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ABSTRACT
We report on our combined analysis ofHST, VLT/MUSE, VLT/SINFONI, and ALMA
observations of the local Seyfert 2 galaxy, NGC 5728 to investigate in detail the feeding
and feedback of the active galactic nucleus (AGN). The data sets simultaneously probe the
morphology, excitation, and kinematics of the stars, ionized gas, and molecular gas over a large
range of spatial scales (10 pc to 10 kpc). NGC 5728 contains a large stellar bar that is driving
gas along prominent dust lanes to the inner 1 kpc where the gas settles into a circumnuclear
ring. The ring is strongly star forming and contains a substantial population of young stars
as indicated by the lowered stellar velocity dispersion and gas excitation consistent with HII

regions. We model the kinematics of the ring using the velocity �eld of the CO (2–1) emission
and stars and �nd it is consistent with a rotating disc. The outer regions of the disc, where the
dust lanes meet the ring, show signatures of in�ow at a rate of 1 M� yrŠ1. Inside the ring, we
observe three molecular gas components corresponding to the circular rotation of the outer
ring, a warped disc, and the nuclear stellar bar. The AGN is driving an ionized gas out�ow
that reaches a radius of 250 pc with a mass out�ow rate of 0.08 M� yrŠ1 consistent with its
luminosity and scaling relations from previous studies. While we observe distinct holes in CO
emission which could be signs of molecular gas removal, we �nd that largely the AGN is not
disrupting the structure of the circumnuclear region.

Key words: galaxies: active – galaxies: individual: NGC 5728 – galaxies: nuclei – galaxies:
Seyfert.

1 INTRODUCTION

Beyond being the some of the most energetic objects in the Universe,
active galactic nuclei (AGNs) are thought to play an important
role in the evolution of their host galaxies. In particular, large-
scale cosmological simulations require feedback from AGNs to
reproduce the galaxy population we observe today (e.g. Springel,
Di Matteo & Hernquist2005; Bower et al.2006; Croton et al.2006;
Nelson et al.2019). More complete knowledge of the processes
that fuel AGNs and the mechanisms through which they provide
feedback is then necessary to understand the path galaxies take
from being gas rich and star-forming to gas poor and quiescent.

To obtain this understanding however requires dedicated obser-
vations that cover a large range of wavelengths and spatial scales to

� E-mail: shimizu@mpe.mpg.de

reveal the dominant processes. AGNs only occupy the very centres
of galaxies but both streaming gas fuelling the AGNs as well as
out�owing gas from AGN driven winds or jets can reach at least
several kpc away (e.g. Rupke & Veilleux2011; Fischer et al.2013;
Cicone et al.2014; Bae et al.2017; Baron et al.2018; Fischer et al.
2018; Herrera-Camus et al.2019; Kang & Woo 2018; Mingozzi
et al. 2019; Bischetti et al.2019). Furthermore, this gas does not
exist in a single phase but rather consists of a mixture of different
phases from cold molecular gas to warm ionized gas to hot X-
ray emitting gas. Thus to obtain a full accounting of the direct
fuelling and feedback of the AGN will need multiple continuum
and emission line tracers to probe each phase of the gas.

With the rise of integral �eld unit (IFU) instruments, large radio
interferometers and adaptive optics (AO), it is now possible to study
simultaneously the distribution and kinematics of both ionized and
molecular gas at the same spatial scales in an ef�cient manner. For
nearby galaxies, this translates to a wealth of information that can

C� 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
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Multiphase gas in NGC 5728 5861

span tens of pc to hundreds of kpc, and the kinematics of the gas can
further be compared to the stellar kinematics through the analysis
of stellar absorption lines to reveal non-circular motions such as
radial in�ow or out�ow. Indeed there has been an increased effort
in combining mutliwavelength data to obtain a full view of the
conditions and dynamics of gas around AGNs. Recent examples
include NGC 5643 (Alonso-Herrero et al.2018), ESO 428-G14
(Feruglio et al.2019), ESO 578-G009 (Husemann et al.2019),
NGC 3393 (Finlez et al.2018), NGC 1566 (Slater et al.2019),
NGC 2110 (Rosario et al.2019), and zC400528 (Herrera-Camus
et al.2019). These works primarily paired ALMA observations of
CO emission with an optical or NIR IFU observation to measure
in�ow and out�ow velocities and gas masses, gas excitation, and
bar driven instabilities.

The importance of multiphase observations, in particular for
studying AGN feedback, was outlined in Fiore et al. (2017) who
compiled and reanalysed data probing AGN driven out�ows in
the molecular, ionized, and X-ray emitting phase. Their �ndings
revealed strong correlations between the AGN luminosity and
out�ow velocity, mass out�ow rate, and wind momentum for all
phases of the gas. However the scaling relations differ depending
on the phase resulting in a changing fraction of out�owing gas in one
phase that is dependent on the strength of the AGN. The Fiore et al.
(2017) scaling relations also do not extend to lower luminosities
that are more representative of the larger population of AGNs. It
remains to be seen whether they are valid for Seyfert-like AGNs
with recent work using dust as a tracer of AGN out�ows suggests
the relations break down (Baron & Netzer2019).

Assessing an AGN’s impact on its host galaxy requires mea-
surements of important physical properties of the out�owing gas
including the radial extent and the electron density. Without spatially
resolved data and lines that accurately trace the electron density,
estimates of the mass out�ow rate and energetics can be off by
orders of magnitude. Revalski et al. (2018a), using high spatial
resolutionHST imaging and long slit spectra, showed that while
global estimates of out�ow properties overall agree with spatially
resolved estimates, they come with large uncertainties and highly
depend on the assumed geometry and density of the system. Only
with precise knowledge of the radial extent and gas density will
globally averaged mass out�ow rates, kinetic luminosities, and mo-
mentum rates come close to those obtained from spatially resolved
data.

A parallel and equally important focus of studies of nearby AGNs
is not how gas is being removed but rather how gas is fuelling the
AGN. Many mechanisms have been proposed to extract angular
momentum and drive gas to the central supermassive black hole
(SMBH) but so far no unique one has been found to explain
all observations of AGNs. Instead a range of mechanisms can
likely fuel AGNs that depends on the luminosity and morphol-
ogy of the host galaxy. For low to moderate luminosity AGNs,
recent work suggests that gravitational torques produced by non-
axisymmetric potentials are ef�ciently bringing gas down to the
inner kiloparsec (e.g. Combes2003; Garć�a-Burillo et al. 2005;
Garć�a-Burillo & Combes2012; however also see Sormani et al.
2018). Hydrodynamic simulations show that gas �owing along a
bar settles into a nuclear ring, spatially located in or near the
Inner Lindblad Resonance (ILR), but further in�ow inner to the
ring is small without subsequent dynamical instabilities such as
another nested nuclear bar (Combes & Gerin1985; Piner, Stone &
Teuben1995; Maciejewski et al.2002; Regan & Teuben2003;
Maciejewski2004). Instead of nuclear rings, nuclear spirals can also
form and propagate down to the SMBH given a higher gas sound

speed (Maciejewski et al.2002; Maciejewski 2004) and indeed
nuclear spirals have been found in many galaxies hosting an AGN
(Pogge & Martini2002; Martini et al.2003; Prieto, Maciejewski &
Reunanen2005; Davies et al.2009, 2014). Since cold molecular
gas is the fuel for AGNs, it makes sense to turn to observations of
CO line emission, a primary tracer for molecular gas, to detect
and measure the structure and instabilities bringing gas to the
SMBH.

1.1 NGC 5728

NGC 5728 is a nearby SAB(r)a galaxy (D = 39 Mpc, 1 arc-
sec= 190 pc), with a Compton thick, Seyfert 2 nucleus (Veron1981;
Phillips, Charles & Baldwin1983). The bolometric luminosity of
the AGN is 1.40× 1044 erg sŠ1 where we have converted the
absorption corrected 14–195 keV X-ray luminosity from theSwift
Burst Alert Telescope,LX = 2.15 × 1043 erg sŠ1 (Ricci et al.
2017), into LBol using the relation from Winter et al. (2012). Its
primary characteristics include a large stellar bar (R � 11 kpc,
P.A. = 33� ; Schommer et al.1988; Prada & Gutíerrez 1999)
which is surrounded by a ring of young stars, a circumnuclear
star forming ring (R � 800 pc; Schommer et al.1988; Wilson
et al. 1993), and extended ionization cones (R � 1.5 kpc, P.A.
= 118� ; Schommer et al.1988; Arribas & Mediavilla1993; Wilson
et al. 1993; Mediavilla & Arribas 1995). Rubin (1980) was the
�rst to study the ionized gas kinematics �nding that while at large
radii the gas displayed normal rotation, the central regions showed
strong non-circular motion as well as double-peaked emission
lines. Over the years much discussion ensued over the physical
explanation of the non-circular motion and double-peaked emission
lines with radial out�ow (Rubin1980; Wagner & Appenzeller
1988; Arribas & Mediavilla 1993; Mediavilla & Arribas 1995)
and radial in�ow due to the bar (Schommer et al.1988) the
primary choices. van Gorkom et al. (1983) and Schommer et al.
(1988) also found extended 6 and 20 cm radio emission spatially
coincident with the ionization cones suggesting the presence of
a jet. Further complicating interpretations was the �nding of a
strong isophotal twist (� P.A. � 60� ) in the central� 5 arcsec from
NIR imaging that suggested the presence of a secondary nuclear
bar.

This secondary nuclear stellar bar was thought to potentially
be the driving mechanism to bring gas from the circumnuclear
ring to the SMBH. However, Petitpas & Wilson (2002) found no
signi�cant nuclear molecular gas bar coincident with the stellar
bar based on spatially resolved CO (1–0) data. Instead they note a
double-peaked morphology of the CO emission that straddles the
centre but is perpendicular to the ionization cones and suggest that
the NGC 5728 might have experienced a recent minor merger that
could cause the off-centre CO emission.

All of these intriguing components contained with NGC 5728
make it an ideal system to study the fuelling and feedback of
AGNs. In this paper, we report on a combined analysis of recent
Atacama Large Millimeter/submillimeter Array(ALMA), Very
Large Telescope(VLT) MUSE, and VLT/SINFONI observations
that jointly probe the morphology and kinematics of the stars, cold
molecular gas, hot molecular gas, and warm ionized gas on both
large and small spatial scales. Recently, Durré & Mould (2018,
2019) studied NGC 5728 using both the MUSE and SINFONI data
sets. Much of our conclusions and interpretation are consistent, but
we will note where we disagree and where their analysis enhances
ours. Throughout this paper, we assume a� cold dark matter
cosmology withH0 = 70 km sŠ1 MpcŠ1 and� M = 0.3.
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2 OBSERVATIONS, DATA REDUCTION, AND
ANALYSIS METHODS

2.1 SINFONI observations

NGC 5728 was observed by VLT/SINFONI (Eisenhauer et al.2003;
Bonnet et al.2004) as part of theLuminous Local AGN with Matched
Analogues(LLAMA) programme (Davies et al.2015), a volume-
limited survey of nearby X-ray selected AGNs with SINFONI and
XSHOOTER. Within this programme, all targets were observed by
SINFONI using the H+ K grating (1.4–2.5µm) and AO mode
providing integral �eld spectroscopy with spectral resolutionR �
1500 over a roughly 3 arcsec× 3 arcsec �eld of view (FOV). A
standard Object-Sky-Object observation sequence was used with
each integration lasting 300 s and the object exposures dithered by
0.3 arcsec. Observing blocks for NGC 5728, under programme ID
093.B-0057 (PI R. Davies), were carried out on the nights of 2015
February 23, March 06, May 09, June 04, and June 25 resulting in
25 Object integrations and 12 Sky integrations for a total on-source
time of 125 min.

The raw SINFONI data were reduced using the custom reduction
packageSPRED(Abuter et al.2006) which performs all the standard
reduction steps needed for near-infrared spectra as well as additional
routines necessary to reconstruct the data cube. We further applied
the routinesMXCOR and SKYSUB (Davies 2007) to improve the
subtraction of OH sky emission lines andLAC3D, a 3D Laplacian
Edge Detection algorithm based onLACOSMIC (van Dokkum2001),
to identify and remove bad pixels and cosmic rays. Telluric
correction and �ux calibration were carried out using B-type stars.
Finally, we also corrected for differential atmospheric refraction, a
wavelength-dependent spatial offset due to the atmosphere, using a
custom procedure described in Lin et al. (2018).

The �nal SINFONI data cube covers a FOV of 3.5 arcsec× 3.7
arcsec with a pixel scale of 0.05 arcsec. With AO, we achieved a
point spread function (PSF) full width at half-maximum (FWHM) of
0.15 arcsec based on Gaussian �tting of the unresolved continuum
nuclei from the AGN in the LLAMA sample. This translates to
a physical spatial resolution of 28 pc over a physical FOV of
660 pc× 700 pc.

2.2 MUSE observations

MUSE is a second-generation VLT instrument consisting of 24
IFUs that span the wavelength range 4650–9300 Å (Bacon et al.
2010). We downloaded archival MUSE data of NGC 5728 from the
MUSE-DEEP collection, an ESO Phase 3 data release that provides
fully reduced, calibrated, and combined MUSE data for all targets
with multiple observing blocks. The original observations were
performed over two observing blocks on April 3 and June 3, 2016
for programme ID 097.B-0640 (PI D. Gadotti), and were carried
out in seeing limited Wide Field Mode that results in a 1 arcmin
× 1 arcmin FOV sampled with a pixel scale of 0.2 arcmin. The total
exposure time for the combined MUSE cube is 79 min and Gaussian
�tting of a foreground star within the FOV show a PSF FWHM of
0.62 arcsec. The MUSE data cube thus covers an 11.3 kpc square
region with a spatial resolution of 177 pc at the distance of NGC
5728.

Fig. 1 shows a three-colourgri image of NGC 5728 from the
MUSE cube. As seen in theHST imaging in Fig.2, the MUSE
observation covers a large portion of the large-scale bar which
contains long dust �laments and a blue circumnuclear disc/ring. In
the right-hand panel, we highlight strong [OIII ] and H� emission

by using a simple narrow-band �lter for the blue and green colours
of the image while the red colour is from thei band.

2.3 ALMA observations

ALMA observed NGC 5728 on May 15, 2016 as part of project
2015.1.00086.S (PI N. Nagar) for a total on-source time of 29 min
in the C36-3 con�guration resulting in an angular resolution of 0.56
arcsec× 0.49 arcsec (PA= Š 79.4� ) in Band 6. This observation was
part of an ALMA programme to map CO (2–1) in the nuclear regions
of seven local AGNs (Ramakrishnan et al.2019). The spectral set-up
was designed to centre one of the spectral windows on the redshifted
CO (2–1) emission line (� rest = 230.538 GHz) for NGC 5728.

We used the Common Astronomy Software Applications package
(CASA; McMullin et al. 2007) to process the data. Within the
TCLEAN routine, we applied Briggs weighting withrobust = 0.5 to
reproduce the data cube at 2.54 km sŠ1 velocity resolution and a peak
residual (parameterthreshold) of 2.5 mJy. All resulting data cubes
were primary beam corrected and a 1.3 mm continuum image was
extracted by combining and integrating the remaining three spectral
windows without the CO (2–1) line.

2.4 HST observations

The �nal data set we primarily use for this work is archival
multibandHSTimaging.HSTobserved NGC 5728 in theF336W,
F438W, F814W, andF160W bands with theWide Field Camera
3 instrument as part of programme 13755 (PI J. Greene). We
downloaded the standard pipeline reduced images from theMikulski
Archive for Space Telescopes.1

Fig. 2 shows theF814W (left) with a three-colour zoom-in of
the circumnuclear region that combined theF814W, F438W, and
F336W images as red, green, and blue colours, respectively. The
larger scaleF814W image also has overplotted the FOV’s of the
ALMA (red circle) and MUSE (green box) data sets. Both ALMA
and MUSE cover a large portion of the primary bar and the entire
circumnuclear region. The FOV of the SINFONI cube (white box) is
overplotted on the three colour zoom-in that shows we are probing
the very inner regions of NGC 5728. The combination of all of
these data sets allow us to consistently trace gas and structure from
several kpcs down to tens of pc as well as the interaction between
the host galaxy and the central AGN.

2.5 Astrometric alignment and AGN position

To ensure all of the data sets are registered to a common coordinate
system, we implemented the following procedure. Luckily at least
one bright foreground star lies within the FOV of everyHST
image and the MUSE cube. Starting with theF336W, F438W,
and F814W HSTimages, we matched the bright stars to GAIA
DR2 sources (Gaia Collaboration2018). To make corrections, we
simply updated the WCS parameters by applying small pixel shifts
until the positions matched between the images and the GAIA DR2
values. These correctedHSTimages were then used to correct both
the NICMOS F160W image and the MUSE cube, again by applying
pixel shifts until the locations of the stars in common matched.

For the SINFONI cube, no foreground stars appear in the FOV,
therefore we �rst produced anH-band continuum image from the
cube and used it to match distinct features between it and theHST

1https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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Figure 1. Left-hand panel:Three-colourgri image obtained by integrating the MUSE cube between wavelengths of 4800–5830 Å forg band, 5380–7230 Å
for r band, and 6430–8630 Å fori band.Right-hand panel:Three-colour [OIII ] (blue), H� (green),i band (red) image using a narrow band �lter to highlight
[O III ] (5028–5095 Å) and H� emission (6578–6664 Å).

Figure 2. NGC 5728 as observed byHST/WFC3. The left-hand panel is a greyscale image of only theF814W observation to highlight the primary bar and
bright circumnuclear region. The right-hand panel is a three colour zoom-in of the region outlined by the white dotted box in the right-hand panel. Red, green,
and blue colours are from theF814W, F438W, and F336W �lters. In the left-hand panel, the green dashed line indicates the FOV of the MUSE observation
while the red circle indicates the FOV of the ALMA observation. The white box in the right-hand panel indicates the FOV for the SINFONI observations and
the red cross shows the position of the AGN from VLBI (see Section 2.5). In both panels, North is up and East is to the left.

F160W image. In particular, we aligned the brightest pixel in the
SINFONI H-band continuum image with the brightest pixel in the
HSTF160 image and then checked to ensure other features such
as the nuclear dust lane were aligned as well. This gives us an
astrometric accuracy of� 0.25 arcsec (i.e. the angular resolution
of HST at 1.6 µm) between SINFONI and the rest of the data
sets. Finally, we did not apply any corrections to the ALMA data
given the high astrometric accuracy inherent in radio interferometric
observations.

For the position of the AGN, we used VLBI observations from
The Megamaser Cosmology Project (Kuo, private communication).
The coordinates of the AGN are RA= 14:42:23.872 and DEC
= 17:15:11.016 with an accuracy of a few tens mas. The position
is shown in the right-hand panel of Fig.2 as a red cross and will be
used as the reference point for all following �gures. This position
matches very well both the peak of 1.3 mm continuum emission
from ALMA (see Fig.3) as well as the peak of the warm molecular
gas traced by H2 (1–0) S(1) emission from SINFONI (see Fig.A3).

MNRAS 490,5860–5887 (2019)
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2.6 Spectral Þtting

2.6.1 Continuum Þtting and subtraction

The data reduction for the ALMA cube includes already a con-
tinuum subtraction however both the SINFONI and MUSE cube
contain signi�cant continuum signal. To remove the continuum
as well as stellar absorption features, we use thePenalized Pixel-
Fitting2 (PPXF) routine (Cappellari & Emsellem2004; Cappellari
2017) together with the latest (v11.0) single stellar population (SSP)
models based on the extended MILES stellar library (E-MILES;
Vazdekis et al.2016). We chose the models produced from the
Padova 2000 stellar isochrones with a Chabrier initial mass function
(Chabrier2003). The SSP models range from stellar population ages
of 63 Myr to 14.13 Gyr spaced logarithmically and six metallicities
betweenŠ1.71 and 0.22.

For the MUSE cube, both to reduce the computation time and im-
prove the signal-to-noise (S/N) ratio in the outer regions, we chose to
utilize Voronoi binning before runningPPXF. We used the method
from Cappellari & Copin (2003) and theVORONOI 2D BINNING3

Python routine to bin the MUSE cube such that each bin contains a
minimum S/N in the continuum of 20.

Each binned or single MUSE and SINFONI spaxel was �t with
PPXF. For the MUSE spectra, we used the full range of metallicities
and stellar population ages but we also incorporated regularization
to better interpret the best-�tting metallicities and ages since the
�tting of galaxy spectra is an ill-posed problem (Cappellari2017).
For the SINFONI spectra, because they only cover the near-infrared
and are relatively insensitive to young stellar population ages, we
only �t using models with ages of 0.1, 0.5, 1.0, 5.0, 10.0, and
14.1 Gyr. We also did not use regularization because our only
concern for the SINFONI cube is the removal of the continuum and
determination of the stellar kinematics. Because both the MUSE
and SINFONI spectral resolutions are only moderate, we only �t
for the stellar velocity and velocity dispersion. We also included an
additive fourth degree polynomial in the �t to model any emission
from the central AGN. To create the continuum-subtracted MUSE
cube, we renormalized the best-�tting binned spectra to the median
continuum level of each individual spectrum before subtraction.
Fig. 4 shows the results of ourPPXF�ts for the MUSE cube.

2.6.2 Emission line Þtting

To measure the bulk distribution and kinematics of the molecular
and ionized gas in NGC 5728, we �t single Gaussians to the relevant
emission line tracers of the gas. In particular, we �t the CO (2–1) line
(� rest = 230.538 GHz) in the ALMA cube; the H� , [O III ] doublet,
[O I], [N II ] doublet, H� , and [SII ] doublet lines in the MUSE cube;
and the [FeII ]	 1.64µm, [SiVI], H2 (1–0) S(1), and Br
 lines in the
SINFONI cube. This set of lines represent the strongest emission
lines observed in nearby galaxies and AGNs and provide diagnostic
power into the state of gas in a range of phases from cold molecular
gas [CO (2–1)] to warm molecular gas [H2 (1–0) S(1)] to hydrogen
recombination lines (H� , H � , Br 
 ) and forbidden lines ([OIII ],
[O I], [N II ], [S II ], [FeII ], [Si VI]) from ionized gas in a range of
ionization levels.

For each line, we cut out the relevant sections of the continuum-
subtracted spectra that contain the single line or multiple lines in
the case of the [OIII ] doublet, H� and [NII] blended region, and

2http://www-astro.physics.ox.ac.uk/ mxc/software/#ppxf
3http://www-astro.physics.ox.ac.uk/ mxc/software/#binning

[SII ] doublet. We �xed the velocity and velocity dispersion to be
the same for all doublets and �xed the intensity ratio to the expected
theoretical value of 3 for the [OIII ] and [NII] doublets. For the �t
of the [SiVI] line, we also included Gaussian components for the
nearby H2 (1–0) S(3) and Br� lines. As an estimate of the local
noise around each line, we measured the root mean square (RMS)
of the line-free regions. Using the RMS, we produced 100 simulated
spectra for every emission line by randomly perturbing the original
spectra assuming a Gaussian distribution with a standard deviation
equal to the RMS. Each of the simulated spectra were �t in the
same way as the original spectra and uncertainties on the integrated
�ux, velocity, and velocity dispersion were calculated from the
standard deviation of the best-�tting values from the simulated
spectra. Finally, all velocity dispersions derived from MUSE and
SINFONI data were corrected for instrumental broadening. For lines
from MUSE, we assumed an instrumental dispersion of 49 km sŠ1

for lines in the [OIII ] region and 71 km sŠ1 for lines in the H�
region based on the spectral resolution curve as a function of
wavelength in the MUSE User Manual.4 For SINFONI, we assumed
an instrumental dispersion of 65 km sŠ1 based on the width of OH
sky lines. FigsA1, A2, A3, andA4 show the results of our single
Gaussian �tting for all of the emission lines studied in this paper
over the full FOV for each instrument. Fig.3 shows the results for
CO (2–1), H� , and [OIII ] zoomed into the central 10 arcsec x 10
arcsec.

3 RESULTS

3.1 Large scales and the primary bar

We begin our investigation of NGC 5728 with the largest scales. As
mentioned in Section 1.1, NGC 5728 is characterized on large scales
by a primary bar surrounded by a ring of young stars. Continuum
emission in general is elongated from the NE to the SW and the
MUSE three-colour image (Fig.2) shows bluer emission encircling
the inner, redder bar. These bluer emission regions in the large ring
are also spatially coincident with clumps of H� emission indicating
recent star formation.

In the top left-hand panel of Fig.5, we show in both colour
and contours theHST F160W image which traces emission from
older stars. Again, on the largest scales we observe primarily the
large bar with the P.A. of the bar plotted as the white line, however
towards smaller radii the stellar distribution becomes more and more
spheroidal with the major axis shifting to more N–S. This is also the
P.A. for the stellar kinematic major axis as shown in Fig.4 as well
as the photometric major axis for the main disc that the bar lives
within (Schommer et al.1988). Prada & Gutíerrez (1999) observed
this isophotal twisting as well in largeI-band imaging and attributed
it to the increasing in�uence of the central bulge. This would further
make sense given the increasing stellar velocity dispersion which
rises to� 170 km sŠ1 before dropping at the circumnuclear ring
(Fig. 4, top right-hand panel) as well as having a relatively old
mean age of� 5 Gyr compared to both the larger main ring and
circumnuclear ring which show ages of� 1 Gyr (Fig. 4, bottom
left-hand panel).

Roughly straight dust lanes can also be seen in Figs1 and 2
running the length of the bar with the more prominent dust lane
occurring in the northern half and indicating that the west side of the
galaxy is the near side (Schommer et al.1988). To further enhance

4https://www.eso.org/sci/facilities/paranal/instruments/muse/inst.html
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Multiphase gas in NGC 5728 5865

Figure 3. Results of emission line �tting for the inner 8 x 8 arcsec region of NGC 5728 using a single Gaussian component. The top row shows the integrated
�ux ( left), velocity (middle), and dispersion (right) for CO (2–1) with the black contours plotting the 2� , 5� , 10� , 20� contours of the 1.3 mm continuum.
The middle and bottom rows show the �ux, velocity, and dispersion for H� and [OIII ], respectively. The black crosses in all panels show the location of the
AGN from VLBI (see Section 2.5).

and highlight the dust lanes, we show in the top right-hand panel of
Fig. 5 a VŠH map constructed from theF438W andF160W HST
images. Areas with high extinction would have largeVŠH values
and appear dark in the map. Indeed the northern dust lane reveals
itself as a dark band extending from the NE to the circumnuclear
region. We also plot on top of theVŠH map contours showing the
location of CO (2–1) emission. Interestingly, the northern dust lane

lacks strong CO emission and it is instead the southern dust lane
that appears as a single spiral arm connecting to the circumnuclear
ring. This morphology is consistent with the observations of CO (1–
0) emission from Petitpas & Wilson (2002) however they attribute
the southern arm as potentially due to a larger ring structure or
evidence of a past merger event. Instead it is quite clear within our
data sets that it is associated with a fainter dust lane on the far side
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5866 T. T. Shimizu et al.

Figure 4. Results from �tting the MUSE cube withPPXF. The top row plots the stellar velocity (left) and dispersion (right). The bottom row plots the mean
light-weighted stellar population age (left) and mean light-weighted metallicity (right). In all frames, North is up and East is to the left.

of the galaxy. It is unclear however why CO (2–1) is missing in the
northern dust lane. It is possible that molecular gas here is more
diffusely distributed over larger scales that were resolved out of the
interferometric observations.

As hydrodynamic simulations show (e.g. Athanassoula1992;
Maciejewski et al.2002), two straight dust lanes are expected to
appear along the bar major axis due to the formation of principal

shocks which compress the gas and dust. This occurs due to the
gradual shifting of the gas orbits from thex1 family (i.e. parallel to
the bar major axis) to thex2 family (i.e. perpendicular to the bar
major axis). As gas crosses these shocks, it loses angular momentum
resulting in in�ow towards the centre (e.g. Athanassoula1992;
Maciejewski et al.2002). As we will show in the next section,
we do observe kinematic signatures of in�ow at the locations where
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Multiphase gas in NGC 5728 5867

Figure 5. Large scale and circumnuclear zoom-ins of theH-band imaging andVŠH dust maps produced fromF160W(H) andF438W(V) HSTobservations.
The red contours in the left-hand panels trace the continuum image to better outline the structure while the red contours in the right-hand panels plotthe CO
(2–1) emission from ALMA. The white line in the top left shows the major axis of the large scale bar and in the bottom left the major axis of the nuclear stellar
bar taken from the literature (Schommer et al.1988; Prada & Gutíerrez1999).

the dust lanes connect to the central circumnuclear ring strongly
suggesting that gas is being driven from the outer disc to the
circumnuclear region via the bar. Assuming the gas in the bar is
rotation dominated it is expected to settle into a ring (e.g. Piner
et al.1995) or nuclear spiral (Maciejewski et al.2002; Maciejewski
2004).

3.2 The circumnuclear ring

As many others have before we observe a central circumnuclear
ring within the central� 1.3 kpc in projected radius. Multiple tracers
highlight this structure through both their emission and kinematics.

Both theHST and MUSE continuum imaging show a distinct
ring of clumpy, blue emission indicative of young hot stars. This is
con�rmed in the bottom left-hand panel of Fig.4 which shows the
mean light-weighted stellar age. The circumnuclear ring outlined
by blue continuum emission also has a distinctly younger mean
light-weighted stellar age (1 Gyr versus 5 Gyr) compared to the sur-
rounding region. This �ts with the LLAMA �nding that on average
AGNs show a signi�cant young (< 30 Myr) stellar population within
the central few hundred parsecs compared to inactive galaxies based

on stellar population modelling of high spectral resolution VLT/X-
Shooter spectra (Burtscher et al., in preparation). Further, Riffel
et al. (2009b) found a signi�cant population of intermediate age
stars in stellar population modelling of NGC 5728 using a NIR
IRTF spectrum. The stars in the ring further show evidence for
lower metallicity which could be an indication that the increased
nuclear activity is due to a recent minor merger.

The circumnuclear ring is further revealed kinematically in the
stars via strong circular rotation and a drop in velocity dispersion
(Fig. 4, top row). While on large scales the stellar velocity peaks
at the edge of the FOV and with a P.A.� 0� , there is a clear
kinematically decoupled component with velocity peaks at� 4
arcsec (760 pc) radius and a P.A.� 10� . The dispersion map shows
the ring as a ring of decreased velocity dispersions compared to
the surrounding regions (70 km sŠ1 versus 170 km sŠ1) which
spatially corresponds to the ring of younger mean stellar ages. The
reduced velocity dispersions can be explained as the primary stellar
population not yet thermalizing out of their birth clouds and still
moving with regular rotation. These so-called dispersion ‘drops’
have routinely been used in long slit observations of nearby galaxies
as markers of nuclear star formation (e.g. Emsellem et al.2001) .
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5868 T. T. Shimizu et al.

All of the stellar tracers suggest recent star formation so there
should be large amounts of both molecular gas from which the stars
were born out of and ionized gas from photoionization by the young
stars. Indeed, Fig.6 shows that exactly where we �nd the ring of
lowered velocity dispersions, we also observe a strong ring of CO
(2–1) emission as well as a ring of H� clumps outlining the star
forming HII regions.

The white ellipse plotted in Fig.6 was chosen to directly follow
the ring of lowered stellar velocity dispersion. The parameters
of the ellipse have a P.A. of 14� , a semimajor axis 822 pc and
an axial ratio (b/a) of 0.8. If we make the assumption that the
ring is intrinsically circular then the inclination is related to the
axial ratio through cos (i) = b/a. This leads to an estimate of the
inclination of � 37� which is more face-on compared to the large
scale photometrically determined inclination of 48–55� (Schommer
et al.1988; Davies et al.2015). This could be due to our assumption
of circularity, since its possible the stars in the ring are on elliptical
x2 orbits associated with the large scale bar. These rings of young
nuclear star formation associated with low-velocity dispersions
seem to be a common characteristic of local Seyfert galaxies as
many studies using IFU data have found them within the central
kpc (e.g. Riffel et al.2010, 2011; Diniz et al. 2017; Dametto
et al.2019)

3.2.1 Gas excitation

The MUSE and SINFONI IFU cubes allow for us to spatially resolve
the distribution of emission line ratios and assess the dominant
mechanism for gas excitation. Gas excitation mechanisms can be
identi�ed using popular line ratio diagrams with speci�c thresholds
or demarcations that separate between the different mechanisms
which include photoionization by a central AGN, ionization by UV
photons from HII regions, and low-ionization nuclear emission line
regions (LINER).

Fig. 7 plots the three standard excitation diagrams (Baldwin,
Phillips & Terlevich1981; Veilleux & Osterbrock1987) for individ-
ual spaxels in NGC 5728. The circumnuclear region of NGC 5728
is dominated by gas photoionized by the AGN, as indicated by the
yellow to red colours. The AGN-dominated region further follows
the bicone shape of the strong [OIII ] emitting region. HII regions
instead follow a clear ring-like structure, encircling the bicone and
tracing the ring-shaped emission seen in H� , the three colourHST
image, and the molecular gas distribution that is indicated by the
white ellipse in the bottom row of Fig.7. All of this de�nitively
points to strong star formation occurring within the circumnuclear
ring.

One interesting feature seen in the excitation diagram is a
horizontal ‘spike’ at high [OIII ]/H � ratios and pointing towards
lower [NII ]/H � , [SII ]/H � , and [OI]/H � ratios. Within each of
the diagnostic regions, we shaded the spaxels from light to dark
based on the [NII]/H � , [SII ]/H � , or [OI]/H � line ratio value. In
the maps we can then see that the horizontal ‘spike,’ indicated by
yellow colours, is primarily occurring in a narrow region on the SE
side of the circumnuclear ring and coinciding with where the ring
intersects the AGN bicone.

This feature has been seen recently in other nearby AGN
with spatially resolved line ratio maps. Mingozzi et al. (2019),
using MUSE data for the MAGNUM survey, explained these
line ratios as tracing the ratio of the solid angle subtended by
matter bounded and ionization bounded gas clouds (AM/I ) as
�rst put forth in Binette et al. (1996). In short, matter bounded

clouds are optically thin throughout the entire cloud to the ion-
izing radiation �eld while ionization bounded clouds are op-
tically thick and absorb all of the incident ionizing radiation.
If matter bounded clouds dominate the solid angle we would
expect more emission from high-ionization lines compared to
low-ionization ones and vice versa if ionization bounded clouds
dominate.

Binette et al. (1996) using photoionization modelling produced
predictions for the line ratios expected given anAM/I with the
following relation:

Ri (AM/ I ) =
Ri

IB + 0.568AM/ IRi
MB

1 + 0.568AM/ I
, (1)

whereRi indicates a line ratio for a speci�c ion relative to H�
andRi

IB andRi
MB are constant ratios in the limiting cases for fully

ionization bounded clouds and matter bounded clouds, respectively.
We plot this sequence in the top panels of Fig.7 shown as a black
line. Especially for the [NII ]/H � plot, the increase ofAM/I perfectly
explains the spike in the excitation diagram.

However, we can also explain this feature by an increase in the
ionization parameter. Baron & Netzer (2019; BN19) developed a
simple method for measuring the ionization parameter using the
[O III ]/H � and [NII]/H � line ratios (see equation 2 ofBN19). The
main assumption is only that the gas is photoionized by an AGN.
Therefore, we calculated the ionization parameter,U, as a function
of radius towards the SW using a series of annular sections described
Appendix B and shown in Fig.B3.

Fig.8 shows the radial pro�le along the bicone of both [NII ]/H �
andU. Indeed, exactly where we observe a decrease of [NII ]/H � ,
the ionization parameter signi�cantly increases. While both a
change inAM/I and a change inU can explain the horizontal ‘spike’
in the line ratio diagrams, we choose the simpler increase inU model
as our explanation. This would be consistent with an interpretation
that this region is where the NLR bicone is intersecting the lower
density circumnuclear ring sinceU and gas density are inversely
related.

3.2.2 Molecular gas mass

We estimate the total molecular gas mass in the circumnuclear
region from the summed CO (2–1) spectrum resulting from inte-
grating the ALMA cube within a circular aperture with a radius
of 6.5 arcsec (1.24 kpc). Because of the complex line pro�le, we
simply integrated the spectrum between rest-frame velocities of
± 375 km sŠ1 to obtain a total CO (2–1) intensity (SCO) of 93.6 Jy
km sŠ1. The CO luminosity is calculated following Solomon &
Vanden Bout (2005):

L �
CO = 3.25× 107 SCOR12D 2

L

(1 + z)� 2
rest

K km sŠ2 pc2, (2)

whereR12 is the conversion from CO (2–1) to CO (1–0) intensity,
DL is the luminosity distance in Mpc, and� rest is the rest frequency
of the CO (2–1) emission line in GHz. In this work we useR12 =
1.4, the value found for nearby star forming galaxies (Sandstrom
et al.2013).

To calculate a molecular gas mass, we must assume a value for
� CO, the conversion factor fromL �

CO to MH2. For this work, we
use� CO = 1.1 M� pcŠ2/(K km sŠ2). This is the value found for
the central regions of nearby galaxies, likely due to the increased
pressure and/or turbulence (Sandstrom et al.2013). Using this, we
�nd a total molecular gas mass within the central� 1 kpc of NGC
5728 to be 1.3× 108 M� .

MNRAS 490,5860–5887 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/4/5860/5586578 by Liverpool John M
oores U

niversity user on 05 F
ebruary 2020



Multiphase gas in NGC 5728 5869

Figure 6. Comparison between the stellar velocity dispersion (left), CO (2–1) �ux (middle), and H� �ux ( right). The white ellipse plots the location of the
lowered stellar velocity dispersion in each of the panels to the show the spatial correspondence between the decreased stellar dispersion and the rings of
molecular gas and ongoing star formation. Colours in each panel are the same as what is shown in Figs4 and3.

Figure 7. Spatially BPT maps of NGC 5728 derived from emission line �tting from the MUSE cube. The top row plots the BPT line ratio diagrams with each
dot representing a single spaxel. To be included in the diagram, the corresponding emission lines had to be detected with S/N> 3. Points are colour-coded
according to their location with respect to the Kauffmann et al. (2003, blue dashed), Kewley et al. (2001, red solid), and Kewley et al. (2006, black dashed)
classi�cation lines. The black solid lines plot the expected line ratios from Binette, Wilson & Storchi-Bergmann (1996) for an increasing ratio of the solid angle
subtended by matter bounded and ionization bounded clouds (AM/I ). The panels in the bottom row show the spatial location of each of the points coloured by
their location in the corresponding top row panels. The black dashed ellipses outline the location of the circumnuclear ring seen in Fig.6.
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Figure 8. Radial pro�le towards the SW along the bicone of both the
[N II ]/H � line ratio and the ionization parameter,U. Radii have not been
corrected for inclination and are simply the projected radius from the AGN.

This total mass matches well with that found in Rosario et al.
(2018) who found a molecular gas mass of 108.53 M� . Our value is
40 per cent of theirs, however the Rosario et al. (2018) measurement
is based on an JCMT observation with a beam size of 20.4 arcsec
compared to the 6.5 arcsec aperture used here. This seems to be
an indication that about 60 per cent of the total molecular gas is
on scales larger than 1 kpc given the largest angular scale of the
ALMA observation was 5.34 arcsec. We tested whether convolving
the ALMA cube to the JCMT beam and integrating over a larger
aperture increased the measured molecular mass but did not �nd
any change, an indication that diffuse �ux was resolved out due to
the lack of short spacings during the ALMA observation.

3.2.3 Disc modelling

Kinematically, all three tracers (stars, molecular gas, and ionized
gas) show strong signs of circular rotation (see Figs4 and 3).
Therefore, we can �t the velocity �elds with a model of rotation
to better constrain the inclination and dynamical mass driving the
rotation.

We �rst �t both the CO (2–1) and stellar velocity �elds using an
updatedPYTHONversion ofDYSMAL (Davies et al.2011), now called
DYSMALPY, an MPE developed software package for modelling
the dynamics of galaxies.DYSMALPY works by �rst simulating the
mass distribution of a galaxy and populating a three-dimensional
cube with the corresponding physical velocities. After rotating and
inclining the galaxy to match the preferred line of sight, the physical
3D cube is integrated along the line of sight to produce an observed
‘IFU’ cube which is �nally convolved with both a PSF and line
spread function. In this way, we account for all instrumental effects
including beam smearing. These simulated cubes can then be used
to compare and �t against observed data using either standard
non-linear least squares or a Markov chain Monte Carlo (MCMC)
algorithm withEMCEE(Foreman-Mackey et al.2013).

We assumed a thin exponential disc mass distribution
parametrized by the total dynamical mass (Mdyn) and the effective
radius (reff) within which the enclosed mass is one-half ofMdyn. The
inclination of the disc (idisc) and the position angle (P.A.disc) were
also left as free parameters in the �tting. For the CO (2–1) model
we �xed the centre by eye because we also masked out the inner

2.5 arcsec due to the presence of the non-circular motion described
below. For the stellar velocity �eld we allowed the centre to vary
between+ /Š5 pixels in both thex andy direction. We ran MCMC
with 100 walkers for 100 burn-in steps and 400 sampling steps
to determine the best-�tting parameters and uncertainties from the
sampled posterior distribution using the median and the 16th and
84th percentiles.

Fig. 9 shows the results of our �tting. For the molecular gas,
we �nd a best-�tting logMdyn = 10.372+ 0.002

Š0.001 M� , reff = 537+ 2
Š2 pc,

idisk = 43.3�+ 0.1
Š0.1 , and P.A.disk = 14.01�+ 0.04

Š0.03 . We note that the very
small errors on the model parameters only incorporate the statistical
uncertainties and thus are more re�ective of the high S/N and
high spectral resolution of the ALMA data. These results are also
consistent with those found using the same data in Ramakrishnan
et al. (2019). For the stellar velocity �eld, we �nd a best-�tting
logMdyn = 10.14+ 0.01

Š0.01 M� , reff = 640+ 10
Š10 pc, idisk = 42.1�+ 0.4

Š0.5 , and
P.A.disk = 10.9�+ 0.1

Š0.1 .
The residuals in the stellar velocity �eld all have an absolute

value less than 40 km sŠ1 and the discrepancies are likely due to
deviations from pure circular rotation since we expect stars in the
circumnuclear regions to follow more ellipticalx1 andx2 orbits.
This can also be seen in measured velocity �eld where the line
of nodes are not exactly perpendicular to the zero velocity line.
These deviations are likely the reason for the discrepancy in the
best-�tting model parameters between the molecular gas and stars.
However, the good agreement between the models and the data as
well as between the cold molecular gas and the stars indicates that
our interpretation of a rotating circumnuclear ring is correct and that
the young stars have been born out of the molecular gas and still
exhibit the molecular gas kinematics. Finally we do note that the
zero velocity line of both the stars and molecular gas are S-shaped
which could be an indication of in�ow of both stars and gas.

3.2.4 Molecular gas outßow and inßow?

The velocity residuals after removing circular rotation could be
due to non-circular in�ow and out�ow. To investigate this, we
placed circular apertures on to the residual velocity �eld spaced
in increments of 0.56 arcsec along the minor axis of the best-�tting
disc model. Placement along the minor axis ensures the velocity
residuals are primarily due to radial motion rather than differences
in tangential motion compared to circular rotation.

Radial in�ow will appear as redshifted residuals on the near-side
of the disc and blueshifted residuals on the far-side. We know based
on the large scale dust maps and H� and [OIII ] �ux maps as well
as the excitation of the ionized gas that the near-side is West of the
kinematic major axis. Radial out�ow motion will have the opposite
sense as radial in�ow. We calculate the total mass in the aperture by
summing the integrated �ux of all pixels in the aperture and using
equation (2) and� CO as before. The mass rate through each aperture
is thenMv/� r, where� r is the diameter of the apertures.

Fig. 10 plots both the radial velocity estimates (top) and the
mass rate (bottom). Positive values of each correspond to out�ow
while negative values correspond to in�ow. It is from this plot that
the residuals suggest an out�ow velocity of� 80 km sŠ1 and mass
out�ow rate of � 0.5 M� yrŠ1 within 1 kpc. We compare these
values later to those found for the ionized gas.

Fig.10also suggests radial in�ow outside of 1kpc with velocities
reaching 50 km sŠ1. The mass in�ow rate into the circumnuclear
ring however is very small, only� 0.1 M� yrŠ1. The strongest
in�ow residuals though do occur in the NW and SE edges of the
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Multiphase gas in NGC 5728 5871

Figure 9. Results of �tting the CO (2–1) (top row) and stellar velocity �eld (bottom row) with a rotating disc model. The observed velocity �eld is shown in
the left-hand panels, the best-�tting model in the middle panels, and the residuals in the right-hand panels.

ring, exactly where the dust lanes meet the ring and where we would
expect to �nd signatures of in�owing gas.

3.3 The inner warped disc

Inside the ring, both the stars and gas dramatically change their
distribution and kinematics. The bottom row of Fig.5 shows a
zoom in of the inner 6.5 arcsec for theF160Wimage andVŠH dust
map. We see inside from the contours of the continuum image and
elongation along a P.A.� 85� shown as a white line. This was �rst
observed by Shaw et al. (1993) who suggested the presence of a
stellar nuclear bar possibly supported by thex2 orbits of the main
large scale bar. Wilson et al. (1993) however also suggested it could
just be scattered nuclear light off dust from the AGN.

The dust map shows heavy extinction along an arc extending from
the NE to SW directly across the nucleus. This is also the location
of two strong concentrations of cold molecular gas that connect two
sides of the ring. These two clumps straddle the very centre such
that there is a lack of CO (2–1) emission at the location of the AGN
and correspond to the double peaks seen in lower resolution CO (1–
0) maps Petitpas & Wilson (2002). Perpendicular to the two clumps

and the stream are also two distinct holes of CO (2–1) emission.
These holes are aligned in the direction of the NLR and ionized
gas out�ow, and each have a radius of roughly 165 pc and cover a
surface area of 8.6× 104 pc2.

Using a 2 arcsec aperture and equation 2, we measure a molecular
gas mass of� 4 × 107 M� , or � 25 per cent of the total molecular
gas mass detected. Thus, while a large fraction of the molecular gas
is contained within the rotating ring, a substantial amount seems to
be experiencing irregular motion around the AGN.

The CO (2–1) line pro�les near the centre contain multiple
kinematic components which contribute to the increase of the
measured velocity dispersion in the single Gaussian �ts and are
evidence for irregular motion. These kinematic components could
be related to either the nuclear stellar bar or the ionized gas out�ow
so we performed a second �t of only the central 4 arcsec x 4
arcsec section of the ALMA cube. To �t each spaxel, we used
the method described in Fischer et al. (2017) that employs the
Bayesian MultiNest algorithm (Feroz, Hobson & Bridges2009;
Buchner et al.2014) to �t emission line pro�les and calculate the
evidence for a particular �t. In this way, by comparing the evidence
from a single component �t to a double component �t, we can
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5872 T. T. Shimizu et al.

Figure 10. Radial pro�le of the residual �ow velocity (blue) and �ow mass
(orange) calculated from concentric annuli placed on the residual velocity
�eld of the molecular gas after removing the best-�tting rotating disc model
(See Fig.9). Negative values correspond to out�ow while positive values
correspond to in�ow. The dashed lines indicate the transition from out�ow to
in�ow for the velocity and mass rate. The red shaded region shows the radii
where we observe the molecular gas ring. Inner to the ring we potentially
observe out�ow while outside the ring we observe in�ow.

determine whether the second component is statistically necessary.
This can be extended up to any number of components, and in this
work we allow for a maximum of three components based on visual
inspection of the ALMA cube.

A complication after �tting for multiple kinematic components
is associating each velocity component within each spaxel with
the ones in the other spaxels to form a coherent picture of the
gas kinematics. To accomplish this, we �rst determined the likely
independent components that existed in the region by �tting the
integrated CO (2–1) spectrum within the central 2 arcsec. We
found �ve distinct kinematic components that have velocities of
roughly Š200, Š100, 0, 100, and 200 km sŠ1 which are shown
together with the observed spectrum in Fig.11. Then, for each of
the components for a single spaxel �t, we associated it with one
of the �ve components based on which one it was closest to in

Figure 11. The integrated CO (2–1) spectrum within 2 arcsec of the
nucleus (blue line) together with our �t using �ve kinematic components
(orange line). We associate the two components with± 200 km sŠ1 velocities
(Comp1, green) and± 100 km sŠ1 (Comp2, red) as single components. The
�nal component near 0 km sŠ1 is Comp3 (pink).

velocity. In this way, we constructed �ux, velocity, and dispersion
maps for each of the �ve components. Finally, based on inspection
of each of the maps it was clear that the �rst and �fth components
as well as the second and fourth components are the opposite sides
of the same physical component so we plot them together. Fig.12
shows the results of our �ts and reconstruction of each molecular
gas component where Comp1 refers to the original �rst and �fth
components (± 200 km sŠ1), Comp2 refers to the original second
and fourth components (± 100 km sŠ1), and Comp3 is the original
third component (0 km sŠ1).

Our analysis therefore suggests the presence of three kinemati-
cally distinct cold molecular gas components in the nuclear region
of NGC 5728. The �rst, shown in the top row of Fig.12, is
characterized by LOS velocities near 200 km sŠ1 and a P.A.� 0� . The
second, shown in the middle row, is characterized by LOS velocities
around 100 km sŠ1 and a P.A.� 45� , while the third component has
LOS velocities near systemic and a kinematic P.A. that is unclear
since the velocity gradient is weak but a �ux P.A. near 90� .

We can also determine the mass of molecular gas that is contained
within each kinematic component using again equation 2 and the
conversions given above. We �nd a total mass within 2 arcsec
for Comp1, Comp2, and Comp3 of 1.6× 107, 1.6 × 107, and
7.7 × 106 M� , respectively. Thus about 40 per cent, 40 per cent,
and 20 per cent of the total nuclear molecular gas is contained in
Comp1, Comp2, and Comp3.

On all of the �ux maps, we also plot the contours of H2 (1–0)
S(1)emission from the SINFONI cube. On the velocity maps, we
plot the kinematic major axis for the circumnuclear rotating disc
based on our �t in Section 3.2.3, the ionized gas bicone region
based on the MUSE [OIII ] map, and the major axis of the nuclear
stellar bar based on Fig.5.

Immediately it is clear that Comp1 likely corresponds to gas still
in circular rotation in the inner part of the disc. However, it seems
that as the molecular gas is rotating towards the bicone, the gas is
being accelerated giving rise to the enhanced velocities seen here
and in the residuals of the disc modelling (see Fig.9). However,
as soon as the gas rotates into the bicone, all CO (2–1) emission
disappears given none of the components we identi�ed show any
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Multiphase gas in NGC 5728 5873

Figure 12. Results of our multicomponent �tting in the inner 4 arcsec of the ALMA cube. Each spaxel was �t with up to three velocity components. Each of
the best-�tting components were then grouped into �ve groups according to their velocity. The �rst and �fth components are plotted together in the toppanel as
Comp1. The second and fourth components are plotted together in the middle panels as Comp2. The third component is plotted in the bottom panels. The black
contours plot the �ux distribution of H2 (1–0) S(1) from our SINFONI cube. In the middle panels, we also plot the kinematic major axis of the circumnuclear
disc determined from our modelling of the larger scale CO (2–1) velocity �eld (purple), the ionized gas bicone region determined from the MUSE [OIII ] �ux
map (gold), and the P.A. of the nuclear stellar bar shown also in Fig.5 (green).

correspondence with the bicone. We discuss possible reasons for
the disappearance of CO (2–1) emission in Section 3.7.

Comp2, however, seems to be aligned perpendicular to the bicone
at least within the central 1 arcsec. Based on our later modelling of
the ionized gas, we �nd an inclination for the bicone of 49� compared
to an inclination for the disc of 43� . Since the bicone is directed
almost straight into the disc, the molecular gas must warp by 90�

in the inner nuclear region. Based on the P.A. shift for Comp2

compared to the larger scale disc and Comp1, we associate Comp2
with a warped inner rotating molecular disc that is contributing
to shaping the bicone and likely providing the material necessary
to fuel the AGN. Comp2 is further directly associated with the
strong extinction seen in Fig.5 and is therefore also providing the
obscuration necessary to hide the BLR. It also has a relatively high-
velocity dispersion of� 80 km sŠ1 also indicating a thick disc which
are commonly found in the central few 100 pc of AGNs (Hicks
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et al.2009; Riffel & Storchi-Bergmann2011a; Alonso-Herrero et al.
2018).

Comp3 perhaps is related to gas streaming along the nuclear bar.
The velocities near 0 km sŠ1 therefore are due to the orientation
of the bar in the plane of the sky. Petitpas & Wilson (2002) were
searching exactly for this molecular gas aligned with the nuclear
stellar bar but were unable to detect it likely due to the low spatial
resolution of their data. The thought was that nuclear gas in the bar
would be an indication that the nuclear stellar bar would be driving
gas further inward towards the AGN. However, we see here that
while it does seem that there is molecular gas associated with the
nuclear bar, the primary component that is driving gas to the centre
is instead Comp2 which itself is arranged in a bar-like structure. This
nuclear molecular gas bar then is signi�cantly leading the stellar bar
and in fact could be related to thex2 orbits of the nuclear stellar bar
which are perpendicular to the major axis of a bar. Hydrodynamical
simulations do indicate that gaseous bars should lead stellar bars
when both exist (Friedli & Martinet1993; Shaw et al.1993) however
note these simulations primarily consist of a single stellar and
gaseous bar whereas for NGC 5728 we are observing a secondary
nuclear and gaseous bar. The three molecular gas components make
for a seemingly chaotic environment around the AGN and is likely
not a dynamically stable set-up without collisions between gas
clouds. It is possible though that this contributes to the variability
of AGNs where short-lived, unstable molecular gas environments
quickly feed the AGN before breaking itself apart with the help of
AGN feedback.

The morphology of H2 (1–0) S(1) emission seems to be a com-
bination of all three components. The distinctS-shaped structure
looks to follow the edges of Comp1 while the slight extension in
the middle from NE to SW is either related to Comp2 or Comp3.
The biggest difference between H2 (1–0) S(1) and CO (2–1) is
that the peak of H2 (1–0) S(1)is directly located on the position
of the AGN while the peaks of CO (2–1) straddle the centre. This
combined with extended morphology following the edges of CO (2–
1) emission suggests that the H2 (1–0) S(1) emission is produced
by either X-ray heating from the AGN or shocks as the AGN driven
out�ow expands into the disc and is consistent with the conclusions
of a study of NIR line emission in 62 AGN from long slit spectra
(Rodŕ�guez-Ardila et al.2004; Rodŕ�guez-Ardila, Riffel & Pastoriza
2005; Riffel et al.2013b). Indeed Durŕe & Mould (2018) show that
this is the case through the use of H2 excitation diagrams.

3.4 AGN driven outßow

3.4.1 NLR morphology

From the MUSE [OIII ] maps (Fig.3) we �nd the NLR in a biconical
shape that seems to be ‘piercing’ through the centre of the ring
and has an apex exactly at the location of the AGN. Particularly
noticeable is the strong dip in [OIII ] emission towards the NW that
indicates obscuration by the nuclear star-forming disc. Combined
with the fact that the SE emission is systematically brighter than
the NW emission, the NLR is inclined such that the bicone is in
front of the nuclear disc towards the SE and behind the disc towards
the NW until it breaks through at larger radii. This interpretation is
consistent with previous studies of NGC 5728 usingHSTnarrow
band imaging (Wilson et al.1993) and lower spatial resolution IFU
observations (Davies et al.2016).

We measure a biconical NLR extent of 1.7 kpc to the SE and
2.1 kpc to the NW. The central PA is roughlyŠ60� and the full
opening angle is� 55� . The NLR emission, while extended out to

Figure 13. Three colour image of the central 4 arcsec x 4 arcsec of NGC
5728 from SINFONI. Red, green, and blue colours indicate emission from
H2 (1–0) S(1), [FeII ], and [SiVI], respectively. The black cross marks the
location of the AGN.

kpc scales, is largely concentrated in two clumps on opposite side
of the AGN. The brightest clump in the SE is only 130 pc away
from the AGN while the NW one is about 230 pc. Separating the
two clumps is another gap in emission that spatially corresponds to
the Comp2 component of the cold molecular gas shown in Fig.12
and suggests that it is the component that is obscuring the AGN and
producing the biconical shape of the NLR. The reason that the gap
in [O III ] emission does not fully align with the Comp2 molecular
gas component is due to the inclination of the bicone. The SE side of
the bicone is in front of Comp2 while the NW side is behind it such
that the gap in [OIII ] emission appears to the NW of the location of
Comp2. What is abundantly clear though is that the cavities of cold
molecular gas are �lled with warm ionized gas.

On smaller scales from the SINFONI data (Fig.A3), we �nd that
the ionized emission is largely con�ned to the NLR showing again a
biconical structure and extending from the SE to the NW, similar to
the [OIII ] emission from MUSE. The brightest emission for all three
emission lines ([FeII ], [Si VI], and Br
 ) is concentrated towards the
SE, and with the higher spatial resolution of SINFONI, we locate
it only 20 pc away from the AGN. Interestingly, [FeII ] shows the
same ‘hook’ structure to the NW as the H2 (1–0) S(1) emission,
except at locations inward from H2 (1–0) S(1). Both [SiVI] and Br

instead are distributed in distinct clouds and have an overall shorter
extent compared to [FeII ] and H2 (1–0) S(1). Fig.13 highlights
the spatial differences between the different phases of the gas with
warm molecular gas (red) encompassing the partially ionized gas
(green; [FeII ]) which then encompasses the fully ionized gas (blue;
[Si VI]). This observed ‘strati�cation’ of the ionization structure of
the gas around the nucleus strongly suggests that the AGN is the
source of the ionization. This is also further evidence that the so-
called ‘Coronal Line Region’ is simply the inner part of the NLR
where the ionizing radiation �eld is stronger and can produce lines
with higher ionization potential.

MNRAS 490,5860–5887 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/4/5860/5586578 by Liverpool John M
oores U

niversity user on 05 F
ebruary 2020



Multiphase gas in NGC 5728 5875

3.4.2 Ionized gas kinematics

In the nucleus, and spatially corresponding to the brightest clumps
of ionized gas emission, we �nd elevated velocities reaching
+ /Š400 km sŠ1. The kinematic P.A. is along the same direction
as the NLR and we see larger dispersions, although some of them
are due to beam smearing and the presence of multiple kinematic
components as in the cold molecular gas. All of this evidence points
towards the presence of an AGN driven out�ow, and the high spatial
resolution SINFONI observations only further increase support for
this interpretation. All of the SINFONI detected ionized emission
lines show high velocities along the major axis of the NLR and
dispersions reaching over 300 km sŠ1 (see Fig.A3). In particular,
the [SiVI] line displays the largest velocities reaching 500 km sŠ1.
Both Br
 and [FeII ] show in general the same velocity structure
albeit with slightly lower absolute velocities. This is in contrast
to the H2 (1–0) S(1)kinematics which show much lower velocities
and dispersions and suggests there is a lack of molecular gas in the
out�ow due to the AGN in�ating a bubble in the disc such as the
one seen in NGC 1068 (May & Steiner2017).

3.4.3 Outßow modeling

Building on the out�ow interpretation of the ionized gas kinematics,
we used DYSMALPY to model and �t for the out�ow parameters.
As we did for modelling the rotating disc, we used the 2D velocity
map as our input and speci�cally decided on the [SiVI] velocity
map since it shows the strongest out�ow signatures. Our biconical
out�ow model is similar to those that have been extensively used
in the literature for modelling the kinematics of gas around nearby
AGNs based on both long slit data (e.g. Crenshaw & Kraemer
2000; Crenshaw et al.2000, 2010; Das et al.2005, 2006; Fischer
et al.2013, 2014) as well as IFU data (e.g. M̈uller-Śanchez et al.
2011; Bae et al.2017). The model consists of two axisymmetric
cones that share an apex at the location of the AGN. The cones
have two opening angles, an inner (
 inner) and outer (
 outer) opening
angle that de�ne the walls of the cone and where the emission
originates. The bicone also has an inclination (ibicone where 0�

indicates the cones are oriented along the line of sight) and
position angle (P.A.bicone) on the sky with respect to the line of
sight.

As in Bae & Woo (2016), we assume the �ux is exponentially
decreasing with radius according toF (r ) = AeŠ�r/r end whererend

is the radial edge of the bicone and� controls the speed at which
the �ux falls off. Given we are only �tting the velocity map, we
�xed � to be 5 which is the value found for many nearby AGN.
Finally, the model allows for different velocity pro�les that change
as a function of radius. We chose a linearly increasing pro�le that
reaches a maximum (vmax) at a speci�c radius (rturn) then decreases
linearly until rend. This assumes a radially symmetric pro�le such
thatrend= 2rturn. As with modelling the rotating disc, we determined
the best-�tting parameters using MCMC with 800 walkers, 100 burn
steps, and 100 sampling steps.

Fig.14shows the results of our out�ow �tting. We �nd best-�tting
out�ow parameters of
 inner = 18 ± 1� , 
 outer = 23 ± 1� ibicone =
49 ± 2� , P.A.bicone = 43 ± 2� , rend = 540 ± 20 pc, andvmax =
737 ± 25 km sŠ1 based on the median and standard deviations of
the resulting posterior distributions.

Comparing the spatial orientations of the disc and out�ow, we
see that our initial interpretation that the NLR is in front of the disc
towards the SE and behind the disc towards the NW is correct. The
disc is inclined at an angle of 43� with respect to the LOS, while the

out�ow is inclined by 49� . However, an outer half opening angle
of 23� places the front side of the NLR at only an angle of 26� ,
well in front of the disc. The similarity of the inclinations for both
the disc and the out�ow further shows that the NLR is completely
intersecting the disc. The turnover radius for the out�ow is only
270 pc which explains why we only observe enhanced velocities
very near to the centre in the MUSE maps. Thus, while the NLR
extends out to 2 kpc only the very central regions are out�owing
and the rest is simply AGN excited gas within the disc.

3.5 Outßow energetics

In this section, we explore the ionized gas energetics within the
out�ow. Because of the short extent of the out�ow, we primarily
use the diagnostics available from the SINFONI cube to spatially
resolve the out�ow properties. In particular, we want to measure
the mass out�ow rate, mechanical energy rate, and momentum rate
as a function of radius and compare to the energy and momentum
injection from the central AGN.

Similar to our analysis of the electron density radial pro�le in
Appendix B, we binned the SINFONI cube using annular apertures
along the SE redshifted half of the NLR given extinction is not as
much of a factor. For the SINFONI data, we chose an annular width
of 0.075 arcsec which is half the PSF size and extended out to 1.65
arcsec. Within each aperture, we �t the [SiVI] and Br
 line pro�le
with either 1 or 2 Gaussian components, choosing between them
based on log (evidence) as we did for the very central regions of the
ALMA data. If the pro�le needed two components, we calculated
a �ux-weighted average velocity since we assume that all of the
emission in the inner regions is related to the out�ow.

The upper panel of Fig.15plots the resulting velocity pro�le for
both [SiVI] and Br
 with all radii and velocities deprojected based
on the inclination from the best-�tting 2D model from Section 3.4.3.
Both ionized gas lines show essentially the same pro�le, implying
that both lines are tracing the same physical components of gas.
The narrow and broad components are also both increasing with
radius up to� 250 pc, then decreasing towards larger radii just as
we modelled previously. The general consistency of both the narrow
and broad component suggests that these are also tracing the same
gas and merely re�ect the underlying velocity distribution of the
gas. We also show the few inner bins of the [OIII ] velocity pro�le
from MUSE which traces roughly the same shape except a bit more
�attened due to the larger beam size of the MUSE observation. We
further show the velocity pro�les from the stars and the best-�tting
rotating disc model used to �t the CO (2–1) velocity map. These
both show a nearly �at pro�le around 0 km sŠ1 since the bicone axis
is aligned nearly along the minor axis of the disc.

Because Br
 and [SiVI] originate in the same gas we can measure
the ionized gas mass using the total �ux of the Br
 line assuming
Case B recombination gas conditions. Further since Br
 occurs in
the NIR, dust extinction is negligible. We convert from Br
 �ux to
gas mass within each aperture using the formula given in Storchi-
Bergmann et al. (2009):

MHII = 3 × 1019

�
FBr


erg cmŠ2 sŠ1

��
D

Mpc

� 2�
ne

cmŠ3

� Š1

, (3)

whereD is the luminosity distance in Mpc andne is the electron
density.MHII then is the total ionized gas mass in solar units. For
ne, we assume a constant electron density within the SINFONI
FOV and use the value obtained from our analysis of the auroral
and trans-auroral lines (1550 cmŠ3; see Appendix B). We can then
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5876 T. T. Shimizu et al.

Figure 14. Results of �tting the [SiVI] velocity �eld with a biconical out�ow model. The observed velocity �eld is shown in the left-hand panel, the best-�tting
model in the middle panel, and the residuals in the right-hand panel.

calculate the mass out�ow rate, mechanical luminosity, and out�ow
momentum rate using the following standard equations:

�Mout =
�

MHII vout

�r

�
, (4)

�Eout =
1
2

�Moutv2
out, (5)

�pout = �Moutvout, (6)

where� r is the width of the annular apertures. The bottom three
panels of Fig.15 show our calculations of�Mout, �Eout, and �pout

as a function of distance from the AGN.�Mout, �Eout, and �pout all
show peak values around 200 pc and peak values of 0.08 M�

yrŠ1, 4 × 1039 erg sŠ1, and 2× 1032 Dyne. We note that our
out�ow measurements disagree from those presented in Durré &
Mould (2019) who reported �Mout = 38 M� yrŠ1, almost 500 times
greater than ours. We attribute this difference to two factors: (1)
they assumed an electron density of 100 cmŠ3 compared to our
measured value of 1000 cmŠ3 and (2) they summed up the out�ow
rate determined within each single spaxel over the entire SINFONI
FOV. For mass out�ow rates, this is not correct as the rate needs to
be calculated within a common radius.

The peak mechanical energy in the out�ow is well below the AGN
luminosity,LBol = 1.4× 1044 erg sŠ1, only reaching 0.003 per cent
of LBol. Similarly, the ratio of the momentum rate to the radiation
momentum rate from the AGN (LBol/c) is only 0.043. These
properties all suggest that the out�ow currently is not energy driven
but rather momentum driven given their extremely low values (e.g.
Faucher-Gigùere & Quataert2012; Zubovas & King2012).

While the values seem quite low, we can compare them to the
properties of out�ows found across literature. Fiore et al. (2017)
recently compiled a comprehensive set of out�ow energetics from
various studies over the years spanning a large range of AGN
luminosity. They used this data to establish clear AGN wind scaling
relations, in particular between the mass out�ow rate and out�ow
power with the AGN bolometric luminosity in all phases of the gas
in the out�ow.

In Fig.16, we compare our values of�Mout and �Eout for NGC 5728
with the ionized wind data from Fiore et al. (2017). NGC 5728 lies

very close to the correlations and the low values of�Mout and �Eout

seem to be simply due to the relatively modest AGN luminosity.
With only one point, we cannot de�nitively determine if the
correlations presented in Fiore et al. (2017) actually extend to lower
luminosities. Therefore, we compiled more values for�Mout and �Eout

with a focus on AGN withL Bol � 1046 erg sŠ1. We found data for 15
AGN: NGC 1068, NGC 2992, NGC 3783, NGC 6814, NGC 7469
(Müller-Śanchez et al.2011), NGC 4151 (Crenshaw et al.2015),
Mrk 573 (Revalski et al.2018a), Mrk 34 (Revalski et al.2018b),
NGC 7582 (Riffel et al.2009a), Mrk 1066 (Riffel & Storchi-
Bergmann2011a), Mrk 1157 (Riffel & Storchi-Bergmann2011b),
Mrk 79 (Riffel, Storchi-Bergmann & Winge2013a), NGC 5929
(Riffel, Storchi-Bergmann & Riffel2015), NGC 2110 (Schnorr-
Müller et al.2014), and NGC 3081 (Schnorr-M̈uller et al.2016).
Finally, we also include the sample of 234 type 2 AGN studied in
BN19using single integrated SDSS spectra and dust SED �tting.

The inclusion of both single source literature compilation and
the BN19 sample shows that while NGC 5728 lies close to the
Fiore et al. (2017) correlations, there is likely substantial scatter
at lower luminosities. That said, combining all of these samples
together can be dangerous given the widely varying methods and
data quality used to measure these properties. In particular, while
Fiore et al. (2017) renormalized all out�ow properties to a constant
electron density,BN19 showed that object by object determined
densities can change the mass out�ow rate considerably and thus
weaken the mass out�ow rate correlation. What is needed to con�rm
these correlations is a large, spatially resolved sample of AGN
where all of these properties can be properly and systematically
measured.

3.6 AGN feedback in NGC 5728

With such a low mass out�ow rate and out�ow power, it is unlikely
that the AGN driven wind is effectively suppressing star formation
in NGC 5728 and affecting its evolution. With a total molecular
gas mass in the circumnuclear disc of 108.1 M� , it would take
217 Myr to completely clear the disc of its gas even including
the potential molecular gas out�ow. UsingHerschelphotometry
and SED �tting, Shimizu et al. (2017) estimated a global SFR of
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Multiphase gas in NGC 5728 5877

Figure 15. Radial pro�les of the out�ow velocity (top panel), mass out�ow rate (second panel), out�ow kinetic luminosity (third panel), and momentum rate
(bottom panel) determined from concentric annuli spanning the redshifted side of the NLR. Velocity pro�les are shown for [SiVI], Br 
 , [O III ], the stars, and
CO (2–1). The CO (2–1) velocities were inferred from the best-�tting rotating disc model due to the lack of CO (2–1) emission in the bicone. The dashed
vertical line indicates the best-�tting turnover radius from our 2D out�ow modelling of the [SiVI] velocity map.
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5878 T. T. Shimizu et al.

Figure 16. Correlations between the mass out�ow rate (�Mout; top panel)
and kinetic out�ow power (�Eout; bottom panel). Blue points are the data
compiled by Fiore et al. (2017) and the orange square plots our values for
NGC 5728. Purple diamonds are compiled from various literature sources
for more modest AGN luminosities. See the text for the speci�c references
for each of the AGN. Grey points are the type 2 AGN studied in Baron &
Netzer (2019). The black dashed lines show the best-�tting correlations from
Fiore et al. (2017).

2.1 M� yrŠ1. Combining this with �Mout, the total gas depletion time
still 47 Myr. However, this is under the assumption that all of the
out�owing gas can escape the gravitational potential of the galaxy.
Following Rupke, Veilleux & Sanders (2002), we can estimate the
escape velocity under the assumption of a truncated isothermal
sphere,vesc(r ) =

�
(2)vcirc[1 + ln(rmax/r )]1/ 2. We assume anrmax=

100 kpc and usevcirc = 320 km sŠ1 from Rubin (1980). At 250 pc,
the radius of peak out�ow velocity,vesc= 1200 km sŠ1, far above the
out�ow velocities of either the ionized or molecular gas. Out�ows
in moderate luminosity AGNs do not seem to have the energy to
escape their host galaxies as this has been observed in many other
systems (e.g. Davies et al.2014; Fischer et al.2017; Herrera-Camus
et al.2019).

We can further compare the mass out�ow rate with the mass �ow
rate through the bicone. Using the best-�tting parameters for the
out�ow, the total surface area covered by the bicone is 0.19 kpc2.
From our disc modelling we �nd an average rotational velocity of

the molecular gas of 273 km sŠ1 through the bicone. Combined with
the average surface mass density of 55 M� pcŠ2, we calculate that
molecular gas �ows through the bicone at a rate of� 9.5 M� yrŠ1,
about 16x higher than the mass out�ow rate. Essentially, the gas
that is entering the bicone is not being ejected at rates large enough
that would substantially disturb the structure and dynamics of the
disc. This is especially true when we take into account the fact that
the molecular gas is only moving radially at speeds of 40 km sŠ1

which means that by the time it exits the bicone it has only moved
about 55 pc.

Finally, we can compare the mass out�ow rate to the current mass
accretion rate on to the SMBH using the following equation:

�Macc =
L Bol

c2�
, (7)

where� is the ef�ciency of accretion to convert rest mass energy
into radiation andc is the speed of light. Assuming� � 0.1 for a
standard geometrically thin, optically thick accretion disc, we �nd
a current �Macc � 0.025 M� yrŠ1. Therefore, even the ionized gas
mass out�ow rate is three times the current mass accretion rate on
to the SMBH implying that the majority of gas near the AGN does
not end up fuelling it.

3.7 Missing molecular gas?

The most striking evidence of AGN feedback is the presence of
what appears to be large ‘holes’ of cold molecular gas as probed by
CO (2–1) emission that are co-located exactly along the out�ow
and NLR. Therefore, it’s reasonable to interpret that the AGN
driven out�ow has completely evacuated these regions of the disc
of molecular gas. However, these holes do not exist in maps of
the ionized gas and in fact it is these regions where emission from
ionized gas is strongest. If an AGN driven out�ow had indeed
evacuated these regions, we should expect it to drive out all phases
of gas.

A plausible explanation for these holes is instead that CO (2–1) is
not accurately tracing the presence molecular gas in the NLR. Under
standard ISM conditions, CO (2–1) would be a reliable tracer of the
molecular gas mass, however in the presence of the strong radiation
�eld of an AGN, it could be that the CO (2–1) line in particular
or all CO lines are suppressed. Whereas in a normal star-forming
disc, molecular gas is primarily heated by nearby OB stars with
FUV photons dominating the process, near an AGN, X-rays will
dominate over FUV photons and control the heating and chemical
composition of the gas producing a so-called X-ray dissociation
region (XDR).

This is being increasingly observed in local AGNs. Both Rosario
et al. (2019) and Feruglio et al. (2019) reported recently on a lack of
CO (2–1) emission near the central AGN that is instead �lled with H2

(1–0) S(1) and ionized gas emission. These cavities of CO emission
are further cospatial with hard X-ray emission, con�rming that X-
ray radiation is suppressing the CO emission. While we observe the
same effect at the very centre of the galaxy corresponding to the
location of the AGN, we do not observe H2 (1–0) S(1) emission
�lling the larger scale CO (2–1) holes that correspond to the bicone.
Instead, H2 (1–0) S(1) is only lining the edges of the bicone where
gas is entering the bicone. It is possible then that the inner NLR is
devoid of molecular gas and a continuation of the strati�cation we
observe in the SINFONI line emission continues on larger scales,
i.e. that cold molecular gas only exists outside the bicone region with
hotter and hotter gas becoming more prevalent towards the inner
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NLR. To con�rm the lack of molecular gas in the NLR, however,
observations of higher-J CO lines are needed.

4 SUMMARY AND CONCLUSIONS

We have presented a comprehensive analysis of multiwavelength
data sets for the nearby Seyfert 2 galaxy, NGC 5728. Using
primarily HSTimaging and MUSE, SINFONI, and ALMA cubes,
we measured and analysed the distribution and kinematics of the
stars, ionized gas, and molecular gas. Our results and conclusions
are summarized as follows:

(i) Prominent dust lanes are observed extending along the major
axis of the large stellar bar from the outer disc to the circumnuclear
ring. These are likely coincident with the primary shocks produced
by the axisymmetric bar potential and driving in�ow to the circum-
nuclear region.

(ii) The circumnuclear ring is observed as a ring of low stellar
velocity dispersion, bright H� clumps, and CO (2–1) emission
indicating the presence of on ongoing star formation and young
stars. This star formation is likely induced by the build-up of gas at
the ILR of the primary bar. The kinematics of the ring are well �t
by circular rotation, however we also seen signs of in�ow into the
ring where the ring and dust lanes meet at a rate of 1 M� yrŠ1.

(iii) Inside the ring, we �nd a three distinct kinematic components
of the molecular gas corresponding to gas rotating with the ring,
gas in�owing to the AGN, and gas following the nuclear stellar bar.
The gas in�owing to the AGN is distributed across the nucleus at
the location of heavy extinction and is the source of obscuration for
the AGN due to its perpendicular orientation compared to the NLR.

(iv) The AGN is driving a weak out�ow primarily seen in ionized
gas with a mass out�ow rate of 0.08 M� yrŠ1 that only reaches
to radii of 250 pc before decelerating down to stellar rotation
velocities. There are hints of molecular out�ow in residuals of the
disc modelling indicating a molecular mass out�ow rate of 1 M�

yrŠ1 but only 40 km sŠ1velocity. We determine that the out�ow is
unlikely to be largely disturbing the structure of the circumnuclear
disc.

(v) We observe cavities of CO emission co-spatial with the AGN
out�ow that could either be explained by a de�ciency of molecular
gas in the NLR or a suppression of CO emission by the hard X-ray
radiation of the AGN.

Overall, for NGC 5728, we �nd signatures of both feeding and
feedback of the AGN. However, feeding of both the AGN and
central region of the galaxy is currently the dominant process. NGC
5728 would need a large increase to its accretion rate to boost the
energetics of its out�ow and severely disrupt its evolution.
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Wozniak H., 2001,A&A , 368, 52
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Multiphase gas in NGC 5728 5881

Figure A1. Single Gaussian �ts to the H� , [N II ], and [OIII ] lines detected in the MUSE cube. Left column shows the integrated �ux normalized to the
maximum �ux, middle column shows the velocity, and the right column shows the velocity dispersion. Velocity dispersions have been corrected for instrumental
line broadening. In all frames, North is up and East is to the left. The black cross locates the position of the AGN.

MNRAS 490,5860–5887 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/4/5860/5586578 by Liverpool John M
oores U

niversity user on 05 F
ebruary 2020



5882 T. T. Shimizu et al.

Figure A2. Same as Fig.A1 for H � , [SII ], and [OI]. The [SII ] �ux map indicates the combined �ux of the	 6716 and	 6731 lines.
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Multiphase gas in NGC 5728 5883

Figure A3. Single Gaussian �ts to the prominent emission lines detected in theH + K band SINFONI cube. Left column shows the integrated �ux normalized
to the maximum �ux, middle column shows the velocity, and the right column shows the velocity dispersion. Velocity dispersions have been corrected for
instrumental line broadening. In all frames, North is up and East is to the left. The black cross locates the position of the AGN.
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Figure A4. Results of a single Gaussian �t to the ALMA CO 2–1 data. Left, middle, and right columns show the normalized integrated �ux, velocity, and
velocity dispersion. The small red ellipse in the bottom right corner indicates the size of the beam.

APPENDIX B: ELECTRON DENSIT IES

An important diagnostic IFU studies can provide is the electron
density (ne) of the ionized gas. The electron density is needed in
particular for the determination of mass out�ow rates for both star
formation and AGN driven out�ows. Historically, these have been
measured from single spectra using the [SII ]		 6716,6731 line ratio
with high uncertainties or assumed based on local studies with usual
estimates ofne < 100 cmŠ3. Recently, IFU studies have begun to
spatially resolve the electron density distribution within individual
galaxies at low redshift (e.g. Kakkad et al.2018; Nascimento et al.
2019). At high redshift, stacks of the nuclear spectra from IFU
surveys have produced estimates of the electron density for both
H II regions and broad out�ows (F̈orster Schreiber et al.2019).
These studies have all indicated that the assumed electron densities
have been underestimated which in turn can greatly overestimate
the mass out�ow rate.

We use three independent methods to determine the electron
density in the circumnuclear region of NGC 5728. The �rst and
most popular method in the literature uses the [SII ] doublet ratio
as the density diagnostic due to the weak dependence on electron
temperature. With a critical density around 1000 cmŠ3 the [SII ]
line ratio provides reliable electron densities within the range of
50–2000 cmŠ3. Above or below these densities however, the [SII ]
doublet ratio saturates and becomes unresponsive to higher or
lower densities.

The second method, introduced by Holt et al. (2011) and used
extensively in Rose et al. (2018) and Santoro et al. (2018), incor-
porates the ratios of four auroral or trans-auroral emission lines:
the [OII] doublets		 3726,3729 and		 7319,7330 and the [SII ]
doublets		 4069,4076 and		 6716,6731. This method constructs
line ratios from the total �ux between the doublets instead of the �ux
in individual lines and is therefore less susceptible to degeneracies
in decomposing the doublets. The large wavelength range further
provides an estimate of the gas reddening. As shown by Holt et al.
(2011), this diagnostic is also sensitive to a much larger range of
electron densities than the single [SII ]		 6716,6731 line ratio (102–
106.5 cmŠ3). However, both [OII] doublets and the [SII ]		 4069,
4076 doublet are usually weak and to simultaneously measure all
four doublets requires either multiple spectra or a spectrum that
covers a large wavelength range.

The third method was developed in Baron & Netzer (2019,
hereafterBN19) and we provide a brief summary here. Instead
of using the weak auroral and trans-auroral lines, they calibrated
a method of measuringne using the strong [OIII ], H � , H � , and
[N II] lines under the assumption that the gas is photoionized
by an AGN. They found that the [OIII ]/H � and [NII]/H � line
ratios can provide a reliable measure of the ionization parameter
following a simple equation which can then be converted into
an electron density assuming the radial distance to the AGN is
known.

MUSE does not extend to short enough wavelengths for the
trans-auroral analysis, but as part of the LLAMA programme, we
obtained X-Shooter IFU spectra for all of the targets. For NGC
5728, we detected all four of the auroral or trans-auroral doublets
in the spectrum extracted from a central 1.8 arcsec box aperture.
In Fig. B1, we show cut-outs of the X-Shooter spectrum around
the four doublets. Unfortunately the [OII]		 3726,3729 doublet is
next to the edge of one of the UVB echelle orders which caused the
increased noise blue-ward of the doublet.

To determine the necessary kinematic components to model the
doublets, we �rst �t the [OIII ]		 4959,5007 emission lines to use as
a robust template for the presence, location, and width of the existing
kinematic components comprising the ionized gas as we recently
did for this same galaxy in Shimizu et al. (2018). In �tting the [O III ]
doublet, we �xed the velocity and dispersion of the components to
be the same between each of the lines and �xed the intensity ratio
(5007/4959) to 3, the theoretical value. The aperture used to produce
the X-Shooter spectrum encompasses both sides of the out�ow so
we used a combination of red and blue-shifted Gaussian components
in our model. To properly reproduce the [OIII ] line pro�le, we found
we needed six kinematic components, three red-shifted, and three
blue-shifted.

In �tting the auroral and trans-auroral lines, we �xed the velocity
and dispersions of all of these components but left the intensities to
vary. However, we found while �tting the [SII ]		 6716,6731 doublet
that we needed to include a seventh component with 0 km sŠ1

velocity and 168± 7 km sŠ1 dispersion. The remaining three
doublets were then well �tted with these seven components. Fig.B1
shows the best-�tting model for each of the doublets as well as the
combined red-shifted, blue-shifted, and systemic components of the
model.
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Multiphase gas in NGC 5728 5885

Figure B1. X-Shooter spectrum cut-outs (purple) around the four trans-auroral doublets [SII ]		 6716,6731 (top left); [SII ]		 4069,4076 (top right);
[O II ]		 3726,3729 (bottom left); and [OII]		 7319,7330 (bottom right). Overplotted are the best-�tting model (orange) and its red-shifted (red, dashed),
blue-shifted (blue, dashed), and systemic (green, dashed) components. Spectra have been normalized to the maximum value of the cutout and thex-axis
converted to velocities relative to the blue component of the doublet.

While the �ts overall are satisfactory, the low S/N and relatively
small separation of three of the doublets creates strong degeneracies
between the amplitudes of the individual components. However, as
mentioned previously, the electron density measurement from the
trans-auroral lines is only dependent on the total �ux of each of
the doublets. Therefore, for NGC 5728 the combined auroral and
trans-auroral lines can provide a robust estimate of theßux-weighted
electron density but cannot provide separate electron densities for
each of the kinematic components.

Fig. B2 plots the location of the [SII ] and [OII] doublet ratios
along with the expected values for a grid of models with different
E(BŠ V) andne. The models are the same as those presented in Rose
et al. (2018) and were produced using theCLOUDY photoionization

code under the assumptions of solar metallicity gas photoionized
by a central source with a power law continuum (� = Š 1.5 for
F� 	 � � ). They varied the electron density of the gas to model
intrinsic trans-auroral line ratios and then applied a Calzetti et al.
(2000) reddening law for a range ofE(B Š V).

Using 2D spline interpolation, we estimated the best-�tting logne

and E(B Š V) for NGC 5728 assuming they vary smoothly as a
function of the trans-auroral line ratios. Taking into account only
the uncertainties on the line ratios, we estimate a �ux-weighted
logne = 3.19± 0.12 (1550 cmŠ3) andE(B Š V) = 0.18± 0.05.

Within the same X-Shooter spectrum, we then �t the H� + [N II]
complex and H� line pro�le using the same kinematic components
to determinene via theBN19method. As a comparison to the trans-
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Figure B2. Trans-auroral line ratio diagram showing the location of
the [SII ](4069+ 4076/6716+ 6731) and [OII](3726+ 3729/7319+ 7330)
ratios for NGC 5728 (purple point). The black lines with points plot the
values generated from a grid ofCLOUDY models with a range of logne and
E(B Š V).

Figure B3. [O III ]	 5007 �ux map of the central 12 arcsec from the MUSE
cube. Overlaid are the locations of the annular apertures used to measure
the properties of the NLR. The black cross shows the location of the
AGN.

auroral estimate, we only calculated [OIII ]/H � and [NII]/H � line
ratios for the total line pro�le. From the line ratios, we measure a
logU = Š 2.59± 0.11. The biggest uncertainty here is what radial
position to choose to convert logU into an electron density. We
chose 171 pc which corresponds to half the size of the X-Shooter
aperture. We �nd logne = 3.20 which agrees well with the value
from the auroral and trans-auroral lines.

We can compare this to using only the [SII ]		 6716,6731 line
ratio. We �nd an [SII ] 6716/6731 ratio of 0.65± 0.34. Using the

Figure B4. Radial pro�le of log ne along the redshifted side of the NLR
axis and within apertures shown in Fig.B3. The blue solid points plot the
measurement using Gaussian �tting of the [SII ] doublet emission line pro�le
while the green squares plot the measurement based on optical line ratios
and the method from Baron & Netzer (2019). The orange point shows the
ne measurement from our trans-auroral emission line analysis and the open
red square shows theBN19 measurement from the X-Shooter optical line
ratios.

PYNEB6 software package and assuming an electron temperature of
104 K, this translates to a logne = 3.36± 0.95 (2300 cmŠ3). Clearly
the large amount of blending between the [SII ] doublet lines causes
severe degeneracies and leads to almost a factor of ten uncertainty
even though the value agrees quite well with the trans-auroral value.

We also compared the X-Shooter derivedne with ones obtained
from the MUSE cube based on both the [SII ] 6716/6731 ratio and
theBN19method. We measured the line �uxes using annular slices
along a PA ofŠ65� West of North, i.e. along the bicone axis. The
annular slices spanned angles+ /Š20� away from the centre, had a
width of 0.5 arcsec, and ranged from 0 to 11.5 arcsec away from the
AGN. We chose to only use the redshifted SE side of the NLR since
it is most unaffected by extinction and has higher S/N. Fig.B3 plots
the annular apertures on top of the [OIII ]	 5007 �ux map from our
single Gaussian �ts to the MUSE cube and shows how the annuli
cover the majority of the biconical structure of the NLR.

Spectra were extracted from each of the apertures and the [OIII ]
doublet was again �t �rst to determine the necessary number of
kinematic components in the model since the spatial location,
aperture size, spectral resolution, and S/N is different from the X-
Shooter spectrum. The H� , H � + [N II ] complex, and [SII ] doublet
were then �t with the same components.

Fig.B4 plotsne as a function of radius as determined by the [SII ]
6716/6731 ratio and theBN19 method from the MUSE cube. Also
plotted in the centre is our estimate from the X-Shooter spectrum.
Inside of 1kpc, there is a strong increase ofne based onBN19,
whereas the [SII ] basedne slightly decreases toward the centre.
This is due to the strong blending of the [SII ] 6716/6731 doublet
in the centre where the velocity gradient is large and there are
multiple kinematic components. Therefore a robust [SII ] doublet
measurement of the electron density becomes very dif�cult without

6http://www.iac.es/proyecto/PyNeb/
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high spectral resolution. TheBN19based values are also very well
aligned with the auroral and trans-auroral based value which is
the most robust estimate. It is clear then that within 1 kpc,ne �
1000 cmŠ3, therefore for all later analysis we will use the auroral
and trans-auroral value as the electron density of the gas. At larger
radii, we note there is better consistency between theBN19 and
[SII ] doublet methods but still some discrepancies which could be
explained by the different emission regions for the various lines. It
is possible that while [OIII ] and H� are being emitted throughout a
whole ionized cloud, [SII ] instead is only emitted at the ionization
front.
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