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ABSTRACT Deploying unmanned aerial vehicle (UAV) swarms in delivery systems are still in its infancy
with regard to the technology, safety, and aviation rules and regulations. Optimal use of UAVS in dynamic
environments is important in many aspects, e.g., increasing ef cacy and reducing the air traf c, resulting
in a safer environment, and it requires new techniques and robust approaches based on the capabilities of
UAVs and constraints. This paper analyzes several delivery schemes within a platform, such as delivery with
and without using air highways and delivery using a hybrid scheme along with several delivery methods
(i.e., optimal, premium, and rst-in rst-out) to explore the use of UAV swarms as part of the logistics
operations. In this platform, a dimension reduction technique, “dynamic multiple assignments in multi-
dimensional space,” and several other new techniques along with Hungarian and cross-entropy Monte Carlo
techniques are forged together to assign tasks and plan 3D routes dynamically. This particular approach is
performed in such a way that UAV swarms in several warehouses are deployed optimally given the delivery
scheme, method, and constraints. Several scenarios are tested on the simulator using small and big data
sets. The results show that the distribution and the characteristics of data sets and constraints affect the
decision on choosing the optimal delivery scheme and the method. The ndings are expected to guide the
aviation authorities in their decisions before dictating rules and regulations regarding effective, ef cient,
and safe use of UAVs. Furthermore, the companies that produce UAVs are going to take the demonstrated
results into account for their functional design of UAVs along with other companies that aim to deliver their
products using UAVs. Additionally, private industries, logistics operators, and municipalities are expected to
bene tfrom the potential adoption of the simulator in strategic decisions before embarking on the practical
implementation of UAV delivery systems.

INDEX TERMS Unmanned aerial vehicle swarms, UAV delivery, logistics, cross-entropy Monte-Carlo,

Hungarian route optimization, simulation.

I. INTRODUCTION

UAVs (Unmanned Aerial Vehicles) have been commonly
used for several military, commercial [1] and public services
such as disaster recovery and rescue mission applications [2],
intelligence collection/reconnaissance mission, pollution/ re
detection, damage assessment [1], mapping, news gathering.
There have already been several promising attempts by sev-
eral leading prominent companies to use UAVS in commer-
cial purposes, particularly in delivery. Amazon aims to use
drones to deliver packages directly to customer’s doorstep
within 30 minutes [3]. Murray and Chu [4] have given other

examples of attempts to deploy UAVs by several other com-
panies in their study such as Australian textbook distributor
Zookal, UPS, Google with Project Wing, Alibaba, Singapore
Post. In early 2015, China’s largest online retailer Alibaba
carried out a three-day trial of drone delivery [5]. Singapore
Post is another package delivery company to trial drone-based
deliveries [6]. The Civil Aviation Authority (CAA) in the UK
reports that they have issued permissions to 350 organisations
to y drones for business purposes, including BBC [7]. The
US Federal Aviation Authority (FAA) did make signi cant
strides towards relaxing its rules on drone use [8]. The FAA
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estimates that by 2020 there will be around 30 thousand
commercial drones and many more civilian devices in use
in America [9], [10]. Drones can use short-cuts and pack-
ages can be delivered in a time-optimal manner with less
environmental impact to the contrary of traditional truck
delivery system in which a delivery truck must visit other
customers or other places to reach its destination with respect
to dedicated xed roads.

Sense and avoid technologies embedded in drone sys-
tems have already provided a great deal of safety on drone
uses [11], even though these technologies are still needed
to be improved signi cantly [12], [13]. Motlagh et al. [14]
addressed the regulations and standardization efforts, and
public safety concerns on the ground. While extensive
research efforts have focused on the technical aspects of
UAVs along with the regulations and standardization, this
paper seeks to provide new techniques and approaches
designed to optimize the operational elements of a delivery-
by-drone system. In particular, the purpose of this paper
is to discuss several schemes and methods for optimiz-
ing delivery routes and ef cient deployment of resources
using several approaches and simulation techniques to man-
age multidimensional complexities of multiple warehouses,
multiple drones with multiple cargo carriers using multiple
air highways (mWmbDmCmH) without being restricted to
the current technical constraints of UAVs - e.g., UAVs can
carry several packages at a time to deliver to several cus-
tomers in a sortie.

In the literature, there are a number of studies that aim
to solve several distinct parts of this entire problem space.
Murray and Chu [4] and Ferrandez et al. [15] proposed a
combination of two delivery approaches i.e., the use of tradi-
tional delivery trucks to a point near to customers from which
a UAV can be launched to deliver parcels. Regarding UAV
route/path optimization, Ragi and Chong [16] analyzed UAV
path planning in a dynamic environment via partially observ-
able Markov decision process whereas Roberge et al. [17]
studied a comparison of parallel genetic algorithm and par-
ticle swarm optimization for real-time UAV path planning.
Zhang and Duan [18] proposed an improved constrained dif-
ferential evolution algorithm to generate an optimal feasible
route for UAVs as a constrained optimization problem in
the three-dimensional environment and Huang et al. [19]
proposed a novel coordinated path planning method using
k-degree smoothing for multi-UAVs to reach the targets
simultaneously (strong coordination) or with an acceptable
time interval (weak coordination). Similarly, Ergezer [20]
explored a path planning in 3D environment for multiple
UAVs by introducing an evolutionary operator in Genetic
Algorithm and the utilization of mTSP. Yang and Yoo [21]
analyzed the UAV path planning with respect to wireless sen-
sor networks (WSN). Several other studies [22] [31] focused
their attention on UAV route/path planning for various
objectives, such as target tracking, obstacle avoidance,
landmark-based navigation, cluster-based routing to reduce
dependencies on human operators and task assignment.
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FIGURE 1. Outline of the manuscript.

There are a limited number of studies that simultaneously
explore 3D route planning and task assignment, in which
assigned tasks may dynamically change the routing given
the constraints. For instance, Zhu et al. [32] examined
a dynamic task assignment and path planning of multi-
AUV system based on an improved self-organizing map and
velocity synthesis method in 3D underwater workspace by
using the improved self-organizing map (SOM) neural net-
work and a velocity synthesis approach. On the other hand,
Faust et al. [33] presented reinforcement learning approaches
for very small scale of single cargo delivery in a route plan-
ning using UAVS. However, to our knowledge, there is no
study in the literature that concurrently explores the optimiza-
tion of dynamic multiple task assignment and 3D route plan-
ning, in particular considering heterogeneous UAV swarms
based on several types of delivery schemes and methods with
respect to the complexity of mWmDmCmH.

In this study, a sophisticated multi-variable delivery prob-
lem is aimed to be explored and in this manner, differ-
ent approaches are analyzed to nd out the optimal visual
delivery decision using the optimal available route. The
main objectives are i) to use the resources effectively
and ef ciently, ii) to give decisions about deploying new
resources or reallocating current resources by testing different
scenarios, iii) consequently to both increase the customer
happiness by delivering the orders in a time-optimal manner
and reduce the cost of delivery in a minimized and safer
air traf c¢ using both optimal routing and optimal use of
resources. In this sense, throughout the manuscript, we would
like to unveil how to a) manage a very complex multi-
dimensional/ multi-variable delivery problem; b) optimize
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FIGURE 2. Overall methodology.

logistic operations using UAVS; c) test/discuss several
delivery schemes and methods; d) nd the optimal visual
delivery decisions; e) reduce environmental pollution
impacts; f) enlighten the aviation authorities in their deci-
sions; g) guide the companies that produce UAVs in their
design; h) guide delivery companies; i) help these three
stakeholders model/simulate their systems and decisions.
At the moment, there is no off-the-shell simulation tool to
realize these objectives, and the platform built in this study is
a good candidate to cover all these objectives at once.

To clarify the novelty of this paper, the contributions are
outlined as follows.

1) Adistinct UAV delivery platform has been built to test
delivery capabilities of UAVs under several constraints
and scenarios on various real time map samples.

2) Delivery of multiple packages in one sortie by a sin-
gle UAV within multiple delivery sorties using UAV
swarms is analyzed.

3) Several delivery methods along with various delivery
schemes are proposed for delivering multiple parcels
via optimal routes.

4) A new dynamic and hybrid delivery method for
UAVs has been designed and explored with its
merits.

5) An effective methodology has been developed to
deploy UAV swarms with multiple carriers.

The remainder of this paper is organized as follows.
Section | provides a comprehensive state-of-the-art literature
on existing UAV delivery systems. Section Il explores the
proposed methodology based on our experimental setup.
The results are demonstrated in Section Il along
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with discussions. Section 1V emphasizes the lessons learnt.
Section V draws conclusions and provides directions for
potential future works. Readers are referred to Fig. 1 for an
explicit structure overview of the paper.

Il. METHODOLOGY AND EXPERIMENTAL SETUP

The methodology implemented using Javal and Mat-
lab Simulink MatWorks R2017b is delineated in Fig. 2.
Interested reader can nd the detailed methodology in the
supplementary materials ( g.1) with each and every step. The
main interface is presented in Fig. 3. Firstly, a GPS-speci ed
map that may be any speci ¢ region of interest (ROI) is
created using geospatial data by the user. Secondly, other
necessary components are generated using the speci ¢ inter-
faces to simulate/model imaginary/real warehouses (WHS)
and customer locations as delivery way-points and target
destinations. For the third step, several delivery schemes and
methods are explored along with the techniques employed.
Lastly, an experimental setup is established to analyze how
the results are affected under the consideration of various
scenarios.

A. GENERATION OF ENTITIES, CONSTRAINTS, DELIVERY
SCHEMES AND METHODS, AND CONFIGURATION

OF THE PLATFORM

1) GENERATION OF ENTITIES

a: GENERATION OF CUSTOMERS

This can be carried out in three ways; one of which is to
import customer information from a le (e.g., csv) that can

1Java was employed to process the multi task operations simultaneously.
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FIGURE 3. Main interface of the implementation.

be obtained from any database actively used; the second one
is to enter customer information on the customer description
interface; the last method is to randomly create as many
customers as desired on the pre-created map.

b: GENERATION OF UAV HIGHWAYS (HWs)

UAV HWs can be de ned with regards to directions and
altitudes in 3 dimensional (3D) space depending on the no- y
geospatial cubic zones (NFGCZ). Each HW has two lanes
with opposite direction to provide much better safety in
regards to preventing collisions, although collisions can be
prevented using travel altitudes, which is also implemented
in our model.

c: GENERATION OF PARCELS
Parcels can be generated similarly as explained in 11-Al-a
using various dimension and weight ranges.

d: GENERATION OF ORDERS

Selected pre-created parcels are assigned to the available cus-
tomers and subsequently, orders are created using the order
creation interface.

e: GENERATION OF WHs

Each WH is associated with a geographic location (longi-
tude and latitude) in the XY plane of the local coordinate
system, which can be generated automatically by the appli-
cation or entered manually by the user.

f. GENERATION OF UAVs

Characteristics of UAVSs are very important for overall ef -
cacy of the system; the more abilities that UAVs have the
more areas are covered, consequently the more customers
can be served and the more packages can be delivered within
shorter time frames. The number of cargo carriers with bigger
capacities (i.e., volume and weight) is substantially important
to decrease the air traf c. For our system model, we provide
the features of UAVs in Table 1.

VOLUME 7, 2019

FIGURE 4. Delivery scheme without HWs.

g: ASSIGNMENT OF UAVs TO WHs

Several number of UAVs can be assigned to each pre-
speci ed WH as assets using the UAV assignment interface
with distinct ID numbers.

2) CONSTRAINTS

Successful commercial use of UAVs for longer missions lies
in the improvement of battery charge and load capacity. There
should be several distribution WHs and each of which may
have several number of UAVs with various features with
respect to the other components of the system, such as cus-
tomers, orders and parcels to establish an ef cient and robust
UAV delivery platform to cover ROIs better. Each type of
UAVs may have various cargo capacities by means of weight
(payload they can carry), the number of cargo carriers and
their volumes as detailed in Table 1. The total weight of
parcels assigned to cargo carriers of UAVS cannot exceed
UAVs’ total payload capacity. The total maximum distance to
be transported by each UAV isnot  xed and determined based
on the total load -i.e., the more load the less distance to travel.
Each UAV can deliver several customers’ parcels in a mis-
sion with cargo carriers attached to UAVS. Each UAV must
return to its base without depleting its entire battery charge
(e.g., 10% remaining charge) to guarantee its safe return to
the base. Each UAV should be used optimally by means of
maximum distance and cargo capacity to increase the overall
ef cacy of the delivery system. Each UAV is associated with
a geodetic coordinate (longitude, latitude, altitude) by GPS to
track instant positions. Parcels exceeding carriers’ maximum
load capacity or requiring a signature are not eligible for the
drone delivery system and are opt to be sent using conven-
tional delivery system. Packages can be transferred between
WHs using UAVs to supply products that are not in stocks,
especially from the center WH to others. Only customers
within ROIs of UAVs from a remotely-located WH can be
served with the delivery-by-drone system.

3) DELIVERY SCHEMES

The three delivery schemes are illustrated in Figs. 4, 5, and 6,
and brie y explained in the following Subsections 11-A3 -a,
-b, and -c brie .
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TABLE 1. Features of UAVs (capabilities & constraints).

‘ Fields H Definition ‘ Justification Explanation
ID unique ID used for data search and join operations
Title description of drone type used for the easy understanding of the user about
the types of UAVs
Max parcel || # of the parcel count that a UAV can | used for routing, shows the ability of a UAV to | a UAV can serve more than one customer on a mission. For instance; a
count carry at a time that is the # of the cargo | deliver ordered parcels to several customers up | UAV can deliver 4 parcels at a time if this number is 4 when a mission

carriers on a UAV

to this count on a mission

starts without returning to the base.

Max parcel vol-
ume dimension 1

shows the eligibility of a parcel carried
by one of the cargo carrier’s volume
dimensions on a UAV

parcels must be in the limits of the volume of
cargo carriers of UAVs

indicates one of the maximum sizes of any cargo carriers (i.e., width)

Max parcel vol-
ume dimension 2

shows the eligibility of a parcel carried
by one of the cargo carrier’s volume
dimensions on a UAV

parcels must be in the limits of the volume of
cargo carriers of UAVs

indicates one of the maximum sizes of any cargo carriers (i.e.,length)

Max parcel vol-
ume dimension 3

shows the eligibility of a parcel carried
by one of the cargo carrier’s volume
dimensions on a UAV

parcels must be in the limits of the volume of
cargo carriers of UAVs

indicates one of the maximum sizes of any cargo carriers (i.e., height)

Dimension unit

unit of the dimension, default is cm

used for comparison between the dimensions of
cargo carriers and dimensions of parcels to find
out if parcels fit in cargo carriers

this unit can be converted to other units such as inch by the user using
the system

Max travel dis-
tance

distance that a UAV can travel without
any load

used for designating ROIs and clustering cus-
tomers

UAVs must return to their bases without consuming all battery charge
which can be specified by the user (e.g., 10%). Max travel distance is
calculated after taking off this value.

Travel unit

unit of the distance travelled by a UAV,
default is mile

used for conversion between distance units: the
default is mile

this unit can be converted to meter by the user using the system

Max weight shipping

Max travel in || maximum battery usage in minutes in- | used for safety reason for UAVs to return their | sometimes UAVs may need to hover and using the variable, max travel
minutes cluding hovering in the air bases before it is to late along with the maximum | distance, may not be enough to decide the return point of a UAV to its
travel distance base
Max weight || maximum weight capacity that can be | used for determining the assignment of parcels | a UAV carries fever number of parcels than the # of cargo carriers
shipping carried by any UAV to UAVs if the maximum shipping weight capacity is exceeded with the total
weight of assigned parcels
Weight of a UAV || weight of a UAV without any load used to calculate the total weight of a UAV with
parcels it is loaded
‘Weight unit unit of the weight, the default is kg used for conversion between weight units this unit can be converted to lbs by the user using the system
Distance loss || max travel distance of a UAV decreases | used for determining to serve the customers with | max travel distance decreases as the weight of the load increases,
(mile/kg) if the weight of the load increases up to | regard to their distances this variable shows the functional correlation between total load and

maximum distance that can be travelled

Reserved for

a UAV can serve a customer if it is
reserved for customers

used for determining the assignments of orders
to UAVs; the default is reserved for customers;
otherwise it is reserved for the delivery between
WHs

this parameter can be changed by the user, there are some fixed-wing
UAVs not suitable for customer delivery, but suitable for delivery
between WHs, the value for this is WHs delivery

Charging time

battery charge time in minutes of a
UAV to be ready for the next mission

used for scheduling, and determining the next
UAV for the delivery mission

UAVs must be fully charged before deployed for a mission

FIGURE 5. Delivery scheme using HWs.

a: DELIVERY SCHEME WITH NO HWs

L

FIGURE 6. Hybrid delivery scheme.

c: DELIVERY SCHEME USING A COMBINATION

OF THE TWO SCHEMES (HYBRID)

On one hand, the delivery scheme with no HWs may cause a
chaos when the number of UAVS is increased. On the other
hand, the delivery scheme strictly using HWs may reduce the
number of customers served in a mission within smaller ROls,
which requires more sorties to deliver orders and reduces

All possible shortcuts among WHSs and customers are utilized
in a mission as illustrated in Fig. 4.

b: DELIVERY SCHEME USING AIR HWs
Pre-speci ed HWs are tracked as delineated in Fig. 5.
Delivery between customers is not allowed.

15808 VOLUME 7, 2019
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FIGURE 7. ROIls of WHs with no HWs.

FIGURE 8. ROIls of WHs with HWs.

3
&k=

FIGURE 9. Distance decision limits for hybrid delivery.

the overall ef cacy of the delivery system as can be noticed
in Figs. 7 and 8 regarding UAV trajectories. These two deliv-
ery schemes are merged to alleviate these shortcomings as
illustrated in Fig. 6 in which customers in a mission are
clustered into subgroups in terms of the distances between
the customers’ HW connection points (.., dHwcy)(HWc2))
and/or their direct distances to each other (e.g., d(cy)(c,))
as displayed in Fig. 9. Highways are used between these
sub-groups.

4) DELIVERY METHODS

The three delivery methods are explained in the following
Subsections 11-A4-a, -b, and -c brie y. Firstly, we would
like to reveal several general concepts applicable to all these
three methods. Orders/parcels which cannot be assigned to
an available UAV in a WH are queued to be assigned to
next available UAVs along with further orders that may be
ordered in order to both ensure the effective use of the

VOLUME 7, 2019

resources and reduce the air traf c. More explicitly, these
orders are not assigned to the UAVs which are already on
mission; they are put in a queue to be evaluated together with
other orders being ordered by customers. However, previous
orders that are not assigned to the UAVs are prioritized for
the consequent assignments for further missions to establish
a fair system. The abstract phases of delivery methods are
illustrated in Fig. 10 in an algorithmic chart along with the
delivery schemes.

a: OPTIMAL DELIVERY

Orders are delivered optimally in a particular routing path in
which the assignment of orders to available UAVs are carried
out without prioritizing any customer.

b: PREMIUM DELIVERY

Customers who are in the premium delivery are prioritized.
Prioritization is performed by means of assigning premium
orders to next available UAVS. However, routing is performed
optimally in order to both reduce the air traf ¢ and use the
resources effectively.

¢: FIRST-IN-FIRST-OUT (FIFO) DELIVERY

Orders are sorted in ascending order with respect to date
and time. Assignment of orders is performed by means of
orders’ times to next available UAVS, however, routing is
performed optimally without any prioritization as explained
in the above-mentioned premium delivery method.

5) CONFIGURATION OF ROIs FOR WHs

ROIs are designated based on the resources that WHs have.
Maximum delivery distances of UAVs play a critical role
for specifying ROIs; the more maximum travel distance that
UAVs have in WHs, the larger ROIs for those WHs. A ROI
in a WH is less than the half of the maximum travel dis-
tance of the longest range UAV in that WH to make sure
that UAVSs return to their bases safely with an amount of
remaining battery charge. The percentage of the remaining
battery charges of UAVs after mission can be speci ed by the
user: the more remaining battery charges, the less maximum
delivery distance of UAVS. The required remaining battery
charge of UAVSs in our experimental setup is de ned as 10%.
Furthermore, ROIs are not static, but, dynamic based on the
total load of cargo carriers using the distance function de ned
for the UAV types, which is explained in Section I1-E in detail.
The more the load the less the maximum delivery distance.
The created 5 WHSs depicted in Fig. 7 and in Table 2 are
utilized to explore our approaches throughout the manuscript.
Automatic con guration of ROIs are explained in the follow-
ing Subsections I1-A5-3a, -b and -c with respect to the delivery
schemes and constraints.

a: ROIs WITH THE SCHEME USING NO HWs

UAVs can travel around WHs depending on their maxi-
mum delivery distances using the shortcuts between nodes.
An example is depicted in Fig. 7. ROIs for WHSs are marked
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FIGURE 10. Schematic presentation of delivery approaches and delivery methods within the platform.

by circles from the centers of WHs. The UAV reserved for
“delivery between WHs” in W5 has a maximum travel dis-
tance of 100 miles and thus, Ws has a larger ROI (i.e., the
area marked by the circles, 50 miles of maximum deliv-
ery distance) than the other WHs. The outer circles show
the maximum delivery distances of UAVs without any load,
and consequently these distances get shorter as the payload
increases.

b: ROIs WITH THE SCHEME USING HWs

UAVs must track pre-speci ed HWs between WHs and cus-
tomers. Travelling between customers is not allowed. The
closer the WHs to HWs, the larger the ROIs, which can be
readily observed in Fig. 8.

¢: ROIs WITH THE HYBRID SCHEME
ROIs are speci ed based on the parts coming from two
schemes with respect to the two pre-speci ed distance val-
ues as illustrated in Fig. 5, one of which is the distance
between consecutive nodes (e.g., dic;)c,)) and the other
one is the distance between their connection points to HWs
(e.9., dHwe)(HWe,)) as depicted in Fig. 9. Customers are
served using the shortest paths without using HWs within
subgroups when distances between consecutive customers
are smaller than the pre-speci ed distance values. Note that
d(Hwe)(HWe,) Might be bigger than d(c,)c,) Wherever these
customers are served using different HWs. This is such a
exible approach that the number of customers served in
missions increases when these two values increase, which is
elaborated in the following sections within scenarios.

6) CONFIGURATION OF CUSTOMERS

a: CONFIGURATION OF CUSTOMERS WITH

THE SCHEME USING NO HWs

Customers are grouped based on all possible shortcuts to
WHs as explained in Section I1-A5. An example is depicted

15810

in Fig. 12. A customer can be served by a UAV if one is within
the ROI of any WHs.

b: CONFIGURATION OF CUSTOMERS WITH

THE SCHEME USING HWs

Customers are grouped using the locations of HWSs with
respect to WHs as explained in Section 11-A5. An example
is depicted in Figs. 11 and 13.

c: CONFIGURATION OF CUSTOMERS WITH

THE HYBRID SCHEME

The con guration is performed dynamically based on the two
parameters explained in Section I1-A5-c.

7) CONFIGURATION OF ORDERS

The system incorporates orders into the UAV delivery system
as presented in Table 2, if and only if the parcels can be
carried by at least one of the cargo carriers with regards to
the constraints mentioned earlier in Section I1-A2.

a: CONFIGURING ORDERS WITH THE

SCHEME WITHOUT USING HWs

Orders are incorporated into the UAV delivery system as
mentioned in Section I1-A6-a. 50 orders out of 66 are included
in the UAV delivery system (readers are referred to Table 2
and Fig. 12).

b: CONFIGURING ORDERS WITH THE SCHEME USING HWs
Orders are incorporated into the UAV delivery system as
mentioned in Section I1-A6-b. This scheme may reduce the
number of customers to be served compared to the scheme
without using HWSs, since the requirement of HW usage
reduces the overall covering area of ROIs, as mentioned in
Section 11-A6-b. 38 orders out of 66 are included in the UAV
delivery system in our case study (readers are referred to
Table 2 and Fig. 13).

VOLUME 7, 2019
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FIGURE 11. Grouping customers using HWs with respect to ROIs: The red lines between the customers and HWs denote the shortest distances. Customers
without any red lines are out of the ROIs of WHs (Fig. 8).

FIGURE 12. Configuring orders without HWs: The orders to be delivered are displayed by yellow lines. The orders that cannot be delivered and within the
maximum delivery distances are displayed by red lines and signified with the reason such as “‘signature required” or “weight”. The orders out of the ROIs
are not specified with lines, but, signified with the reason such as “distance”.

c: CONFIGURATION OF ORDERS WITH THE B. UAV-PARCEL ASSOCIATION

HYBRID SCHEME UAV-parcel association is carried out in parallel with nd-
Orders are incorporated into the system as mentioned in ing the optimal routes. Maximum delivery distances vary
Section I1-A6-c. The number of customers included in the depending on the load that UAVs carry at the start of the
delivery system is 38. mission and during the mission as parcels are delivered, and

VOLUME 7, 2019 15811
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FIGURE 13. Configuring orders using HWSs: The same caption as in Fig. 12.

thus, once the payload decreases. In this manner, there is
no prede ned weight/distance lookup table between WHSs
and customers. Therefore, all the calculations are performed
dynamically based on the constraints, properties of cus-
tomers assigned to the mission, ordering of these customers
in routes and dynamically changing circumstances as new
orders enter the system while previous orders are being
delivered.

There are multi agents (UAVs) with different capabilities
and limitations (Table 1) to be assigned to various tasks in the
complexity of the problem space along with the constraints
mentioned above in Section 11-A2. To manage this multidi-
mensional problem space, a new approach titled ““dynamic
multiple assignments in multiple dimensions in expanding
and contracting data sets” (dMAiIMD) was developed. With
this technique parcels are assigned to available UAVs in WHs
dynamically in which not only decisions are made by taking
all necessary features of the components and constraints into
consideration, but also, effects of the decisions are evaluated
in advance in terms of the overall optimality of the system,
and accordingly nal assignment decisions are determined
regarding the likely overall future assignments. The particular
use of dMAIMD is presented in the general illustration of the
methodology in Fig. 2 and general functions are displayed
in Fig 10: dAMAIMD has two main functions, ‘all likely UAV-
parcel associations’ and ‘optimum combinations of parcels
per UAV based on the optimum route’. Data in a high dimen-
sional space are projected down to a low dimensional space,
not only for the purpose of visualization, but also for ef cient
and robust implementation of the problem. Assignment of
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parcels to UAVSs is performed using a Likelihood assignment
Matrix (LaM) in which the features/constraints of UAVs in
columns and of parcels in rows are placed as presented in
Eg. (1), as shown at the bottom of the next page. A cell in
the matrix corresponds to all necessary dimensional relation-
ships between a resource and a parcel using a sub-Likelihood
assignment Matrix (sLaM) as displayed in Eq. (2), as shown
at the bottom of the next page, by which the constraints and
abilities of a UAV along with its cargo carriers and the prop-
erties of a parcel are represented in 2D space. This mapping
of cells not only represents the relationship between UAVS
and parcels, but also, unveils the overall assignment strategy
from a broader perspective, which helps the overall likely
selection of orders for missions with respect to obtaining the
optimal total distance travelled by all UAVS. In the cells of
LaM, ‘1’ represents the likelihood assignment, ‘0’ indicates
the necessary assignment, whereas ‘1’ denotes the unlikeli-
hood/impossible assignment. More explicitly, ‘1s’ show that
a parcel can be carried by corresponding UAVs in terms of the
abilities/constraints: 1-dimensions and weights of the parcels
with respect to maximum cargo payloads and volumes of
cargo carriers, 2-distances of customers with respect to the
maximum travel distances of UAVs, 3-total weight of the
parcels with respect to the total maximum cargo payloads of
UAVs. ‘1, takes place where at least one of these constrains
isnotsatis ed; ‘0’ takes place where parcels cannot be carried
by other available UAVs different from the UAV in the current
column after a mission starts. ‘0s’ designate the assignment
prioritization of parcels to corresponding UAVs against the
other parcels marked as ‘1’ or ‘1.
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TABLE 2. Orders in the system: the orders are sorted with respect to time
within WHs. The 12 customers out of the ROIs using HWs are highlighted.
“P”" stands for “premium” and “N” stands for “conventional delivery
method”.

[WH [ Cus [ Ord | Par | Time | M | Wei | Diml | Dim2 | Dim3 |
W1 Cso Og Pg 04:10:11 N 07 501 272 281
W Cus O7 Py 04:10:11 P 131 109 13 19.41
W Cus O14 Pg 08:1435 | N 057 596 182 1836
W1 Csa O16 Pg 08:14:45 P 057 596 182 18.86
W Css O17 Pg 08:1545 | N 07 501 272 281
W Crs Oy41 Pgo 08:26:00 3 031 823 172 181
W Crs O4n Pg3 082622 | N 131 338 142 18.03
W Cos Oy3 Pgy 082642 | N 13 551 10 1579
W Cer Oy4 Pgs, 082735 | N 1511 1087 1177 15.98
W C3g Os54 Pgo 100317 | N 031 823 172 181
W Ci7 Oss Pg 10:04:31 N 07 501 272 281
Wo Csq 012 Pg 08:1430 | P 057 596 182 18.86
Wo Coq O15 Pg 08:14:35 P 07 501 272 281
Wo Cog O13 Pg 08:1445 | N 07 5.01 272 281
Wo Cog () Psg 08:24:52 | P 518 1133 282 291
Wo Ca1 Os52 P73 083200 | N 176 545 212 21
Wo Cq Og2 Pgy 102953 | N 074 10.93 1183 1472
Wo Cs7 Og3 Pyy 103048 | N 074 1093 11.83 14.72
Wa C31 O19 P, 08:14:25 P 057 596 182 1836
Ws Car 011 Pg 08:1435 | N 07 501 272 281
Ws C3q O3 Pg 08:1840 | N 07 501 272 281
Ws Cy O39 Pro 082145 | N 0.79 811 192 201
Wa Coo O34 Pag 082315 | N 117 935 10 19.52
Ws Cgo O35 Pyy 08:23:23 P 237 178 22 231
Ws Cag O37 Pso 082442 | P 049 10.43 1133 18.52
Ws Cos Os3 Pyy 102618 | N 074 1093 1183 1472
Wa Cor Os9 Pyy 102757 | N 074 10.93 11.83 1472
Ws Cis Og0 Pyy 102824 | N 074 10.93 1183 1272
Ws Cos3 Og1 Pyy 102847 | N 074 10.93 1183 1472
Wy Ceag O19 Pg 08:1645 | N 057 5.96 182 18.36
Wy C71 Oag P, 08:17:45 | N 057 596 182 18.86
Wy Caq Oo1 Pg 08:18:05 P 057 596 182 18.86
Wy Clo0 | Oo2o Pg 08:1820 | N 07 501 272 281
Wy Cio Ooy Pg 08:1940 | P 07 501 272 281
Wy Cr7 Oos P1og | 0819555 P 316 975 10 13.29
Wy Ca3 Oa7 Pgg 08:20:25 P 443 1347 | 1437 | 1816
Wy Cioo | Os1 Pro 083157 | N 079 811 192 201
Wy Cgg Ogs Pyy 103435 | N 074 10.93 11.83 14.72
Wy Css Og6 Pyy 103544 | N 074 10.93 1183 1272
Wy Cos Og7 Pg 103640 | N 07 501 272 281
Ws Cag Og Pg OF:10:11 P 057 596 182 18.36
Ws Cog Og Pg 02:10:11 P 057 5.96 182 18.36
Ws Co Oy Py 08:11:15 P 122 418 2536 | 2626
Ws Cor O3 Ps 08:1145 | N 1.96 1039 | 2123 | 2213
W5 Coq Oos Pgs 08:21:25 P 254 158 2424 | 2514
Ws Cao O31 Pg3 082135 | N 251 59 10 11.05
W5 Cr Oa9 Pso 08:21:35 P 098 388 1924 | 20.14
Ws Ca0 O47 Pgg 082907 | N 271 1326 | 1416 | 1506
Ws Co1 Os6 Pg 10:0858 | N 07 501 272 281
Ws Cao Os7 Pay 10:01:16 | N 074 10.93 11.83 1472

Strictly speaking, potential assignments in LaM are deter-
mined by forging the characteristics of both parcels and
remaining UAVS into a coherent value using dynamic sLaM

matrices as many as the multiplication of the number of
columns and rows in LaM. A new LaM is established in
each step for determining potential assignments. ‘1s’ in the
previous established LaM may turn out to be “0s’ for the
same parcels and same UAVs where there is no other available
UAV left to carry these parcels. In mathematical terms, a row
cannot have more than one ‘0’ at a time; ‘0’ can be seen in a
cell, if and only if, all other cells have the value of “1’ which
means that there is no chance to deliver the parcel using all
other UAVS. An order is removed from LaM to be placed in
the queue for later assignments to UAVs that are currently
in mission if all cells in a row turn out to be “1’, which
means that there is no available UAV to carry that parcel in
terms of the constraints (e.g., dimension, distance or weight).
This matrix shrinks as missions along with routes are estab-
lished whereas it expands as new orders enter the system.
To summarize, the values in the cells representing UAVS and
parcels are dynamically updated each time with respect to
the updated values in all other cells in a broader perspective
regarding the remaining orders and UAVs at WHs. LaM
reveals the selection priorities of orders during establishment
of assignments and routes with regard to overall optimal
delivery. Necessary assignments are carried out using LaM
in such a way that most likely parcels are prioritized and,
thus, useless queues are avoided. In this way, resources are
not wasted and consequently customers are served faster by
reducing the multi-dimensional problem space into 2D space
throughout nding the optimal routes for sorties. The second
function ‘optimum combinations of parcels per UAV based on
the optimum route” of dMAIMD is explained in the follow-
ing sections 11-C, 11-E and I1-D within the routing schemes
along with the other techniques employed with respect to the
delivery schemes and methods.

LaM: Columns denotg UAVs and rows denote parcels/orders.

D, D,
O Lval(DPo,) Lval(D,Po,)
02 Lval(D:Po,) Lval(DPo,)
O3 Lval(D1Pos) Lval(D2Po,)
Os  LvalpiPo,) Lval(D,Po,)
Oy Lval(D, Poy) Lval (D, Poy)

sLaM for the

02
O3
04

- N . N
Lval(dlleaPOZ) LvaI(WDlapoz) Lval(dllebPOZ) LvaI(WlePOZ)

- N . N
Lval(dlleaPO3) LvaI(WDlaPO3) Lval(dllebPos) LvaI(WleP03)

Lval(dileapOA) n Lval(leaPO4)

8
D1, Dy,
01 Lval(dileaP01) A LvaI(WDlapol) Lval(dilebPOl) A LvaI(Wlepol)
% Lval(dileprA) n Lval(leprA)

On Lval(dileaPOn) A LvaI(WDlaPOn) Lval(dilebPOn) A LVaI(WlePOn)
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D3 DX

Lval(DsPo,)
Lval(DsPo,)
Lval(DsPo,)
Lval(DsPo,)

Lval(D«Po,)
Lval(DxPo,)
Lval(DxPo,)
Lval(D«Po,)

NN ©

M)

Lval(DsPo,) Lval(DyPo,)

rst UAV in Eg. (1): columns denote the UAV’s cargo carriers and rows denote parcels.

D1 Dy

. N - N
Lval(dlleCPOl) Lval(lecpol) Lval(dllekPol) Lval(lekpol)

TN ©

- N - N
Lval(dllechZ) Lval(lecpoz) Lval(dllekPOZ) LvaI(WlePOZ)

. N - N
Lval(dllecpos) Lval(lecPO3) Lval(dllekPO3) LvaI(WlePO3)

Lval(dilechA) n Lval(WchPOA) |-va|(dilek pod) N LVal(Wlepo4)

. N - N
Lval(dllecPOn) Lval(leCPOn) Lval(dllekPon) LvaI(WlePOn)

2

15813



K. Kuru et al.: Analysis and Optimization of UAV Swarms in Logistics

TABLE 3. Techniques employed in the problem space.

Schemes | Methods o Routing

) Distance function
association

Optimum | premium | dMAIMD Hungarian Eq. 4)
FIFO dMAIMD Hungarian Eq. 4)
optimal dMAIMD Hungarian Eq. 4)

HW premium | dMAIMD Cross-entropy Monte Carlo Eqgs. (8) and (9)
FIFO dMAIMD Cross-entropy Monte Carlo Eqgs. (8) and (9)
optimal dMAIMD Cross-entropy Monte Carlo Eqgs. (8) and (9)

Hungarian (for sub-groups) + | Eq. (10)) (for sub-groups)
Cross-entropy Monte Carlo Eqgs. (8) and (9)
Hungarian (for sub-groups) + | Eq. (10) (for sub-groups)
Cross-entropy Monte Carlo Eqgs. (8) and (9)
Hungarian (for sub-groups) + | Eq. (10) (for sub-groups)
Cross-entropy Monte Carlo Eqgs. (8) and (9)

Hybrid premium | dMAIMD

FIFO dMAIMD

optimal dMAIMD

C. FINDING OPTIMAL ROUTES

Following likely assignments of parcels to UAVs using the
cell values, namely ‘0°, ‘1’ or ‘1’ as mentioned above,
our technique runs to nd i) optimal selections and assign-
ments of parcels to UAVS, and ii) optimal routes similar
to Markov Decision Process (MDP) in a dynamic program-
ming in order to increase the total reward. The objective
of our assignment and optimization approaches along with
several other optimization techniques such as Hungarian and
cross-entropy Monte Carlo techniques is to use the resources
optimally, and to minimize the air traf ¢ in terms of com-
pleting overall delivery with the least number of missions
(i.e., sorties) in a timely-manner. Particularly, Hungarian
technique is employed for nding optimal routes for the
delivery scheme with no HWSs, whereas cross-entropy Monte
Carlo technique is adapted for the delivery schemes using
HWs. More explicitly, the techniques and functions employed
for the speci c parts of the problem space are presented
in Table 3. The Hungarian technique is generally used in com-
binatorial optimization, particularly for solving the assign-
ment problems in polynomial time. Cross-entropy Monte
Carlo is a general Monte Carlo technique employed in com-
binatorial and continuous multi-extremal optimization and
sampling.

Distance matrix for the Hungarian technique.

8 9
Wy Ci C Cs Cn
% Wy 1 dw,c, dwic, Odwics dw;c, %
C1 | dcyw, 1 dcic, dejcg dc;c,
Cy | dc,wy  deyeyg 1 de,c, dc,c,
Cs | degwy  deye,  dese, 1 desc,
© Cn | deyw, dee,  de,c, dees e 10

©)

1) ALL POSSIBLE ROUTES

In this section, we would like to disclose the complexity of
routing problem in terms of the distances among the nodes
based on the selected delivery scheme.
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a: ALL POSSIBLE ROUTES FOR THE SCHEME

WITHOUT USING HWs

Complexity of routing with respect to distances between
nodes is displayed in Fig. 14. It should be noted that nd-
ing an optimal route even with regards to two dimensional
distance space is beyond human perception, not to mention
the other dimensions explained throughout the manuscript.

b: ALL POSSIBLE ROUTES FOR THE SCHEME USING HWs
The aim is to reduce the air traf c out of HWSs. Orders should
be delivered using the shortest possible connections to HWs.
For instance, all the customers, except Cyg, in the ROI of
WHs are in the delivery range of HW; and HW; delivery
(i.e., customers’ connections to both HWs can be seen
in Fig. 11). Switching from one HW to another can be
performed using WH locations that are linked to HWs with
perpendicular lines.

2) END-TO-END OPTIMAL ROUTING

Optimal routes for WHs are selected throughout all possible
node connections mentioned in the previous section. How
to select the nodes that contribute to the optimal route and
the method to specify their ordering in routes are explained
in the following Subsections 11-C2-a, -b and -c. This expla-
nation is given with respect to the delivery schemes with-
out taking other constrains into consideration mentioned in
Section 11-A2 to make it simpler to understand. Explicitly,
it is assumed that all the parcels can be carried by a competent
UAV regarding the number of carriers, maximum distance
and maximum payload in a mission.

a: END-TO-END OPTIMAL ROUTING FOR
THE SCHEME WITH NO HWSs
The matrix that we employ while implementing Hungarian
technique is displayed in Eq. (3). The cells in the matrix
indicate the distances between the nodes. Note that this
matrix keeps the entire distance information between nodes,
depicted as yellow lines in Fig. 14 for each WH. The main
diagonal of the matrices is set to ‘1’ in order not to assign
the same customers to each other. The same customer codes
in the rows and columns may appear, if there are more orders
demanded by a single customer. In this case, the cell takes the
value of zero to deliver all the orders at once when a customer
is visited, which is explained in the succeeding sections with
examples. The visual outcome of optimal routing for the
customers shown in Fig. 12 and more speci cally in Fig. 14
is depicted in Fig. 15 in which an order list of customers to
be served is maintained for each WH. The information about
the mission such as total distance travelled and total weight
carried is printed at the end of the missions on the map. The
total distance is calculated by the sum of all distances between
nodes in optimized routes as formulated in Eq. (4), where diot
indicates the total distance a UAV travels through, in order,
rst customer, neighboring customers, last customer and the
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FIGURE 14. All possible routes without HWs.

FIGURE 15. All possible optimal routes without HWs.

route back to its WH, while n indicates the nodes, by way of In Eq. (4), dw;c, corresponds to the di]s_;ance between the
explanation, the total number of customers in a mission. j™ WH and rst customer in the route; ?Dll de,ci, indi-
K1 cates the total distance between customers in a route, where
dot D dwic, C( deiciey) € deyw (4) iDfl;z5 n 1g;dc,w; corresponds to the distance from the

iD1 last customer in the route to the jt WH.

VOLUME 7, 2019 15815



K. Kuru et al.: Analysis and Optimization of UAV Swarms in Logistics

Distance matrix for the gross—entropy technique using HWSs.

9
W1l Ogp C1101 Csl Og C3l O3 Cnl Op
Wil Ooo 1 Ahw,He,  AHw,He,  AHw, He, AHw, He, %
C11 0y dHCl Hw, dHCl He, dHCchs dHCl Hen 5)
Cal Oz dHCz Hw, dHCz He, dHCzHcs dHCz Hey
C3l O3 | OHeyHw,  OHegHe,  dHegHe, dHe, He,
CalOn | OHg Hw,  OHeHe,  OHeoHe,  HenHe, 1 :
Distance matrix for the %ross-entropy technique in WH 1. 9
Wil Cq71 Cszgl  Csol  Cysl1 Cy5  Cgol  Caggl
Opw Oss Oss Opg Os2 Oar O O17
W1l Ogo 1 294 252 252 462 462 6.72 953
C171055 | 294 1 042 042 168 168 378 659 (6)
C39l O54 | 252 0.42 1 0 210 210 420 7.01
Cs21 Ogs | 252 0.42 0 1 210 210 420 7.01
Cxs1 04 | 462 168 210 210 1 0 210 491
Cx;s1041 | 462 168 210 210 0 1 210 491
Cg2l 015 | 6.72 378 420 420 210 210 1 2.81
Cgel O17 | 953 659 7.01 7.01 491 491 281 1
Distance matrix zfsor the cross-entropy technique in WH 5. 9
Wsl  Co1l  Cgol  Cgol  Cyggl  Crgl  Corl  Co7l  Cggl  Cogl
Oop Oz O3z Os7 Opg Oz9 Osg  Ooz Og2  Oog
Wsl Ogo 1 88 121 20 46 101 45 9.7 4.0 8.8
Co11 028 | 8.8 1 209 108 134 209 153 0.8 48 196
Cqol O31 | 12.1 209 1 101 76 242 187 218 162 229 =
CsplO57 | 20 109 101 1 25 141 86 117 6.1 128 @)
Caol Ops | 45 134 76 25 1 16.7 111 142 86 154
Cs1 O | 10.1 209 242 141 16.7 1 146 218 161 1.3
Co11 056 | 45 154 187 8.6 111 146 1 16.2 10.6 133
Cg71 Op3 | 9.7 08 218 117 142 218 16.2 1 56 205
Cogl Og2 | 4.0 48 162 6.0 86 161 106 5.6 1 14.9
Cogl Ogg | 88 196 229 128 154 13 133 205 149 1

b: END-TO-END OPTIMAL ROUTING FOR THE

SCHEME USING HWSs

The matrix that we employ while implementing cross-entropy
technique is displayed in Eqg. (5), as shown at the top of this
page. The cells in the matrix indicate the distances between
nodes’ connections to HWs. Values in the orthogonal cells
of the matrix are setto 1 (i.e., cost is set to biggest number
possible) in order not to assign the same customers to each
other. However, these cells are set to zero to deliver all parcels
ordered by the same customers at once. Therefore, we keep
order codes together with customer codes to discern if they
indicate the same or different customers. For instance, in our
experimental design, notice 0 and 1 values in the distance
matrices of WH1 in Eq.( 6), as shown at the top of this
page, and WHs in Eq. (7), as shown at the top of this page.
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The visual outcome of the optimal routes for the orders
in Fig. 13 is presented in supplementary materials. Total dis-
tance is calculated by the sum of all distances between nodes
in the optimized routes, as formulated in Egs. (8) and (9).

dtory, D dwic; C f(x) C de,w,
8 X nil
< dCC
f(X) D . X thl i“iCl
. iD1
deicic; D dCinCi C deCi ke, Cd

if Hc, D Heye, @®)

otherwise
|

deiw; C dwicicy
Hic,, Cict
dCin D dCinci C deCi kaj C deWjo|
deCi(:1 D deHij C deWj HkCiCl Cd
where 8Cj 2 W,

Hic,, Cict ;
9)
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where ‘j’ denotes WHSs, diot indicates the total distance in
a route; n indicates the total number of customers to be
delivered; dW c mBlcates the distance between a WH and
the rst customer; 5y de,c,c, indicates the total distance
between custorpers in a route if customers are clustered
for same HW, |D1 dcw; C dwjcic; indicates the distance
between customers if they are clustered for different HWSs;
dciw,- indicates the distance between the last customer and
way back to the WH. Moreover, the explanation for dc;cic, .
dc. W, and dW,C.c1 are given in Eq. (9). Hk corresponds to kth
HW and ch corresponds to the it customer’s connection
point to the ki HW. Similarly, Hi,., and Hy, correspond to

the (i C 1)™ customer and j" WH connection pomts to the k™
HW, respectively.

c: END-TO-END OPTIMAL ROUTING FOR
THE HYBRID SCHEME
This scheme uses two parameters de ned by the user, one
of which is the maximum distance limit between customers’
connection to HWSs (e.g., 2 miles in our experimental setup,
d(Hwe1)(HWe,))s the other one is the maximum shortcut dis-
tance limit between customers (e.g., 2 miles, dc,)(cy))
as illustrated in Fig. 9. The scheme behaves close to the
scheme without using HWSs, whereas these distance values
are increased, vice versa, behaves close to the scheme with
HWs whereas they are reduced. In other words, the charac-
teristics of this hybrid scheme are exibly switched between
the two other schemes discussed in Sections 11-A3-c based
on the two prede ned distance limits. For instance, if these
values are set to 10 miles and all the distances between
nodes or nodes’ connection points to HWSs with respect to
delivery orders of the customers are smaller than 10 miles, all
the packages are delivered after a UAV leaves for a mission
without using any HWSs. Likewise, if these numbers are set to
1 mile and the distances between the customers or customers’
connection points to HWSs with respect to delivery orders of
the customers bigger than 1 mile, then the UAV delivers all the
parcels as exactly in the scheme with HWs without using any
shortcuts, returning to HWs to deliver the next parcels. The
routes in WHs are depicted in the supplementary materials.
The total distances in sub-groups as illustrated in Fig. 6 are
calculated as displayed in Eq. (10) for each sub-group. The
total distance of a UAV is calculated as exactly in Egs. (8)
and (9) by taking these sub-groups into consideration as
nodes, as illustrated in Fig.16. The sum of the calculated total
distances for the sub-groups and the other distances out of the
sub-groups results in the nal distance that a UAV travels.
Kl
dsubTot D dCiCic1 (10)
iD1

D. ROUTES USING DELIVERY METHODS

1) ROUTES TO COMPLETE THE MISSION WITH NO HWs
Optimal routing (Fig. 4) is performed using Hungarian tech-
nique as explained in Section 11-C2 based on the delivery
methods as discussed earlier in Section 11-A4 (Fig. 10).
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FIGURE 16. Calculation of the total distance.

TABLE 4. The UAVs in WHs and their capabilities.

[4 =
5 2 3 2 - 8 - I I8 3
K 5 E 5l 2|2 |2 5| 8| ¢
A A — % % - — —_ 2
E g 5|2 2|2z 2| 32| &
w H]_ A DAL 4 40 15 40 40 120 C
w Hl A DA6 4 40 15 40 40 120 C
W Hq C DB2 6 50 25 50 50 150 C
w H2 A DA2 4 40 15 40 40 120 C
w HQ A DA7 4 40 15 40 40 120 C
w H3 A DA3 4 40 15 40 40 120 C
w H3 A DAS8 4 40 15 40 40 120 C
w H4 A DA4 4 40 15 40 40 120 C
w H4 A DA9 4 40 15 40 40 120 C
WH5 A DA10 4 40 15 40 40 120 C
w H5 A DAS5 4 40 15 40 40 120 C
WH5 B DB1 6 100 20 40 100 140 WH

a: OPTIMAL DELIVERY METHOD IN THE

SCHEME WITH NO HWs

The technique of nding optimal parcels in the delivery
pool for the optimal delivery along with optimal routing is
depicted in the supplementary materials of the manuscript.
To summarize: 1) The optimal number of parcels is selected
with respect to the number of cargo carriers of existing UAVS
if the number of the parcels in the delivery pool is bigger than
the carrier count of existing UAVs; 2) All the combinations
of remaining number of parcels (i.e., the remaining parcels
(c) D the number of all customer array list (i.e., custnodeAr-
ray) per WH to be delivered - the maximum parcel count)
are found; 3) These combinations of changing customers
(i.e., combi D combnk(custnodeArray,c)) are removed from
all customer array list, respectively, in order to obtain distinct
parcel combinations based on the optimum number of parcels
obtained in the rst step; 4) Then, the total distance and
total cargo weight are measured after optimal routing for
selected parcels is determined with respect to optimal deliv-
ery method as illustrated in the supplementary materials; the
total distance and total weight are compared to the previous
total distances and total weights obtained using the previous
combinations; 5) Finally, the combination with the biggest
total distance and cargo weight under the maximum delivery
distance and maximum cargo weight of UAVs is retained and

15817



K. Kuru et al.: Analysis and Optimization of UAV Swarms in Logistics

TABLE 5. Assignment of the customers using optimal delivery method
without HWSs: the highlighted cells correspond to the first assignments
in WHs.

o 3 3 : :

k] z g g Z 3 =

3 & 2 o S =] g £

= z z H g g 7 3

z < ) & = = a z
WH 6 DAT W1, Cr5,C15, Cp2, W1 4 [ 40 [ 3901 [ 23
W H, I DAG W1, Cy5,Ca5, W 4| 4 [ ye | 24
WH, T DB2 | Wi, Cga, Cgg.C67.C39.C17,. W1 | 6 50 B 174
W Hy 2 DA2 W3, C54. C26. C26. Ca1. Wa T | 40 [ w3 | 82
W Hy 7 DA7 Ws, Cg, Wy 4 | 40 [ 3138 | 07
WHy 3 DA3 W3, Cgs, Cg. C36, Ca7. W3 T % 399 15
WHj 8 DAS W3, C31.C31.C93.C15. W3 T | 40 | 2837 | 28
WH, 7 DAZ Wa. 077, C100. C100. Os9. W4 T W 3938 54
W Hy 9 DA9 Wy, Cyyq, C12, Ca3, Cgg, Wy T W 381 63
W H5 5 DAID W5, Cg9, Czs, Cos, Co1, Ws T | 40 [ 998 | 35
W H5 10 DAS W5, Cyg, Cao, Co7, Ca1, Ws 4 | 4 [ 3915 | 58
WHs NA_| DBI N/A: Reserved for WH 6 | 100 [ WA | NA

TABLE 6. Assignment of the customers using premium delivery without
HWs: the highlighted cells correspond to the first assignments in WHSs.
The highlighted customers correspond to the premium orders.

=

E < El 2 = s a E
WH; 6 DAI W1, Ca5.Ca5, W1 ] 40 37.62 24
W H, 11 DAG W1, Cra, Wy 4 40 29.87 0.7
WH 1 DB2 W1.C17.C75.C75.Cg6.C23. Cno. W1 6 50 4731 49
W Hy 2 DA2 Wy, Cg4, Cpa, C. 26, Wa 4 40 37.18 72
W Hy 7 DA7 Wo,Cya1,Cg, Wo 4 40 35.14 25
WH3 3 DA3 W3, Cg2, Coa, U3, Ca7, W3 4 40 34.62 4.7
WH3 B DAS W3, C31,C31,Cg,Ci5, W3 4 40 29.71 28
W Hy 4 DA4 7 ! Wy 4 40 38.33 8.7
WHy 9 DAY Wy 4 40 38.94 2.8
WH; 5 DAI0 1 21 Ws 4 40 38.70 53
W Hg 10 DAS W5, Ca2, Cog, Coz, W5 4 40 32.64 33
WHg N/A DBI N/A: Reserved for WHs 6 100 N/A N/A

TABLE 7. The assignment results of the customers using FIFO delivery
without HWs: the highlighted cells correspond to the first assignments
in WHs.

il ) .

z 2| 2 2 ERN - B

z % = 2 3 Kl Z 5

Z < =l & = = a z
W H; 6 DAI W1,06C75,7C75.5Cg6. 2Cg2, W1 1 40 2671 29
WH; 11 DA6 Wi,11Cy7,10C39, Wy 4 40 164 10
WH; I DB2 W1, 1Cr0,2Cy5,3C45, W1 6 50 155 31
W Hy 2 DA2 Wo,2Cg4, 1Cp4, 3C26., 4Cap, Wa ) 40 18 72
W Ho 7 DA7 W, 5C41,6Cg, Wa ) 40 3514 25
W Hs 3 DA3 W3, 2C31,3C3;,2Ca7,1Cg, W3 7 30 25.60 28
W Hg 8 DAS W3, 7C36,9Ca27,5Cg2, 6Cg2, W3 7 30 3830 73
W Hy 4 DA4 Wy,3Cy44,5C12,2C71, 1Cgg, Wy 4 40 28.30 24
WHy 9 DAY Wy, 6C77,4C100,5C100.9C89. Wa 4 40 39.30 54
WHg 5 DAI0 W5, 3Cgg, 1Cg7, 2Cg9, 1Ca9, W5 1 40 37.58 43
WHg 0 DAS W5, 7C7g,5C21,9C91, W5 1 40 39.85 42
WHg N/A DBI N/A: Reserved for WHs 6 100 N/A N/A

TABLE 8. All remaining customers using optimal delivery method
without HWs.

=
3 =

e g )

2 2 5

WH # & a =
WH{ 1 W1, Caz, W) 41,18 13
W Ho 2 Wy, Cg4, C57, Wo 47.19 14
W Hg 1 W3, Ca7, Cga, Cga W3 9.39 43
WHy 3 W4, Cs5,Co2, C71, Wy 13.65 2.0
WHg 2 W5, C30, Cag, W5 1899 | 52

the parcels in this combination are assigned to a UAV. The
algorithm goes forward with similar calculations by removing
a parcel each time until the total maximum distance and
weight under the maximum delivery distance and payload of
UAVs is reached. The main purpose of using this approach
is to include as many customers as possible into missions
starting from the rst delivery. The remaining orders placed
in a queue are shown in Table 8.

b: PREMIUM DELIVERY METHOD IN THE

SCHEME WITH NO HWs

The technique of nding the optimal parcels with the pre-
mium delivery along with optimal routing is depicted in the
supplementary material. This technique works similar to the
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optimal method explained in Section 11-D1-a, but this time
prioritizing “premium” parcels. Prioritization is performed
by means of assigning premium orders to the rst and suc-
ceeding available UAVs. However, routing is carried out in an
optimal way to reduce the air traf ¢ and to use the resources
optimally along with the assignment phases. Some of the
customers may have more than one order (e.g., C7s, Cog,
Cg2, C31) and one of which might be premium. In this case,
all other orders that are not premium are put in the same route
with the prioritized premium orders of these customers as it is
shown in the supplementary materials and in Table 6. If there
are premium orders more than the number of cargo carriers
on a UAV (e.g., WH5:Cyg, C7s, Co1, Cog, Cog), some of
these premium orders along with other non-premium orders
belonging to the same customers are assigned to a UAV and
the rest is either assigned to the next UAV or placed in a
queue. For instance, the highlighted four customers in the
Assigned #, 5, in Table 6 ensure the total maximum distance
in the mission less than the maximum distance of the UAV.
When you replace one of these customers with the other
premium customer, Cgg that is in Assigned # 10, the distance
of the route becomes less than 38.70 miles which demolishes
optimality. The remaining orders in the queue are shown
in Table 9 in which there is no premium order.

TABLE 9. All remaining customers using premium delivery method
without HWSs.

g -
2 5 ]
WH # E a 2

W H; [ W1, C39,Co7. W1 1358 154
W Ho 2 Wo, Cs7, Wa 27.95 0.7
W Hg T W3, Cg3. Caz, Cos W3 36.95 50
W Hy 3 W4, C100, €100, C71, Wa 3813 2.0
WH5 2 W5, Co1., C30, Ca0, W5 50.56 59

c: FIFO DELIVERY METHOD IN THE SCHEME WITH NO HWs

The technique of nding optimal parcels with the FIFO
delivery along with optimal routing is depicted in the
supplementary material. This technique works similar to
above-mentioned premium delivery method considering
aprioritization based on rstcome rstassigned ina mission.
The aim is to nd the optimal combinations of parcels per
UAV by means of the times of orders. An example of this
approach is presented in the supplementary materials. The
orders are sorted in ascending in Table 2. The rst three orders
in Wy are Csp, Cy5 and Cys that are assigned to the  rst UAV
(i.e., DB2); the following orders, C75, C75,Cgg,Cg2 that are
assigned to the next UAV (i.e., DA1) and the other orders,
C3g, Cy7 out of Ca3, Cg7, C39 and C17 are assigned to the
last UAV (i.e., DAB) instead of the customers, C,3, Cg7 in
line, because these customers are not within the limits of UAV
DAG: the distance to the WH is 41.2 miles for C»3 that is out
of the ROI of the last UAV and the weight for Cg7, 15.11 is
bigger than the maximum cargo capacity (i.e., >15.00);

therefore they are put in a queue. Cy7 is selected instead
of Cgs in the assignment to second UAV (i.e., DA8) in Ws.
Since, adding Cgs into the route makes the distance bigger

VOLUME 7, 2019



K. Kuru et al.: Analysis and Optimization of UAV Swarms in Logistics

FIGURE 17. All deliveries using optimal delivery method with no HWs: the routes of UAVs in WHs are drawn in different colors.

TABLE 10. All remaining customers using FIFO delivery method
without HWs.

Route
Distance]
Weight

WH

#
WH T W1,0C67,8C23, W1 5780 | 164
WHy | 2 Wo, 7057, Wa 2798 |07
WHz | 1 | Ws3,8Cgs5, 10C 5, 11Cg3, Wg | 3692 22
WH, | 3 | Wy4,10Cs5, 11Cag, 7033, Wy | 5407 59
WHy | 2 W5, 90,2, 6C40,8C30, W5 59.67 6.0

than the reach of the UAV and the system searches through
next available orders with respect to order time; consequently,
the next best available order belonging to Cy7 is selected.
Likewise, the other assignments can be examined in Table 7.
The remaining orders in the queue are shown in Table 10.

2) ROUTES TO COMPLETE THE MISSION USING HWs

The difference from the approaches mentioned in previous
section for the delivery methods with no HWs is that UAVs
must follow pre-speci ed HWs during delivery and cus-
tomers are served from the nearest HW connections (i.e. the
connection between the line drawn to a HW from a customer
and HW is perpendicular, 90 ). Optimal routing using HWs
that is illustrated in Fig. 5 is performed using cross-entropy
Monte Carlo technique as explained in Section 11-C2 with
respect to the delivery methods as explained in Section I1-A4
(Fig. 10). Routing is determined using all pre-speci ed HWs.
For instance, a customer can be served using HW1 whereas
another customer can be served using HW, and changing
HWs between these customers by UAVs is executed on the
WH locations (e.g., UAV DA10). The distance between two
nodes are measured using Egs. (8) and (9): distances of nodes
to HWs connection along with the distance between these
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connections on HWs are summed up. The distance values
highlighted in the distance column in tables indicate how
optimal the rst assignments are with respect to the maximum
travel distances of UAVS: the closer the values to the maxi-
mum value along with more customers, the better decision is
given. The total distance (i.e., dpi,, ) and total cargo weight
(i.e., $ pi,) of a UAV are measured while optimal routing
is being determined in delivery pool that keeps customers
and order codes (e.g., C1:07g ). If parcels of all customers
in delivery array list can be delivered with regard to this
total distance along with other constraints, these parcels in
the delivery array list are assigned to an available UAV in
a WH and the mission starts according to optimal routing
using HWs by disregarding any chosen delivery method.
Otherwise, the routing along with assignments is performed
with respect to the chosen delivery method as follows:

TABLE 11. Remaining customers with the optimal delivery using HWs.

Distanc

Route

#

VVHI 1 N/A N/A N/A
W Ho 2 Wo, Ca1, Wo 18.62 3
W Hy 1 W3, C31.C31.Cg5.Caz. W: 41.49 28
WHy | 3 Wy, Cgg, C77. W4 42.64 39
WHg 2 Ws5,Co1.Co9.Cr8, Ca0, W5 31.88 48

a: OPTIMAL DELIVERY METHOD IN THE SCHEME WITH HWs
This particular methods works similar to the method as men-
tioned in Section 11-D1-a, but, this time delivery is carried
out using HWs. An example of this approach is presented
in Fig. 18. The assignment results of the customers for all
WHs are shown in Table 17. The remaining orders in the
queue are shown in Table 11.
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FIGURE 18. All deliveries using Optimum with HWs.

FIGURE 19. All deliveries using Optimum with hybrid scheme.

b: PREMIUM DELIVERY METHOD IN THE SCHEME WITH HWs
This particular methods works similar to the method as dis-
cussed in Section I1-D1-b, but, this time delivery is carried
out using HWs. The assignments are presented in Table 18.
There are two premium orders Cgz VO35 and C75 VOgyz in
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WH as seen in Table 2. These orders are delivered along
with the non premium orders, C17 V Oss and C75 V Og2
by UAV DB2 for the rst assignment. The system adds the
order, C75 V Oy, into the route to ensure optimality of the
delivery system, because the UAV must visit this customer
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TABLE 12. Remaining customers with the premium delivery using HWSs.

g g 3

2 z 3

WH # & a z
WH 1 W1,Cg6, W1 20.07 0.7
W Ho 2 Wy, Cq1, Wo 18.62 8
WH3 1 W3, Cg..Coz. W- 55.26 5
WH, 3 Wy, Cr71,Cgg, Wy 3856 3
WHpg 2 W5, Co7, C40,C42,Co1, W5 9124 | 59

TABLE 13. Remaining customers with the FIFO delivery using HWs.

Distance|

3
z

Route

#
WH T Wy, NJA, Wy 2007 | 0.7
WHy | 2 Wo,5Ca;. Wa 862 | 18
W H: T W, 8Cg7, 10Cg3, C15. W3 5042 | 22
WHy | 3 Wy, 7Cs5.6Cg9. Wy 3156 | 09
WH, 2 | Wp5,5021,6C40,9C42.5Cg1, W5 | 9239 | 65

TABLE 14. Remaining customers with the optimal delivery in hybrid
scheme.

z
g E
WH # & a z
W H, 1 N/A N/A N/A
W Hy 2 W, Ca1, Wa 18.62 8
W Hj 1 W3,C31,C31,Ca7, Co5, W3 4149 28
W Hy 3 W4, Cgg. Cr7. Wy 12.64 39
W Hg 2 W5, Ca0.Caz.Co1. Ws 69.65 34

TABLE 15. Remaining customers with the premium delivery in hybrid
scheme.

T
3 =
WH # & a z
WH; T N/A N/A N/A
W Hy 2 Wy, Ca1. Wo 1862 13
W Hg T W3, Cg, Co3, W3 55.26 15
W Hy 3 Wy, Cs5, W3 1930 0.7
W Hg 2 W5, Ca0, Ca2,Co1., W5 69.65 4.0

TABLE 16. Customers in queue with the optimal delivery in hybrid
scheme.

WH # & a z
WH; 1 N/A N/A N/A
W Ho 2 Wo, 5041, Wo 18.62 8
WHg T W3, 8Ca7, 10Cg3, W3 40.05 15
WH, 3 Wy, 7Crs — 6Cgg, Wy 1878 15
W Hg 2 W5, 6C40,9C42,8C91, W5 69.65 4.0

TABLE 17. Assignment using the optimal delivery with HWs.

* o

) 9 -] = S

3 E 3 . B2 0§ |z

2 2 2 g £

= e Z E] ] k] Z 3

z < = & = = a =
W H, 6 DAI W1, C17,C39, W1 7 20 37.99 0
WH; 11 DAG Wi, Cr5,Cr5, W) 7 40 25.52 16
W H | 1 DB2 W1, Csa, Cgg. Cr2, W1 6 50 19.74 2.0
W Ho 2 DA2 Wo, Os4, C2g, Cog. Wa 7 40 39.82 65
W Ho 7 DA7 Ws, Coyq, Wo 7 40 26.08 0.7
WH3 3 DA3 W3, C37,Cg,C15, W3 7 40 39.69 93
W Hz 8 DAS W3, Cgo, Cga, Co3, W3 7 40 37.06 7.0
W Hy ] DA4 W4, Cg9, C12, C71, Wa 7 40 39.90 19
W Hy 9 DA9 Wy, Cyg,Cs5Wy 4 40 35.37 1.3
WHg 5 DAI0 | Ws, Cag, Co7,Ca1, W5 7 40 39.73 5.1
WHg 10 DA5 W5, Caz., Cos, W5 7 40 38.68 20
W Hg N/A DBI N/A: Reserved for WHs 6 100 N/A N/A

for his/her premium order, C75 VO4;. Similarly, there are two
premium orders for the customers Cs4 VO12 and Cog VO3g in
WHa>. These orders must be delivered with the non premium
order Cog VO13 that is for a premium customer (i.e., Co6 V
Osg) already put in the route. Likewise, the premium orders,
C31 VOyp and Cg VO35 in WH3, C44 VO31, C12 VOys
and C77 V Oy in WH, are assigned to the rst UAVS in
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TABLE 18. Assignment of the customers using the premium delivery with
HWs: the highlighted customers correspond to the premium orders in the
routes.

o % 3 o 5
3 [ 3 g Z H =
B S =

z 7 z g 5 3 ] 2

z < =l & = = a z
W H; 6 DAL W1, Cro. W1 1 40 30.67 0.7
WH, 11 DAG W7, C39, W1 4 40 27.18 03
W H, 1 DB2 W1,C17,C75,Cr5, Cao, W1 6 50 44.30 2.9
W Hoy 2 DA2 Wa, Csa, Cog, Cog, Wa 1 40 39.82 6.5
W Hoy 7 DA7 Wo, Cos, Wo 1 40 26.08 0.7
W Hg 3 DA3 W3, Cgs, Cg2, Cgs, Ca7. Wa 4 40 36.97 93
W H3 3 DAS W3, C31,C31,C27,C15, W3 4 40 26.00 23
WH, 7 DA% Wy, Ci2, C77,Ce9, Wa 4 40 39.71 44
W H, 9 DAY Wy, Crs, Caa, Wy 1 40 3537 13
WHg 5 DA10 W5, Cag, Co9, C7s, W5 4 40 39.62 2.1
W Hs 10 DAS W5, Co1, Cos, W5 4 40 36.20 38
WHs N/A DB1 N/A: Reserved for WHs 6 100 N/A N/A

their WHs. We would like to explain the deliveries in WHs
with more details: there are 5 premium orders (i.e., C49 V
Og, Cgg V Og, Cgg VO3, Cy1 VOyg and C7g V Oyg in
WH5) and these orders cannot be delivered by any UAV in
a mission together. In this case, the system assigns some of
these orders to the rst delivery as many as possible and the
rest are assigned to the following deliveries. In other words,
the three premium orders that are C49 VOg, Cgg VOg and
Crg VOy9 are assigned to the rst delivery with the constraint
Otot < dpA10ms (i-€., 39.62 < 40), but as close as possible to
dpa10,,, D 40 to use the resources optimally; the other two
premium orders that are Cgg VO and C,; VO2g are assigned
to the second delivery (dpas,,,, D 40) with diot D 36:20. The
remaining non premium orders (Cg7 VOg,Cs9 VOg, C42 VO29
and Cg1 VOy9) are put in a queue (Table 12). The deliveries
are depicted in the supplementary materials. The remaining
orders in the queue are shown in Table 12 in which there is
no premium order.

c: FIFO DELIVERY METHOD IN THE SCHEME WITH HWs
This particular methods works similar to the method as dis-
cussed in Section I1-D1-c, but this time delivery is carried
out using HWs and this particular methods works similar to
the method as described in the premium delivery using HWs
mentioned above, but this time prioritizing orders is executed
using rst.come rst put in a mission. The aim isto nd the
optimal combinations of parcels per UAV to serve as many
customers as possible by means of order times using HWs.
The orders are sorted in ascending in Table 2 and the cells
not highlighted in customer column show the customers in
the ROI of WHSs. The assignment decisions can be examined
in Table 19. The rst three orders in Wy are Csp V Og,
Cg2 VO16 and Cgg VO17 that are assigned to the rst UAV
(i.e., DB2); the following orders, C17 VOss, C75 VO41, C75 V
O42, are assigned to the next UAV (i.e., DAL). The system
assigns the order, C17 VOsgs, instead of C3g VOsy in line,
because assigning the other order makes the distance much
bigger than the UAV maximum distance. The other remaining
order, C3g V Osy, is assigned to the last UAV (i.e., DAB).
Likewise, in W5, Cog VO13 and Cyg VO1¢ instead of Cgg VO15
are assigned to the rst UAV (i.e., DA2); in W5, C7g VOyq
instead of Cog VO3, Cp1 VOgg, Cqo VO3 is assigned to
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TABLE 19. Assignment of the customers using the FIFO delivery with
HWs: the highlighted numbers show the ordering sequence of the parcels
regarding order time.

TABLE 20. Assignments with the optimal delivery using the hybrid
scheme.

3 3 E A 3 .
2 3 k] g z 3 _ B Z E g | 2 2 2
E 3 s 2 E] 3 g ) -
= 7 Z El % % Z 3 W H; 6 DAI Wi, Cpa, Wy 4 40 30.67 0.70
Z < =] & = = a z WHy 1 DA6 N/A 4 40 N/A N/A
= — = — — WH DB2 W;,C39 — C — C75,Cr5,Cgg, Cra, W- 6 50 56 3.9
W 5 DAT W1,7C17, 1C75, 5075, W1 7 0 a8 76 WH; o 1, 939 WQ_‘Z,M_ Cch- CZ%_ 58 82,1 1 6 1 B 14 2
W H, 11 DAG W1,6C39, W1 1 10 27.18 03 Wi, 7 DAT Wy, Coq, Wa T 20 2608 07
W Hy 1 DB2 W;,2Cg2,3Cgg, 1C52, Wy 6 50 49.74 2.0 WH. 3 DA3 W3, Caz7, Cg, O15, We T 30 39.60 22
W Hoy 2 DA2 Wo,2C54, 3Caq, 4Cog, Wa 4 40 39.82 6.5 W Hgy 8 DAS W3, Cga, Cga, Coz, W3 4 40 37.06 43
W Ho 7 DA7 Wy, 2Cgy, Wo 4 40 26.08 0.7 WHy 4 DA% Wy, C71 — C12,Cg9, Wa 1 40 39.90 19
WHg 3 DA3 W3, 1C3q,3C31,2Cg7,4Cg, W3 4 40 35.49 238 W Hy 9 DAY Wy, Cs5.Caa, Wy 4 40 3537 13
W Hg 3 DAS W3, 5Cg3, 6Cga, 1Cg5, W. 4 40 3232 43 WHg 5 DAI0 W5, Cog. C21 — Co7, W5 4 40 3985 | 57
WHy 7 DAG Wy, 3C44,2C71, 1060, Wa 7 70 3620 7 WHs 10 DAS Ws, Cag — Cos, Crs, W5 ) 40 39.04 6.1
W H4 9 DAO W4., 7)C77 X 1012 VV4 7 20 3938 39 WHg N/A DBI1 N/A: Reserved for WHs 6 100 N/A N/A
WHg 5 DAI0 W5, 1Cyg,4Cg7,5C21, W5 4 40 39.73 5.1
WHg 10 DAS W5, 9C42, 3Cgg, W5 4 40 38.68 2.0
WHg N/A DB1 N/A: Reserved for WHs 6 100 N/A N/A
TABLE 21. Assignments with the premium delivery using the
combination of the two schemes (hybrid scheme).
the rst UAV (i.e., DA10). In W3 and Wy, all the orders are
assigned regarding order time. Some of the customers may s |3 2 sz | e | .
= 2 Z g 2| 3 ] 2
have more than one order (e.g., C7s, C26, Cg2, C31) and one of E | 2] 3 : 2] 2| ¢
- - - - WHy 6 DA W1, Cpa, W 7 a0 30.67 0.7
which might be ordered previously and there might be other WH T o Y 7 S .0
. W H, DB2 W1,C39 — C17 — C75,C75.Cga, Cao. W1 6 50 4756 39
orders belonging to other customers between these orders. WHy | > | bu Wy Co1.Cog: Cag. Wa £ R O I
WHy 7 DA7 Wo, Cgq, Wo 4 20 26.08 0.7
H H W H:- 3 A3 W3, Cos, Coa, Cos, Caz, W3 3 36.97 !
In this case, all other orders that are not ordered previously are D oz ez Can: Oar. Wa e
. - - .y W H, i DA4 Wy, Ci5,C77,Cgg, Wy 4 40 39 44
put in the same route with the prioritized orders as you can see WH, [ DR W CRe C = Cr Ty I
. . .. W Hp 5 DAI0 Ws5, C49, Cgg — Crs, W5 4 40 39.04 2.1
WHg 10 DAS Wg, Co1 — C. , Cog, Wx 4 40 39.85 5.7
in the supplementary materials and Table 19. The remaining W T 50y~ Cor.Con Wy 3 0 WA

orders in the queue are shown in Table 13.

3) ROUTES TO COMPLETE THE MISSION

USING THE HYBRID SCHEME

The methodology using the hybrid scheme works by taking
account the points mentioned in both 11-D1 and I1-D2 in such
a way that the delivery assignments are performed with and
without using HWs as illustrated in Fig. 6 based on the two
pre-speci ed limits that can be updated by the user, one of
which is the distance among the nodes (e.g., 2 miles in our
experiment) and the other one is the distance between their
connection points to HWSs (e.g., 2 miles in our experiment).
The system approaches to using delivery scheme without
HWs as these two values are increased, and vice versa,
it approaches to using the HW scheme as these numbers are
reduced. Routing without using HWs (Fig. 4) is performed
using Hungarian technique as explained in Section 11-C2-a,
and routing using HWs (Fig. 5) is performed using cross-
entropy technique as explained in Section II-C2-b with
respect to the delivery methods as explained in Section I11-A4
(Fig. 10).

a: OPTIMAL DELIVERY METHOD IN THE HYBRID SCHEME

It works by taking account the points mentioned in both
11-D1-a and I1-D2-a in such a way that the delivery assign-
ments are carried out with/without using HWs as illus-
trated in Fig. 6. An example of this approach is presented
in the supplementary materials. Assignments for all WHSs
are shown in Table 20. The remaining orders in the queue
are shown in Table 14. There are two shortcut deliveries
between C3zg and Ci7, and Cy7 and Cz5 in Wy, thus, two
more customers (n D 5; Csg; C17; C75; Cy5; Cgg; Cg2) are
served in Wy inthe rst assignment to UAV DB2, as depicted
in Table 20, when compared to optimal delivery with HWs
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(n D 3; Cg; Cgs; Cs2) (Table 17). Likewise, there is a
shortcut between Cg7 and Cp1 in Ws, which changes the
assignment of customers (i.e., more distance is travelled in the
rst assignment, 39.85 > 39.73) and consequently one more
customer is served in the second assignment to UAV DADS.
There is no difference for the delivery assignments in Wy, W3
and W, because there is no shortcut available in these WHSs.

b: PREMIUM DELIVERY METHOD IN THE HYBRID SCHEME
This technique works by taking account the points men-
tioned in both 11-D1-b and 11-D2-b in such a way that the
delivery assignments are carried out with/without using HWs
as illustrated in Fig. 6. Routes are determined using opti-
mal delivery method mentioned above if there is no pre-
mium order in WH. An example of this approach for Wy is
presented in Fig. 20. Assignments for all WHSs are shown
in Table 21. The remaining orders in the queue are shown
in Table 15. There are two shortcuts between Czg and Cq7,
and C17 and C75 in Wy, thus, two more customer (n D 6;
C3o C17 C7s; Cys; Csg; ng) are served in W1 in the

rst assignment to UAV DB2, as depicted in Table 21
when compared to the premium delivery method using HWs
(n D 4; Cyq7; C5; Cys; Cg2) (Table 18) and consequently the
third UAV, DAG, is not needed to be sent to another mission.
Like wise, there is a shortcut between C44 and C71 inWy. Ina
similar comparison, there are two shortcuts between Cgg and
Czg, and Cy4 and C71 in W5 which decreases the remaining
customer number in queue to 3 from 4. There is no difference
for the delivery assignment in Wy, because there is no shortcut
available in this WH.
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FIGURE 20. Deliveries with the delivery using HWs (up) and using the hybrid scheme (down) for W;.

¢: FIFO DELIVERY METHOD IN THE HYBRID SCHEME

This technique works by taking the points into account that
are mentioned in both 11-D1-c and 11-D2-c in such a way that
the delivery assignments are carried out with/without using
HWs as illustrated in Fig. 6. An example of this approach for
W1 is presented in the supplementary materials. Assignments
for all WHSs are shown in Table 22. The remaining orders in
the queue are shown in Table 16. The direct delivery connec-
tions between the sub-groups (Fig. 6) are shown using dashed
line in Table 22. All the orders are assigned to two UAVs
(i.e., DB2 and DA1) in W1 and one of the UAVSs (i.e., DAB) is
not needed to be sent to another mission. There is no shortcut
between the nodes in W», that‘s why, there is no difference in
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routes with the FIFO delivery method using HWs mentioned
in Section I1-D2. One more customer (i.e., C15) previously
in queue (Section 11-D2-c; Table 16) is assigned to the UAV
DA8 in W3.

E. DEPLOYMENT OF UAVs TO MISSIONS

UAVs are deployed based on their capabilities presented in
Section 11-A2 and in Table 1. The objective is to serve as many
customers as possible each time with a reduced the air traf ¢
given the delivery scheme and method. UAVs are mainly
restricted with the maximum travel distances and cargo
capacities. The maximum travel distance must be greater than
the mission route distance (i.e., d.gkmamveI > diot) and the
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TABLE 22. Assignments with the FIFO delivery using the hybrid scheme.

* 2

3 3 4 s |z 3

5 5 S g Sl s g 5

Z < =) & a
WH, 6 DAT_| Wj,0C39,7C17 — 4C75,5C75, Wy | 4 | 40 | 3269 | 26
WHy 11 DA6 N/A 4 40 N/A N/A
WH, 1 DB2 W71,2Cgg,3Cgg, 1C52, W1 3 50 1974 20
W Hy 2 DA2 Wy, 1Cs4, 5Ca6, 1Ca6, Wo 3 | 40 | 9% | 65
W Ho 7 DA7 Wy, 2Cg4, Wa 4 40 26.08 07
WH3 3 DA3 W3, 1C31,3C31.2C037, 105, W3 7 0 3549 23
WH3 3 DAS W3, 5Cgg,6Cgp — 0C15, 7Cos, W3 T 70 36.73 50
WHy 7 DA% V4, 3C4q — 2071, 1Cg9, Wy T 70 32.59 7
WHy 9 DAY Wy, 1C12,5C77 Wy 7 0 3428 39
WHg 5 DAI0 W5, 1C49.2C9g — 7078, Ws 1 70 39.04 21
WHg 10 DAS W5, 3Cgg, 5Ca71. 1097, W5 7 0 39.85 57
WHs N/A DBI N/A: Reserved for WHs 6 100 N/A N/A

total cargo capacity must be greater F_han the total weight of all
parcels (i.e., $ Dk Trae >8$ ot D le $ Pey, , where $ ot
indicates the total Welght of all parcels, q indicates the number
of orders, $ Pcip indicates the weight of the mt" order of
the customer C;). The maximum delivery distance of a UAV
becomes shorter as the total load increases. A correlation
function should be provided by the companies that produce
UAVs to do accurate measurements. We were not able to  nd
a similar correlation function provided by UAV companies
and in our experimental design, the user can de ne this corre-
lation in a functionde nedasf(d;$ )D (d $)=(d $u),
where d indicates the distance, $ indicates the total cargo
load, d, indicates the unit distance and $  indicates the unit
cargo load. The function (the loss of the maximum distance)
can be found for each UAV using the application interface
based on the speci ¢ values of d and $ for each UAV and
unit parameters, d, and $ , de ned by the user. For instance,
the maximum distance that a UAV can travel is shortened
1 mile for $ , kg cargo weight (e.g., 5 kg) in a travel distance
of dy miles (e.g., 25 miles) in our experimental set-up. The
weight reduces as the parcels are delivered at the nodes and
the total loss of distance based on the changing cargo weight
carried is measured as in Eq. (11), as shown at the bottom of
this page, where n is the number of customers, g is the number
of parcels ordered by each customer and is the number
of the previous customers visited by a UAV at a node along
with orders delivered. The constrained total travel distance is
indicated by detravelumn whereas dtotLossD denotes the travel
distance loss due to the weight carried on the k™ drone.

UAVs are deployed in terms of routes explored in preceding
sections.

I11. RESULTS AND DISCUSSIONS

In this study a sophisticated multi-variable dynamic delivery
problem is solved and in this sense, different approaches
are discussed to nd out the optimal visual delivery deci-
sion using the optimal available route. The data in this

TABLE 23. Abbreviations for result analysis.

Abbreviation Stands for

TotD-Q (WH-1) | The total distance travelled by UAVs in WH1 after the queue distance is removed
TotD-Q (WH-2) | The total distance travelled by UAVs in WH2 after the queue distance is removed
TotD-Q (WH-3) | The total distance travelled by UAVs in WH3 after the queue distance is removed
TotD-Q (WH-4) | The total distance travelled by UAVs in WH4 after the queue distance is removed
TotD-Q (WH-5) | The total distance travelled by UAVs in WHS after the queue distance is removed

AllTotD-Q The total measurement in 5 WHs mentioned above

QTOT The total m of queue distances in 5 WHs

AllDistTot The total measurement of all distances in 5 WHs including queue distances
#C(all-Q) The total number of the customers served by UAVs in 5 WHs

#0(all-Q) The total number of the orders served by UAVs in 5 WHs

#C(Q) The total number of the customers in queues in 5 WHs

#0(Q) The total number of the orders in queues in 5 WHs

#C(all) The total number of the customers in 5 WHs including the customers in the queue
#0(all) The total number of the orders in 5 WHs including the orders in the queue

multi-dimensional problem space are projected from a high
dimensional space down to a low dimensional space not
only for the purpose of visualization, but also for ef cient
and robust implementation of the problem as mentioned in
Section 1l. To the extent of our knowledge, this treatise is
the only comprehensive analysis of several delivery methods
(i.e., optimal, premium and FIFO) along with several delivery
schemes (i.e., delivery with and without using air HWSs, and
delivery using a hybrid scheme) using a 3D route planning.
It incorporates new techniques into well-known approaches
to deploy UAVs in the optimal possible way as part of the
logistic operations by orchestrating the resources in a multi
dimensional complexity (i.e., mMWmDmCmH).

Two scenarios were analyzed to explore the outcomes of
the UAV delivery system given the components, delivery
scheme/method and constraints. The rst scenario was val-
idated using relatively small data sets (i.e., small number of
customers and orders) by taking into account several number
of UAVSs (i.e., 2-3) in each WHs. For the second scenario,
the amount of UAVs, customers and orders were doubled
to observe the results regarding bigger data sets in order
to exhibit the scalability of our proposed delivery platform.
These two scenarios were tested 25 times with the same
number of customers, orders, but different customers and
orders with different features created by the application ran-
domly as mentioned in Section Il and there was no signif-
icant difference between the results and mean values after
25 trials based on the statistical Z-test, which con rmed that
25 trials would be suf cient for a safe conclusion. Indeed,
for the rst scenario on small dataset, we observed similar
results in each tests. The results of one of these tests are
explained throughout the manuscript in details with the aid
of gures and tables. Regarding this scenario, assignments
and routes of the 5 WHs and remaining queues in terms of
delivery schemes and methods are presented in Table 24 and

DktravelLimit Dimaxravel dtOtLOSSDk ;
Kl
H dtOtLOSSDk D dLOSSchl C( f(dcicicrs (B tot $ Pciy ) C dLossanj;
iD1 tD1 mD1
where dLosstcl D f(dwc,;$ wot) and dLOSS(cnwj) DO and 8Cj2 Wj;Pc, 2Ct: (11)
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TABLE 24. The assignment results of the 5 WHs and remaining queues TABLE 25. The totals of all schemes and methods presented in Table 24:
acquired throughout the manuscript in terms of delivery schemes and the values that produce this table are presented in Fig. 23. The

methods: the results are presented in Figs. 21 and 22. The explanations of explanations of the headings different from the legend in the table above
the headings used in the table are as follows, where a comprehensive used in this table are as follows: Q=queue; AllTotD=all total distance
abbreviation list can also be found in Table 23: Dist=distance travelled by including the distance in the queue, where a comprehensive abbreviation
all UAVs; C=# of customers; O=# of orders delivered; TotD=total distance list can also be found in Table 23.

travelled by all UAVs in terms of WHs including the distance to be

travelled for the customers in the queue; DTOT= all the total distance - = = o
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TABLE 26. The mean totals of all schemes for 25 different results where
two more UAVs are added to WHs and the number of customers and
orders are doubled compared to the previous experiment mentioned
throughout the manuscript and presented in Table 24: these results are
presented in Fig. 23. A comprehensive abbreviation list can be found

in Table 23.
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summarized in Table 25. These results are concisely exhibited
in Figs. 21, 22. For the second scenario on larger dataset,
different results were observed from each test. The total mean
results of all schemes for these 25 different experimental
results are presented in Table 26 and summarized in Fig. 23.

In the rst scenario on the small dataset: 1) the rst
assignments of the optimal method use the resources better
than the other two methods (premium and FIFO), particu-
larly in terms of the number of served customers and using
the distance effectively with respect to the maximum travel
distances of UAVS; 2) however, the results in second assign-
ments of either the premium or FIFO method are similar
to or better than the results of optimal method, except the
assignments in WH; that has a third assignment to another
UAV as seen in Table 24; 3) in terms of the total results of
delivery scheme without HWs, particularly all the totals of
the distances travelled i.e., AllTotD-Q (for the abbreviations
please refer to Table 23) in Fig. 23, optimal delivery method
works better (i.e., 422) than the other two delivery meth-
ods (i.e., 414 and 369 respectively for premium and FIFO
methods) with the number of customers 34 compared to the
number of the customers, 33 and 32. The remaining total
queue distances (QTOT) to be travelled for the remaining
customers in the queues are less for the optimal delivery
(i.e., 190) than those of the other two methods (i.e., 197, 236).
The statistical signi cance of the differences between the
methods was analyzed and the Z-test was applied on the data
that are normally distributed. The null hypothesis, that there
is no signi cant difference between the results of optimal
delivery method and those of premium (i.e., AllTotD-Q)
( D o), can be veri ed with p > 0:01. On the other
hand, the same null hypothesis between the results of optimal
delivery method and those of FIFO( D ), can be rejected,
with p<0.01. With regard to the total number of customers
served (#C(all-Q)), there is no statistically signi cant dif-
ference between the optimal method (i.e., 34) and premium
(i.e., 33) and FIFO (i.e., 32) methods regarding the number
of customers served; 4) the optimal delivery method gives
better results for the rst and second assignments for the HW
scheme. The results are similar for the hybrid scheme in the

rst assignments, but, optimal assignments do not give better
results in the second assignments; 5) the rst assignments
of the optimal method for each scheme use the resources
better than the other two methods as it is seen in Figs. 21
and 22. However, the second assignments of the premium
and FIFO methods for the scheme without HWs might be
better than the optimal delivery based on the distribution of
remaining resources, customers and orders; 6) furthermore,
more customers (i.e., 25, 27, 26) in the hybrid scheme are
served with far less distances (375, 347, 366) compared to the
HW scheme in which the numbers of customers are 24, 24 and
24 with distances 409, 381 and 395 respectively in regard to
the delivery methods, optimal, premium and FIFO as shown
in Fig. 23. The results of the hybrid scheme are signi cantly

VOLUME 7, 2019



K. Kuru et al.: Analysis and Optimization of UAV Swarms in Logistics

Optimum scheme: First Assignments (distance travelled)

Highway scheme: First Assignments (distance travelled)

Hybrid scheme: First Assighments (distance travelled)

Optimum scheme: First Assignments (customers and their orders)

Highway scheme: First Assignments {customers and their orders)

Hybrid scheme: First Assignments (customers and their orders)

FIGURE 21. Results of the first assignments of optimum (up), HW (middle) and hybrid (bottom) schemes.

different from (i.e., better than) the HW scheme (p<0.01);
7) the nal results converge to almost similar results as dis-
played in Fig. 23 (i.e., smaller AllDistTot values are desirable,
occasionally premium and FIFO delivery methods provide
better results).

In the second scenario with bigger dataset, the optimal
delivery method outperforms in each method as displayed
in Fig. 23 although the ef cacy of the method decreases for
further assignments (steeply after the rst assignments) as the
remaining number of customers decreases and the distribu-
tion of customers in terms of the distances to each other is
not ideally located compared to other delivery methods.

While this treatise assumes total delivery cost based on
the cumulative route optimization, which are identi ed as
delivery schemes and methods, relevant objective functions
may be considered for different type of environment. For
example, one of the potential problems in UAV delivery is

VOLUME 7, 2019

the city restrictions, which indeed directly affect the delivery
business. It would be interesting to see how our delivery
platform techniques would perform in an urban scenario
depicting a crowded city with many human-created struc-
tures. Additionally, drone’s interference with aircrafts may
cause potential problems, which this circumstance likely lies
within the drone law along with the other city restrictions
and regulations [4]. It would also be interesting to relax
some of the assumptions obeying the city restrictions and
regulations in a realistic manner and include them in the
optimization problem formulation. From the point of a real-
world deployment of such drone delivery platforms, drones,
at the time of delivery, may face numerous cyber-physical
security issues. As a countermeasure, one can adopt some of
the strategies mentioned in [34] in order to increase the safety
of the delivery routes and build novel techniques to avoid
delivery delays. In this context, heuristic algorithms proposed
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Optimum scheme: Second Assignments (distance travelled)

Highway scheme: Second Assignments (distance travelled)

Hybrid scheme: Second Assignments (distance travelled)

Optimum scheme: Second Assignments (customers and their orders)

Highway scheme: Second Assignments (customers and their orders)

Hybrid scheme: Second Assignments (customers and their orders)

FIGURE 22. Results of the second assignments of optimum (up), HW (middle) and hybrid (bottom) schemes.

by Yang and Yoo [21] may help in nding the optimized
route considering sensing, energy, delay and risk metrics by
means of a multi-objective design. Moreover, the concept of
Internet of Drones (loD) [29] can be applied in our delivery
platform in order to manage delivery traf ¢ more effectively.
In this manner, this study also aims to direct researchers in this
particular eld, who would like to narrow down the literature
gap in intelligent delivery platforms using UAVS.

IV. LESSONS LEARNED

The number of drones in use with new features is increasing
exponentially and new methods and techniques are urgently
required to manage this complex problem space. In this
manner, a technique (dMAIMD) is proposed and analyzed
in scenarios in this study to direct how to result in opti-
mum solutions in similar multi-dimensional problem spaces.

15828

In addition, a dynamic hybrid delivery scheme is built
and analyzed along with several other approaches. Similar
dynamic approaches should be implemented to overcome the
challenges in a dynamically changing environment.

The capabilities of drones (e.g., payloads, carriers, travel
distance) should be improved to increase the ef cacy of UAVs
in delivery system. In particular, a UAV should be able to
carry several packages at a time in a sortie. With similar
simulation analysis, better decisions can be given based on the
acquired results (e.g., better locations can be found for current
and future WHs; the optimal delivery method and scheme can
be determined).

In the view of the results given above, we can conclude
that effective assignments of parcels to UAVs in optimal
delivery method decreases for consecutive assignments. This
is because, remaining customers are not ideally located and
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FIGURE 23. Schematic presentation of the results given in Table 26.

less number of customers remain due to the optimal selection
process in preceding assignments. In other words, effective
use of resources on small datasets for further assignments
are better using other delivery methods (i.e., premium and
FIFO methods) because the preceding assignments in these
methods are not performed as effective as the ones in the
optimal delivery method. In this manner, in terms of overall
ef cacy of the system, optimal delivery method for small
number of customers, orders and UAVS may not be required
and fair delivery using FIFO based on rst-in- rst-served
and premium based on the prioritization of customers can be
carried out without increasing the air traf c. However, the use
of the optimal delivery method for large number of customers
and orders with more UAV's would result better than the other
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two methods (i.e., premium and FIFQO). The optimal delivery
method is advantages if all the parcels can be delivered by the
UAVs in a WH in the rst assignments.

The results above suggest that premium and FIFO delivery
methods increase the air traf ¢ of UAVs when compared to
the optimal method in terms of optimal use of resources as
the number of customers and orders increases. In addition,
we demonstrate that the hybrid scheme can be deployed to
exploit the dynamic characteristics of the system compo-
nents: a small sacri ce from using air HWSs increases the
overall performance of the system signi cantly.

Considering the above-mentioned characteristics of our
delivery platform, the main lessons we learned can be out-
lined as follows:

15829



K. Kuru et al.: Analysis and Optimization of UAV Swarms in Logistics

1) the use of the resources including their dynamic envi-
ronments can be illustrated in a virtual reality interface
(e.g., the routes of UAVs are animated on a map);

2) our proposed platform can readily adapt to the dynamic
characteristics of the system components (e.g., one of
the UAVs in a WH may be out of order or a new UAV
with different features may be deployed);

3) this platform can be easily merged with the systems
of delivery companies that would like to incorporate
UAVs into their delivery systems;

4) the delivery approaches can be merged with the con-
ventional delivery scheme in such a way that orders can
be carried to a point near to customers or HWs where
they can be delivered using UAVs by employing the
aforementioned delivery schemes and methods;

5) furthermore, humanitarian missions can be supported
with regard to the emergency management following a
natural disaster such as oods, earthquakes, and wild-

res to assist victims and emergency responders such
as providing medical aid, rescue tools and food;

6) various scenarios can be simulated and analyzed based
on the delivery schemes and methods by changing the
number and characteristics of the system components.

V. CONCLUSIONS AND FUTURE RESEARCH IDEAS

In the study: 1) several routing approaches for several deliv-
ery schemes are suggested; 2) cross-entropy Monte Carlo
technique is rst-ever employed successfully on the delivery
scheme using HWs for nding optimal routes for UAVS;
3) route planning and task assignment along with several
hybrid approaches are forged together to manage the com-
plexity of the problem space in mWmDmCmH using a novel
dynamic task assignment approach, dMAIMD; 4) a new
delivery scheme, so-called the hybrid delivery scheme is built
as a good candidate to be dictated by aviation authorities to
control and reduce the air traf ¢ dynamically based on the
current changing components and environments, e.g. con-
gested and sparse areas, capability of UAVs. The approaches
and techniques built in this study and the results discussed in
the above sections may guide aviation authority and related
companies in several aspects: 1) the aviation authorities can
test the effectiveness of their rules for various environments
and can modify their rules accordingly regarding less air
traf ¢ and more safety by engaging in the approaches pro-
posed; 2) companies that aim to deliver their products using
UAVs can test all their delivery system by employing our
proposed techniques in order to make better-informed deci-
sions. They can also determine what the requirements are
for their achievable objectives, particularly in procurement
of their resources and deciding on their delivery locations;
3) companies that produce UAVs can test the potency of
their UAVs with improving battery performance over time.
They can determine how they can improve their products
and nd out the directions to meet the market needs. Addi-
tionally, private industries, logistics operators, municipalities
are expected to bene t from the potential adoption of the
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simulator in strategic decisions before embarking on the prac-
tical implementation of UAV delivery systems.

In future research considerations: 1) experiments that scale
the techniques in outdoor implementations will be performed,
and 2) our proposed platform will be extended to incorporate
the concept of Internet of Drones (loD) into our approaches
to establish a compact delivery system that is capable of
working harmoniously within cyber-physical smart domains
(e.g., smart city, smart home, smart building, in partic-
ular, smart transportation) and platforms (i.e., cloud, fog
and edge).
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