
Yang, Z, Abujaafar, KM, Qu, Z, Wang, J, Nazir, S and Wan, C

 Use of evidential reasoning for eliciting bayesian subjective probabilities in 
human reliability analysis: A maritime case

http://researchonline.ljmu.ac.uk/id/eprint/12258/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Yang, Z, Abujaafar, KM, Qu, Z, Wang, J, Nazir, S and Wan, C (2019) Use of 
evidential reasoning for eliciting bayesian subjective probabilities in human
reliability analysis: A maritime case. Ocean Engineering, 186. ISSN 0029-
8018 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 

 

Use of evidential reasoning for eliciting Bayesian subjective probabilities in human 

reliability analysis: a maritime case  

 
Abstract  

Modelling the interdependencies among the factors influencing human error (e.g. the common 

performance conditions (CPCs) in Cognitive Reliability Error Analysis Method (CREAM)) stimulates 

the use of Bayesian Networks (BNs) in Human Reliability Analysis (HRA). However, subjective 

probability elicitation for a BN is often a daunting and complex task. To create conditional probability 

values for each given variable in a BN requires a high degree of knowledge and engineering effort, 

often from a group of domain experts. This paper presents a novel hybrid approach for incorporating 

the evidential reasoning (ER) approach with BNs to facilitate HRA under incomplete data. The kernel 

of this approach is to develop the best and the worst possible conditional subjective probabilities of the 

nodes representing the factors influencing HRA when using BNs in human error probability (HEP). 

The proposed hybrid approach is demonstrated by using CREAM to estimate HEP in the maritime area. 

The findings from the hybrid ER-BN model can effectively facilitate HEP analysis in specific and 

decision-making under uncertainty in general. 

Keywords: Human reliability analysis, human error probability, evidential reasoning, Bayesian 

network, maritime risk.  

1. Introduction  

The second generation Human Reliability Analysis (HRA) methods such as the Cognitive Reliability 

and Error Analysis Method (CREAM) (Hollnagel, 1998) were used to proactively assess the erroneous 

human actions in complicated systems in a way that the context influencing human action is 

appropriately taken into account. While facilitating the quantitative development of HRA, these 

methods exposed some problems in their practical applications. For instance, the prospective 

assessment model of the basic approach to estimate human error probability (HEP) in CREAM 

(Hollnagel, 1998) cannot provide a crisp value of the consequences of human performance, and the 

HEP estimation mechanism is not sensitive to minor changes associated with the nine common  

performance conditions (CPCs) in CREAM (Yang et al., 2013; Xi et al., 2017). A fuzzy Bayesian 

reasoning approach was developed to deal with this problem through using Bayesian Networks (BNs) 

to model the parent-child relationship between the CPCs and Contextual Control Model Controlling 

Modes (COCOM-CMs) in CREAM (Yang et al., 2013; Abujaafar et al., 2016). However, it requires 

too much information about the prior conditional probabilities assigned to the node of COCOM-CMs, 

jeopardising the applicability of the approach. Furthermore, Bayesian inference requires probability 

completeness. Subjective judgements are usually used to complement the unavailability of statistical 

data. Even though subjective probabilities can be elicited by experts, it often raises the problems relating 
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to accuracy, consensus and completeness of judgements. The evidential reasoning (ER) approach (Yang 

and Xu, 2002) has shown its attractiveness to tackle the high uncertainty in data (e.g. incompleteness) 

associated with subjective judgements and has therefore been used to synthesise experts’ estimates in 

HRA (Xi et al., 2017). However, so far the two challenging but essential features of uncertain data in 

HRA, interdependency among performance factors and incompleteness in subjective estimates have not 

been simultaneously addressed with success, in order for effective solutions to be found. Obviously, 

such incomplete probabilities can be effectively elicited by incorporating partial degrees of belief. In 

this regard, an ER algorithm has been developed on the basis of the Dempster-Shafer (D-S) theory of 

evidence (Dempster, 1968; Shafer, 1976), which can be well suited to modelling subjective credibility 

induced by partial evidence observation (Smets, 1988). The ER’s synthesising capability of partial 

degrees of belief has enlarged the utilisation scope of the traditional probabilistic theory, particularly in 

describing and handling uncertain information (e.g. incompleteness and ignorance) by using the concept 

of degrees of belief (Yang et al., 2008; Wan et al., 2019). Therefore, it is proposed to be integrated with 

BNs in this research to tackle the incapability of BNs in modelling incomplete, subjective probabilities 

introduced by multiple experts.  

This paper presents a new hybrid approach for combining an ER algorithm with BNs in a 

complementary way, taking into account both interdependent performance factors and incomplete 

subjective data simultaneously. The kernel of the proposed method is that two individual assessment 

scenarios involving the best and worst evaluation models for all the nodes of incomplete subjective 

probabilities, are created, in which the remaining probability masses (due to incompleteness) of the 

nodes are assigned back to their best (i.e. that contributes to the lowest HEP) and worst (i.e. that 

contributes to the highest HEP) grades, homogeneously and respectively. To achieve the above aim, the 

literature on the use of conventional CREAM and the development of the extended CREAM are 

reviewed to reveal the associated weaknesses and formulate the research problems in Section 2. In 

Section 3, a new hybrid approach by combining ER and BNs is developed to overcome the problems 

identified. Its applicability and feasibility are demonstrated by an illustrative example for easy 

understanding of the relevant mathematical algorithms in Section 4 and by studying the Deepwater 

Horizon accident case in Section 5. Section 6 concludes the achieved results. 

2. Literature review  

2.1 Traditional CREAM method 

To model the causal relations, the CREAM methodology has been derived from its core, the Contextual 

Control Model (COCOM). COCOM focuses on the principle that human performance is the outcome 

of the purposive use of competence adjusted to specific working conditions rather than of the pre-

determined sequence of response to given events (Yang et al., 2013). As one of the most widely known 

‘second generation’ HRA methods, CREAM presents a consistent error classification system that 
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integrates individual, technological and organizational factors. The classification describes the relations 

between causes and effects by defining a number of sub-groups and tables, which are provided for the 

error modes on the one hand and the organisational causes on the other. As a kind of context-related 

HRA method, CREAM provides an approach to the assessment of cognitive processes during 

emergencies, and thus it has been widely recognised and used in the analysis of marine accidents. 

Among the recent examples are Zhou et al. (2017) and Ung (2018). However, CREAM (both basic and 

extended methods) has exposed certain practical limitations in its applications especially in the maritime 

industry. The failure rate intervals of Human Failure Probability (HFP) values from the basic method 

appear to be unacceptably wide even for the use in screening (Fujita and Hollnagel, 2004). It is also 

difficult to further use and interpret such failure rate intervals in practice. The extended method uses 

the output from the basic CREAM and appropriate data sources to calculate the probability of each 

cognitive function failure (Hollnagel, 1998). Lack of critical mass in statistical failure data, however, 

proves the tasks of adapting the extended method in the maritime area to be challenging (Xi et al., 

2017). All of these limitations stimulate the development of advanced techniques in CREAM. 

2.2 Extensions of CREAM with uncertainty treatment techniques 

Over the past decade, advanced quantification approaches for HEP in CREAM have been proposed by 

using different uncertainty treatment techniques including fuzzy logic (Ung, 2015), BNs (Marseguerra 

et al. 2007), and ER (Xi et al., 2017). Kim et al. (2006) proposed a probabilistic method by using 

Bayesian networks for a better estimation of the control mode, which is able to produce mathematically 

correct results when levels of CPCs are given probabilistically. Konstandinidou et al. (2006) developed 

a fuzzy classification system for the estimation of the probability of human erroneous actions according 

to CREAM. The results obtained were in the form of crisp numbers, which can be used directly in other 

risk analysis models (e.g. fault tree model) for the quantification of specific undesired events. Although 

some attractiveness is observed in terms of the enhancement of CREAM in certain specific aspects 

though involving one (or some) of these uncertainty treatment techniques, a number of practical 

problems are still exposed. Examples of such problems include the loss of useful information in fuzzy 

Max–Min inference operations, lack of adequacy of modelling CPC dependencies and of instant human 

failure probability estimation, and inability of incorporating different effects/importance on human 

performance that CPCs may have in the practical HRA applications.  

In view of the above-mentioned concerns, Yang et al. (2013) developed a generic BN-based HRA 

methodology, in which the prospective analysis of CREAM is modified, to facilitate the quantification 

of maritime human failures by effectively incorporating both fuzzy logic and Bayesian inference 

mechanisms. The framework has used fuzzy IF-THEN rule bases with belief structures and BNs to 

aggregate all the rules associated with a seafarer’s task in order to estimate his/her failure probability. 

However, it is realised that large BNs of multi-tier nodes often exist in application domains. Their 
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complexity is sometimes beyond the current knowledge of domain experts. In addition, conventional 

mathematical methods are simply not applicable. Therefore, heuristic methods based on ‘causal linkage’ 

rather than detailed equations present a feasible way to proceed at present (McErleani et al., 1999). It is 

particularly important when the aforementioned BN-based HRA models fail to cope with situations 

where incomplete conditional probabilities are raised/assigned by multiple experts.  

3. Methodology 

Use of the ER-BN approach in HRA is demonstrated through its application in the CREAM framework 

given that BNs have been widely used in CREAM-based HRA modelling due to their feature, which 

takes into account the interaction between the nine CPCs (which are “Adequacy of organisation (#1)”, 

“Working conditions (#2)”, “Adequacy of man-machine interface and operational support (#3)”, 

“Availability of procedures and plans (#4)”, “Number of simultaneous goals (#5)”, “Available time 

(#6)”, “Time of day (#7)”, “Adequacy of training and experience (#8)” and “Crew collaboration quality 

(#9)”). In this research, the proposed ER-BN model consists of the following four steps: 

Step 1. The rule base of modelling probabilistic causal relation between parent-child nodes in the BN-

based CREAM (e.g. Figure 2) is developed (Yang et al., 2013; Abujaafar et al., 2016). It reflects 

the interaction among the nine CPCs originally defined in CREAM (Hollnagel, 1998). During 

this process, the conditional probabilities of the parent-child nodes are elicited in either a 

complete or incomplete format by a group of domain experts.  

Step 2. The ER approach (Yang and Xu, 2002) is used to synthesise the complete/incomplete 

conditional probabilities and aggregate the child nodes’ conditional probabilities that are 

symmetrically affected by the nodes associated with the nine CPCs.  

Step 3. The unknown/remaining probability masses (i.e. the unassigned probabilities to the grades of 

the child node) due to incomplete judgements are assigned back to the best (i.e. that contributes 

to the lowest HEP) and worst (i.e. that contributes to the highest HEP) grades of the nodes. Two 

BN models, representing the best scenario in which all the remaining probability masses of the 

nodes having unknown probabilities are assigned to the best grades of their corresponding 

nodes, and the worst scenarios in which they are assigned to the worst grades of the nodes, are 

constructed respectively.  

Step 4. The two results from the best and worst scenarios are aggregated to obtain a crisp HEP using 

ER. Different weights can be assigned to the results obtained from the best and worst scenarios 

to present the HEPs in a range from optimistic to pessimistic perspectives.  

3.1 Developing the rule base of modelling parent-child nodes and eliciting the complete or incomplete 

degrees of belief of COCOM-CMs  
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To assess HEP, it requires the evaluation of the CREAM context through the effect levels of the nine 

CPCs. By using a BN, it is possible to graphically map the nine CPCs in a convergent connection to 

infer the probabilities of the COCOM-CMs (in which the four characteristic control modes are 

“Scrambled”, “Opportunistic”, “Tactical” and “Strategic” ). In this context, each CPC is described by a 

number of discrete states including four states for three CPCs and three states for the remaining six 

CPCs, according to the original CREAM. Different levels of each CPC along with their individual effect 

on human performance are described in Table 1, and the relation between CPCs and the control modes 

is depicted in Figure 1. 

 

Table 1. Description of CPCs and associated linguistic variables (Hollnagel, 1998) 

CPC  CPC Levels Effects  

#1 Adequacy of organisation Deficient  

Inefficient 

Efficient  

Very Efficient  

Negative 

Negative 

Neutral 

Positive 

#2 Working Conditions Incompatible  

Compatible  

Advantageous  

Negative 

Neutral 

Positive 

#3 Adequacy of man machine interface 

(MMI) and operational support 

Inappropriate  

Tolerable  

Adequate  

Supportive  

Negative 

Neutral 

Neutral 

Positive 

#4 Availability of procedures and plans Inappropriate  

Acceptable  

Appropriate  

Negative 

Neutral 

Positive 

#5 Number of simultaneous goals More than actual capacity  

Matching current capacity 

Fewer than actual capacity 

Negative 

Neutral 

Neutral  

#6 Available time Continuously inadequate  
Temporarily inadequate  

Adequate  

Negative 

Neutral 

Positive 

#7 Time of day Night (0:00-7:00hr) (unadjusted)  

Night (17:00-24:00hr) (unadjusted)   

Day (6:00-18:00hr) (adjusted)  

Negative 

Negative 
Neutral 

#8 Adequacy of training and experience Inadequate  

Adequate with limited experience  

Adequate with high experience  

Negative 

Neutral 

Positive 

#9 Crew collaboration quality Deficient  
Inefficient  

Efficient  

Very efficient   

Negative 

Neutral 

Neutral 

Positive 
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Figure 1. The relation between CPCs and control modes (Hollnagel, 1998) 

 

Such convergent connection will result in 46,656 (43×36) discrete conditional probabilities to be 

assigned. The configuration of such a large number of discrete conditional probabilities subjectively by 

domain experts will be of great difficulty. Therefore a divorcing method is introduced to simplify the 

task of assigning subjective probabilities by adding three attributes (the second tier) and two sub-

attributes (the third tier) shown in Figure 2. The three attributes (nodes) are “Action load”, “Working 

environment” and “Operator preparedness” directly influencing COCOM-CMs’ probability 

(Marseguerra et al., 2007). Each attribute is associated with different CPCs according to the reasoning 

in CPCs’ evaluation by Hollnagel (1998). The attribute “Working environments” is influenced by five 

CPCs. To further simplify its conditional probability table (CPT) assignment, two new sub-attributes, 

“Adequacy of working culture” and “Adequacy of perception conditions” are also introduced. The 

CPTs of the attributes and sub-attributes are assigned based on the uniformly defined states, 

“Inappropriate”, “Acceptable” and “Appropriate” which present the reduced, satisfactory and improved 

effects to human reliability, with respect to the defined grades of the nine CPCs in CREAM. A divorcing 

concept has no significant effect on modelling mathematical inference if attributes and sub-attributes’ 

CPTs are assigned properly (Kim et al., 2006). The use of a divorcing concept simplifies the assignment 

of CPTs of the developed BN-based CREAM model. It also makes it possible to introduce fuzzy rule 

bases (FRB) to facilitate the elicitation of subjective CPTs of the child nodes. For example, the 

interactive logical relation between the effect levels of the three attributes “Action load (A)”, “Working 

environments (W)” and “Operator preparedness (O)”, and the COCOM-CMs is described as follows 

while the CPT of the COCOM-CMs under the three parents is established in Table 5. The interaction 

among the nine CPCs (at the fifth and sixth tiers) and their relationship with the four adjusted CPCs (at 

the fourth tier) are modelled based on the original CREAM method (Hollnagel, 1998). Since the 

development of this part (Tier 4 to Tier 6) of the network has been described in Yang et al., (2013), it 

is not repeated in this paper.   
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Figure 2. BN based CREAM generic model for human performance reliability assessment  

To model the interactive relations between the new attributes and COCOM-CMs in a logical form, 

fuzzy logic can be used to construct IF-THEN rules. Each of IF-THEN rules includes two parts: an 

antecedent that responds to the fuzzy input of the three attributes (each of which has three grades) and 

a consequence associated with the COCOMs’ four control modes as the fuzzy output. In this study, a 

collection of multiple-input multiple-output FRB (consisting of 27 rules (i.e. 3×3×3)) is defined as 

follows (Yang et al., 2009; 2010):  

 

𝑅𝑙: IF 𝐿1
𝑘,𝑙 and 𝐿2

𝑘,𝑙 and 𝐿3
𝑘,𝑙, THEN ( 𝛽1,𝑙,  𝛽2,𝑙 ,  𝛽3,𝑙 ,  𝛽4,𝑙)                                (1) 

    

In a fuzzy rule 𝑅𝑙 (l = 1, 2, …, 27), if the input satisfies the antecedent linguistic vector(s) 𝐿𝑟
𝑘,𝑙 (𝑟 = 1, 

2, 3; l = 1, 2, …, 27; k = 1, 2, 3), the output 𝛽𝑗,𝑙 (𝑗 =1, 2, 3, 4; l = 1, 2, …, 27) represents the belief 

degree(s) to which a control mode  𝐷𝑗 (𝑗 =1, 2, 3 or 4)  is believed to be the consequence. Linguistic 

vector 𝐿𝑟
𝑘,𝑙  is defined with its nature of having “Appropriate” (improved), “Acceptable” (not 

significant) or “Inappropriate” (reduced) effects on COCOM-CMs. Obviously, if 𝐿1
𝑘,𝑙

 is “Action load”, 

then 𝐿1
𝑘,𝑙 can be any of the three linguistic variables used to describe “Action load”, which are 

Inappropriate (𝐿1
1,𝑙), Acceptable (𝐿1

2,𝑙), and Appropriate (𝐿1
3,𝑙). The following illustrative rule is 

developed to interpret the rules with a belief structure. 

 R2: IF the “Action load” is Inappropriate AND the “Working environments” are Appropriate 

AND “Operator preparedness” is Inappropriate, THEN the belief degrees of operator COCOM-

CM would be 0% “Strategic”, 0% “Tactical”, 10% “Opportunistic”, and 90% “Scrambled”.  

It can be further simplified and presented as:  

Adequacy of organisation

Deficient
Inefficient
Efficient
VeryEfficient

25.0
25.0
25.0
25.0

Operator preparedness

Inappropriate
Acceptable
Appropriate

33.3
33.3
33.3

Human action performance

Strategic
Tactical
Opportunistic
Scrambled

21.2
25.7
29.4
23.7

Working environment

Inappropriate
Acceptable
Appropriate

37.8
32.8
29.4

Adequacy of working culture

Inappropriate
Acceptable
Appropriate

39.1
32.8
28.1

Adjusted availabe Time

ContinuouslyInadequate
TemporarilyInadeqate
Adequate

35.4
31.3
33.3

  Adjusted number of simultaneous goals

MoreThanActualCapacity
MatchingCurrentCapacity
FewerThanActualCapacity

48.1
25.9
25.9

Number of simultaneous goals 

MoreThanActualCapacity
MatchingCurrentCapacity
FewerThanActualCapacity

33.3
33.3
33.3

Working Conditions 

Incompatible
Compatible
Advantageous

33.3
33.3
33.3

Available time 

ContinuouslyInadeqate
TemporarilyInadequate
Adequate

33.3
33.3
33.3

Adequacy of perception of conditions

Inappropriate
Acceptable
Appropriate

36.6
32.7
30.6

Action load

Inappropriate
Acceptable
Appropriate

42.0
28.2
29.8

Adjusted Crew collaboration quality

Deficient
Inefficient
Efficient
Veryefficient

29.2
20.8
20.8
29.2

Adequacy of training and experience 

Inadequate
AdequateWithLimitedExperie...
AdequateWithHighExperience

33.3
33.3
33.3

Crew collaboration quality

Deficient
Inefficient
Efficient
VeryEfficient

25.0
25.0
25.0
25.0

Time of day

NightAMunadjusted
DayAdjusted
NightPMunadjusted

33.3
33.3
33.3

Availability of procedures and plans

Inappropriate
Acceptable
Appropriate

33.3
33.3
33.3

Adequacy of man machine interface

Inappropriate
Tolerable
Adequate
Supportive

25.0
25.0
25.0
25.0

Adjusted working conditions

Incompatible
Compatible
Advantageous

35.0
31.5
33.6
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 R2: IF 𝐿1
1

, AND 𝐿2
1

, AND 𝐿3
2

, THEN ( 𝐷1, 0), ( 𝐷2, 0), ( 𝐷3, 0.1), ( 𝐷4, 0.9) 

where each 𝐿𝑟
𝑘,2 (𝑟 = 1, 2, 3; k = 1, 2, 3) in Rule 2 indicates the 𝑘th linguistic variable descriptor 

associated with the rth attribute. The set of degrees of belief  𝛽𝑗,2  (𝑗 =1, 2, 3, 4) = (0, 0, 0.1, 0.9) 

represents the combined subjective conditional probabilities from domain experts. The way of 

calculating  𝛽𝑗.𝑙 is given in Section 3.2.2. Such a rule base represents the possible functional mappings 

of uncertainty between the three new attributes and the four control modes. It provides a more 

informative, realistic scheme than a simple IF-THEN rule base does on uncertain knowledge 

representation. However, the challenge lies in the incompleteness knowledge encounters by the experts 

when assigning degrees of belief in the rule base modelling the relation among O, A, W and COCOMs. 

In other words, the problem appears in a situation, where the sum of the elicited degrees of belief is less 

than 1. In order to incorporate them into the estimate of COCOM-CMs probabilities in a convergent 

connection of a BN, the synthesizing capability of the ER algorithm is investigated accordingly. 

3.2 Synthesising the complete and incomplete expert judgements’ degrees of belief 

In order to investigate the capability of the ER approach in synthesising incomplete assessments, a 

hierarchy of two levels of attributes is considered, where the upper level represents the synthesised 

states 𝐷𝑗 (j = 1, 2, 3, 4) of the child node (i.e. COCOM), and the lower level represents the states of the 

parent nodes (i.e. O, A, W) that are denoted by 𝐿𝑟
𝑘   (𝑟 = 1,2, 3; 𝑘 = 1, 2, 3).  

In this respect, the assessment of the conditional probability 𝛽𝑗 
𝑖  of 𝐷𝑗 (j = 1, 2, 3, 4) by the ith expert 

𝐸𝑖  from a group of 𝑀 (𝑖 = 1, 2, … 𝑀) conditional on 𝐿𝑟
𝑘  mathematically, is represented by the 

following distribution:  

 𝑃(𝐸𝑖 | 𝐿𝑟
𝑘) = ( 𝐷𝑗 ,

i
j ), (𝑖 = 1, 2, … 𝑀; 𝑗 = 1, 2, 3, 4; 𝑟 = 1, 2, 3; 𝑘 = 1, 2, 3 )                         (2) 

where,  0 ≤
i
j ≤ 1, ∑ 𝛽𝑗

𝑖4
𝑗=1 ≤ 1  and 

i
j denotes a conditional degree of belief assigned to the jth state 

of the COCOM-CMs node by the ith expert. The above distribution reads that the conditional probability 

𝛽𝑗 of the child node has been subjectively assessed using the evaluation grade(s) 𝐷𝑗 distinctively and 

conditionally on the parents’ evaluation grades 𝐿𝑟
𝑘 combined with a conditional degree of belief  

i
j . 

An assessment by 𝐸𝑖 is complete if 


4

1j

i

j = 1  and incomplete if 


4

1j

i

j < 1. Such partial or complete 

ignorance is not rare in many distinctive evaluation problems. 

Suppose the importance or the relative weight of the expert 𝐸𝑖  is given by the weight 𝜔𝑖 (𝑖 = 1,2, … , 𝑀) 

with the condition that 0 ≤ 𝜔𝑖 ≤ 1. In this regard, the relative importance of 𝐸𝑖  plays an important role 
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in a group assessment. Collectively, 𝜔𝑖   (𝑖 = 1,2, … , 𝑀) has to be normalized for the consistency of 

the assessment. 

To capture the non-linear relationship between different experts 𝑬𝒊 (i = 1, 2, …, M), the ER approach 

is used to combine all 
i
j  (j = 1, 2, 3, 4) from each 𝑬𝒊  and generate a final conclusion. Having 

represented belief degree distributions
i
j , the ER approach can be implemented as follows. First, it is 

required to transform the degrees of belief 
i
j  for all j = 1, 2, 3, 4, and i = 1, 2, …, M into basic 

probability masses using the following equations (Yang and Xu, 2002; Liu et al., 2005): 

i

ji

i

j wm  ,                                                                                                                                      (3) 





4

1

4

1

11
j

i

ji

j

i

j

i

D wmm  ,                                                                                                         (4) 

,1 i

i

D wm                                                                                                                                       (5) 














 



4

1

1~

j

i

ji

i

D wm  , for all j = 1, 2, 3, 4 and i = 1, 2, …, M.                                                         (6) 

where 
i
jm  are individual degrees to which 𝐸𝑖  supports the final synthesised conclusion D; iw  

represents the relevant importance of 𝐸𝑖  and thus 1
1




M

i

iw  ; and 
i

D

i

D

i

D mmm ~  for all i = 1, 2, …, M. 

The probability mass of 𝐸𝑖 (
i
Dm ) unassigned to the final synthesised conclusion D, which is unassigned 

to any individual output variables Dj, is split into two parts, one caused by the relative importance of 𝐸𝑖 

( i
Dm ), and the other due to the incompleteness of the belief degree assessment 

i

j  ( i
Dm~ ). 

Then, it is possible to aggregate all the outputs from 𝐸𝑖 (i = 1, 2, …, M) to generate the combined degree 

of belief ( j ) in each possible Dj of D. Suppose mj
C(i) is the combined belief degree in Dj by aggregating 

all the outputs from the M experts and mD
C(i) is the remaining belief degree unassigned to any Dj. Let 

mj
C(1) = mj

1 and mD
C(1) = mD

1. Then the overall combined belief degree in Dj is generated as follows (Liu 

et al., 2005).  

{Dj}: ][
1)(1)(1)(

)1(

)1( 






i

j

iC

D

i

D

iC

j

i

j

iC

jiC

iC

j mmmmmmKm                                                             (7) 

)()()( ~ iC

D

iC

D

iC
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where j  indicates the normalised belief degree assigned to Dj in the final synthesised conclusion D 

and D  represents the normalised remaining belief degree unassigned to any Dj. 

3.3 Distributing the unassigned probability masses in the COCOM-CMs BN to obtain a HEP interval 

The unassigned probability mass βD caused by the incompleteness of judgements is assigned back to 

𝐵1 (i.e. Strategic) representing the best scenario with the lowest possible HEP and to 𝐵4 (i.e. Scrambled) 

indicating the worst scenario with the highest possible HEP, respectively. Similarly, all the unassigned 

probability masses of the other child nodes in Figure 2 are assigned to their own CPTs with respect to 

the best and worst scenarios. Consequently, two individual COCOM BNs are established, from which 

the CPTs associated with the best and worst cases will be used to calculate the lowest and highest HEP 

values. The highest and lowest HEPs can be used as the two limits of an interval. It reflects the fact that 

the HEP analysis with incomplete input delivers its values in an interval, in which the actual HEP exists.  

3.4 HEP quantification and ranking 

To quantify the human failures, each Dj (j = 1, …, 4) requires the assignment of an appropriate utility 

value UDj. The values can be obtained by using a Weighted Mean of Maximum (WMoM) method as 

2.24 × 10-4, 0.01, 0.0708 and 0.316, respectively (Yang et al., 2013). A new HEP index can be calculated 

as: 

∑
4

1


j

Dj j
UHEP                                                                                                                             (14) 

The larger the value of HEP is, the lower the reliability level of human performance. However using 

Eq 14, the highest and lowest HEPs with respect to the best and worst scenarios can only construct a 
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HEP interval. Human action is more reliable than the other if and only if its highest value is smaller 

than the lowest one of the other. It is worth noting that such an approach is not preferred for a ranking 

purpose. A new coefficient, α, is introduced to indicate evaluators’ perception on the two sets of  βj (i.e. 


j and 


j ) with regards to the best and worst scenarios. More specifically, α means the extent to which 

the evaluators believe the HEP belongs to the best scenario and 1- α represents the extent to which HEP 

belongs to the worst scenario. If the evaluators are optimistic, α = 1 and the final HEP is the lower limit 

of the HEP interval. If the evaluators are pessimistic, α = 0 and the final HEP is the upper limit for the 

HEP interval. If 0<α<1, the final HEP can be calculated by using Eq. 15.  

  


 jjj  )1(                                                                                                                 (15) 

where ∪ means the combination of the two sets by the ER algorithm in Eqs. 3 - 13 and α is set as 0.5 

when the evaluators are neutral. The final crisp HEP is then calculated by applying the combined βj to 

Eq. 14.   

4. Case study of proposed methods in the Deepwater Horizon accident 

In this section, a case study of the Deepwater Horizon accident is conducted to illustrate the feasibility 

and applicability of the hybrid ER-BN model in facilitating the HEP analysis, and the evaluation results 

are compared with those obtained from traditional CREAM methods. The main reasons of using the 

proposed ER-BN model to investigate the Deepwater Horizon accident include that 1) there were 

several main governing factors symmetrically affecting the effect levels of the nine CPCs over the whole 

period of the drilling operations, and 2) the uncertainty associated with the available information during 

the final stages of drilling operations was high. 

4.1 Background information of the Deepwater Horizon accident 

In the evening of April 20, 2010, a well control event allowed hydrocarbons to escape from Macondo 

well onto Transocean’s Deepwater Horizon, resulting in explosions and fire on the rig. 11 people lost 

their lives, and 17 others were injured. The fire, which was caused by the hydrocarbons from the well, 

continued for 36 hours until the rig sank. Hydrocarbons continued to flow from the reservoir through 

the wellbore and the Blow Out Preventer (BOP) for 87 days, causing a spill of a national significance. 

Deepwater Horizon was located approximately 50 miles south of Venice, LA at Mississippi Canyon 

252. The accident on April 20, 2010, involved a well integrity failure, followed by a loss of hydrostatic 

control of the well. This followed a failure to control the flow from the well with the BOP equipment, 

which allowed the release and the subsequent ignition of hydrocarbons. Ultimately, the BOP emergency 

functions failed to seal the well after the initial explosions (BP, 2010). 

4.2 Aggregating multi attribute effects on the root cause nodes (i.e. the nine CPCs) 
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The evaluation of CPCs in this case study is based on the accident investigation team’s analysis results 

specifically presented in Appendix T of the Deepwater Horizon Accident Investigation Report (BP, 

2010). The report describes the relevant practices, procedures, and expectations, comparing them with 

the rig crew’s actions in monitoring the Macondo well and managing the well control event on 20 April 

2010. It includes the documents that governed the drilling operations on board the Deepwater Horizon 

at the time of the accident; the available real-time data; and the witness account interview. In this 

respect, Table 2 summarizes the specified functional assessment attributes, the identified evidence, and 

their evaluation.  

Table 2. Identified relevant practices, procedures, and expectations of rig crew’s actions in monitoring the 

Macondo well and managing the well control event on 20 April 2010 

 

Functional assessment 

attributes  

Investigation team review results 

Identified evidence Evaluation 

1 

 

Task 

responsibilities 

 

The manager was not clearly 

defined  

The investigation team could not 

verify whether anyone fitted the 

description of manager or had task 

responsibilities, and who should have 

made enquiries regarding the results 

of the negative pressure test that had 

been conducted to prove that the well 

structure integrity was intact at the 

time the negative pressure test results 

were concluded. 

The well driller’s responsibility is 

to detect a well control situation 

and shut down the well quickly, 

and to minimize the kick size used 

to enhance the safety of a well 

control operation. 

Neither the driller nor the tool-pusher 

realized that there were impending 

well control events. 

 

2 

Preparation  

procedures  

The review of well control 

preparation procedures has not 

occurred 

There is no evidence. 

 

3 

 

 

Prevention  

 

P
ro

ce
d

u
re

s 

On April 20, 2010 between 13:28 

and 17:17 hours drilling mud fluid 

volume monitoring equipment was 

not properly used; in addition, it 

was not known what equipment 

they were using. 

Pressure and flow variations should 

have been available that would have 

indicated an abnormality with the oil 

well. In this regard, “extreme caution” 

could include factors such as pressure 

changes and flow increases. It would 

also include isolated individual 

volume monitoring to enhance well 

structure intact integrity. 
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W
it

n
es

s 
ac

co
u

n
ts

 1
 

 

On April 20, 2010 from 13:28 hours 

to 17:17 hours, mud was transferred 

to the supply vessel. Transferring 

mud from the pits to the supply 

vessel impaired the ability of mud-

loggers to reliably monitor the pit 

levels. Mud-logger stated this 

concern was raised with the 

assistant driller. The response was 

that the assistant driller would 

notify him when the mud transfer 

was completed and monitoring 

could resume. Mud-logger indicated 

that this notification did not occur 

after mud transfer to the supply 

vessel stopped at 17:17 hours.  

Mud-logger did not effectively 

monitor pit volumes for the 

remainder of that day. 

 

 
 

W
it

n
es

s 
ac

co
u

n
ts

 2
 There is no evidence to suggest that 

either the driller or assistant driller 

was monitoring the well mud fluid 

volumes and flow. Although mud-

loggers’ well monitoring equipment 

was installed and working, it was 

apparently not being used due to 

mud transfer to the supply vessel 

and mud pit cleaning activities. 

A more timely response to well 

conditions may have occurred if 

“constant, accurate observation and 

recording of mud volume” was 

implemented as defined in high 

pressure high temperature drilling 

guide lines stated in the documents 

governing the drilling operation. 

4 

 
Detection  

P
ro

ce
d

u
re

s 

Mud pumps were stopped at 21:31 

on April 20, 2010, but the driller and 

the tool-pusher both apparently 

were trying to understand the 

deferential pressure just prior to the 

accident.  

Neither the driller nor the tool-pusher 

realized that there was an impending 

well control event. 

R
ea

l-
ti

m
e 

d
at

a 
1

 

There was an increase in return flow 

from the well at 20:58 hours on 

April 20, 2010, approximately 51 

minutes before the first explosion. 

However, drill pipe pressure also 

increased and went unnoticed. The 

real time data indicts that a 39 bbl 

gain was taken in the mud pits at 

that time.  

Interim reports and the real time data 

indicate that the trip tank was being 

emptied at that time. This may have 

masked the volume change caused by 

flow from the well. 

R
ea

l-
ti

m
e 

d
at

a 
2

 At 21:08 hours on April 20, 2010, 

pumping was stopped, and the sheen 

test intended to indicate the 

presence of free oil was performed 

on the spacer returning from the 

well. From this time forward, the 

fluid returning from the well was 

discharged overboard.  

If the driller’s flow metre had been 

operating properly, increasing return 

flow would have been detected at this 

time. 

R
ea

l-
ti

m
e 

d
at

a 
3
 

While fluids were being discharged 

overboard, the mud loggers’ flow 

meter bypassed. 

The mud loggers were unable to 

monitor flow. 

 

W
it

n
es

s 

ac
co

u
n

ts
 1

 Mud-logger indicated that mud flow 

would not be seen if the flow 

diverter was activated or going 

through the dump line. The mud 

logging system is far more accurate. 
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R
ea

l-
ti

m
e 

d
at

a 
4
 

Real-time data indicates that 

circulation continued after flow 

increased and pump pressure 

fluctuated between 20:58 hours and 

21:31 hours.  

By the time the mud pumps were shut 

down at 21:31hours, an estimated 

300bbl gain had been taken into the 

wellbore and the well was flowing. 

R
ea

l-
ti

m
e 

d
at

a 
5
 

Well flow modelling indicates that 

between 21:36 hours and 21:38 

hours a valve was opened and 

closed on the rig floor, presumably 

to bleed off pressure from the drill 

pipe.  

Based on wetness accounts, the 

investigation team concluded that this 

occurred approximately 4 minutes 

before mud started flowing onto the 

rig floor. 

W
it

n
es

s 
ac

co
u

n
ts

 2
 

 

Mud was seen shooting all the way 

up to the derrick for several seconds, 

and then it just quit and went down 

for several seconds after that, and 

then all of a sudden the degasser 

mud started to come out of the 

degasser very strongly onto the 

deck. Mud flow volume through the 

rotary table at the surface was 

significant. 

Based on the procedure defined for 

equipment handling gas in the riser, 

the mud flow should have been routed 

overboard. Instead, the mud flow was 

routed through the mud gas separator. 

Based on gas dispersion and explosion 

analyses, the investigation team 

concluded that, if the rig crew had 

diverted mud flow to the overboard 

discharge line rather than to the mud 

gas separator, the consequences of the 

event would have been reduced. 

5 

 

Blowout 

emergency 

response  

The emergency response   

procedure that should be developed 

jointly by the management and the 

operator to be used in case of well 

blowout was requested.  

Such document was not received at 

the time of investigation.  

6 Containment 

Events stated do not support a 

conclusion that action was taken to 

shut the well in the shortest possible 

time, as required by the documents 

governing the drilling operation, 

following the sequence for shutting 

down a well when either tripping or 

drilling. 

In the opinion of the investigating 

team, despite the guidance provided in 

the documents governing the drilling 

operation, wellbore monitoring did 

not identify the influx until after 

hydrocarbons were in the riser, and the 

subsequent action taken prior to the 

explosion suggests the rig crew was 

not sufficiently prepared to manage an 

escalating well control situation.  

 

The inherent variability effects that shaped operators’ actions and observations in the context of events 

are used in CPCs’ effect level evaluations. The evaluations listed in Table 3 have been conducted in a 

way in which 1) if there is direct evidence from Table 2 supporting a particular effect level of CPCs, 

then a 100% degree of belief is assigned accordingly, 2) if there is no evidence or relevant information 

available to support the evaluation with respect to a particular effect level of CPCs, then average degrees 

of belief are assigned across all the effect levels to reflect the unknown situation, and 3) if it is irrelevant 

to the effect, (x) is applied.  Given the functional assessment attributes are exclusive factors influencing 

the effect level of the CPCs, their evaluations can be considered as pieces of evidence to support the 

performance of the CPCs, the ER algorithm (i.e. Eqs 3-13) is used to synthesise them to obtain the 

effect levels of the 9 CPCs within the context of the Deepwater Horizon case. The intelligent decision 

system (IDS) software (Yang and Xu, 2002) is used to aggregate the evaluated degrees of belief of each 
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functional assessment attribute to obtain the unconditional probabilities of their associated CPCs’ effect 

levels, as shown in Table 4.  

Table 3. Evaluation of functional assessment attributes affecting CPCs’ effect levels/descriptors 

CPCs  Levels/descriptors 

Functional assessment attributes  

T
as

k
 

re
sp

o
n

si
b

il
it

ie
s 

P
re

p
ar

at
io

n
 

P
re

v
en

ti
o

n
 

D
et

ec
ti

o
n

 

E
m

er
g

en
cy

 

re
sp

o
n

se
 

C
o

n
ta

in
m

en
t 

Adequacy of 

organisation  

CPC 1  

Very Efficient 0 0 0 0 25 0 

Efficient 0 0 0 0 25 0 

Inefficient 0 0 100 100 25 0 

Deficient 100 100 0 0 25 100 

Working conditions  

CPC 2   

Advantageous x 33.3 33.3 33.3 33.3 33.3 

Compatible x 33.3 33.3 33.3 33.3 33.3 

Incompatible x 33.4 33.4 33.4 33.4 33.4 

Adequacy of MMI and 

operational support  

CPC 3 

Supportive x x 0 0 25 0 

Adequate x x 0 0 25 0 

Tolerable x x 50 50 25 0 

Inappropriate x x 50 50 25 100 

Availability of 

procedures/plans  

CPC 4 

Appropriate 0 0 0 0 33.3 100 

Acceptable 100 0 100 100 33.3 0 

Inappropriate 0 100 0 0 33.4 0 

Number of 

simultaneous goals  

CPC 5 

Fewer than capacity x 33.3 33.3 33.3 33.3 33.3 

Matching current capacity x 33.3 33.3 33.3 33.3 33.3 

More than capacity x 33.4 33.4 33.4 33.4 33.4 

Available time  

CPC 6 

Adequate x 100 100 100 33.3 33.3 

Temporarily inadequate x 0 0 0 33.3 33.3 

Continuously inadequate x 0 0 0 33.4 33.4 

Time of day (circadian 

rhythm)  

CPC 7 

Day-time (6:00-18:00hr) (adjusted) x 33.3 50 50 33.3 50 

Night(17:00-24:00hr) (unadjusted) x 33.3 50 50 33.3 50 

Night-time(0:00-7:00hr) (unadjusted) x 33.3 0 0 33.4 0 

Adequacy of training 

and expertise  

CPC 8 

Adequate, high experience 33.3 33.3 0 0 33.3 0 

Adequate, limited experience 33.3 33.3 0 0 33.3 0 

Inadequate 33.4 33.4 100 100 33.4 100 

Crew collaboration 

quality  

CPC 9 

Very efficient 25 25 0 0 25 0 

Efficient 25 25 0 0 25 0 

Inefficient 25 25 0 0 25 0 

Deficient 25 25 100 100 25 100 

 

Table 4. CPCs effect levels/descriptors and the assigned degrees of belief aggregation with IDS 

CPCs  Level/descriptors 
Functional assessment attributes 

aggregated  degrees of belief 

Adequacy of organisation  

CPC 1  

Very Efficient 3.51 

Efficient 3.51 

Inefficient 57.09 

Deficient 35.89 

Working conditions  

CPC 2   

Advantageous 33.33 

Compatible 33.33 

Incompatible 33.34 

Adequacy of MMI and operational 

support  

CPC 3 

Supportive 5.18 

Adequate 5.18 

Tolerable 29.52 

Inappropriate 60.12 

Availability of procedures/plans  

CPC 4 

Appropriate 19.95 

Acceptable 60.10 
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Inappropriate 19.95 

Number of simultaneous goals  

CPC 5 

Fewer than capacity 33.33 

Matching current capacity 33.33 

More than capacity 33.34 

Available time  

CPC 6 

Adequate 78.82 

Temporarily inadequate 10.59 

Continuously inadequate 10.59 

Time of day (circadian rhythm)  

CPC 7 

Day-time (6:00-18:00hr) (adjusted) 36.25 

Night(17:00-24:00hr) (unadjusted) 49.13 

Night-time(0:00-7:00hr) 

(unadjusted) 
14.62 

Adequacy of training and expertise 

CPC 8 

Adequate, high experience 14.01 

Adequate, limited experience 14.01 

Inadequate 71.98 

Crew collaboration quality 

CPC 9 

Very efficient 6.43 

Efficient 6.43 

Inefficient 6.43 

Deficient 80.70 

4.3 Calculate the CPTs in two BNs for the best and worst scenarios  

The use of the ER algorithm in the formation of CPTs in BN with incomplete information (e.g. 

subjective judgements) is demonstrated in this part. To obtain the information needed for constructing 

the CPT of the COCOM-CMs node (i.e. the node of human action performance at the top of Figure 2), 

three maritime experts 𝐸𝑖 (𝑖 = 1, 2, 3) with significant domain knowledge were interviewed to provide 

their subjective elicitation on the evaluation grades of the COCOM-CMs in terms of conditional degrees 

of belief as defined by Eq. 1. Three offshore/marine engineers provided their input data within the 

context of marine engineering operations. The careful selection of the representative experts within 

the maritime industry is conducted to reduce the bias involved in the subjective judgements. 

Each of the three selected experts has over 15-year working experience on board offshore rigs 

or commercial ships and holds a high position in his/her companies. This contributes to the 

high quality of the initial data from experts. According to the collected feedback (i.e. Table 5), 

the initial judgements of the three experts keep a very high consistency, which proves that the 

judgements are at large in harmony and the data quality is assured.  Their inputs are listed in 

Table 5.  

Table 5. Elicitation of evaluation grades’ conditional degrees of belief for the three attributes, O, W and A 

R 

𝐸1 𝐸2 𝐸3 

𝐷1,1 𝐷2,1 𝐷3,1 𝐷4,1 𝐷1,2 𝐷2,2 𝐷3,2 𝐷4,2 𝐷1,3 𝐷2,3 𝐷3,3 𝐷4,3 

𝐵1,1 𝐵2,1 𝐵3,1 𝐵4,1 𝐵1,2 𝐵2,2 𝐵3,2 𝐵4,2 𝐵1,3 𝐵2,3 𝐵3,3 𝐵4,3 

1 0 0 0 1 0 0 0 0.9 0 0 0 1 

2 0 0 0.1 0.9 0 0 0.1 0.8 0 0 0.2 0.8 

3 0 0 0.2 0.8 0 0 0.2 0.7 0 0 0.3 0.7 

4 0 0 0.2 0.8 0 0 0.2 0.7 0 0 0.4 0.6 

5 0 0.1 0.3 0.6 0 0 0.3 0.6 0 0 0.7 0.3 

6 0 0.2 0.3 0.5 0 0 0.4 0.5 0 0.2 0.8 0 

7 0 0 0.3 0.7 0 0.1 0.3 0.3 0 0 0.4 0.6 

8 0 0.2 0.4 0.4 0 0.2 0.4 0.3 0 0 0.7 0.3 

9 0 0.3 0.4 0.3 0 0.2 0.5 0.2 0.4 0.6 0 0 

10 0 0 0.2 0.8 0 0.1 0.8 0 0 0 0.4 0.6 

11 0.1 0.3 0.3 0.3 0 0.2 0.7 0 0 0.8 0.2 0 
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12 0.1 0.4 0.4 0.1 0 0.2 0.7 0 0 0.7 0.3 0 

13 0.1 0.3 0.4 0.2 0 0.3 0.6 0 0 0.6 0.4 0 

14 0.2 0.4 0.3 0.1 0 0.5 0.4 0 0.3 0.7 0 0 

15 0.3 0.4 0.2 0.1 0 0.5 0.4 0 0.2 0.8 0.4 0 

16 0 0.3 0.4 0.3 0 0.6 0.3 0 0 0.5 0.5 0 

17 0.2 0.4 0.4 0 0 0.7 0.2 0 0.5 0.5 0 0 

18 0.3 0.4 0.3 0 0 0.8 0.1 0 0.6 0.4 0 0 

18 0 0 0.3 0.7 0.3 0.4 0.2 0 0 0 0.3 0.7 

20 0 0.2 0.4 0.4 0.3 0.4 0.2 0 0 0.6 0.4 0 

21 0 0.4 0.4 0.2 0.4 0.3 0.2 0 0 0.4 0.6 0 

22 0 0.2 0.3 0.5 0.6 0.4 0 0 0 0.5 0.5 0 

23 0.2 0.4 0.4 0 0.6 0.3 0 0 0.7 0.3 0 0 

24 0.3 0.5 0.2 0 0.7 0.20 0 0 0.8 0.2 0 0 

25 0.1 0.4 0.4 0.1 0.7 0.2 0 0 0.5 0.5 0 0 

26 0.3 0.5 0.2 0 0.8 0.1 0 0 0.8 0.2 0 0 

27 0.5 0.5 0 0 0.9 0 0 0 0.9 0.1 0 0 

 

Due to the similar seniority of the three experts, equal weight was assigned to each expert when 

synthesising their judgements using the ER algorithm. Taking Rule No. 7 in Table 5 as an example, the 

first two assessments by 𝐸1 and 𝐸2 are synthesised, as presented in Appendix A. In a similar way, the 

result of combining three experts’ judgements can be obtained by synthesising the combination of the 

first two assessments (as one set) with the third assessment (expert 𝐸3) using the same algorithm. It is 

worth noting that judgements from other experts can be also combined when more feedback from a 

wider range of interview is collected in future research. Consequently, the synthesised human action 

control modes’ degrees of belief 𝐵𝑗  for the 7th rule are Strategic (𝐵1) = 0, Tactical (𝐵2) = 0.0252, 

Opportunistic (𝐵3) = 0.3271  and Scrambled (𝐵4) =  0.5713. The results reveal that an unknown mass 

of 0.0744 is involved in the 7th rule due to the expert judgements. Windows based IDS software was 

developed to simplify the above calculation process by Yang (2001). It is used to synthesise the basic 

attributes 𝐸𝑖 of Rule 7 with the same result obtained. IDS is also used in synthesising the other combined 

degrees of belief (or probabilities) listed in Table 5. 

Although the ER algorithm is used to synthesise experts’ combined degrees of belief mass  𝛽𝑗,  a 

remaining unknown mass  𝛽𝐷 , which is not assigned to any evaluation grades, is also developed. 

Consequently, the remaining unassigned degrees of belief  are assigned back to the best evaluation 

grade “Strategic” and the worst evaluation grade “Scrambled” on all rules. Accordingly, two sets of 

evaluation grades are generated in Table 6 and used as prior probabilities in the generic COCOM BN 

model to calculate HEP estimates. Consequently, there are two BNs models presenting the best and 

worst scenarios.  

Table 6. Synthesised and combined degrees of beliefs of COCOM-CMs evaluation grades  

Rule Strategic 

( 𝐷1) 

Strategic 

( 𝐷1) C 

Unknown 

Tactical 

( 𝐷2) 

Opportunistic 

( 𝐷3) 

Scrambled 

( 𝐷4) 

Scrambled 

( 𝐷4) C 

Unknown 

Unknown 

1 0 0.0211 0 0 0.9789 1 0.0211 

2 0 0.0231 0 0.1019 0.8750 0.8981 0.0231 

3 0 0.0244 0 0.1973 0.7783 0.8027 0.0244 
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4 0 0.0248 0 0.2321 0.7431 0.7679 0.0248 

5 0 0.0265 0.0279 0.4316 0.5140 0.5405 0.0265 

6 0 0.0277 0.1220 0.5323 0.3180 0.3457 0.0277 

7 0 0.0744 0.0252 0.3271 0.5713 0.6457 0.0744 

8 0 0.0271 0.1164 0.5282 0.3283 0.3554 0.0271 

9 0.1227 0.1519 0.3910 0.2979 0.1592 0.1884 0.0292 

10 0 0.0274 0.0274 0.4734 0.4718 0.4992 0.0274 

11 0.0295 0.0576 0.4495 0.4045 0.0884 0.1165 0.0281 

12 0.0284 0.0554 0.4394 0.4768 0.0284 0.0554 0.0270 

13 0.0284 0.0555 0.4031 0.4845 0.0569 0.0840 0.0271 

14 0.1525 0.1797 0.5789 0.2126 0.0288 0.0562 0.0274 

15 0.1512 0.1784 0.6164 0.1767 0.0285 0.0557 0.0272 

16 0 0.0271 0.4819 0.4058 0.0852 0.1123 0.0271 

17 0.2159 0.2433 0.5757 0.1809 0 0.0274 0.0274 

18 0.2851 0.3125 0.5695 0.1180 0 0.0274 0.0274 

19 0.0865 0.1153 0.1153 0.2715 0.4979 0.5267 0.0288 

20 0.0855 0.114 0.4205 0.3457 0.1198 0.1483 0.0285 

21 0.1125 0.1406 0.3815 0.4188 0.0591 0.0872 0.0281 

22 0.1758 0.2343 0.3223 0.2822 0.1612 0.2198 0.0586 

23 0.5278 0.5817 0.2997 0.1186 0 0.0539 0.0539 

24 0.6370 0.6635 0.2810 0.0555 0 0.0265 0.0265 

25 0.4437 0.4719 0.3803 0.1182 0.0296 0.0578 0.0282 

26 0.6753 0.7016 0.2432 0.0552 0 0.0263 0.0263 

27 0.8153 0.8397 0.1603 0 0 0.0244 0.0244 

 

The CPT of the COCOM-CMs node in the BN presenting the best scenario can be obtained by taking 

into account the values of (D1)C, (D2), (D3) and (D4), while the one for the worst scenarios is 

associated with the set of {(D1), (D2), (D3) and (D4)C} (See Table 6). For instance, in Rule 1 in Table 

6, if O is inappropriate, W is inappropriate, and A is inappropriate, then COCOM-CMs are {0.0211 

Strategic, 0 Tactical, 0 Opportunistic, 0.9789 Scrambled} in the best scenario; and {0 Strategic, 0 

Tactical, 0 Opportunistic, 1 Scrambled} in the worst scenario. As a result, the two BNs for the best and 

worst scenarios are constructed and presented in Figures 3 and 4, respectively. 
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Figure 3: BN model displaying human COCOM-CMs’ posterior probabilities based on the best possible set of 

evaluation grades 

  

 

Figure 4: BN model displaying human COCOM-CMs’ posterior probabilities based on the worst possible set of 

evaluation grades 
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The evaluations of the CPCs’ effect levels in Table 4 are used as input observations of root cause nodes 

in the two established BN models in Figures 3 and 4. The posterior probabilities of the two assessment 

models’ evaluation grades and their transformed respective HEP results are shown in Table 7. During 

this process, Eq. 14 is used to calculate the lower and upper limits of the HEP interval from the best and 

worst scenarios. The result shows that the HEP estimates in the case are from 14.83% to 15.94%1.  

Finally, HEPs are presented in a utility interval rather than a crisp value. Such an interval could be used 

effectively to specify the uncertainty involved in the assessment. However, for a ranking purpose, a 

crisp value of the HEP interval can be calculated as 0.1547 using Eq. 15, as presented in Table 7. The 

result indicates a control mode of ‘opportunistic’ according to the values of probability of action failure 

defined in the CREAM methodology (See Table 8). 

Table 7. Final HEPs of both assessed scenarios 

Conditions HEP/time 

1.The worst scenario BN aggregated COCOM-CMs 

probability and their transformed highest HEP 

0.0838×0.000224 + 0.201× 0.01+ 0.281× 

0.0708+0.435×0.316 

= 0.1594 

2. The  best scenario BN aggregated COCOM-CMs 

probability and their transformed lowest HEP 

0.119×0.000224 + 0.201× 0.01+ 0.281× 

0.0708+0.40×0.316 

= 0.1483 

The highest and lowest values of HEPs interval 0.1483  ≤HEP ≤0.1594 

The HEP crisp value (e.g. α = 0.5) 0.1547 

 

Table 8. The control modes and probability intervals (Hollnagel, 1998) 

 

Control mode Probability interval 

Strategic 0.5×10−5 < p < 1×10−2 

Tactical 1×10−3 < p < 1×10−1 

 Opportunistic 1×10−2 < p < 0.5×100 

Scrambled 1×10−1 < p < 1×100 

 

4.5 Comparative analysis and discussion of the results 

                                                 
1 Such HEPs are subject to the assignment of the utility values of the four control modes. Although the utility values are cited 

from the work from a leading journal (i.e. Ocean Engineering), further verification of such utility values is still required to 

fully validate the significance of the HEP values in terms of precise risk analysis. Having said that, it is believed that the 

obtained HEP values can be effectively used for risk prioritisation.  
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Based on the identified relevant practices, procedures, and expectations of rig crew’s actions from the 

Deepwater Horizon Accident Investigation Report (as presented in Table 5), the traditional CREAM 

and fuzzy CREAM methods are applied in the same case study for the quantification of human error in 

HRA. It allows for a more practical and effective investigation of the applicability of the proposed 

model through a comparative analysis. In this subsection, we mainly focus on the comparison of their 

pros and cons in the real-life applications, as well as the similarity and difference of results obtained 

from different methods. Thus, detailed information on how to conduct these CREAM-based methods 

is not omitted here, and more information can be found in Hollnagel (1998) and Konstandinidou et al. 

(2006) for further reference. The evaluation results from different methods are presented and compared 

in Table 9. 

Table 9. Comparison of the results obtained from different methods 

 
Methods 

CREAM Fuzzy CREAM ER-BN CREAM 

Control mode Opportunistic Opportunistic 
Opportunistic/ 

Scrambled 

Probability interval (0.01 , 0.5) (0.01 , 0.5) (0.1483, 0.1594) 

HEP crisp value - 0.1 0.1547 

 

At this stage of validation, it is worthwhile to differentiate the results obtained from different CREAM 

related methods. In this context, the traditional CREAM result is calculated based on CPCs’ evaluation 

scores improved and reduced (1, 7); the plotting of these scores on the graph shown in Figure 1 reveals 

the result of opportunistic control mode and its related generic probability interval. It only provides a 

wide failure rate interval. Without a crisp value of HEP, it is not even suitable for screening in practical 

applications. The result generated by the fuzzy model, which can be expressed in the form of a crisp 

number, can be used directly in fault tree and event tree calculations for the quantification of specific 

undesired events. However, it also suffers from the problem of failing to incorporate the uncertainties 

in data (e.g. incomplete information) involved during the assessment. Besides, altogether 46656 fuzzy 

rules are included in the proposed fuzzy model (Konstandinidou et al., 2006), which, due to its 

complexity, inevitably hinders its industrial applications. In the proposed ER-BN CREAM model, the 

final calculation of HEP is 0.1547 failure/time; this HEP inclusively lies within the range of original 

opportunistic mode in CREAM (0.1 < HEP < 0.5), revealing the accuracy of the result. However it 

improves the accuracy of the HEP interval from [0.01, 0.5] to [0.1483, 0.1594] with a HEP crispy value 

of 0.1547. Comparing the results with those obtained from other approaches, obviously, the specified 

HEP would provide a more accurate result with a better resolution that will enable an assessor to develop 

a rational preventative plan. 

By changing the BN mode, it has been found that CPC8 (adequate training and expertise to 

100% with respect to all functional assessment attributes) has the most significant impact on 
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the reduction of the HEP. Theoretically, such an analysis can provide scientific support on 

which CPC(s) should be better controls in the recommendations for avoidance of similar 

accidents in future. From a perspective of capability and competency, it is suggested to deepen the 

capabilities of personnel in key operational and leadership positions and augment existing knowledge 

and proficiency in management deep-water drilling and wells operations. Also, advanced deep-water 

well control programs that supplement current industry and regulatory training need to be developed 

(BP, 2010). With respect to the training and exercises of emergency response, the organization is 

suggested to motivate personnel to discuss safety-related concerns of the emergency drills and exercises 

to increase personnel’s skills in the emergency. It is also important for organizations and personnel to 

regularly check the emergency equipment and procedures associated with their capacities, arrangement, 

and performance standards during the emergency drills and exercises (Norazahar et al., 2014).  

5. Contribution and implication 

The major contributions of the generated methods and models in this paper are explained from both 

practical and theoretical aspects. Practically, the uses of the BN inference and FRB structure can 

effectively help to forecaste the high HEPs of hazardous situations and send an early warning signal to 

prevent maritime accidents. Accordingly, the used techniques would provide the potential for 

identifying the most influencing CPC(s) and the associated functional assessment attributes (e.g. 

initiating events or root causes), to develop the risk control options effectively. In addition, using the 

ER algorithm for synthesising expert’s judgments for Bayesian subjective probability elicitation is able 

to enhance CREAM based HRA methodology, which will facilitate the application of relevant methods 

in human performance reliability analysis in maritime and offshore domains where expert judgements 

are usually involved due to the lack of reliable data in maritime safety assessment. Theoretically, both 

BN probabilistic inference and ER synthesising capabilities are used to represent and process context 

knowledge and uncertainty. The combination provides a feasible solution to subjective elicitation of 

CPT in BN applications.  

The developed methods possess enormous potential as valuable aids and effective alternatives to retain 

and improve human performance in marine engineering operations. It has the potential and flexibility 

to be tailored to handle the incompleteness of subjective data when using BNs to aid decision-making 

in other sectors. 

6. Conclusion  

ER’s synthesising and aggregation capability has enlarged the scope of a BN mechanism inference 

viability in describing and handling uncertain information in an engineering operation context. By using 

the concept of degrees of belief, the ER-BN combination can model context knowledge incompleteness 

and ignorance explicitly at any BN assessment level. Combining degrees of ignorance with the best and 

worst evaluation grades can generate two BNs to describe the best and worst scenarios of COCOM-
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CMs’ probabilities. Subsequently, their results are transformed and presented in HEP intervals, where 

each could be further converted into a crisp HEP value for a ranking purpose, as demonstrated in the 

above case study. Consequently, a new hybrid ER-BN method is developed capable of handling the 

problems to which the traditional methods lack the ability to provide appropriate solutions. Applying it 

in HRA facilities the assessment of HEPs through the established CREAM BN generic model in a 

situation where incomplete subjective probability elicitation is necessary.  
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Appendix A 

To calculate the basic conditional probability masses 
i
jm  as defined by Eq. 2.  

𝑚1
1

 
= 0.333 × 0 = 0; 𝑚2

1 = 0.333 × 0 = 0; 𝑚3
1 = 0.333 × 0.3 = 0.0999; 𝑚4

1 = 0.333 × 0.7 =

0.2331. 

𝑚1
2 = 0 × 0.333 = 0;  𝑚2

2 = 0.1 × 0.333 = 0.0333;  𝑚3
2 = 0.3 × 0.333 = 0.0999; 𝑚4

2 = 0.3 ×

0.333 = 0.0999. 

𝑚1
3 = 0 × 0.333 = 0; 𝑚2

3 = 0 × 0.333 = 0; 𝑚3
3 = 0.4 × 0.333 = 0.1332; 𝑚4

3 = 0.6 × 0.333 =

0.1998. 

Next the remaining relative importance 
i

Dm   for all  𝑖 = (1, 2, 3) is obtained as follows using Eq. 5 

1

Dm = 1 − 0.333 = 0.667 

2

Dm = 1 − 0.333 = 0.667 

3

Dm = 1 − 0.333 = 0.667. 

The remaining probability mass 
i

Dm~   due to the possible incompleteness of any individual grade 
i
j  is 

defined by Eq. 6.  

1~
Dm = 0.333[1 − (0 + 0 + 0.3 + 0.7)] = 0; 

2~
Dm = 0.333[1 − (0 + 0.1 + 0.3 + 0.3)] = 0.0999; 

3~
Dm = 0.333[1 − (0 + 0 + 0.4 + 0.6)] = 0 

The normalizing factor 𝐾𝐶(𝑖+1) for combining the two assessments from 𝐸1 and 𝐸2 is calculated using 

Eq. 11. 

𝐾𝐶(𝑖+1) = [1 − (0 × 0.0333 + 0 × 0.0999 + 0 × 0.0999) + (0 × 0 + 0 × 0.0999 + 0 ×

0.0999)+(0.0999 × 0 + 0.0999 × 0.0333 + 0.0999 × 0.0999) + (0.2331 × 0 + 0.2331 ×

0.0333 + 0.2331 × 0.0999)]−1 = 1.0464. 

The remaining combined probability mass 
)1(~ iC

Dm due to the possible incomplete assessment of 
i
j by 

 𝐸1 and 𝐸2 is defined by Eq. 8. 

)1(~ iC

Dm = 1.0464[(0 × 0.0999) + (0.667 × 0.0999) + (0 × 0.667)] = 0.0697. 

The combined remaining relative importance 
)1( iC

Dm  from the two assessments conducted by 𝐸1 

and 𝐸2 are obtained using Eq. 9.  
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)1( iC

Dm = 1.0464(0.667 × 0.667) = 0.4655. 

To calculate the combined probability mass j , Eq. 12 is employed as follows. 

1 = 1.0464[(0 × 0) + (0 × 0.7669) + (0.667 × 0)] = 0; 

2 = 1.0464[(0 × 0.0333) + (0 × 0.7669) + (0.667 × 0.0333)] = 0.0232;  

3 = 1.0464[(0.0999 × 0.0999) + (0.0999 × 0.7669) + (0.667 × 0.0999)] = 0.1537;  

4 = 1.0464[(0.2331 × 0.0999) + (0.2331 × 0.7669) + (0.667 × 0.0999)] = 0.2698. 

Finally, the remaining combined probability mass 
D  due to the possible incomplete assessment of 

 𝐸1 and 𝐸2 is calculated by Eq. 13. 

D =
0.0697

1−0.4655
= 0.1304.  

 

 

 

 

 

 

 


