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Abstract

Tox21 and ToxCast are high-throughput in vitro screening (HTS) programmes 

coordinated by the U.S. National Toxicology Program and the U.S. Environmental 

Protection Agency, respectively, with the goal of forecasting biological effects in vivo 

based on bioactivity profiling. The present study investigated whether mechanistic 

insights in the biological targets of food-relevant chemicals can be obtained from ToxCast 

results, when the chemicals are grouped according to structural similarity. Starting from 

the 556 direct additives that have been identified in the ToxCast database by Karmaus et 

al. (2017), the results showed that, despite the limited number of assays in which the 

chemical groups have been tested, sufficient results are available within so-called “DNA 

binding” and “nuclear receptor” target families to profile the biological activities of the 

defined chemical groups for these targets. The most obvious activity identified was the 

estrogen receptor (ER)-mediated actions of the chemical group containing parabens and 

structurally related gallates, as well the chemical group containing genistein and daidzein 

(the latter particularly towards ERβ as potential health beneficial target). These group 

effects, as well as the biological activities of other chemical groups, was evaluated in a 

series of case studies. Overall, the results of the present study suggest HTS data could 

add to the evidence considered for regulatory risk assessments for food chemicals and to 

the evaluation of desirable effects of nutrients and phytonutrients. The data will be 

particularly useful for providing mechanistic information and to fill data gaps with read-

across. 
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1. Introduction

Automatic high-throughput screening (HTS) of chemicals across a wide range of 

biological targets is an emerging practice in many chemical sectors. HTS plays a crucial 

role in the prioritization of chemicals based on toxicological mode of action as well as 

finding lead actives based on intended biological activity (Hartman et al., 2018; Brunner 

et al., 2019; Mayr and Fuerst, 2008; Olker et al., 2019). Within next-generation (non-

animal) risk assessment strategies, HTS will be one of the key technologies to 

characterize the ability of chemicals perturb biological pathways associated with an 

adverse outcome pathway (Villeneuve et al., 2019). Much effort has been devoted to the 

application of HTS to various sectors and regulatory environments and strategies to 

achieve a broader acceptance of HTS and computational  approaches in regulatory 

decision making have recently been laid out by Thomas et al. (2019). However, little has 

been done to relate these approaches to the assessment of foods and food ingredients, 

which are often assumed to be harmless, although a variety of toxicological or beneficial 

biological effects can be elicited. The aim of the present study was to explore the 

potential of ToxCast HTS data to be integrated into regulatory safety assessment of food 

chemicals. 

The Tox21 and ToxCast programmes are high-throughput in vitro screening 

programmes co§ordinated by the U.S. National Toxicology Program and the U.S. 

Environmental Protection Agency, respectively, with the goal to forecast biological effects 

in vivo, especially toxicity, based on bioactivity profiling (Kavlock et al., 2012). 

Tox21/ToxCast results (together referred to as ToxCast) have been evaluated by several 

groups in various publications using clustering algorithms and self-organizing maps 

(Karmaus et al., 2016; Kleinstreuer et al., 2014), hierarchical clustering techniques 

(Sipes et al., 2013) or through links with chemical fingerprinting (Richard et al., 2016). 

Specific to food relevant chemicals, Karmaus et al. (2016, 2017) identified and evaluated 

the activity patterns of 1211 food-use compounds within ToxCast, comprising 556 direct 

food additives, 371 food contact substances, and 543 pesticides. 

D
ow

nloaded from
 https://academ

ic.oup.com
/toxsci/advance-article-abstract/doi/10.1093/toxsci/kfaa008/5732696 by Liverpool John M

oores U
niversity user on 18 February 2020



4

A challenge with applying such non-directed, quantitative approaches on food-

relevant chemicals is that an observed uneven coverage of chemical-endpoint 

combinations within this class of compounds leads to a significant bias in the results (i.e. 

chemicals with a high biological activity are those that have a broader test coverage). A 

second challenge of hierarchical clustering and self-organizing heatmaps is that they do 

not provide any direct mechanistic insights in the biological targets of a chemical relative 

to an adverse outcome pathway. The acquisition of such qualitative mechanistic insights 

is just as crucial to the consideration of ToxCast data in risk assessments of food 

chemicals and can be an important resource to evaluate nutrients and phytonutrients and 

their corresponding desirable effects. 

The present study investigated whether insights in the biological targets of food-

relevant chemicals can be obtained from the results of the ToxCast assays when the 

chemicals are grouped according to structural similarity (for example, homologous 

series), exploring those targets that are induced by multiple chemicals in the group. The 

current study focussed only on the 556 direct food additives that have been identified by 

Karmaus et al. (2017) (chemicals that are for example added to foods to preserve, colour 

and stabilise food as well as flavourings), and not on the 371 food contact substances 

and 543 pesticides that were identified by Karmaus et al. (2017). Both food contact 

substances and pesticides may lead to indirect  exposures via food ingredients, but these 

compounds are not intended to be added to foods. The 556 direct food additives were 

supplemented with seven chemicals from the original non-curated list of food-use 

chemicals published by Karmaus et al. (2016) to also include natural food constituents 

(safrole, quercetin, resveratrol, genistein, daidzein, coumarin) as well as heptyl paraben, 

a non-approved food contact material that is structurally related to the approved methyl 

and ethyl parabens (EFSA, 2004), to give 563 reference compounds. The compounds 

within the dataset are clustered based on their chemical structural characteristics (e.g. 

alcohol, aldehydes and carboxylic acids, and ketones) as well as their functional uses in 

food (e.g. flavouring agents, nutrients, additives and regulatory restricted). Whereas the 

clustering into structurally similar chemicals was used to explore the relationship 
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between chemical homology and biological activity, the clustering into functional use 

categories related biological activities to current food uses. A method was set-up that 

allows to scroll through the activities of the groups of structurally related chemicals 

towards different targets. Relevant biological targets of a chemical group are considered 

those towards which a high percentage of chemicals within a group are active. Overall, 

the results of the present study offer insights into the possible integration of HTS data in 

the safety and risk assessments of food chemical. 

2. Methods

2.1 Grouping of chemicals

2.1.1 Grouping of the chemicals according to functional use classes

The chemical names and CAS numbers were obtained from the appendices as published 

by Karmaus et al. (2016, 2017). To obtain a link between the 563 selected direct food 

additives and their use in foods, particularly within the EU, the compounds were 

subdivided into different use categories. To this end, the CAS numbers were first 

matched with the European Union list of flavourings (Annex I of Regulation 1334/2008) 

using the R script provided https://git.wur.nl/Punt001/ilsi_toxcast.git. There were 449 

compounds that matched and were categorised as EU flavourings. The majority of the 

remaining 114 compounds were manually categorised into “novel foods”, “nutrients”, 

“polyphenols”, “E-numbers” (subdivided into “sweeteners”,  “antioxidants”, 

“preservatives”, “colours”, and “remaining E-numbers“), and flavouring oils (which were 

merged with the EU flavourings use class), based on an online search using particularly 

the EU food additives database (EU) (DG SANTE, 2011), EFSA’s OpenFoodTox database 

(Dorne et al., 2017; EFSA, 2017) and PubMed. The final 17 compounds that could not be 

linked to any known food use in the EU were categorized as “other”. 

2.1.2 Grouping of the chemicals according to chemical structure

From the list of 563 compounds, 552 were found to correspond to discrete chemical 

entities with defined molecular structure. The SMILES (simplified molecular-input line-
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entry specification) strings of these compounds were extracted from the ToxCast Data 

Spreadsheets (U.S. EPA, 2018a). The remaining 11 entities correspond to mixtures (for 

example, peppermint oil, clover leaf oil, polysorbate 80) and were either grouped 

together as structurally undefined or, in case of the flavouring oils, were assigned to the 

chemical group of the major constituent of oil. To this end, cornmint oil and peppermint 

oil are grouped in the same chemical group as menthol, whereas clove leaf oil is grouped 

with eugenol, anise oil with anethole, nutmeg oil with alpha-pinene, petitgrain oil with 

limonene, and cananga oil with beta-caryophyllene (Jelen, 2012; Han et al., 2017). Using 

ChemoTyper software (Molecular Networks, Erlangen, Germany) and the SMILES  strings 

of the chemicals, the  compounds were classified through application of chemical 

knowledge, focussing on shared structural features and, where applicable, with their 

known physiological roles (Mellor et al., 2019; Yang et al., 2015). During the course of 

this undertaking, a three-tier system of grouping was adopted, in which larger primary 

clusters (for example, alcohols) were further subdivided as appropriate into secondary 

(for example, alcohol, alkyl) and tertiary (for example, alcohol, alkyl, primary, straight 

chain) groups. The final groupings can be found in Supporting information 1, along with 

additional information on the log P, log D, and the Henry’s law constants of the chemical 

(estimated with ACD/Labs software). In addition, an estimate of the mean similarity of 

the chemicals within each group was made using the ChemmineR (Cao et al., 2008) and 

fmcsR (Wang et al., 2013) packages in R, to calculate the Maximum Common 

Substructures (MCSs) between the chemicals within a group and the Tanimoto 

coefficients based on these MCSs. The average of the calculated Tanimoto coefficients 

(excluding the Tanimoto coefficient of the chemicals with themselves) is taken as marker 

for group similarity. The R codes for these calculations have been made available at 

https://git.wur.nl/Punt001/ilsi_toxcast.git. 

The grouping according to the functional use classes (section 2.1.1) and the 

chemical groups were combined in a so-called circle pack plot using the igraph and 

ggraph libraries in R (Csardi G and Nepusz T, 2006; Pedersen, 2017). The R code for the 
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circle pack graphic of the chemical groups has been made available at 

https://git.wur.nl/Punt001/ilsi_toxcast.git. 

2.2 ToxCast data

The ToxCast activity data of the chemicals were derived from the data spreadsheet 

“ac50_Matrix_180918.csv” (U.S. EPA, 2018a) containing results from 1410 different 

assays. These crude ToxCast data for the 563 individual chemicals provided several 

positive hit-calls i.e. assays for which the concentration producing fifty percent of 

maximum activity (AC50), with a value less than 1,000,000 (the value used to indicate 

negative results), could be derived. Starting from this dataset, all assays were excluded 

that did not directly relate to a specific biological activity. These included all assays for 

which the ‘assay_function_type’ was ‘background control’, the ‘assay_design_type’ was 

either ‘background reporter’ or ‘viability reporter’, the ‘intended_target_family’ was 

‘background measurement’ and the ‘biological_process_target’ was ‘cell death’, ‘cell 

proliferation’, or ‘cytotoxicity’. These results are already taken into account during data 

analysis steps, e.g. through the production of Z-scores, and do not represent a specific 

activity of toxicological interest. In addition, only assays relevant to humans were 

extracted by setting ‘species’ to ‘human’.  The remaining assay endpoints were annotated 

according to the targets (for example ESR1 and ESR2, being the estrogen receptor (ER) 

alpha and beta, respectively), target family (for example, nuclear assays, DNA binding, 

or cytokines), and target subfamily (for example, nuclear assays-steroidal, nuclear 

assays-non steroidal, nuclear assays-orphan) parameters as provided in the 

“Assay_Summary_180918.csv” file (U.S. EPA, 2018a). By filtering out the assays that did 

not relate to a specific biological activity, 559 of the 1410 ToxCast assays were excluded, 

leaving 851 assays in the dataset. 

Z-scores are utilised within the ToxCast dataset to filter out the AC50 results that 

were potentially affected by non-specific effects such as cytotoxicity. Z-scores represent 

the number of standard deviations (on a standardised scale) that separate the potency 

for the specified assay from the median potency of a range of cytotoxicity assays (Judson 
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et al., 2015; Houck et al., 2017). Assay results with a large Z-score are more likely to 

reflect a target specific effect that is not caused by cell stress or cytotoxicity-related 

processes (Kleinstreuer et al., 2014). For the present study, the available Z-scores from 

the “zscore_Matrix_180918.csv” (U.S. EPA, 2018a) file were used. These Z-scores were 

derived for chemicals with two or more positive responses in cytotoxicity assays. AC50 

results with Z-scores lower than 3 were removed from the dataset as potential activity 

data that were affected by non-specific effects like cytotoxicity (Judson et al., 2015).  For 

261 compounds out of the 563 food-relevant chemicals this filtering based on Z-score<3 

resulted in a more than 75% reduction in positive hit-calls. For example, retinol 

expressed activity in 101 out of the 851 evaluated ToxCast assays, but 84 (83%) of 

these assay results had Z-scores<3. The mean AC50 for retinol in the 84 assays with Z-

scores<3 was 57±41 µM, whereas the mean AC50 was 6.5±4.3 µM for the 17 assays 

with Z-score>3. A similar result can be seen for quercetin that was active in 91 assays of 

which 84 assay-results had a Z-scores<3. The mean AC50 value in the assays with Z-

scores<3 was 31±33 µM whereas this was 2.8±2.0 µM for the assays that had Z-

scores>3. These results suggest that the specificity increases after filtering for Z-scores. 

On average, for all chemicals, the mean AC50 values were 10-fold lower for the results 

with Z-scores >3 compared with the result with Z-scores<3.  

Warning signs (“flags”) are used in ToxCast data files to provide an indication of 

any unwanted influence of the method of data collection or automatic data processing on 

the obtained AC50 values. Possible flags include: i) “only highest concentration above 

baseline, active”, ii) “only one concentration above baseline, active”, iii) “multiple points 

above baseline, inactive”, iv) “noisy data”, v) “borderline active”, vi) “borderline 

inactive”, vii) “gain AC50 < lowest concentration & loss AC50 < mean concentration”, 

viii) “hit-call potentially confounded by overfitting”, and ix) “biochemical assay with < 

50% efficacy”. Flagged results were not filtered out from the ToxCast dataset in the 

present study but were considered in the different case studies to interpret the relevance 

of certain assays. The available flags were derived from the 
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“AllResults_flags_180918.csv” file (U.S. EPA, 2018a). For more information please see 

the US EPA documentation on the data analysis steps (U.S. EPA, 2018b).

In Supporting information 2, the background information on the different ToxCast assays 

is provided, including, per assay, the number of food-relevant chemicals that were 

tested, the fraction of the tested food-relevant chemicals that tested positive (AC50 value 

less than 1,000,000), the fraction of the tested food-relevant chemicals that contained 

flags (specified for each of the different flags). In addition, the targets, target families, 

and target subfamilies to which the assays belong, are provided in Supporting 

information 2. 

2.3 Defining the biological activities of the chemical groups towards different 

ToxCast targets

Within the Assay_Summary_180918.csv file, the intended biological target of each assay 

is defined under “technological_target_official_symbol”. For each of the tertiary chemical 

groups as identified with ChemoTyper (see Section 2.2.2. and Table 1 of the Results 

section), the biological activities towards the different biological targets were defined by 

calculating the percentage of chemicals (per tertiary chemical group) that were active in 

that assay of that target. To this end, the number of chemicals per tertiary chemical 

group that were tested in the assays of a specific target and the number of chemicals for 

which AC50 values (that is, the chemical tested positively) were defined, based on which 

the percentage activity could be calculated. For this evaluation, only those assays in 

which at least three chemicals of a group had been tested were considered. As a result, 

all chemical groups with less than 3 chemicals were removed for further analysis. For 

larger groups, this means that only chemical group-assay endpoint combinations with an 

n>3 were included in the dataset. 

For the different target families within ToxCast (for example, DNA binding and 

nuclear receptor targets) and the target subfamilies of the nuclear receptor target family 

(being steroidal, non-steroidal and orphan), the percent activities of each tertiary 

chemical grouping per individual biological target were plotted as a heatmap using the 
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ggplot package in R. In addition, the percentage of positive hits per target (sub)family 

was calculated and plotted along with the circle pack of the chemical groups. The R codes 

for the calculation of the biological activities per chemical group and the resulting 

heatmaps, and circle pack have been made available through  

https://git.wur.nl/Punt001/ilsi_toxcast.git. In addition, the R workflow has been made 

available as a web application using R Shiny (Rstudio). This web application is available 

through: https://ilsi.eu/exploitation-of-toxcast-data-on-food-chemicals-for-safety-risk-assessment/. 

The R codes for the calculation of the biological activities per chemical group and the 

resulting heatmaps, and circle pack have been made available through  

https://git.wur.nl/Punt001/ilsi_toxcast.git. In addition, the R workflow has been made 

available as a web application using R Shiny (Rstudio). This web application can be 

accessed through: https://ilsi.eu/exploitation-of-toxcast-data-on-food-chemicals-for-safety-risk-

assessment/.

3. Results

3.1 Grouping of the ToxCast chemicals based on functional use and chemical 

structure. 

The 563 food-relevant chemicals were clustered according to their chemical structure as 

well as their functional use classes. The obtained groups are displayed in Figure 1 as a 

so-called circle pack, which displays the hierarchical architecture of the defined functional 

and chemical groups. Note that a given chemical group may be split across more than 

one functional group and vice versa. The first layer within Figure 1 displays the 

functional-use classes of which the largest group consists of food flavouring

s (obtained after matching the CAS numbers with the EU food flavourings regulation). A 

total of 455 chemicals fell into the flavouring’s category. Other relevant functional use 

classes included the group of European E-numbers (43 chemicals, food additives that 

perform a certain technological function in food, subdivided into sweeteners,  

antioxidants, preservatives, colours, and remaining E-numbers) nutrients (31 chemicals) 
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and regulatory restricted chemicals (19 chemicals). Chemicals that fell into multiple 

categories are counted multiple times, once for each category. For example, ascorbic acid 

is included as both an E-number (as a preservative) and nutrient (being also a vitamin). 

Chemicals for which no clear food use could be defined are grouped as “Other”. 

The clusters that were obtained based on the chemical structure are shown 

alongside the functional use classes in Figure 1 using different colours, representing the 

primary chemical clusters to which the chemical groups belong. Details on how the large 

primary clusters (e.g. alcohols) are further subdivided as appropriate into secondary 

(e.g. alcohol, alkyl) and tertiary (e.g. alcohol, alkyl, primary, straight chain) groups can 

be found in Table 1. Chemicals that fell into multiple chemical groups are counted 

multiple times, once for each group. For example, ascorbic acid falls into the “Ester, 

Lactone, Ascorbic acid and derivatives” group as well as the “Vitamines and derivatives” 

chemical group. Overall, 102 tertiary groups were defined for which the biological activity 

was explored. These tertiary groups consist of at least three closely related chemicals, 

with the largest chemical group consisting of seventeen (group 12, alkyl substituted 

phenols) chemicals. The majority of the defined chemical groups has a mean Tanimoto 

coefficient that is higher than 0.6. Some of the chemical groups are more structurally 

diverse and are atypical of the wider set, holding as they do compounds which exhibit 

unique characteristics. For example, the "amino acids and derivatives" grouping consists 

of a series of complex, often natural products, whereas "metallic salts organic" is founded 

solely upon the possession of an inorganic counter ion. Azo dyes furthermore represent a 

collection of compounds which may exhibit variation in wider structure despite unification 

by a distinctive functional group."

3.2 Global evaluation of the biological activity of the tertiary homologous 

chemical groups

3.2.1. ToxCast biological activities plotted as a heatmap
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Figure 2 displays different heatmaps demonstrating the activity of the 102 defined 

tertiary structural groupings towards different biological targets of the different target 

families and Figure 3 of the “DNA binding” and “nuclear receptor target families” in 

detail. White spots in the heatmaps represent chemical group-biological target 

combinations for which insufficient data are available (n< 3 in all assays that cover that 

biological target). Grey means that all the chemicals within the group were inactive in the 

assays for that target, while the colours ranging from orange to red represents an 

increasing percentage of chemicals within the chemical group that responded in the 

assays of that target. 

It is clear from the number of white areas in the heatmaps of Figure 2 that there 

are significant data gaps in ToxCast for the food-relevant chemicals, indicating that the 

ToxCast data set is not yet comprehensive for some of these types of food chemicals. 

Therefore, it is important to note that a lack of observed activity in the summarized 

findings should not be construed as indicative of inactive food-relevant chemicals, but 

that this is often the consequence of insufficient data. This observation may not be 

unique to food-relevant chemicals; other test substances within the wider ToxCast 

dataset beyond the scope of this inquiry may be as yet insufficiently tested for any broad 

conclusions to be made regarding their biological activities. Among the different target 

families, most of the food-relevant chemicals were tested in assays that are linked to the 

“DNA binding” and “nuclear receptor” target families (i.e. most grey/colour). The food-

relevant chemicals have also been tested in assays that are linked to “cell cycle”, “growth 

factor”, “hydrolase”, and “steroidal hormone”. However, these latter target families 

consist of only one to three targets each (few y-axis tick marks), whereas the “DNA 

binding” and “nuclear receptor” target families consist of thirty-six and forty targets, 

respectively. Further evaluations therefore focus on the activities within these latter two 

target families. 

The activities within the “DNA binding” and “nuclear receptor” target families are 

further highlighted in Figure 3, in which the “nuclear receptor” target family is also 

subdivided into its three distinctive subfamilies (“steroidal”, “non-steroidal”, and 
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“orphan”). Figure 3 reveals that most tertiary chemical groups are not active towards 

most of biological targets (i.e. 0% of the chemicals in the tertiary group showed activity 

in the assays of the target) within the “DNA binding” and “nuclear receptor” target 

families. One notable exception is chemical group 55 (containing parabens and gallates) 

that stands out in Figure 3 for its high activity towards ESR1|ESR2 (corresponding to ERα 

and ERβ), ESR1 (ERα) and ESR2 (ERβ). Other relevant chemical groups in Figure 3 are 

group 93 (containing thiols), which has a relatively high group activity at a variety of 

DNA binding targets, group 79 (containing genistein and daidzein), which has a high 

activity towards ESR1, ESR/ESR2, and ESR2, and group 101 (retinoids), which has a 

relatively high group activity towards RXRA, RAXRB, NR1I2 and NRF2.

Within the “DNA binding” and “nuclear receptor” target families there are a few 

targets for which almost all the chemical groups appear to be active. Examples are the 

NFE2L2, RXRA, RXRB, NR1I2, and ESR1 targets (horizontal orange stripes in Figure 3). 

Particularly, the frequent responses towards NFE2L2, RXRA, RXRB, and NR1I2 are likely 

because these are relatively general endpoints that are involved in increasing metabolic 

capacity or oxidative stress response (Mazaira et al., 2019; Louisse et al., 2018). 

However, to some extent this frequent activity also appears to be due to a 

proportionately high number of chemicals that are active in certain individual assays that 

fall under these targets (Ryan, 2017). For example, among the different assays that 

measure effects on ESR1, 10% of the food-relevant chemicals were active in the 

ATG_ERE_CIS_up assay and 7% in the TOX21_ERa_LUC_BG1_Agonist assay, whereas 

only 0.4 to 3% of the chemicals were active in other assays that measure ESR1 (see 

Supporting information 2), suggesting that the high positive rate in some assays might 

be an artefact. In addition, 12% of the food relevant chemicals were active in the 

ATG_NRF2_ARE_CIS_up assay (NFE2L2 target), 25% in the ATG_PXRE_CIS_up assay 

(NR1I2 target), TOX21_RXR_BLA_Agonist_ratio assay (RXRA target), and 7% in the 

ATG_RXRb_TRANS_up (RXRB target), with much lower rates in other assays for these 

targets.  This suggests that care should be taken in the interpretation of the ToxCast 

results when activity towards a biological target is due to activity in one of these specific 
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assays that generate a high number of positive results. Supporting information 2 

provides a list of the ToxCast assays, the percentage of the food relevant chemicals that 

were active in each assay, and the percentage of the results that contained flags. Based 

on these data the specificity of the different assays can be assessed, which is highly 

relevant for the interpretation of the test results for the individual chemical groups. 

3.2.2. Biological activities of the chemical groups in the context of their 

functional uses

Figure 4 combines the ToxCast activity data with the circle pack of Figure 1, 

providing an indication of the biological activities of the groups of food-relevant chemicals 

in the context of their functional uses. To this end, for each chemical group the percent 

activities in the assays that belong to a specific target family was calculated. For 

example, the distinct activities of group 55 (parabens-gallates), 79 (containing genistein 

and daidzein), group 98 (retinoids), and group 90 (thiols) as was observed in Figure 3, 

result in an overall high activity of these groups in the “steroidal nuclear receptor” (group 

55 and 79), “nonsteroidal” (group 101) and “dna binding” target (sub)families (group 93) 

in Figure 4. Figure 4 also reveals that many chemical groups are slightly active within the 

steroidal and non-steroidal nuclear receptor target families. These activities generally 

relate to activities in the assays with a disproportionately high number of positive hits 

and/or assays that capture general response mechanism to chemical exposure, as 

discussed above. 

Some of the tertiary structural groups in Figure 4 consist of chemicals that fall 

into different functional use classes. In those cases, the activity that is displayed in 

Figure 4 corresponds to percent activity of the chemicals that fall into the same use class 

and not the activity of the whole group. For example, Figure 4 reveals that the group of 

parabens (group 55) contains both regulatory restricted compounds and compounds that 

are used as antioxidants and preservatives. Particularly the restricted parabens and 

parabens used as preservative appear to have activity in the steroidal nuclear receptor 

target family of assays. In comparison, group 79 consists of polyphenols (genistein, 
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daidzein, and quercetin) and of different flavourings (for example coumarin). Figure 4 

reveals that the high steroidal-nuclear receptor activity of group 79 comes only from the 

polyphenols of group 79 and not from the flavourings. 

The results from the heat map (Figure 3) and circle pack (Figure 4) reveal that some of 

the key biological targets of the food-relevant chemicals can be defined by focussing on 

ToxCast activities of predefined homologous chemical groups. The circle pack plot (Figure 

4) provides insight into the overall biological activities of the tertiary chemical groups 

within the “DNA binding” and “(steroidal, non-steroidal, and orphan) nuclear receptor” 

target (sub)families and places the results in the context of the functional uses. The 

heatmap of Figure 3 provides insights into the specific targets within these target 

(sub)families that are affected. Based on these results several case studies were defined 

to explore how the ToxCast data can be used in food safety risk evaluations and for the 

evaluation of desirable effects of nutrients and phytonutrients. The case studies are used 

to check whether the mechanistic information that is obtained from ToxCast matches 

with what is expected from the chemical group. To this purpose, case studies were 

selected around chemical groups that express a high biological activity towards a specific 

target (parabens), chemicals that are restricted for food use due a specific activity (some 

parabens and genotoxic and carcinogenic compounds like estragole, methyleugenol and 

safrole), and chemical groups are related to specific health benefits (e.g. flavonoids and 

fatty acid). For the selected case studies sufficient literature data is available on the 

mechanisms of action of the compounds. The comparison of the observed target(s) with 

expected target(s) is considered a crucial step to find potential caveats in the HTS data 

that need to be considered for future use of the data on chemicals for which little animal 

experimental or in vitro reference data is available.

3.4.1 Case study on regulatory restricted chemicals

The group of regulatory restricted chemicals provides an interesting group of food-

relevant chemicals for the evaluation of ToxCast activities. Several compounds that are 
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restricted for food use in regulations can be found within the ToxCast data set of food-

relevant compounds. Most of these compounds have an E-number (EU codes for 

substances that are permitted as food additive) yet have been discontinued for food use 

in the EU. The exact reasons for the discontinuation are not always clear but do not 

necessarily relate to the demonstrable toxicity of the chemical. For example, ethoxyquin 

(E324) was suspended from its authorisation as a feed additive in (EU, 2017) because of 

a lack of data on some aspects of its safety, but it is currently being re-evaluated by 

EFSA again for this use (EFSA, 2019). However, for two chemical groups within the 

regulatory restricted group, demonstrable toxicological findings have played an important 

role in their restriction for food use. These are group 55 (containing parabens and 

gallates, which have estrogenic activities) and groups 70 and 77 (containing estragole, 

methyleugenol, and safrole, which are genotoxic and carcinogenic (Phillips et al., 1984). 

It is of interest to observe whether for these groups a perturbation of the underlying 

biological target responsible for the restrictions can be detected with the goal of 

determining the potential contribution of ToxCast data in such evaluations of food safety 

risk.

3.4.1.1 Restricted and non-restricted parabens and gallates

The ToxCast evaluation of the biological activities of structural groups detected a relative 

high activity of the paraben-gallate (group 55) towards ER alpha and beta activation 

(ESR1, ESR2, ESR1|ESR2 in Figure 3). This structural group consists of the approved E-

numbers methylparaben (preservative), dodecyl gallate, octyl gallate and propyl gallate 

(used as anti-oxidants); two parabens that are not used in foods within the EU; butyl- 

and heptylparaben; and the restricted propylparaben (EFSA, 2004). Figure 4 reveals that 

the biological activity within the paraben-gallate mainly comes from the restricted and 

non-restricted parabens (preservatives) rather than the gallates that are used as anti-

oxidants. Particularly the percentage of positive assays towards the steroidal nuclear 

receptors (Fig. 4A) was higher for parabens than gallates. Positives were largely for 

estogenic assays. The differences within the group of parabens-gallates is also reflected 
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in the relative estrogenic potencies of these two groups; the mean AC50 of the positive 

ER alpha assay results for the restricted/non-approved parabens (with Z-scores>3) is 

10.9±4.7 µM for propylparaben, 5.2±1.4 µM for butylparaben, and 3.7±0.6 for 

heptylparaben, whereas the non-restricted methylparaben has a lower potency with a 

mean AC50 of 53±18 µM.  Dodecyl and propyl gallate were not active in the ER receptor 

assays in the final dataset and octyl gallate is active in only one out of the eight ER 

receptor assays.  It should, however, be noted that many of the positive ER hit-calls of 

the gallates appeared to have been filtered out as a result of their low Z-scores. This 

suggests a potential influence of, for example, cytotoxicity, on the estrogen receptor 

results of the different gallates.

Altogether, the results obtained for group 55 reveal an interesting potency 

difference between the parabens and gallates within this group. These results provide 

relevant information that can be considered within the regulatory risk assessments of 

these compounds, particularly to perform a read-across. The estrogenic hazard potential 

of the parabens has long been included in their risk assessment (EFSA, 2004; SCCS, 

2013; EMA, 2015). In case of gallates, the potential these compounds to interfere with 

the human estrogen receptor in vitro has recently be mentioned by EFSA in re-

evaluations of dodecyl, octyl and propyl gallate, but has not been included in their final 

risk evaluation as confirmatory in vivo data are lacking (EFSA, 2015a; 2015b; 2015c). 

Based on the results of the present study the association between gallates and the 

estrogen receptor was considered low, but follow-up in vitro studies may be needed to 

better understand the origin of the low Z-scores for the gallates in the ER-related assays 

that had to be dismissed on the basis of these low Z-scores.  

3.4.1.3 Regulatory restricted genotoxic carcinogens

Evaluation of the ToxCast activities of chemical group 70 and 77 that contain the known 

genotoxic and carcinogenic compounds estragole (group 70), methyleugenol (group 70), 

and safrole (group 77) (SCF, 2001) shows that the hazard of these type of compounds 

cannot be adequately identified in ToxCast. In Figure 4, groups 70 and 77 can be found 
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to have a slight activity within the non-steroidal nuclear receptor target family. However, 

based on Figure 4, it can be concluded that this activity relates to activation of RXRB and 

NR1I2 (also called PXR), targets that induce xenobiotic metabolism enzyme synthesis 

and for which many non-carcinogenic chemical groups are active. Hence this slight 

activity towards RXRB and NR1I2 is not considered diagnostic for the genotoxic hazard of 

these compounds nor for potential other specific mechanisms of actions. Given the 

genotoxic mechanisms of estragole, methyleugenol and safrole, activity in assays that 

include p53 tumor suppressor gene activity might be expected (Paini et al., 2011). Such 

activity forms part of the “DNA binding” target family. However, no such activity was 

found, nor was there any other indication of genotoxicity for these chemicals within the 

ToxCast dataset. 

Since estragole, methyleugenol, and safrole require bioactivation for their 

genotoxic and carcinogenic effects (SCF, 2001; Punt et al., 2007), this lack of detectable 

activity could be due to the lack of metabolic capacity within the ToxCast assays 

(DeGroot et al., 2018). Moreover, genotoxicity can be difficult to detect without very 

tight concentration spacing, as the high-throughput assays often quantify the 

upregulation of DNA-repair pathways (Iyer et al., 2019). While these assays quantify the 

cellular mechanisms evolved to fix low-level DNA damage, when the damage-levels are 

great, cells instead die without attempting repair, resulting in false-negative tests. 

Therefore, it is also possible that the lack of detectable genotoxic activity could be due to 

the large concentration-spacing used for ToxCast testing and the subsequent 

misclassification of genotoxicity as cytotoxicity. Taken together, these findings suggest 

that currently genotoxicants and/or carcinogens cannot always be adequately detected 

within the ToxCast activity data, which is supported by other literature findings (Becker 

et al., 2017). 

3.4.2 Use of ToxCast data in assessment of beneficial effects

The flavonoids genistein, daidzein, and quercetin; unsaturated fatty acids like linolenic, 

linoleic and oleic acid are all examples of compounds with health-beneficial effects that 
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can be found within the set of food-relevant chemicals used in the present study. For 

these substances the relationship between beneficial and adverse biological effects is of 

particular interest. Therefore, the ToxCast data from these two substance-groups was 

examined to characterize the biological targets of each group of health beneficial 

chemicals and evaluate how the ToxCast information might be used to inform a risk-

benefit assessment of the compounds.

3.4.2.1 Flavonoids

Flavonoids have been extensively studied for their biological effects against cancer, 

cardiovascular diseases, obesity and diabetes, as well as neurodegenerative disorders 

(Williamson et al., 2018). Within the set of food-relevant chemicals of the present study, 

three flavonoids are included: quercetin and the isoflavones daidzein and genistein. All 

are part of the “heterocycles and polycycles- oxygen heterocycles-pyranone”-chemical 

group (group 79). Other chemicals that are part of this group are maltol, 2-ethyl-3-

hydroxy-4-pyrone, maltol isobutyrate, coumarin, and 6-methyl coumarin. The molecular 

targets that have been suggested to play a predominant role in the health beneficial 

effects of flavonoids are displayed in Table 2. 

In contrast to what was expected, no activity of group 79 was found for most of 

the targets described in Table 2, except for activity in ER-related assays and NRF2. 

Similarly, when examining the data for each individual flavonoid in the group it is clear 

that this group is made up of diverse substances; each has relatively few identifiable 

activities with little overlap with those of other members of the structural group. 

Interestingly, the apparent biological activities of flavonoids are significantly 

affected by the filtering out of results with Z-scores less than three. Without this filtering, 

quercetin, genistein, and daidzein are active in 19.4%, 31.3%, and 23.6% of the assays, 

respectively, that are part of the target (sub)families of Figure 2, whereas they are active 

in only 1%, 11%, and 10% of these assays after filtering. Judson et al. (2016) also 

identified quercetin as a highly active chemical within ToxCast, with low specificity (low 
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Z-scores). Many of the effects of the chemicals in group 79 are thus filtered out as being 

non-specific. Though results with a Z-score lower than three may reflect an indirect 

influence of cytotoxicity or other non-specific mechanisms of action, the low Z-scores 

may also point to a non-specific interference with the assays. For example, flavonoids are 

capable of stabilization of luciferase, frequently used in reporter gene assays (Prinsloo et 

al., 2017). The high number of assay-results with low Z-scores indicate that challenges 

exist in using HTS to explore the biological activities of certain compound such as 

flavonoids.

Although the ToxCast activities of flavonoids seem uncertain due to possible non-

specific effects, group 79 does show a distinct activity within the “nuclear receptor-

steroidal” target (sub)family towards the estrogen receptor alpha and beta. This result is 

predominantly due to activity of the isoflavones genistein and daidzein (see Figure 4). 

The interaction of genistein and daidzein with the ER receptor has been linked to both 

beneficial health effects (for example, lowering menopausal symptoms, lowering cancer 

risks and risk for cardiovascular diseases) and adverse effects (endocrine disruption, 

increased hormone cancer risk) (Rietjens et al., 2017). A key hypothesis behind the 

benefits and risks of isoflavonoids is the differences between the activation of ERα and 

ERβ. ERα activation enhances cell proliferation, whereas ERβ counteracts the ERα-

mediated stimulation of cell proliferation (Rietjens et al., 2017). Though many estrogenic 

compounds within ToxCast interact with both ERα and ERβ (including the parabens as 

described above), the AC50 values for genistein and daidzein were 20 and 11-fold lower 

for ERβ compared with ERα (based on the OT_ER_ERaERa_0480/1440 and 

OT_ER_ERbERb_0480/1440 assays), respectively, suggesting a predominantly ERβ-

mediated effect at low concentrations (This is not the case for the parabens which have 

comparable AC50 values towards ERα and ERβ for example). This selective estrogen 

receptor modulation suggests that the risk-benefit profile of genistein and daidzein is 

probably dose-dependent but must be extrapolated to in vivo dose-response or potency 

information to identify whether the effective concentrations in vitro are capable of being 

attained in vivo. For genistein, this has for example been done by Boonpawa et al. 
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(2017), revealing that both Asian dietary intake levels and the use of genistein-

containing supplements are sufficient for ERβ activation, but not for ERα modulation. 

Thus, the in vitro potency information over a range of ToxCast targets can be used to 

prioritize measurement and evaluation of in vivo biological effects within the context of 

risk-benefit assessments.

3.4.2.2 Fatty acids

Fatty acids, particularly unsaturated fatty acids, play a key role in reducing 

cardiovascular risks and anti-inflammatory effects (Williams 2000). The set of food-

relevant chemicals of the present study contains a series of both unsaturated (group 22) 

and saturated (group 24) fatty acids. Group 22 consists of 2-butenoic-, sorbic-, 10-

undecenoic-, oleic-, linolenic-, and linoleic-acid. Group 24 consists of acetic acid, 

butanoic-, pentanoic-, hexanoic-, heptanoic-, octanoic-, decanoic-, dodecanoic-, 

tetradecanoic-, hexadecenoic (palmitic)-, and octadecanoic(stearic)- acid.

An important mode of action of fatty acids is the regulation of lipid metabolism 

(Varga et al., 2011). For example, Popeijus et al. (2014) have shown that fatty acid 

chain length and saturation influences PPARα transcriptional activation and repression in 

HepG2 cells, and specifically the saturated fatty acids palmitic acid (C16:0) and stearic 

acid (C18:0) both repress PPARα activation, whilst their unsaturated metabolites 

palmitoleic acid (C16:1(n‐7)) and oleic acid (C18:1(n‐9)) activate PPAR transcription. 

Other potentially relevant targets of fatty acids within lipid homeostasis are SREBPs, LXR, 

and HNF4 (Müller and Kersten, 2003). Table 3 provides an overview of the ToxCast 

activity of the chemical groups containing fatty acids towards these different targets. 

The ToxCast activity of both groups 22 and 24 towards the expected targets of Table 3 

appears to be very limited. For example, within group 22 only 10-undecenoic acid is 

active in two PPARα-related assays, and within group 24 the PPARα activity mainly comes 

from decanoic acid. The low responses seem to be partly due to the filtering based on Z-

scores lower than three. Without filtering, all the long chain fatty acids of the unsaturated 
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fatty acid group (oleic acid, 10-undecenoic acid, linoleic acid and linolenic acid) are active 

in the ATG_PPARa_TRANS_up assay, which is in line with what is expected (Popeijus et 

al., 2014). This raises questions as to whether AC50s with low Z-scores should indeed be 

considered to be the result of non-specific activities and as to what causes these low Z-

scores. The low observed biological activity of the saturated fatty acids group towards 

PPARα (either up or down regulation) was not affected by the Z-score filtering. 

The activity towards the other potential molecular targets of saturated and 

unsaturated fatty acids are also limited but does not seem to be caused by the filtering 

based on Z-scores. In the case of SREBPs, the limited activity might be the result of to 

the fact that unsaturated fatty acids are down regulators (Hannah et al., 2001), whereas 

ToxCast only contains the ATG_SREBP_CIS_up assay. The LXR receptor, which is 

involved in the regulation of cholesterol and fatty acid homeostasis was not active as a 

Toxcast assay target for group 22 and 25, which may be a reflection of it being 

responsive to HNF4A intracellular cholesterol alterations (Lund et al., 2006). Overall, the 

results indicate that the ToxCast dataset is at present not yet adequate to obtain insights 

into the biological activities of fatty acids or, for example, for the extrapolation of the 

potential effects over different chain-lengths of fatty acids. 

3.5 Remaining relevant groups 

Table 4 provides a list of remaining relevant chemical groups that display a relatively 

high activity as displayed in Figures 3 and 4, but which were not assessed further as case 

studies. The observed activities of these groups generally relate to endpoints such as 

increased metabolic capacity or oxidative stress response. However, the targets that are 

affected by the Thiol group (group 93) within the “DNA binding” target family may point 

at a specific activity of this chemical group that is potentially relevant for the safety 

evaluation of this chemical group. 
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4. Discussion

This investigation aimed to i) explore how HTS can be leveraged to obtain chemical-

specific insights into the biological targets that may be affected by different food-relevant 

chemicals, and ii) assess the utility of the data for the safety assessment of food 

chemicals as well as the evaluation of health beneficial effects of chemicals in a few case 

studies. A method was set-up to group the chemicals according to functional use and 

structural similarity. For each of the tertiary chemical groups of homologous chemicals, 

the percent of chemicals that were active in the assays for different targets and target 

families were calculated. The targets that are elicited (and directionality thereof, e.g. 

activation vs down-regulation), but also the inactivity towards certain targets can provide 

key information in characterizing biological patterns.

A general challenge in the use of HTS data in chemical safety evaluations is the 

uncertainty around the individual assay results. The diverse assay space and challenges 

with automatic processing contribute to this uncertainty (Watt and Judson, 2018; Ryan, 

2017; Cox et al., 2014). The approach of the present study, in which the focus is not on 

the individual chemical results but on the activity of homologues within chemical groups 

may contribute to reducing the uncertainty and improving the specificity when defining 

biological targets of chemicals based on HTS data. Taking the example of genistein, this 

compound is active in 114 assays within the crude ToxCast data set, with 49% of these 

results containing flags. Removing all data with Z-scores lower than three as a cut-off 

value for non-specific effects, the number of positive hit calls is reduced to 16, of which 

30% contain flags. Combining the results with the other flavonoids within the list of food-

relevant chemicals, including daidzein, points towards the expected ER activation as the 

most predominant biological effect. Both genistein and daidzein tested positive in 11 

different ESR1 and/or ESR2 assays with one flagged result for genistein. 

Though these results indicate that the specificity increases by filtering the ToxCast 

data for Z-scores and focussing on targets that are induced by homologous chemical 

groups, such filtering may also result in a potential loss of information. In the different 
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case studies, filtering of Z-scores lower than 3, sometimes appeared to eliminate 

valuable information. It is therefore also important to go back to the crude data to 

evaluate the filtering process prior to the use of ToxCast results for risk evaluations.  

The (tertiary) chemical groups for which the ToxCast activities were assessed 

were obtained with ChemoTyper software (Yang et al., 2015; Mellor et al., 2019). Other 

methods for chemical grouping exist as well, including for example AMBIT (http://cefic-

lri.org/toolbox/ambit/), the  OECD QSAR toolbox (Dimitrov et al., 2016) and ToxMatch 

(https://ec.europa.eu/jrc/en/scientific-tool/toxmatch). Key to the chemical grouping is 

that groups should become neither too large nor too small. The highest number of 

chemicals within one group that was obtained using ChemoTyper contained seventeen 

analogues. Most of the groups consist of three to five chemicals. Sixty-six of the 

originally 168 defined groups could not be used in the present study as these contained 

only one or two chemicals.

The fact that the number of chemicals within a group varies may pose some bias 

in the evaluation of the biological activity group targets. If two compounds in a group of 

three chemicals are active towards a specific target, this corresponds to 66% activity, 

whereas an activity of two compounds in a group of six would correspond to 33% 

activity. A similar bias in the results occurs due to the varying number of assays per 

target in the ToxCast data set. Many of the biological targets as displayed in Figure 4 are 

covered by only one or two assays, whereas for the ESR1 target there are 16 assays of 

which 11 measure estrogen receptor agonism. A high percentage activity of a chemical 

group in the case of ESR1 will therefore occur only when the chemicals of that group are 

active across a wide range of assays for ESR1. Even though these results indicate that for 

larger chemical groups and for targets that are covered by multiple assays it will be more 

difficult to pick up group activities, the results are expected to become more specific. For 

example, the activity of the compounds of the paraben-gallate (group 55) and combined 

activity of genistein and daidzein within the pyrole group (group 79) in multiple ESR1, 

ESR2 and ESR1|2-related assays give confidence that estrogen receptor activation is an 

important target for these groups of chemicals. This effect of enrichment was less 
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apparent within fatty acid and genotoxic carcinogen-case studies, due to the overall 

limited activity of the individual chemicals in the expected assays.  

Whereas the ToxCast data may add to the evidence considered in food chemical 

safety evaluations (that can be used for read-across and risk assessments), the results  

should serve primarily as a screening tool to set priorities for further evaluations relative 

to hypothesized biological targets. Examples of the use of ToxCast data, particularly for 

read-across, can also increasingly be found in the literature (Blackburn et al., 2019; 

Lizarraga et al., 2019). Some care however should be taken to avoid overinterpretation 

of the data. Not all available chemicals within ToxCast have been tested in all available 

assays and not all toxicity endpoints are covered by the available assays. In addition, 

better understanding of relevance of data with low Z-scores may minimize loss of 

potentially relevant information. For individual cases where low Z-scores are found, 

follow-up analyses may be needed to identify what causes these low Z-scores. These 

facts are critical aspects of the dataset which we found crucial for proper data 

interpretation during the present study.

A more general aspect that needs to be kept in mind is the fact that metabolic 

activation of chemicals is not accounted for in the ToxCast assays. This probably 

contributed to the observed poor prediction of genotoxicity in the case studies. Research 

that focuses on enhancing the metabolic capacity in HTS assays is therefore important 

(DeGroot et al. 2018). 

Finally, it should be noted that in vitro activity data do not directly reflect in vivo 

biological potencies (in vivo effects will for example also depend on the availability of a 

chemical in the body). Extrapolation of the concentration-response curves to in vivo 

potency information is an important next step. There are an increasing number of 

publications that focus on establishing such an extrapolation (Becker et al., 2014; Punt et 

al., 2019; Fabian et al., 2019; Boonpawa et al., 2017; Wetmore et al., 2015; Dent et al., 

2019). One approach is to use kinetic modelling or human biomonitoring data to compare 

the AC50 values with internal plasma concentrations reached during daily exposures in 

so-called exposure:activity ratios, EARs. EARs of different compounds can subsequently 
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be compared in a so-called ‘dietary comparator ratio’ (DCR) approach to prioritise 

exposure-activity data relative a known reference compound (Becker et al., 2014; Dent 

et al., 2019). 

To increase regulatory use of HTS it will be important to tackle the different 

challenges related to HTS and quantitative in vitro to in vivo extrapolations. Recently 

Thomas et al., 2019 published a blueprint to systematically address these key 

challenges, which can be expected to move the field forward. 

Overall, the results of the present study suggest HTS data could add to the 

evidence considered for regulatory risk assessments for food chemicals and to the 

evaluation of desirable effects of nutrients and phytonutrients. The data will be 

particularly useful for providing mechanistic information and to fill data gaps with read-

across. Whereas the current study mainly focussed on setting up a method to find key 

biological targets of chemical groups and the qualitative interpretation thereof, the key 

next step for use in risk evaluations or follow-up research is to also focus on the 

quantitative aspects of the results. This includes, for example, the evaluation of the 

(differences in) potencies of the chemicals towards targets of interest and placing the 

potencies in the context of human in vivo-relevant exposure.
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Figure 1. Circle pack plot of the defined functional groups with the colouring highlighting 

the different defined chemical groups. The larger a circle, the more chemicals fall into the 

group and closely related chemicals are packed more closely together. Tertiary groups 

(closest related chemicals) are labelled and coloured according to the primary chemical 

group to which they belong. Details about the composition of the groups can be found in 

Table 1.

Figure 2. Heatmaps showing coverage of biological activity for the 102 tertiary chemical 

groups within the different ToxCast target families. The targets are displayed on the y-

axes with ticks, one per target. The range from orange to red corresponds to an 

increasing percentage of chemicals within the chemical group that was active in the 

different assays of that target. White spots mean that less than 3 chemicals were tested 

in all assays of that target. Grey spots mean that none of the chemicals in the chemical 

group was active in the assays of that target.

Figure 3.  Heatmaps of the biological activity of the 102 tertiary chemical groups within 

“DNA binding” and “nuclear receptor” target families. Each target (displayed on the y-

axes with labels) is covered by 1 to 11 assays. The range from orange to red corresponds 

to an increasing percentage of chemicals within the chemical group that showed activity 

in the different assays of that target. White spots mean that less than 3 chemicals were 

tested in all assays of that target. Grey spots mean that none of the chemicals in the 

chemical group was active in the assays of that target. The results for all target families 

can be interactively viewed through www. https://ilsi.eu/exploitation-of-toxcast-data-on-food-

chemicals-for-safety-risk-assessment/.  

Figure 4. Biological activity of the tertiary chemical groups within the “Nuclear receptor” 

(A, B, C) and “DNA binding” (D) target families. For each tertiary chemical group, the 

percent of chemicals that were active in the assays for different target families were 
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calculated and displayed in the colours indicated. The results for all target families can be 

interactively viewed through www. https://ilsi.eu/exploitation-of-toxcast-data-on-food-

chemicals-for-safety-risk-assessment/. 
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Table 1. Defined chemical groups

Primary groupsa Secondary groupsa Tertiary groups a (including the mean Tanimoto coefficient) b 
Alcohol Alkenyl; Alkyl; Hydroxybenzene; 

Phenylalkanol
1. Alkenyl, primary (0.44); 2. Alkenyl, secondary (0.42); 3. Alkenyl, tertiary 
(0.7); 4. Alkyl, diol (0.42); 5. Alkyl, primary, branched-chain (0.58); 6. Alkyl, 
primary, straight chain (0.63); 7. Alkyl, secondary, cyclic (0.68); 8. Sugar alcohol 
(0.59); 9. Alkoxy phenol ether, substituted (0.57); 11. Hydroxy benzyl ketones 
(0.71); 12. Phenol, aliphatic substituted(0.67); 13. Salicyclic acid and derivatives 
(0.68); 14. Phenalkyl/alkenyl (0.60)

Aldehyde Alkenyl; Alkyl; Aromatic 15. Alkenyl, acyclic (0.51); 16. Alkyl, branched-chain (0.50); 17. Alkyl, straight 
chain (0.76); 18. Benzaldehyde derivatives (0.64); 19. Phenylalkenyl (0.67); 20. 
Phenylalkyl (0.66)

Carboxylic acid Alkenyl; Alkyl; Amino acids and 
derivatives; Aryl; Hydroxy acid; 
Keto acid; Polycarboxylic acid

21. Alkenyl, branched-chain (0.48); 22. Alkenyl, straight chain (0.37); 23. Alkyl, 
branched-chain (0.72); 24. Alkyl, straight chain (0.59); 25. Amino acids and 
derivatives (0.26); 26. Benzoic acid (0.90); 27. Phenylaliphatic carboxylic acid 
(0.41); 28. Lactic acids; 29. Keto acid (0.53); 30. Polycarboxylic acid, alkyl and 
alkenyl (0.52)

Dyes Azo; Triarylmethane 31. Azo (0.38); 32. Triarylmethane (0.76)
Ester Aliphatic alcohol diester/triester; 

Alkenyl alcohol; Alkyl alcohol; 
Aromatic acid ester; Aromatic 
alcohol; Lactone

33. Aliphatic alcohol diester/triester (0.37); 34. (3Z)-Hex-3-en-1-yl alcohol; 35. 
Allyl alcohol; 36. Citronellol; 37. Geraniol; 38. Linalool; 39. Branched-chain 
alcohol, aliphatic (0.54); 40. Branched-chain alcohol, aryl (0.69); 41. Butanol 
(0.51); 42. Ethanol, aliphatic (0.58); 43. Ethanol, aryl (0.55); 44. Hexanol 
(0.76); 45. Isobutanol (0.79); 46. Methanol, aliphatic (0.43); 47. Methanol, aryl 
(0.79); 48. Pentanol (0.79); 49. Propanol (0.67); 50. Straight chain (7 +) 
alcohol, aliphatic (0.80); 51. Straight chain (7 +) alcohol, aryl (0.80); 52. 2-
Aminobenzoate (0.62); 53. Benzoate (0.69); 54. Cinnamate (0.57); 55. Paraben-
gallate (0.72); 56. Phenylacetate (0.73); 57. Salicylate (0.67);  58. 3-
Phenylpropen-2-enyl alcohol (0.76); 59. Anisyl (0.90); 60. Benzyl alcohol, 
aliphatic (0.85); 61. Benzyl alcohol, aryl (0.83); 62. Phenylethyl alcohol, aliphatic 
(0.77); 63. Phenylethyl alcohol, aryl (0.77); 64. Ascorbic acid and derivatives 
(0.41); 65. Lactone, five-membered (0.66); 66. Lactone, six-membered (0.64)

Ether Alkenyl; Alkyl; Aromatic 67. Alkenyl, acyclic (0.59); 68. Alkyl, cyclic (0.39); 69. Aryl methoxy (0.67); 70. 
Aryl methoxy, aliphatic substituted(0.65)
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Heterocycles and 
polycycles

Hydrocarbon polycycles; Nitrogen 
heterocycles; Oxygen 
heterocycles; Sulfur-nitrogen 
heterocycles

71. Bicycloheptanes and derivatives (0.67); 72. Biphenyl derivatives (0.90); 73. 
Naphthalene derivatives (0.50); 74. Pyrazine derivatives (0.57); 75. Pyridine 
derivatives (0.48); 76. Quinoline derivatives (0.56); 77. Benzodiazole (0.48); 78. 
Furan derivatives (0.49); 79. Pyranone (0.45); 80. Thiazole and thiazoline (0.28)

Hydrocarbon Terpene 81. Terpene (0.57)
Inorganic Inorganic 82. Inorganic (0.08)
Ketone Alkenyl; Alkyl; Aryl; Jasmone 

derivatives
83. Alkenyl, acyclic (0.55); 84. Cyclohexenyl (0.58); 85. Ionone/irone (0.62); 86. 
Alkyl, acyclic (0.61); 87. Alkyl, cyclic (0.61); 88. Benzyl (0.71); 89. Jasmone 
derivatives (0.42)

Metallic salts 
organic

Metallic salts organic 90. Metallic salts organic (0.21)

Organosulfur Alkyl thioether; Disulfide; Thiol 91. Aliphatic thioether (0.44); 92. Disulfide (0.37); 93. Thiol (0.33)
Structure undefined Structure undefined 94. Structure undefined (NA)
Sugars and 
derivatives

Sugars and derivatives 95. Sugars and derivatives (0.49)

Terpene and 
Terpenoid 
derivatives

Carvone derivatives; Citronellol 
derivatives; Farnesene 
derivatives; Geraniol derivatives; 
Linalool derivatives; Retinol 
derivatives

96. Carvone derivatives (0.67); 97. Citronellol derivatives (0.70); 98. Farnesene 
derivatives (0.62); 99. Geraniol derivatives (0.75); 100. Linalool derivatives 
(0.75); 101. Retinol derivatives (0.69)

Vitamins and 
derivatives

Vitamins and derivatives 102. Vitamins and derivatives (0.25)

a Only those chemicals chemical groups that contain at least three chemicals are displayed. The full list of chemicals and their grouping is 
provided in appendi

b Mean Tanimoto coefficient, calculated based on the Maximum Common Substructures of the chemicals within a group (see Materials and 

Methods).
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Table 2.  Expected important biological targets of different flavonoids and the 

percentage active in the chemical group containing flavonoids (group 79) towards these 

targets. 

Biological 

targeta

ToxCast targets 

(% active in group 

79)

Function ToxCast 

Target 

family 

ToxCast Target 

subfamily

NRF2 NFE2L2 (15) antioxidant DNA 

binding

basic leucine 

zipper

NF-κβ NFKB1 (0) free-radical 

scavenging

DNA 

binding

NF-kappa B

VEGF KDR (0), FLT1 (0), 

FLT4 (0)

regulation of 

vascular cell

development

kinase receptor tyrosine 

kinase

PPAR PPARA (0), PPARD 

(0), PPARG (0),

PPARA|PPARD|PPARG 

(0), PPARG|SRC (0)

lipid 

metabolism 

and glucose 

homeostasis 

nuclear 

receptor

non-steroidal

VCAM-1 VCMA1 (0) vascular cell 

adhesion 

cell 

adhesion 

molecules 

immunoglubulin 

CAM

ER ESR1 (14), 

ESR2 (29), 

ESR1|ESR2 (40)

estrogen-

dependent 

proliferation 

and 

differentiation

nuclear 

receptor

steroidal

aBeekmann et al. 2012; Williamson et al. 2018; Rietjens et al. 2017

D
ow

nloaded from
 https://academ

ic.oup.com
/toxsci/advance-article-abstract/doi/10.1093/toxsci/kfaa008/5732696 by Liverpool John M

oores U
niversity user on 18 February 2020



40

Table 3. Expected important biological targets of different fatty acids within lipid 

homeostasis and the percentage of actives in the chemical group containing unsaturated 

fatty acids (groups 22) and saturated fatty acids (group 24) towards these targets.

Biological 

targeta

ToxCast target (% 

active in groups 22 

and 24)

Function ToxCast 

Target 

family 

ToxCast Target 

subfamily

PPARs PPARA (11)(10), 

PPARD (0)(0), 

PPARG (8)(4),

PPARA|PPARD|PPARG 

(13)(5)

PPARG|SRC (13)(0)

lipid 

metabolism 

and 

homeostasis, 

glucose 

utilization

nuclear 

receptor

non-steroidal

SREBPs SREBF1 (0)(6) lipid 

metabolism 

and 

homeostasis

DNA binding basic helix-loop-

helix leucine 

zipper

LXR NR1H2 (0)(0), 

NR1H3 (0)(0), 

NR1H2|NR1H3 (0)(0)

SRC|NR1H4)(10),

lipid 

metabolism 

and 

homeostasis

nuclear 

receptor

non-steroidal

HNF4 HNF4A (0)(0) lipid 

metabolism 

and 

homeostasis

nuclear 

receptor

orphan

aMüller and Kersten, 2003
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Table 4. List of chemical groups that displayed a relatively high activity in Figure 3 and 4 

and the targets that are affected. 

Chemical group Target family and key targets a

Ester-Aliphatic alcohol diester/triester (group 33, n 

=11 of which 1 chemical is part of the regulatory 

restricted group)

Non-steroidal nuclear receptor:

NR1I2 (33), PPARG (22), NR1H4 (20)

Metallic salts organic (group 87, n =7 of which 1 

chemical is part of the regulatory restricted group)

Non-steroidal nuclear receptor:

NR1I2 (36), RXRA (33), PPARG (30) 

Retinol derivatives (101, n=3) Non-steroidal nuclear receptor:

NR1I2 (45), RXRA (40), RXRB (30), 

VDR (25), NR1H2|NR1H3 (20)

Organosulfur.Thiol (group 93, n = 6) DNA binding: 

TCF7|TCF7L2|LEF1|TCF7L1 (60)

IRF1 (40), FOS|JUN, (33), SMAD1 (33), 

USF1 (33), NFKB1 (33), NFE2L2 (33), 

POU2F1 (33), 

TP53 (33), AHR (28), SREBF1 (20), 

HSF1 (20), XBP1ng (20)

a>Only the targets with more than 20% activity are displayed
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Figure 1. Circle pack plot of the defined functional groups with the colouring highlighting the different 
defined chemical groups. The larger a circle, the more chemicals fall into the group and closely related 

chemicals are packed more closely together. Tertiary groups (closest related chemicals) are labelled and 
coloured according to the primary chemical group to which they belong. Details about the composition of the 

groups can be found in Table 1. 
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Figure 2. Heatmaps showing coverage of biological activity for the 102 tertiary chemical groups within the 
different ToxCast target families. The targets are displayed on the y-axes with ticks, one per target. The 

range from orange to red corresponds to an increasing percentage of chemicals within the chemical group 
that was active in the different assays of that target. White spots mean that less than 3 chemicals were 

tested in all assays of that target. Grey spots mean that none of the chemicals in the chemical group was 
active in the assays of that target. 
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Figure 3. Heatmaps of the biological activity of the 102 tertiary chemical groups within “DNA binding” and 
“nuclear receptor” target families. Each target (displayed on the y-axes with labels) is covered by 1 to 11 

assays. The range from orange to red corresponds to an increasing percentage of chemicals within the 
chemical group that showed activity in the different assays of that target. White spots mean that less than 3 

chemicals were tested in all assays of that target. Grey spots mean that none of the chemicals in the 
chemical group was active in the assays of that target. 
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Figure 4. Biological activity of the tertiary chemical groups within the “Nuclear receptor” (A, B, C) and “DNA 
binding” (D) target families. For each tertiary chemical group, the percent of chemicals that were active in 

the assays for different target families were calculated and displayed in the colours indicated. The results for 
all target families can be interactively viewed through www. https://ilsi.eu/exploitation-of-toxcast-data-on-

food-chemicals-for-safety-risk-assessment/. 
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