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Nutrient addition experiments initiated in 1980 on the Keen of Hamar, Shetland Isles, 

have produced a unique dataset of long-term vegetation response to amendments of 

major plant growth nutrients (N, P, NP, NPK and NPKCa).  Previous studies have 

reported the notable impact of phosphorus on the ‘serpentine debris’ community, and 

the negligible effect of nitrogen.  However, a survey in 2010 provided our first 

indication that the experimentally-induced phosphorus effect was weakening and this 

was consolidated by further surveys of vegetation cover and community composition.  

This community shift might have been different had the local climate acted 

synergistically with phosphorus additions: in the last few years of the study the Shetland 

Isles experienced particularly low spring rainfall - the dry spell may have been a well-

timed environmental filter driving community recovery rather than a permanent change 

of state to heathland on an organic soil. The longevity of our investigation is a unique 

opportunity to explore vegetation response to the key drivers of global environmental 

change, namely climate change, eutrophication as a result of agricultural intensification, 

and the potential for invasion of species as new resource-rich niches become available.   

Keywords: phosphorus limitation; arctic-alpine; fellfield; nitrogen; 

eutrophication; stable states 

Introduction 

Eutrophication of terrestrial systems by nitrogen (N) inputs has been widely blamed for 

plant community changes and species losses, but anthropogenic phosphorus (P) inputs 

are also increasingly demonstrated to be damaging (e.g. Wassen et al., 2005).  Elevated 

P inputs to terrestrial systems result from various anthropogenic activities such as 

agricultural fertilizer applications and manure deposition from cattle and these often far 

exceed natural inputs (Filippelli 2008).  Consequently, most studies of community 

response to P inputs are concerned with agricultural systems in temperate regions and 



the subsequent impacts on aquatic systems that receive these inputs, whilst high latitude 

and high altitude systems have been relatively overlooked (Wu et al. 2013).  Our limited 

understanding of P cycles in arctic and alpine regions suggests that they tend to be 

dominated by biochemical cycles where moisture availability enables the development 

of soils with relatively high organic matter content, but these cycles are replaced by 

geochemical processes in drier substrates with subsequent P limitation more likely to 

occur (Weintraub 2011).  The drier fellfield systems fall into this latter category and 

include serpentine systems which, whilst not being limited to high latitude or high 

altitudes, are examples of nutrient-limited systems with low N, low P and both low N 

and P availability (Turitzin 1982).  These properties, coupled with high plant endemism  

(Batianoff and Singh 2001) make serpentine regions of particular concern when 

identifying communities at risk of eutrophication-induced extinctions.  

The loss of species resulting from eutrophication typically occurs through competitive 

exclusion (Wassen et al. 2005) when there are competitive species present that are able 

to rapidly exploit the available nutrients and outcompete the resident species that are 

adapted to low nutrient and often, very stressful conditions. Serpentine systems are 

usually resistant to colonisation by non-serpentine specialists due to high heavy metal 

concentrations, low organic matter and free-draining soils, but can be vulnerable to 

invasion when the normally restrictive growing conditions are ameliorated through 

increases in nutrients (Huenneke et al., 1990; Vallano, Selmants and Zavaleta, 2012) 

and/or water availability (Schedlbauer 2015).  However, the patterns of response are 

variable with some invasive species appearing to be N-limited and some P-limited, 

whilst others only need increased water availability to become established. 

Although the potential for P limited sites to succumb to eutrophication and 

consequent species loss is well-established, there is a lack of consensus as to the relative 



importance of N versus P in driving species declines and community composition shift 

(Soons et al. 2017).  This is particularly the case for high latitude and high altitude 

systems where nutrient addition experiments have been focused on a handful of sites 

(Weintraub 2011).  Of the nutrient addition experiments that have been undertaken on 

high latitude or high altitude sites, there are no reports of recovery from the deliberate 

nutrient inputs suggesting that restoration of these systems will require substantial 

intervention and in some cases, reinstatement of typical soil conditions and vegetation 

composition may not be possible at all. 

This paper reports on a nutrient addition experiment onto a serpentine fellfield 

system of which the monitoring spans more than 30 years.  In addition to metrics of 

species richness and cover, we report on qualitative changes in community composition 

that evidence a shift in response to nutrient additions.  We aim to demonstrate for the 

first time, that these systems are able to recover from anthropogenic inputs and that 

there may be an important role for climate in facilitating autonomous habitat restoration. 

Our investigation is an exceptional case study in how natural ecosystems might respond 

over the long-term to multiple threats and how the threats act simultaneously to 

exacerbate or weaken the impacts of others. 

Study site  

The Keen of Hamar is the largest area of serpentine debris in Europe (Scottish Natural 

Heritage 2010).  It is situated on Unst, the most northerly of the Shetland Isles (Figure 

1) and has long been of interest due to its unusual flora. The debris is formed of loose

stones created from the underlying serpentine rock by a process of frost shattering.  

Serpentine, or ultramafic soils, are derived from igneous or metamorphic rocks, having 



less than 45% silica, high Mg, Cr, Fe, Co and Ni and low P, K and Ca (Proctor 2003) 

and on the Keen, form a montane-tundra soil (Spence 1970).  

The debris vegetation, whilst being characterised by very small plants and low 

vegetation cover (Figure 2), is typified by five taxa that are known as the ‘serpentine 

specialists’. These comprise Cerastium arcticum, formerly considered to be the 

endemic C. nigrescens ssp. nigrescens, the nationally rare Arenaria 

norvegica ssp. norvegica, Arabis petraea, local forms of Cochlearia officianalis 

and Rubus saxatilis. The Keen, as with other Scottish serpentine sites, has close 

phytosociological affinities with Icelandic and Faeroese fellfield communities, with 

most species typically being associated with very low vegetation cover (<10%) (Spence 

1970).  The serpentine creates particularly challenging conditions that prevent invasion 

from non-serpentine specialists occupying the patches of glacial drift soil that are 

interspersed with the debris habitat, and the debris flora appears to be a climax 

community as it has not been grazed for many years, if at all, yet has maintained its low 

coverage of plants over large areas.  A feature of the grass- and Calluna vulgaris-

dominated serpentine heath is the relatively high species richness with a variety of 

herbs; some of these are basicilous such as Thymus polytrichus and Linum catharticum 

and others, such as Potentilla erecta, are more commonly associated with C. vulgaris 

growing on acid soil.  

Being high latitude but at sea level, the climate on Unst is classed as submontane-

oceanic and climate records for Shetland indicate a general warming over recent 

decades (Kendon et al. 2018) that is projected to continue in keeping with global trends 

(IPCC 2014); for soils such as those on the Keen this is likely to exacerbate the lack of 

water holding capacity. The serpentine specialists appear to be vulnerable to warming 

(possibly directly, although the association is correlative; Slingsby et al. 2010) but have 



adaptations that may allow them to tolerate a certain amount of drought (i.e. low and 

compact growth forms, hairs, purple colouration).  

Carter, Proctor and Slingsby (1987a) indicated that a large amount of P in Keen soils 

was inorganic and theorised that low P might interact with low water availability by 

restricting root growth and therefore making plants vulnerable to drought.  In the early 

1980s, a small part of the original extent of the serpentine debris was fertilised and 

seeded to create cattle pasture and a region of the site referred to as the Lower Keen was 

used for winter feeding receiving nutrient inputs in the form of manure.  In response to 

this, Proctor & Slingsby initiated a nutrient addition trial in 1980 that showed that P and 

not N was the key element limiting plant growth on the debris (Carter et al. 1987a).  

Their P additions produced a marked increase in grass cover in only 5 years as well as 

promoting colonisation and growth of a handful of herbaceous species.  The formation 

of a closed grass-dominated community was so rapid that Carter et al. (1987b) 

suggested that the effects of eutrophication were likely to persist indefinitely and that it 

posed a major threat to this habitat and its rare plant species. 

The Keen is an ideal site for a nutrient addition study because low inputs of N from 

atmospheric pollution (some of the lowest in Europe; Air Pollution Information System 

2018, http://www.apis.ac.uk/) mean that experimental nutrient additions are not 

confounded by elevated background levels of N deposition.   

Methods 

The present study made use of an existing long term dataset which has been collected 

from an experimental field site on the Keen of Hamar, Unst, Shetland, since 1980 

(Carter et al. 1987b).  The field site consists of permanent 1 m
2
 quadrats, each receiving

one of the following combinations of nutrients and Unst tap water: N, P, NP, NPK, 



CaNPK, and tap water alone (the control).  The quadrats were arranged in a randomized 

block design, with one quadrat per block receiving each nutrient combination.  Two 

blocks were established in the sparsely-vegetated debris on the Upper Keen (Figure 1), 

and a further two blocks were established in the moderately-vegetated debris in the 

middle debris patch.  Nutrients were applied between 1980 and 1983, with NP quadrats 

receiving three applications and all other quadrats receiving two.  N was applied as 10g 

N m
-2

 ammonium nitrate.  P as 5g P m
-2

 dihydrogen phosphate.  K was applied as 10g K

m
-2

 potassium chloride.  Ca was applied as 1.2 tonnes hectare ground limestone on the

first application, then 100g Ca m
-2

 calcium carbonate.  For full details of the

experimental design see Carter et al. (1987b). 

Community composition monitoring 

In June, July or August of the seven survey years (1981, 1984, 1992, 1993, 2006, 2010 

and 2013), point quadrats were used to ascertain the cover of each species present in the 

permanent quadrats.  Within each quadrat 10 x 10 pins were evenly spaced in grid 

formation, giving a total of one hundred pins.  Species cover estimates were generated 

from the number of ‘pin contacts’ i.e. where a pin came into contact with a species.  

Each species was only counted once per pin but where several species were in contact 

with the same pin, all species were recorded and cover totals for all species per plot of 

more than 100 were possible.  Due to the very small size of many plants, some could 

only be identified confidently to genus level (Agrostis, Festuca and Carex). 

Data analysis 

Species richness and combined species cover (the sum total of pin contacts generated 

from pin frame quadrats) are presented without further analysis due to the very low of 

replication in the original study design (n=2 for each vegetation site), following 



Weissgerber et al (2015) for small sample size studies we graphically present the data 

from each quadrat rather than summary statistics (as any ‘average’ would be based on 

ether n= 2 or 4).  Community composition and abundance was ordinated using a 

Principle Components Analysis distinguishing between nutrient treatment, the debris 

type (sparsely- or moderately-vegetated) and the year of survey using PRIMER version 

6.1.1.13. Centroids for each survey year were calculated as the mean co-ordinates for 

principal components 1 and 2 for plots grouped by debris type and whether the 

treatment contained P or not. 

Results 

Species richness shows a general increase over the study period to a maximum in 2010 

for most treatments and the control in all four blocks.  Although the pattern is variable, 

any treatments containing P result in higher numbers of species per plot than the control 

and N-only treatment (Figure 3).  After 2010, the species richness generally decreases 

with the exception of the NP treatment in a sparsely-vegetated treatment block (Figure 

3b) and the NPKCa treatment in one of the moderately-vegetated blocks (Figure 3d) 

which both continue to increase in species richness to 2013.  Where species richness has 

declined, these have so far failed to return to the species numbers that were in the plots 

at the start of the study. 

Combined species cover changed markedly over the study period in all four 

treatment blocks (Figure 4).  All quadrats which received P additions, either alone or in 

combination with other nutrients achieved higher plant cover than the N addition and 

control.  The maximum cover achieved was recorded in 2006 in both sparsely- and 

moderately-vegetated debris although the treatment blocks in the latter debris type 

generated higher plant cover totals than the former.  Similarly, the moderately-colonised 



debris showed a greater difference between P treatments and non-P treated quadrats (N 

treatments and control). 

After 2006 plant cover decreases in all P treatments closing the gap between P-present 

and P-absent treatments.  The control and N treatment in Figure 3 indicate that the 

combined species cover increases were not limited to P-present treatments but that there 

were also increases in plant cover reaching maxima in 2006 or 2010.  These peaks are 

much less pronounced than those produced by P addition (and arguably negligible in the 

treatment block represented by Figure 3b) but suggest that there may be some 

landscape-level process that is enhancing plant productivity that could have operated 

synergistically with P treatments. 

The principal components analysis of community composition data generated 

eigenvalues of 444 for principal component 1 and 114 for principal component 2 

explaining 85.8% of the variation in the dataset (68.3% for PC1 and 17.5% for PC2).  

Of the species recorded, the vast majority produce very low eigenvector values with 

both principal components 1 and 2 with the exception of Festuca spp. with an 

eigenvector coefficient of -0.872 and Thymus polytrichus generating a coefficient of -

0.468 both against principal component 1, and Agrostis spp. which results in a 

coefficient of 0.988 with principal component 2.  Figure 5 displays the PCA ordination 

of quadrats labelled by treatment with the control and N treatments concentrated in the 

bottom right quadrant of the ordination.  The remainder of the treatments are spread in a 

triangular pattern that represents the dominant species as indicated by the eigenvectors 

above, namely Festuca ssp. and Agrostis ssp. in the bottom left and top right quadrants 

respectively.  Figures 6a, 6b, 6c and 6d show centroids for each of the surveyed years 

for the plots by vegetation type and whether the treatments applied contained P (i.e. the 

four combinations arising from sparsely- vs. moderately-vegetated debris and with or 



without P).  These ordinations indicate how the two debris types respond very 

differently to P treatments, especially in the first few years of the study, with the most 

marked shift in community composition resulting from P additions (alone or in 

combination with other treatments) to moderately-vegetated debris. 

Discussion 

A thirty yearlong manipulative experiment on serpentine soils is, as far as we are aware, 

unique in plant ecology. This makes it an important study although challenging to 

interpret due to the lack of replication. One way to view such data is that despite the 

lack of formal statistical tests of treatment effects, they can generate hypotheses for 

future experimental testing, both at this location and at other serpentine sites. However, 

we are not constrained to hypothesis generation because a key early prediction for this 

site was that the effects of eutrophication would be permanent and the pre-

eutrophication vegetation would not recover (Carter et al, 1987b). This prediction 

enables us to use deductive (rather than inductive) logic and in such circumstances 

replication is not required – it is simply a case of observing if the prediction has been 

met (Oksanen, 2001). All four of the experimental blocks are now showing a return 

towards the original state – a result also seen in the PCA analysis – so these experiments 

can falsify this prediction.  

Phosphorus limitation 

Our study strongly suggests that P is a key nutrient limiting plant growth and increased 

availability enables plants to overcome some of the other significant constraints 

characteristic of serpentine. P addition provokes a shift from open debris vegetation to a 

closed community with a composition akin to heath-grassland (albeit with a lower 

stature than that of neighbouring vegetation patches on soils with higher organic 



matter).  The nitrogen limitation identified in Californian serpentine grasslands (Going 

et al. 2009) was conspicuously absent in our study with P limitation being the more 

likely explanation for the low vegetation cover on the Keen. 

The likely mechanism of P limitation is the lack of P in the soil parent material 

which means that inputs are low, in combination with depletion-driven P limitation 

where P in all forms is lost via leaching over long-timescales (Vitousek et al. 2010). 

Transactional P limitation, or the slow release of P in mineral forms, is also likely.  This 

suggests that P is an ‘ultimate limiting nutrient’ according to Vitousek et al.’s (2010) 

definition of being “capable of transforming ecosystems, typically by driving a 

substantial and persistent change in ecosystem structure and/or species composition".  

For example, P additions to the Keen have caused net inputs of N and C by facilitating 

the increase in primary production in treatment areas where before there was little or no 

biomass, whereas additions of N did not cause the reciprocal effect.  On the Keen, we 

can confidently conclude that P addition produces a novel niche space in this serpentine 

system that is evidenced by the increase in growth of non-debris species (MacDougall et 

al. 2009).  However, this niche appears to be temporary as shown by the recent decline 

of non-serpentine specialists in P-treated plots. 

Differential response based on debris type 

The debris type mediated the community response to P addition resulting in rapid 

community change of moderately-vegetated debris with a more modest shift in 

community composition in sparsely-vegetated debris.  Species richness and combined 

species cover are also slower to respond to the P additions (Figures 3 and 4).  The 

marked shift in moderately-vegetated debris ordinated in Figure 5 (and with debris type 

differentiated in Figure 6) is principally explained by the rapid increase in Agrostis in 

the first few years of the experiment before a shift towards a Festuca-dominated 



community occurs over the following 22 years.   It may be possible that serpentine 

ecotypes of Agrostis (identified by Marrs and Proctor, 1976), present in the moderately-

vegetated debris were in an ideal position to exploit the added P but then could not 

compete when the Festuca took over.  Regardless of this shift from one grass species to 

another, the presence of vegetation on the debris makes the community more responsive 

to P inputs due to the ability to exploit the sudden excess of this limiting resource.  

Once P has been taken up by plants it cycles very tightly between vegetation and soil 

(Filippelli 2008) so the greater abundance of vegetation retains a higher proportion of 

the initial P inputs as compared to the sparsely-vegetated debris. 

Vegetation changes without P additions 

Although this investigation has evidenced a substantial impact of P additions, there has 

also been a slight increase in species richness and to a lesser extent, combined species 

cover, in most of the control and N-treated plots peaking in 2006 and 2010.  This 

indicates that there are site-wide changes that promoted plant colonisation and growth 

aside from those associated with P addition.  Slingsby et al. (2010) showed that on the 

Keen the number of days in the growing season had increased by over 40 days over 

their study period 1976-2006, a pattern that has been demonstrated across northern 

latitude regions as increasing by > 6 days per decade since 2000 (Zeng et al. 2011) and 

this may explain the increased species richness and cover.  In addition to an extended 

growing season, it is possible that the earlier start also increases water availability as the 

temperatures required for growth coincide with wetter times of the year and the growing 

season is not so tightly coupled to periods when droughting is likely to occur over the 

late spring and summer.   

Where the control and N plots show an increase in combined species cover and 

species richness, there is then a marked decrease in these variables after 2006 or 2010 



(depending on the plots).  These decreases may be explained by a period of particularly 

low March rainfall for Shetland (Figure 7).  The spring is a key time for plant growth in 

other serpentine systems (Blake Suttle and Thomsen 2007) and droughts at this time can 

have important implications for the success of vegetative growth and subsequent 

reproductive success.  On the Keen, Spence (1957) noted that April-May was a critical 

time for resuming growth, but with the extended growing season, it can be assumed that 

March is now a key time for early growth.  Over our study period, 12 of the last 13 

years had rainfall below the mean value for March precipitation (117.3mm) and the last 

four years are particularly dry.  The extremely stressful conditions during this important 

growth phase are a likely explanation for species loss and biomass decline for all 

treatments and control. 

Interacting effects of phosphorus and water availability 

Wassen et al. (2005) identified positive associations between the presence of 

endangered species and P limitation that have important implications for the 

conservation of rare plants.  However, their study focussed on terrestrial wetlands and 

moist grasslands meaning that nutrient limitation could be analysed without the 

restrictions of water availability on species richness and productivity.  In our study, the 

Keen is subject to periodic droughting due to the low soil water-holding capacity and an 

exploration of nutrient limitation and plant community response would be incomplete 

without investigating the potential of climate to influence community composition. In 

California and Australia, increased nutrients and water availability leads to greater 

abundance of species not normally found in those xerophytic communities (Eskelinen 

and Harrison 2014; Dwyer et al. 2015).  Similarly, numbers of exotic species on 

Californian serpentine doubled in years of high rainfall (Gram et al. 2004).  In the 



serpentine communities of the Keen, it seems likely that the impact of the P additions 

might be amplified by favourable climate change. 

In one of the earliest reports on this study, Carter et al. (1987b) express the 

concern that P additions might bring about a permanent change in the Keen vegetation.  

Dwyer et al. (2015) presented a theoretical framework that would support this 

prediction and proceeded to identify such a phenomenon in their arid study system.  

Low P and low water availability impose a strong filter promoting only species that can 

tolerate such conditions, whereas the high P and water availability facilitate those 

species that can maximise growth under favourable resource availability.    According 

to this framework, community change on the Keen could similarly be interpreted as 

following a directional trajectory from the ecologically specialised serpentine debris 

community typified by stress-tolerant species, to a qualitatively different heath or 

grassland assemblage dominated by more competitive species.  However, the relatively 

recent decrease in species richness and cover, in conjunction with the community 

reversion shown in the PCA (Figure 5) strongly suggests that this prediction was 

incorrect. This is one of the most robust conclusions of this study, and of considerable 

conservation importance for such sites. We speculate that the community sampled in the 

final few years of the study was subject to strong environmental filtering from lack of 

water and the possible return of P-limitation.     

Future survival of serpentine debris and resident flora 

Bellard et al. (2013) suggest that climate change will present “restoration opportunities” 

in systems that have been colonised by invasive alien species and have extreme 

climates.  Although Shetland falls in the boreo-temperate region which is not severely 

adverse to plant growth, the Keen is exceptional due to the wind exposure (Spence 

1957) and lack of water-holding capacity in the soil.  Consequently, this high latitude 



serpentine system is a good example of how invasive species might be constrained by 

climate change, in this case drought, rather than promoted.  Whether the serpentine 

specialists can also tolerate climate change and benefit from the absence of competition 

is not known, but declines of serpentine species (Slingsby et al. 2010) suggest that they 

will eventually be lost from the site if droughts become longer.  

Where communities have undergone substantive compositional shifts, the 

potential for reversing such changes is dependent on the initial status of the community, 

and whether the change initiated internal feedbacks that sustain the new stable state e.g. 

in arid grasslands (D’Odorico et al. 2012) but is generally thought to be possible only 

with significant management intervention if at all.  On the Keen, serpentine soils with 

relatively low vegetation cover are able to retain P in internal cycles but do seem able to 

eventually shed P over relatively long-timescales.  However, in other serpentine systems 

there are a number of factors which may slow the recovery down or prevent it 

altogether.  Many serpentine sites are N-limited (Huenneke et al. 1990) but in areas of 

increasing N deposition, it is likely that the excess P can be exploited against a 

backdrop of elevated atmospheric N deposition, further increasing P retention. In 

addition, many serpentine sites have considerably higher vegetation cover than the Keen 

e.g. in Greece (Karataglis et al. 1982; Tsiripidis et al. 2010), Australia (Batianoff and

Singh 2001) and Canada (Dearden 1979), meaning that P additions are likely to be 

conserved within a system that has the capacity to cycle the P in a plant-available form 

and recovery is unlikely without management.    In fact, Vitousek et al. (2010) suggest 

that most incidences of P limitation (such as those identified by Elser et al., 2007) can 

be explained as “anthropogenic P limitation secondary to human alterations of the N 

cycle" rather than natural phenomena. The Keen therefore gives us important insights 

into the future maintenance of serpentine systems and P-limited habitats more widely: if 



the recovery of debris habitat is likely to take >30 years after one or two discrete 

applications of nutrients, then it seems unlikely that sustained P applications could be 

mitigated in this or other serpentine systems. This does not bode well for serpentine 

systems given the increasing P inputs to natural systems globally.  In China for 

example, annual P inputs in 2013 matched those experimentally applied to the Keen (Lu 

and Tian 2017) but these are the peak in several decades of increasing P applications 

rather than one-off applications and the trend seems set to continue increasing.  As a 

consequence, there is little hope that species dependent on low nutrient conditions for 

survival will persist through these global patterns of resource use. 

The particular situation of serpentine systems presents further opportunities and 

challenges for their conservation.  On the Keen, topsoil removal has been trialled and is 

probably necessary to reverse the soil development that has followed sustained nutrient 

input.  Removing the topsoil restores the surface substrate to debris habitat and because 

harsh sites are less invaded (Zefferman et al. 2015) so debris restoration can reinstate 

stressful conditions preventing the encroachment of generalist species and minimising 

competition for the serpentine specialists.  In other situations, vegetation and topsoil 

removal may not be so effective and it may be challenging to determine what level of 

soil removal is optimal.  Soil removal may also take the soil seed bank and damage 

plant assemblages that are the source for new generations, and many serpentine regions 

are isolated and difficult to access presenting logistical constraints as well as ecological 

problems.  Site managers may consequently feel that they have little scope to deal with 

the overriding threats of increasing P inputs and climate change. 

Although this study is based on a single site and has very limited replication, the 

longevity of our investigation is a unique opportunity to explore theoretical predictions 

of the response of vegetation to some of the key drivers of global environmental change, 



namely climate change, eutrophication as a result of agricultural intensification, and the 

potential for invasion of species from other habitats as new resource-rich niches become 

available.  The timescales allow us to observe the interacting effects of weather patterns 

and nutrient addition impacts against very low ambient pollution levels, but also at high 

latitude and under xeric conditions (at least with respect to soil water availability) where 

climate change is thought to be particularly exaggerated in its impacts.  The presence 

and invasion of non-serpentine species adds a third axis to the pressures faced by the 

Keen rarities and together this system allows us to study processes of global 

environmental change in microcosm.  Extrapolations from a site-based study are always 

limited but there is relevance to high latitude, high altitude, xeric, and naturally nutrient-

poor systems which means the value of our study is much greater than the limited area 

might otherwise suggest.   
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Figure 1. Position of the Shetland Isles relative to British and Norwegian landmasses 

(a).  The Keen of Hamar is on Unst, the most northerly of the Shetland Isles.  (b) 

Distribution of debris habitat on the Keen of Hamar, Unst. Mapping imagery in this 

document belongs to and was derived from © Crown Copyright Ordnance Survey. An 

EDINA Digimap/ JISC supplied service. All ESRI screen shots and imagery belong to 

and were derived from © Environmental Systems Research Institute, Inc. 



Figure 2. Typical vegetation on the middle debris patch in (a) wet conditions (50 x 50 

cm quadrat marked) and (b) the same debris patch on the following day; note the 

difference in colour between wet and dry conditions indicating the speed at which the 

upper soil layer dries out.  Also visible are wheel ruts from long abandoned mineral 

extraction work – these slight depressions are made more visible by higher vegetation 

cover than the surrounding debris. 



Figure 3. Species richness m
-2

 in each of the four treatment blocks, two of which were

positioned in sparsely-vegetated debris (Figures 2a and 2b) and two in moderately-

vegetated debris (Figures 2c and 2d) over the time period 1981-2013.  Treatments 

consist of five nutrient additions and a control, control = black circles, N = filled 

triangles, P = open circles, NP = stars, NPK = unfilled squares, NPKCa = open 

triangles. 



Figure 4. Combined species cover m
-2

 in each of the four treatment blocks, two of

which were positioned in sparsely-vegetated debris (Figures 4a and 4b) and two in 

moderately-vegetated debris (Figures 4c and 4d) over the time period 1981-2013.  

Treatments consist of five nutrient additions and a control, control = black circles, N = 

filled triangles, P = open circles, NP = stars, NPK = unfilled squares, NPKCa = open 

triangles. 



Figure 5. Principal components analysis of all species and their relative abundances in 

four treatment blocks on the Keen of Hamar, Shetland.  Points are labelled according to 

nutrient treatment and include all surveys between 1981 and 2013. 



Figure 6. Centroids for survey years separated by vegetation cover at start of 

investigation (sparsely-vegetated debris in Figures 6a and b, moderately-vegetated 

debris in Figures 6c and d) and whether treatments contained P (Figures 6a and c) or did 

not contain P (Figures 6b and d).  Centroids for these groupings all derived from the 

same PCA presented in Figure 5. 



Figure 7. March precipitation (mm) for the study period 1980-2013 according to 

weather station records from Lerwick (Met Office 2018). 
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