobcov clearly outperforms QCprobknn , ALL finds solutions
with JS practically as good as the best JS ones, the ALL-JS correlation is
better, and the number of clusters is closer to the real one (#K: 4 and 9).

A further detailed explanation can be obtained observing figure 9. The
algorithm starts with many sub-clusters with the first KNN; it is important to
take into account that dealing with more than 100 clusters is computationally
very expensive during the cluster allocation because it has to check many (100 ·
99 = 9900) possible paths between potential wells (centroids). Then, the number
of clusters decreases drastically until obtaining nine clusters in 15% KNN, and it
is here where the first local minimum appears in ALL, matching with the highest
JS for the structure of nine areas. Then, a subtle local minimum appears at
45% KNN, very close to the highest JS for the structure of three regions of Italy.
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Table 4: Data set #4: Olive oil. JS in bold refer to the value that should be compared to the
corresponding ANNL, depending on whether the model is a solution of the 3-class or 9-class
problem. The supervised solutions with best JS match the unsupervised solutions proposed

by ALL, excepting for the QCprobknn ALL1 in JS2.

Data #4

Olive
Score Eth %KNN #K ALL JS1 JS2 CV 1 CV 2 ρEth p-val

QCprobknn

Best JS1

3 regions
0.001 12.5 5 0.241 0.77 — 0.83 — 0.08 7.5E-1

Best JS2

9 regions
0.001 2.5 9 0.167 — 0.73 — 0.98 -0.33 1.5E-1

Best ALL1 0.001 7.5 5 0.162 0.64 0.55 0.85 0.89 - -

Best ALL2 0.001 22.5 2 0.230 0.74 0.36 0.97 0.95 - -

ALL stable

at high Eth
No - - - - - - -

QCprobcov

Best JS1

3 regions
0.001 47.5 4 0.231 0.79 — 0.76 — -0.67 1.4E-3

Best JS2

9 regions
0.001 20.0 8 0.187 — 0.73 — 0.76 -0.52 1.9E-2

Best ALL1 0.001 15.0 9 0.175 0.52 0.72 0.99 0.72 - -

Best ALL2 0.001 45.0 4 0.220 0.78 0.41 0.76 0.81 - -

ALL stable

at high Eth
No - - - - - - -

Lastly, there is another ALL minimum at 50% KNN; it is not a real solution
but an effect of dealing with very few clusters. The best JS for three regions is
JS = 0.73, and for nine areas is JS = 0.79.

5. Complexity analysis

This work is focused on proposing a new algorithm for cluster allocation
with automatic hyperparameter selection, and hence, efficient computation has
not been analysed deeply. In fact, possible future works could be related to
parallelizing some tasks, like the calculation of the potential function per sample,
in order to speed up the process. However, an estimation of the PQC runtime
has been carried out. It depends on the following factors:

• m: Sample size.

• d: Space dimensionality.

• iterSGD: Number of iterations until SGD convergence.

• K0: Initial number of potential wells with at least one allocated sample;
many of them can be considered as sub-clusters to be merged depending
on their potential difference. The shortest path of all-pairs, that has a
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quadratic dependence runtime with K0, must be used. This factor de-
pends on the σ value, being the greater K0 the smaller σ. In QCprobcov ,
the initial K0 might be quite large because the potential is less smooth
and tends to create sub-clusters, although the sub-clusters eventually dis-
appear with the probabilistic allocation; this effect may slow down the
algorithm compared to QCprobknn .

In particular, the order of complexity can be described as:

O
(
2 ∗m · d · iterSGD +K2

0

)
(23)

Additionally, in order to build the ALL score map, that depends on the
hyparameters %knn and Eth, the total runtime will be multiplied by the amount
of different %knn values that are scanned. The runtime associated with the
different hierarchical solutions based on Eth is very short, as all solutions share
the same PQC model, which depends only on σ.

The runtime of the experiments shown in section 4 is presented in table 5. It
shows the runtime as a function of the length scale; it also indicates the initial
sub-clusters of the model, before being merged by having an energy difference
E ≤ Eth. This effect has a stronger runtime impact in the case of QCprobcov and
small length scales, as one can observe for the dataset #4 between 7%knn with
K0 = 129 and 14%knn with K0 = 71.

Table 5: Influence of length scales in the algorithm runtime for the different datasets. Times
t are expressed in seconds

Data
Subclusters (K0) Length scale (knn%) Size

Runtime (s) 7% 14% 21% 28% 35% Dimension

#1

K0 (QCknn) 15 8 7 5 4
400

K0 (QCcov) 14 7 8 4 4
t (QCknn) 32.5 21.8 18.8 18.2 37.4

2
t (QCcov) 24.2 33.3 16.1 14.7 17.6

#2

K0 (QCknn) 14 8 6 4 2
400

K0 (QCcov) 13 9 8 6 3
t (QCknn) 20,4 38,9 36,7 19,3 19,3

2
t (QCcov) 21.6 25.1 41.6 18.0 15.5

#3

K0 (QCknn) 12 5 4 4 4
200

K0 (QCcov) 20 9 4 4 4
t (QCknn) 18.9 10.4 9.9 10.5 11.0

2
t (QCcov) 6.4 4.6 4.2 3.8 3.7

#4

K0 (QCknn) 8 5 5 3 2
572

K0 (QCcov) 129 71 41 31 24
t (QCknn) 46.3 44.4 139.9 50.4 50.5

8
t (QCcov) 2267.6 793.5 727.0 557.8 491.8

Table 6 shows the runtime for the computation of the hierarchical solutions
based on Eth; in particular, basic statistics of runtime associated with 20 Eth
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Table 6: Influence of Eth in the algorithm runtime for the different datasets. Times are
expressed in seconds

QC
variant

Data
Runtime (s) of Eth ∈ [10−4, 102]
min max mean std

knn
#1

0.046 0.017 0.033 0.013
cov 0.029 0.013 0.023 0.006
knn

#2
0.041 0.016 0.030 0.010

cov 0.042 0.012 0.019 0.007
knn

#3
0.014 0.011 0.012 0.002

cov 0.012 0.005 0.009 0.003
knn

#4
0.108 0.057 0.086 0.024

cov 0.562 0.172 0.438 0.137

values log-spaced between [10−4, 102]. In all cases, the runtime for this step is
quite short since no new model is being computed in this process.

6. Conclusion

This paper has presented two main novel contributions within the paradigm
of QC. Firstly, an adaptation of the Schrödinger equation to deal with indepen-
dent local length scales, thus allowing cluster discrimination by density. Sec-
ondly, a probabilistic framework for QC to detect the underlying structure in
data; it enables outlier detection as well as the delineation of Bayesian optimal
cluster boundaries.

This framework leads to a merit function to measure goodness-of-fit in the
form of ALL. This utilises a Bayesian framework to enable optimisation of a
control parameter for the estimation of local length scales using set percentages
of nearest neighbours. Local minima of ALL have empirically shown a high
correlation with the highest values of JS. Therefore, we suggest that ALL can
become a useful objective performance index for unsupervised learning. Fur-
thermore, the ALL provides useful guidance and insight into QC solutions to
detect hierarchical structures in the data.

Two new models for PQC with different levels of computational complexity
have been proposed. Attending to its simplicity and versatility QCprobknn may out-

perform QCprobcov in general. However, QCprobcov may perform better than QCprobknn

in data sets with challenging peculiarities.
The main limitation of QCprobcov stems from its less smooth potential functions

as local-covariance kernels have less superposition effect than spherical kernels.
As a consequence of this:

• QCprobcov needs more iterations than QCprobknn in order to achieve the same
SGD convergence .

• QCprobcov tends to create more sub-clusters due to the presence of more local
minima. This is not an inconvenience in itself because these sub-clusters
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can fit better the data and can be later merged in the cluster allocation
process. However, the computation time needed to check all the possible
paths between all the centroids may be excessive.

QC methods are well-known to have poor performance for high-dimensional
data. The proposed framework shares this inherent limitation, the root of which
lies in the ultra-metric nature of Euclidean distances in high dimensions as well
as sparsity which causes difficulties for local covariance estimation. This remains
an area of further work.
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