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Abstract
Disentangling the contribution of long-term evolutionary processes and recent an-
thropogenic impacts to current genetic patterns of wildlife species is key to assessing 
genetic risks and designing conservation strategies. Here, we used 80 whole nuclear 
genomes and 96 mitogenomes from populations of the Eurasian lynx covering a 
range of conservation statuses, climatic zones and subspecies across Eurasia to infer 
the demographic history, reconstruct genetic patterns, and discuss the influence of 
long-term isolation and/or more recent human-driven changes. Our results show that 
Eurasian lynx populations shared a common history until 100,000 years ago, when 
Asian and European populations started to diverge and both entered a period of con-
tinuous and widespread decline, with western populations, except Kirov, maintaining 
lower effective sizes than eastern populations. Population declines and increased iso-
lation in more recent times probably drove the genetic differentiation between geo-
graphically and ecologically close westernmost European populations. By contrast, 
and despite the wide range of habitats covered, populations are quite homogeneous 
genetically across the Asian range, showing a pattern of isolation by distance and pro-
viding little genetic support for the several proposed subspecies. Mitogenomic and 
nuclear divergences and population declines starting during the Late Pleistocene can 
be mostly attributed to climatic fluctuations and early human influence, but the wide-
spread and sustained decline since the Holocene is more probably the consequence 
of anthropogenic impacts which intensified in recent centuries, especially in western 
Europe. Genetic erosion in isolated European populations and lack of evidence for 
long-term isolation argue for the restoration of lost population connectivity.
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1  | INTRODUC TION

Climatic oscillations and geological events have influenced the 
range of species and the size and connectivity of their populations, 
driving divergence and admixture processes that give rise to the 
biodiversity patterns we see today (Avise et al., 1987; Endler, 1977). 
More recently, human-driven habitat alteration, fragmentation and 
destruction, among other drivers of biodiversity loss, are fuelling 
the decline and subdivision of populations into small and isolated 
fragments where random genetic drift becomes the main evolu-
tionary force. The result is often the loss of genetic variation, an 
increase in inbreeding in the population, and the genetic differenti-
ation among populations (Benazzo et al., 2017; Srbek-Araujo, Haag, 
Chiarello, Salzano, & Eizirik, 2018; Thatte, Joshi, Vaidyanathan, 
Landguth, & Ramakrishnan, 2018). Recent, human-driven genetic 
divergence among populations must be considered together with 
the effects of long-term evolution in isolation, which enable adap-
tive divergence and, eventually, speciation, as possible factors 
shaping current genetic patterns (Allendorf, Luikart, & Aitken, 
2013; Frankham, Ballou, & Briscoe, 2002). It is thus important 
that the delimitation of conservation units and the design of con-
servation strategies are informed by good knowledge of the de-
mographic and evolutionary processes that have acted upon the 
species across space and time.

Recently developed high-throughput sequencing approaches 
can significantly expand our ability to obtain genomic-scale infor-
mation and infer evolutionary processes in nonmodel species in a 
cost-effective way. Also, the availability of new reference genomes 
is helping to overcome most of the limitations of classical genetic 
markers and to expand the range of questions that can be addressed, 
including the assessment of the relative influence of current (hu-
man-driven) and long-term evolutionary processes (Abascal et al., 
2016; Feng et al., 2019; Li et al., 2014; Murchison et al., 2012).

The Eurasian lynx (Lynx lynx) is one of the most broadly distrib-
uted felids in the world, representing a suitable but understudied 
model for exploring the long-term, as well as recent anthropogenic 
impacts, patterns of variation in the genome. The species' range 

extends from Central Europe to the Asian Far East, encompasses 
a wide range of habitats (shrubland, forest, desert, rocky areas and 
grassland) and climates (Mediterranean, temperate, boreal; from 
sea level to 5,500 m), and includes populations with varied recent 
demography, some of which led to near extirpation in the last cen-
tury by anthropogenic impacts and extermination policies, followed 
by varied rates of recovery. The fossil and historical records indi-
cate that the Eurasian lynx was already present in Europe during 
the Pleistocene (Sommer & Benecke, 2006), and that its western-
most range reached the Iberian Peninsula (Clavero & Delibes, 2013; 
Rodríguez-Varela et al., 2016) and Great Britain (Hetherington, 
Lord, & Jacobi, 2006). The species was extirpated from most of 
central, western and southern Europe during the 20th century, 
and the remaining central European populations are severely frag-
mented and isolated. Previous genetic studies of these European 
populations using microsatellite markers and mitochondrial DNA 
(mtDNA) sequences have found the lowest levels of diversity and 
strong population differentiation within Europe, but also relatively 
high levels of gene flow among populations across the central part 
of its range (Förster et al., 2018; Hellborg et al., 2002; Ratkiewicz 
et al., 2012; Schmidt, Kowalczyk, Ozolins, Männil, & Fickel, 2009). 
In contrast, the range of the species in Asia is often described as 
continuous, with demographically healthy and well-connected pop-
ulations (Rueness, Naidenko, Trosvik, & Stenseth, 2014), although 
the information is often scattered or completely lacking. The only 
genetic study that covered most of the distribution range of the 
species, by resorting to museum specimens, found three different 
mitochondrial clades and a clear structuring along an east–west 
gradient (Rueness et al., 2014). However, the low resolution im-
posed by the few microsatellites and the small mitochondrial re-
gion used hampered robust conclusions on the phylogeographical 
relationships among populations and on the ultimate drivers of the 
observed genetic differentiation. While the Eurasian lynx has his-
torically been divided into many subspecies based mostly on mor-
phological characteristics (Kitchener et al., 2018), so far genetic 
studies have not been able to provide data of sufficient resolution 
to resolve intraspecific taxonomy.
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With the power of genomics and the recent availability of a 
reference genome from the closely related Iberian lynx (Lynx par-
dinus; Abascal et al., 2016), we analysed the genetic variation of 
the Eurasian lynx across most of its geographical range to assess 
the relative influence of evolutionary history and recent demo-
graphic declines and fragmentation. Specifically, we addressed 
to what extent long-term isolation and/or recent human-driven 
changes have impacted the lynx populations by analysing: (a) 
the history of population size, divergence and admixture among 
lynx populations; and (b) the current patterns of genetic struc-
ture and diversity across its distributional range. Additionally, we 
discuss the level of genetic support for the proposed subspecies 
and the implications for the conservation of its most endangered 
populations.

2  | MATERIAL S AND METHODS

2.1 | Sampling

We sampled 80 Lynx lynx across the distribution range of the spe-
cies, including five out of the six subspecies proposed by the IUCN 
Cat Specialist Group: L. l. lynx, L. l. balcanicus, L. l. carpathicus, L. l. isa-
bellinus and L. l. wrangeli (Kitchener et al., 2018) (Figure 1; Table S1). 
Also, one Lynx rufus (bobcat) from Jerez Zoo (Spain), and one Lynx 
canadensis from Ostrava Zoo (Czech Republic) were sampled to be 
used as an outgroup and to identify the ancestral state of detected 
variants (Methods in Appendix S1).

The design of the study was intended to sample a minimum of 
six individuals from 11 a priori populations defined on the basis 
of only geography: (1) North-Eastern (NE) Poland (Białowieża and 
Knyszyn Primeval Forests); (2) Balkans; (3) Carpathian Mountains; 
(4) Latvia; (5) Norway; (6) Kirov region, Russia; (7) Ural Mountains, 
Russia; (8) Tuva (the Republic of Tyva), Russia; (9) Yakutia (Republic 
of Sakha), Russia; (10) Primorsky Krai, Russia; and (11) Mongolia 
(for detailed descriptions of the populations and sampling meth-
ods see Methods in Appendix S1 and Table S2). These populations 
represent different climatic and land cover zones, but they also dif-
fer with respect to demographic history and recent human expo-
sure. Based on available records of recent demographic status (see 
Methods in Appendix S1 and Table S2), the Norway, NE Poland, 
Carpathians and Balkans populations are the remnants of a pro-
cess of anthropogenic range contraction in Europe initiated in the 
16th century driven by habitat alteration and direct persecution, 
which intensified by the turn of the 19th and 20th centuries by the 
implementation of extermination policies in several countries. The 
remnant central European populations recovered from their rather 
extreme bottlenecks following legal protection enacted during the 
20th century, but have remained relatively isolated until today. In 
more eastern and northern parts of Europe, Latvia, Kirov region of 
Russia and the Urals, populations remained moderately large and/
or well interconnected during this process. In Asia, we sampled 
Tuva, Yakutia, Primorsky Krai and Mongolia, which are considered 

part of a large contiguous range that has been much less affected 
by habitat alteration (see Methods in Appendix S1 and Table S2).

2.2 | DNA extraction, sequencing and mapping

Samples consisted of good quality tissue or blood, except for the 
Balkan samples, which were poorly preserved specimens that yielded 
signatures of low quality and extensive contamination (Methods in 
Appendix S1). All samples were digested overnight using proteinase 
K and genomic DNA (gDNA) was extracted using silica-coated para-
magnetic beads (NucleoMag Tissue, Macherey-Nagel). Depending on 
the sequencing strategy (depth targeted and quality of the gDNA), 
library preparation and sequencing of the samples differed (details 
in Methods: Appendix S1). Briefly, gDNA was sheared, size-selected, 
end-repaired and adenylated following the appropriate Illumina pro-
tocol. After ligating indexed paired-end adapters, DNA fragments 
were amplified via PCR (polymerase chain reaction) if required, and 
the quantity, quality and size of the libraries were assessed. Finally, 
libraries were sequenced using Illumina HiSeq2000 or Illumina HiSeq 
X-10, in centro nacional de análisis genómico (CNAG) or Macrogen 
facilities, respectively. In all cases, samples were sequenced using 
Illumina protocols, and primary data analysis was carried out with 
the standard Illumina pipeline. We performed a quality control of our 
data, and we trimmed and mapped our sequences to a 2.4-Gb Lynx 
pardinus nuclear reference genome, which diverges from the Eurasian 
lynx by an average of ~0.00122 substitutions per site (Abascal et al., 
2016; http://denovo.cnag.cat/genom​es/iberi​an_lynx/), using bwa-mem 
(Li, 2013) (details in Methods: Appendix S1).

To reconstruct mitogenome sequences we used raw reads 
coming from both this whole-genome (WG) project and a separate 
capture-based study (16 additional individuals, E. Marmesat et al., 
unpubl. results). Reads were mapped to the L. lynx mitochondrial 
reference genome generated by Abascal et al. (2016) using bwa-
mem (Li, 2013) with default parameters. We called single nucleotide 
polymorphisms (SNPs) using freebayes (Garrison & Marth, 2012) and 
constructed a consensus for each mitochondrial genome using the 
FastaAlternateReferenceMaker command in gatk (McKenna et al., 
2010) (Table S1; and further details in Methods: Appendix S1).

In summary, we generated WG resequencing data for 80 L. 
lynx individuals, 76 at low–medium depth (4–13×) and four at high 
depth (19–28×), and mitogenome data for 96 L. lynx individuals 
with an average depth of 137.7× (Table S1). For analyses including 
all individuals, data at medium–high depth were randomly subsa-
mpled to a depth within the range of the low–medium depth data 
using samtools view -s (Li et al., 2009) to avoid biases associated 
with differences in sequence depth. Samples from the Balkan 
population were used to assemble mitogenomes and determine 
global autosomal genetic structure (principal components analy-
sis [PCA] and NGSAdmix), but we did not estimate diversity and 
neutrality indices from these samples, as we found an excess of 
changes probably associated with their suboptimal conservation 
(see Methods in Appendix S1).

http://denovo.cnag.cat/genomes/iberian_lynx/
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Due to the focus of our study on demographic reconstruction 
and neutral evolution, we only considered intergenic regions, repre-
senting 61% of the nuclear genome (~1.5 Gb), for most of the anal-
yses (further information on neutral regions definition in Methods: 
Appendix S1). We also identified nonrecombining parts of X and Y 
chromosomes that were excluded from analyses on the autosomes 
(i.e., PSMC [pairwise sequentially Markovian coalescent], measures 
of autosomal diversity) and used to compare patterns of diversity 
with the autosomes.

2.3 | Data analysis

2.3.1 | Nuclear demographic and divergence 
reconstruction using PSMC

To infer changes in the effective population size (Ne) through time 
(3 × 106–104 years) on the basis of the nuclear genome, we used a 
PSMC model (Li & Durbin, 2011). This model infers population size 
history from the distribution of the local density of heterozygous 
sites in a single diploid sequence. Therefore, for this analysis, we used 
autosomal whole genome data of four L. lynx individuals sequenced at 
higher depth (>19×), two from Asia (Vladivostok and Yakutia) and two 
from Europe (Carpathians and Kirov). For each individual, we gener-
ated a diploid consensus file using samtools mpileup as suggested by 
Li and Durbin (2011). For this analysis, minimum read depth was set 
to 7× and maximum read depth to 60× for all individuals.

To infer the divergence time between populations we built pseu-
dodiploids by randomly combining haplotypes of two individuals 
sampled in different populations (Cahill, Soares, Green, & Shapiro, 
2016; Chikhi et al., 2018). To do so, we used the fasta files generated 
from the bam files during the PSMC pipeline. First, we intersected 
the two fasta files to obtain the list of scaffolds represented in both 
samples, and we then used seqtk mergefa (https://github.com/lh3/
seqtk) to randomly sample one allele from each of the two fasta Files. 
PSMC analyses were then conducted on the pseudodiploids as de-
scribed above for true diploids. We performed 100 bootstraps (Li & 
Durbin, 2011) for both the original and the pseudodiploids analysis.

2.3.2 | Nuclear demographic reconstruction using 
stairway plot

We reconstructed recent demographic trajectories of the populations 
using stairway plot (Liu & Fu, 2015), which infers more recent histories 
than PSMC (5 × 105–102 years ago), although with limited power when 
sample sizes are below the hundreds (Beichman, Huerta-Sanchez, & 
Lohmueller, 2018). The program is a model-free method that uses the 
unfolded site frequency spectrum (SFS) to infer population size changes 
over time. We generated the SFS for each population using first angsd 
(Korneliussen, Albrechtsen, & Nielsen, 2014; Korneliussen, Moltke, 
Albrechtsen, & Nielsen, 2013; Li, 2011) to generate the sample allele 
frequency (SAF) for each population, and then realsfs (Korneliussen 
et al., 2013) to generate the population SFS.

F I G U R E  1   Distribution of mitogenomic and nuclear autosomal variation across Eurasian lynx populations. Pie charts represent the 
frequency of each of the 24 identified mitochondrial genome haplotypes in each population (right), and rectangles depict the ancestry of 
individuals in each of six genetic clusters, as estimated with NGSAdmix (left)

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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2.3.3 | Nuclear demographic reconstruction 
using snep

Most recent changes in Ne (<2 × 103 years ago) were inferred using the 
relationship between linkage disequilibrium and Ne (Hill, 1981) as im-
plemented in the software snep v1.131 (Barbato, Orozco-terWengel, 
Tapio, & Bruford, 2015). This method uses the genetic distance between 
markers for estimating Ne in different periods. To increase the contigu-
ity between markers we converted our SNP coordinates in the Iberian 
lynx assembly (41,700 scaffolds, N50 = 1.52 Mb) into cat coordinates 
(chromosomal level assembly) using the synteny previously defined by 
Abascal et al. (2016). After splitting our VCF into the different popula-
tions, we generated a map and ped file using plink 1.9 (www.cog-genom​
ics.org/plink/​1.9/; Chang et al., 2015). We used a recombination rate 
of 1.9 centimorgans (cM) Mb−1 (Li et al., 2016) and Sved and Feldman's 
(1973) mutation rate modifier for correcting the recombination rate. We 
also used the sample size correction for unphased genotypes.

PSMC, stairway plot and snep outputs were plotted, scaled 
to time and population sizes assuming a mean generation time of 
5 years (Lucena-Perez et al., 2018) and a mutation rate per site per 
generation of 6 × 10−9 (Abascal et al., 2016).

2.3.4 | Nuclear divergence and admixture 
reconstruction using treemix

We used treemix version 1.12 (Pickrell & Pritchard, 2012) to infer 
patterns of splits and admixtures between L. lynx populations. For 
this analysis, which requires a set of called variants, we followed the 
genome VCF (GVCF) workflow in gatk 3.4 (McKenna et al., 2010) 
(Methods in Appendix S1) on all our L. lynx populations (except the 
Balkans; excluded from treemix analysis), and on the one L. rufus sam-
ple as outgroup. Allele counts were extracted from each of the two 
VCF files using a custom script, and both resulting allele count files 
were merged under the assumption that any SNP absent in one of 
the species (but present in the other) would be fixed for the refer-
ence allele. We ran treemix version 1.12 (Pickrell & Pritchard, 2012) 
setting L. rufus as outgroup and the block size to 100. We modelled 
between zero and six migration events (0 ≤  m ≤ 6) and calculated 
the proportion of variance in relatedness between populations ex-
plained by each model. To assess the consistency of migration edges, 
we performed nine additional runs for m = 2 with different random 
seeds. Both the tree models and the residuals from the fit of the 
models to the data were visualized using the R script included in 
treemix.

We also ran the three-population test (Reich, Thangaraj, 
Patterson, Price, & Singh, 2009), as implemented in the threepop 
program of treemix, to detect past admixture between populations. 
This test checks whether population X is related to populations A 
and B through a simple tree (in which case the f statistic, defined 
as the product of the frequency differences between A and X, and 
B and X, is expected to be positive), or through an admixture of A 
and B (where negative f statistic values are expected). To assess 

the statistical significance of the test, threepop obtains a stan-
dard error from blocks (here set to a size of 100 SNPs) and then 
generates a Z score. Z score values below −2 indicate significant 
support for admixture. This test was conducted for all possible 
combinations of (a) three representative European populations 
(Carpathians, Kirov and the Urals), (b) one Asian test population 
(Tuva or Yakutia) and (c) the three remaining Asian populations 
(Vladivostok, Mongolia, and Yakutia or Tuva depending on which 
was the test population).

2.3.5 | Nuclear genomic structure

To assess the genetic relationships among samples we performed 
a PCA. We calculated the genotype posterior probabilities using 
angsd (Kim et al., 2011; Li, 2011) and NGSTools/ngsPopGen/ngs-
Covar (Fumagalli, 2013; Fumagalli et al., 2013). For all the analyses 
using angsd the filters applied were: -uniqueOnly 1 -remove_bads 
1 -only_proper_pairs 1 -baq 1 -C 50 -minMapQ 30 -minQ 20 -do-
Counts 1 –minInd (number of individuals in the population/2) –set-
MaxDepth (average [AVR] depth for the population + [0.95 * stdev 
depth for the population]) –setMinDepth (AVR depth for the popula-
tion − [0.95 * stdev depth for the population]) − skipTriallelic 1); and 
we took the base observed in L. rufus as the ancestral state (more 
details on how we reconstructed our ancestral state in Methods: 
Appendix S1). For PCA, and also pairwise genetic distances and 
admixture analyses we set a SNP_pval of 1e−3. The resulting PCA 
was plotted using scatterplot3js from threejs library in R (Lewis, 
2017). PCA coordinates were scaled to geographical coordinates 
(Procrustes analysis, following Borg & Groenen, 1997) to assess 
similarities between geographical and genetic distribution using the 
package mcmcpack (Martin, Quinn, & Park, 2011) in R (R Core Team 
2019).

We used the genotype likelihoods calculated with angsd 
(Kim et al., 2011; Li, 2011) to perform a structure analysis using 
NGSadmix (Li, 2011; Skotte, Korneliussen, & Albrechtsen, 2013). We 
ran NGSadmix with a range of a priori populations from K  =  1 to 
K = 13. The analysis was rerun 10 times to evaluate convergence and 
results were plotted using R. We used clumpak (Kopelman, Mayzel, 
Jakobsson, Rosenberg, & Mayrose, 2015) to evaluate the optimal K 
following Evanno, Regnaut, and Goudet (2005). We used the identi-
fied genetic clusters to confirm that all our a priori defined popula-
tions were genetically homogeneous (i.e., all the individuals showed 
similar ancestry proportions and therefore could be pooled for pop-
ulation-based analysis).

2.3.6 | Nuclear genomic differentiation among 
populations

A two-dimensional unfolded site frequency spectrum (2d-SFS) was 
computed using realsfs (Korneliussen et al., 2013) for each popula-
tion pair. 2d-SFS and SAF files were used as priors to calculate FST 

http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/1.9/
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using realsfs (Korneliussen et al., 2013). To graphically visualize the 
genetic relationship among populations, we constructed a neigh-
bour-joining tree based on the pairwise FST matrix using the ape 
package in R (Paradis, Claude, & Strimmer, 2004).

To evaluate the influence of distance on genetic differentiation 
patterns we calculated the genetic distance among pairs of individ-
uals using angsd and ngsdist from ngstools (Fumagalli et al., 2013; 
Korneliussen et al., 2014). Geographical distances among sampling 
points were calculated from their geographic coordinates using 
the Point Distance tool and Winkel Tripel projection in arcgis 10.5 
(Esri, 2011). All distances involving samples from Norway were mea-
sured via the Scandinavian isthmus to estimate overland distance. 
Based on our previous results on PCA and admixture proportions, 
we plotted geographical distance against genetic distance splitting 
our results depending on whether the comparison was between two 
samples from Asia, two samples from Europe, or one sample from 
Europe and one from Asia. We tested the significance of these cor-
relations with Mantel tests using the package vegan (Oksanen et al., 
2018) in R. We also performed a partial Mantel to test the effect of 
a possible geographical barrier between Asian and European pop-
ulations by introducing a binary variable coded as 0 when the two 
samples were from the same region and as 1 otherwise, and tested 
the effect of this variable while accounting for the effect of geo-
graphical distance.

2.3.7 | Nuclear genomic diversity

We calculated the genetic diversity (nucleotide diversity [π] and 
Watterson estimator [θ]) and Tajima's D neutrality index for each 
population. For autosomal and X chromosomes, we used angsd 
(Korneliussen et al., 2014; Korneliussen et al., 2013; Li, 2011) and 
realsfs (Korneliussen et al., 2013) to calculate diversity indices per 
site for each population (Korneliussen et al., 2013). Using thetastat 
(Fumagalli, Vieira, Linderoth, & Nielsen, 2014), we performed a slid-
ing-window approach with a window size set to 50,000 bp and a step 
size of 50,000. We classified our windows as autosomal or X chro-
mosome if all the sites of the given windows belonged to either of 
these categories (Methods in Appendix S1). For comparison among 
populations, only windows with information for all the populations 
were used (828 X chromosome, and 24,392 autosomal windows). 
Sample size of the X chromosome differs from that of autosomal 
chromosomes (which is 2  ×  number of individuals), as it depends 
on the number of males and females sampled in the population 
(2 × number of females + number of males). Therefore, we recalcu-
lated our Watterson estimator (θ) by adjusting the correction factor 
(that accounts for sample size) to the actual sample size of the X 
chromosome in each population. Standard errors were calculated by 
bootstrapping over windows as implemented in the boot package for 
R (Canty & Ripley, 2017; Davison & Hinkley, 1997), to account for the 
correlation among nearby sites due to linkage disequilibrium (LD).

To infer recent population size changes we compared X chromo-
some θ versus. autosomal θ, while controlling for divergence (Pool 

& Nielsen, 2007). Divergence (D) was computed as the number of 
substitutions between L. lynx and L. rufus divided by the number 
of covered sites, based on a genus-wide variant-calling performed 
following the GVCF workflow in gatk 3.4 (McKenna et al., 2010) 
(Methods in Appendix S1), using one sample of each of the four spe-
cies that comprise the genus Lynx (L. lynx, L. pardinus, L. canadensis 
and L. rufus). The ratio between diversity and divergence (θ/D) was 
used as a measure of diversity normalized by mutation rate. The av-
erage θ/D ratio was calculated for X chromosome (X) and autosomal 
(A) windows and these were used to obtain an X/A ratio for each 
population. Standard errors of X/A ratios were calculated by boot-
strapping over windows. We used R to plot SFS and diversity values, 
as well as to plot our diversity estimates along with those reported 
for other mammals for comparison.

For the Y chromosome, we assigned 71 contigs, adding up to 
33,032 bases, by applying our strict sequence depth criteria; that 
is, 90% of the total bases in a contig have a female/male ratio depth 
below 0.3, and an average normalized depth for males between 0.2 
and 0.8 (Methods in Appendix S1, section Chromosome X and Y re-
gions definition and molecular sexing). We performed SNP calling 
using freebayes, as previously done for the mitogenome, but no SNPs 
were called under standard quality filters, suggesting an overall lack 
of variation in this chromosome, as previously reported by Hellborg 
and Ellegren (2004) on the basis of 2040  bp of noncoding genic 
sequences.

2.3.8 | Mitogenomic analyses

Consensus mitogenome sequences were aligned and collapsed into 
distinct haplotypes using the pegas R package (Paradis, 2010). The 
number of segregating sites (S), haplotype diversity (Hd), nucleotide 
diversity (π) and mean number of pairwise nucleotide differences 
(k) were calculated using the popgenome (Pfeifer, Wittelsbuerger, 
Ramos-Onsins, & Lercher, 2014) and ape (Paradis et al., 2004) R 
packages. Pie chart nodes representing the respective haplotype 
frequency in each of the populations (Figure 1) were calculated using 
R (R Core Team 2019). Phylogenetic relationships among haplotypes 
were inferred by constructing a median-joining haplotype network 
(Bandelt, Forster, & Röhl, 1999) and represented in popart (Leigh & 
Bryant, 2015) coloured by population. R was used to plot k values for 
different mammal species for comparison.

To estimate a substitution rate for the mitochondrial genome 
in felids, we used a set of 15 felid mitogenomes downloaded 
from GenBank and beast version 2.4.8 (Bouckaert et al., 2014 see 
Methods in Appendix S1 for details). We incorporated the clock 
rate estimated as the substitution rate in the beast analysis of the 
24 L. lynx mitogenome haplotypes obtained in our study (Bouckaert 
et al., 2014). For the intraspecific analyses, we used an ensemble 
of tRNAs, rRNAs and 12 genes using the HKY + G site model with 
a single partition. We used a strict clock and a coalescent constant 
population tree model, adequate when dealing with intraspecific se-
quences. The Markov chain Monte Carlo (MCMC) was run for 20 
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million steps. treeannotator version 2.4.8 was used to obtain the 
Maximum Clade Credibility tree after discarding 10% of initial trees 
as burn-in. Results were visualized with figtree version 1.4.3 (http://
tree.bio.ed.ac.uk/softw​are/figtr​ee/).

3  | RESULTS

3.1 | Demographic and divergence history based on 
autosomal data

Demographic histories inferred from the WG sequences of four 
Lynx lynx individuals (from the Carpathian Mountains, Kirov region, 
Yakutia and Primorsky Krai populations) using PSMC are concord-
ant throughout most of the reconstructed period, indicating a long 
span of shared history between all populations (Figure 2a; Figure 
S1). Lynx lynx shows a long period of soft decline from 3 million years 
ago (Mya) to 600 thousand years ago (kya), and then declining more 
steeply to around 200 kya. This steep decline is followed by an ap-
parent recovery of the population until 70 kya, although this could 
instead indicate the emergence of population structure (Chikhi et al., 
2018; Mazet, Rodríguez, Grusea, Boitard, & Chikhi, 2016). From 
that point on, the demographic trajectories of European and Asian 
lynxes start diverging, with the European populations experiencing 
a sharper decline in Ne than the Asian ones (Figure 2a; bootstraps 
presented in Figure S1). Accordingly, pseudodiploids constructed by 
combining Asian–European haplotypes start rising over the trajec-
tory of true diploids around 100 kya, indicating the emergence of 
population structure, until they sharply increase around 15–20 kya 
(Figure 2b; Figure S1), indicating the time of complete population 
isolation between European and Asian populations. Unlike Asian–
European pseudodiploids, we did not observe a sudden and sharp in-
crease indicative of complete isolation in pseudodiploids consisting 
of two Asian or two European haplotypes. However, the moderate 
increase in population sizes with respect to real diploids suggests the 
emergence of some structure in Asia following the split of Asian and 
European populations, and little or no structure in Europe (at least) 
before 10 kya.

More recent demographic trajectories inferred for all the popula-
tions using stairway plot and snep are broadly congruent with the pat-
tern inferred by PSMC (Figure 2c). stairway plot reconstructs a steep 
decline process during the last few millennia, with populations from 
Europe showing consistently smaller population sizes than Asian 
populations while snep reconstructs a smoother population decline 
spanning the last two millennia again with European populations 
showing smaller Ne (Figure 2d). Both reconstructions show a more 
moderate decline for the European Kirov region population.

Considering all populations, the treemix analysis based on au-
tosomal intergenic SNPs and using the bobcat (Lynx rufus) as out-
group supported a model of population divergence with one or 
two migration events (Figure 3a). In line with the PSMC results for 
pseudodiploids, the most basal split separates a European and an 
Asian population group, each with some shallower internal structure 

(Figure 3a; Figure S2). In the European group, Norway, NE Poland, 
and Carpathians show an increased drift parameter, indicating their 
larger differentiation compared to the rest of the populations.

Regarding gene flow, the treemix results support significant 
post-divergence gene flow from the Urals to Tuva population (m = 1), 
or from the Urals to Tuva and to Yakutia population (m = 2; Figure 3a; 
residuals presented in Figure S3). Both these migration edges con-
sistently appear in all nine independent runs at m = 2 (Figure S4), 
and they are still supported in tree models with three to six migra-
tion events (Figure S2; see fraction of variance explained by each 
of the models in Figure S5). Significantly negative Z scores (Z < −2) 
resulting from f statistics using threepop confirmed the admixture 
in Tuva, but not in Yakutia (Table S3), and identified all western and 
eastern populations, except Yakutia, as putative sources, with more 
negative Z scores the closer is the western source population (Ural 
Mountains < Kirov < Carpathian Mountains).

3.2 | Mitogenomic divergence

Unlike the pattern inferred for the nuclear genome, the phyloge-
netic tree reconstructed from whole mitogenome sequences re-
vealed several old mitochondrial lineages in Europe, which may 
have diverged during periods of isolation in separate glacial refugia 
(Figure 3b). The oldest split was dated around 96.5 kya (95% confi-
dence interval [CI]: 73–122 kya), and separates the most divergent 
haplogroup, haplogroup 1 (46 out of 89 segregating sites), currently 
restricted to the Balkan population. A second mitogenomic split, 
dated around 47.4 kya (95% CI: 32–62 kya) defines haplogroup 2, 
whose current distribution includes the Carpathian Mountains and 
Baltic states populations. A subsequent split around 28.6 kya (95% 
CI: 18–40 kya) separated haplogroup 3, occurring mostly in north-
ern and eastern Europe, from all the Asian haplogroups (4 and 5). 
Finally, the split between haplogroups 4 and 5 around 17 kya (95% 
CI: 9–24 kya) is coincident with an internal diversification within 
haplogroup 2.

3.3 | Current nuclear genetic structure

Our a priori populations vary in the extent of the area sampled, ans 
may have affected our estimations of genomic diversity and differ-
entiation. Nevertheless, individual-based clustering and PCAs con-
firmed the relative genetic homogeneity within and differentiation 
among our a priori defined populations (i.e., ancestry composition is 
similar among individuals of the same population and different be-
tween populations).

In agreement with the historical divergence and demographic 
processes shown in the previous section, nuclear population data 
reveal a contemporary major division between individuals in Asia 
and Europe. Both PCA and NGSAdmix separate these clusters 
first: PC1, K  =  2, supported as the uppermost level of structure 
by the Evanno et al. (2005) method (Table S4) (Figure 4, Figure S6; 

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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interactive version available as supplementary material). Two popu-
lations show some admixed ancestry in these analyses: Balkan indi-
viduals with some Asiatic ancestry and individuals from Tuva (as well 
as, to a lesser extent, individuals from Yakutia) with some European 
ancestry, the latter supporting the historical admixture inferred by 
treemix. The historical isolation of European and Asian populations is 
also supported by a larger genetic distance between pairs of Asia–
Europe individuals than that expected due solely to geographical 
distance (Figure S7).

The second and third axis in the PCA, and subsequent par-
titions in the structure analysis (K  =  3, K  =  4 and K  =  5), sepa-
rate bottlenecked populations in Europe (Carpathian Mountains, 
Norway and NE Poland) (Figure 4, Figures S9–S11; File S1). The 
high differentiation exhibited among European populations (av-
erage pairwise FST  =  0.210; Figure S8, Table S5) contrasts with 
the relative homogeneity in Asia (average pairwise FST  =  0.098; 
Figure S8, Table S5), where only the easternmost population of 
Primorsky Krai stands out as a separate cluster in some runs at 
3 ≤ K ≤ 6 (Figure 1; Figures S9–S12). Accordingly, when PCA co-
ordinates are projected onto a map, European populations show 
a major distortion in the projection compared to Asian ones, sug-
gesting an isolation by distance scenario in the case of Asian pop-
ulations, but a higher differentiation that is not explained solely 
on the basis of distance for the westernmost populations (Figures 
S13 and S14). The greater differentiation associated with bottle-
necked populations (NE Poland, Norway and Carpathians) is also 

observed in isolation by distance plots, where the inclusion of 
bottlenecked populations increases the slope of the regression 
line (Figure S15).

3.4 | Autosomal genetic diversity

Genetic diversity levels in Eurasian lynx are in the low range of 
those reported based on genome-wide data for other mammals, 
including some rare and endangered populations (Figure S16). 
This is especially the case for the bottlenecked European popula-
tions: NE Poland, Carpathian Mountains and Norway (Figure 5; 
Figures S16 and S17, Table S6). These westernmost populations 
also show a flatter site frequency spectrum compared to the 
rest of the populations (Figure S18), and a significantly positive 
Tajima's D value (Table S6), both indicative of a recent reduction 
in population size. NE Poland, followed by the Carpathians, also 
show the lowest X/A ratio, an additional indication of a recent, 
severe population size reduction (Pool & Nielsen, 2007). The X/A 
ratio in Norway is, however, larger and comparable to that found 
in the Ural Mountains, a pattern probably related to its subse-
quent growth (Pool & Nielsen, 2007). Conversely, the Urals and 
the Kirov regions show the highest diversity within Europe (Θ and 
π, respectively), but are exceeded by all Asian populations, with 
the highest genetic diversity present in Tuva despite the relatively 
small geographical area sampled (Figure 5; Figure S17).

F I G U R E  2   (a) Demographic 
reconstructions inferred with PSMC on 
the basis of autosomal data from one 
individual from Kirov, Yakutia, Primorsky 
Krai and Carpathians. (b) Pseudodiploid 
trajectories on PSMC. Sequences created 
by combining haplotypes from two 
different populations. Sudden population 
increases inferred for pseudodiploids 
are interpreted as the time of complete 
isolation of the two populations. (c) 
Demographic reconstruction inferred by 
stairway plot for all populations. (d) Recent 
demographic reconstruction inferred 
by snep for all populations. (e) Timeline 
of Eurasian lynx main demographic 
events, including partial (dashed lines) 
and complete isolation (branching) and 
admixture (arrow) between populations, 
along with haplogroup divergences, 
major climatic fluctuations and human 
milestones
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3.5 | Mitochondrial structure and diversity

In agreement with the autosomal data, overall mitogenomic diver-
sity at the species level is very low (Figure S19). Only 89 segregat-
ing sites, out of 16,449 sites sequenced, defined the 24 haplotypes 
found (0.54%; Tables S7 and S8). We observed several populations in 
which European haplogroups 2 and 3 (e.g., Kirov, the Urals) or Asian 
haplogroups 4 and 5 co-occur (e.g., Yakutia) (Figures 1 and 3; Figure 
S20), but we detected only one instance of the occurrence of a typi-
cally European haplotype (haplotype 7, haplogroup 3) in an Asian 
population (Yakutia), and none in the opposite direction. The west-
ernmost bottlenecked populations also harbour lower diversities in 
the mitochondrial genome: the Carpathians and the Balkans show no 
mitogenomic diversity at all, while Norway and NE Poland popula-
tions also have low haplotype diversity (Hd = 0.12 and 0.15, respec-
tively; Figure 1; Figure S20, Table S7); populations in Asia (Yakutia 
and Mongolia) show the highest haplotype diversity (Hd  =  0.86 in 
both cases; Figure 1; Figure S20, Table S7).

4  | DISCUSSION

Here we report the results of the most comprehensive analyses to 
date of the Eurasian lynx's evolutionary history and contemporary 
genetic variation, considering the extent of sampling both across 
the species range and across the genome. Our results indicate that 
the Eurasian lynx was genetically quite homogeneous at least until 
100 kya, when lynx populations started diverging and the species 
entered a widespread and continuous demographic decline that 
affected the European populations in particular. Lower population 
sizes and increased fragmentation in the westernmost part of the 
distribution in more recent times probably drove the genetic dif-
ferentiation between European populations that are otherwise 
geographically and ecologically close. Conversely, and despite the 
large range and the wide diversity of habitats, we observed a highly 
homogeneous genetic pattern among Asian populations, compatible 
with an isolation by distance pattern. Climatic oscillations during the 
Late Pleistocene, together with an increasing human pressure espe-
cially after the Last Glacial Maximum (LGM) which ended up with 
the extirpation of many European populations, probably shaped the 
current genetic patterns of the species.

4.1 | Pleistocene

Phylogenetic and demographic analyses support a long common his-
tory for Eurasian lynx populations during most of the Pleistocene. 
The species suffered a massive demographic decline registered by 
PSMC between 3 Mya and 200 kya (Figure 2a), which may reflect a 
founder effect associated with the speciation from a common ances-
tor of Eurasian and Canada lynxes (recently dated around 1–1.2 Mya; 
Li, Figueiró, Eizirik, & Murphy, 2019). Low species-wide genetic 
diversity, which is comparable to that of the white African lion or 

Greenlandic brown bear (Figure S16), might be—at least partially—
the long-term consequence of this drastic reduction in population 
size (Frankham, 2015; Frankham et al., 2011). From 200 to 70 kya, 
PSMC shows an apparent increase in population size, after which 
the species entered a continuous population decline (Figure 2a). This 
transient population size increase probably instead indicates the 
emergence of population structure (Chikhi et al., 2018; Mazet et al., 
2016), as suggested by the departure of demographic trajectories 
of pseudodiploids in PSMC, and by the deepest divergence of mito-
chondrial haplogroups around 100 kya (Figures 2b and 3b). The iso-
lation between eastern and western populations became complete 
around 22–15 kya, coinciding with the LGM (20–15 kya), and with 
the time of the most recent split that is registered in both nuclear and 
mitogenomic data (Figures 2 and 3). At a nuclear level, clustering and 
differentiation analyses reflect a basal divergence between Asian 
and European populations (Figures 1 and 4), and indicate that the 
genetic differentiation between individuals from the two clusters is 
larger than expected based solely on geographical distance (Figure 
S7). This east–west axis of differentiation was previously reported 
by Rueness et al. (2014). The lack of clear geographical barriers for 
lynxes during this period supports the idea that the emergence of 
the structure was preceded by a range contraction. For instance, 
barriers previously identified for small mammals between the two 
continents, including the Yenisei river (Kohli, Fedorov, Waltari, & 
Cook, 2015) and the Ural Mountains (Brunhoff, Galbreath, Fedorov, 
Cook, & Jaarola, 2003), are unlikely to act as strong barriers for such 
a large and mobile carnivore (Zimmermann & Breitenmoser, 2007).

Within continents, European populations underwent periods of 
isolation during the Late Pleistocene, as revealed by the divergence 
of different mitochondrial lineages, whereas populations in Asia re-
mained largely connected as shown by nuclear and mitochondrial 
data (Figures 2b and 3b).

4.1.1 | Climatic impacts during the Pleistocene

Climatic fluctuations during the Late Pleistocene could have contrib-
uted to range contraction and subsequent emergence of population 
structure and divergence as revealed by nuclear and mitochondrial 
data (Figures 2 and 3). Accordingly, the date of the complete isola-
tion between the Asian and European nuclear genetic groups is co-
incident with the LGM (20–15 kya) (Schlolaut et al., 2017; Svendsen 
et al., 2004) (Figure 2e). Older periods of isolation and divergence 
due to climatic oscillations during the Pleistocene are only registered 
in mitogenomic patterns, with the divergence of different haplo-
groups coinciding with the start of glaciation periods (HG1 diver-
gence, 96.5 kya, start of Würm glaciation period [Ice Age], 109 kya), 
or significant global climate cooling (HG2 divergence, 47.4  kya, 
48–54  kya [Kindler et al., 2014]; HG4–HG5 divergence and inter-
nal diversification of HG2, 17 kya, LGM) (Figure 2e). At least two of 
these haplogroups, HG1 and HG2, seem to have diverged in separate 
glacial refugia, the Balkans and the Carpathians, respectively, as pre-
viously suggested for lynx and other temperate mammals (Anijalg 
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et al., 2018; Bilton et al., 1998; Gugolz, Bernasconi, Breitenmoser-
Würsten, & Wandeler, 2008; Ratkiewicz et al., 2014; Schmitt & 
Varga, 2012; Sommer & Nadachowski, 2006; Taberlet, Fumagalli, 
Wust-Saucy, & Cosson, 1998). HG3, now present mainly in north-
ern and eastern Europe, suggests a possible additional northeastern 
refugium for the species in Europe.

Deep mitochondrial divergences contrast with the recent iso-
lation within Europe inferred from nuclear data. This discrepancy 
could be attributed to male-biased dispersal, which is character-
istic of the species (Holmala et al., 2018; Schmidt, 1998). Faster 
and deeper divergence of mitogenomes during periods of isola-
tion followed by admixture between European populations, driven 
mostly by males, during the interglacial periods could have led 
to the pattern that we observe today. For instance, nuclear data 
suggest the existence of gene flow between the Carpathians and 
Kirov at least until 10 kya (Figure 2), while the divergence of the 
mitogenomic haplogroups typical of these populations was dated 
to ~50 kya (Figure 3). The co-occurrence of different haplogroups 

in different populations suggests that, to a minor extent, females 
also contributed to the admixture of the populations. For instance, 
the Carpathians population with a unique haplotype (2), which is 
basal to HG2, could have acted as a source for postglacial coloni-
zation of this haplogroup northward and eastward, as suggested 
by the fact that HG2 is also present in populations such as Kirov, 
Urals or Latvia. Similar scenarios of isolation in refugia during 
glacial periods followed by colonization during interglacials have 
been described for species with similar habitat requirements, such 
as brown bear (Anijalg et al., 2018) or grey wolf (Pilot et al., 2010; 
Vila et al., 1999).

4.1.2 | Anthropogenic impacts during the 
Pleistocene

Besides climatic fluctuations, demographic declines during the Late 
Pleistocene could also be influenced by hominid species that were 

F I G U R E  3   (a) Population tree inferred with treemix from nuclear autosomal data. Each arrow represents a migration event with its 
weight specified through the colour scale. (b) Bayesian maximum clade credibility tree inferred with beast depicting the relationship among 
mitogenome haplotypes. Numbers on nodes represent their posterior probability; only those over 0.85 are depicted
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probably already widespread across Eurasia around 80–60  kya 
(Oppenheimer, 2012; Timmermann & Friedrich, 2016), and more dra-
matically by modern humans, who arrived in Eurasia around 45  kya 
and replaced other human populations, exceeding their population size 
by one order of magnitude (Mellars & French, 2011; Timmermann & 
Friedrich, 2016; Yang et al., 2017) (Figure 2e). Direct human impacts on 
lynx species have been documented during the Late Pleistocene, where 
a bone remain found in an Upper Palaeolithic site in the Iberian penin-
sula revealed the use of lynx as meat (Yravedra, 2005). Similarly, bones 
of leopard (Panthera pardus) have been found associated with hunt-
ing by prehistoric humans throughout Europe (reviewed by Sommer 
& Benecke, 2006). Additionally, the decline of ruminants since 100–
50 kya has been partially attributed to human activities, rather than 
climatic oscillations (Chen et al., 2019), and hence the lynx decline dur-
ing the Late Pleistocene could also be indirectly attributable to humans 
through negative effects on prey. Our hypothesis is in line with previous 
work that supports the idea that anthropogenic impacts in combination 
with climatic oscillations were one of the main drivers of the decline, 
and in some cases the extinction, of fauna and flora during the Late 
Pleistocene and early Holocene (Braje & Erlandson, 2013; Chen et al., 
2019; Gretzinger et al., 2019; Lorenzen et al., 2011).

4.2 | Holocene

The population decline of the species continued after the LGM 
with some differences among populations (Figure 2). The sustained 

negative population trends during the Holocene probably contrib-
ute to the signals of recent bottlenecks, such as reduced X/A ratios 
and high Tajima's D values that all populations show. Additionally, 
even the most diverse populations show values of genetic diversity 
similar to that of the severely bottlenecked Apennine brown bear 
(Benazzo et al., 2017), and only twice that of the extremely eroded 
sister-species—the Iberian lynx (θ  =  2.22  ×  10−4, π  =  2.6  ×  10−4; 
Abascal et al., 2016), whose values are comparable to the least 
diverse Eurasian lynx populations (Figure S16). Still, differences 
in recent demography between populations, with European 
populations experiencing a severe reduction in population size 
throughout the Holocene and Asian populations usually maintain-
ing a softer population decline, are reflected in current genetic 
patterns: European populations, especially westernmost ones, 
show larger genetic differentiation, increased drift parameters in 

F I G U R E  4   Relationship among individuals based on nuclear 
autosomal genotypes. PCA separates eastern and western 
individuals in the first axis (7.88% of the variance explained), and 
westernmost populations in the second axis (3.01% of the variance 
explained). Individual ancestry in each of the two clusters defined 
in the NGSAdmix analysis. Populations are sorted from west to 
east. Two different colours represent the Mongolia population, 
as this population comprises two different habitats (orange 
representing Ömnögovi, and brown Central and Khentii Aymag)
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treemix analysis, along with bottleneck signals and lower genome 
diversity. (Figures 4 and 5; Figures S8–S12, S17; Tables S5 and S6). 
Patterns of low diversity and high differentiation were previously 
reported for NE Poland (Ratkiewicz et al., 2012, 2014; Schmidt 
et al., 2009), as well as for Scandinavia and the Carpathians, using 
nuclear microsatellite markers and short mitochondrial sequences 
(Ratkiewicz et al., 2012, 2014) or an SNP set enriched for cod-
ing sequences (Förster et al., 2018). In contrast to westernmost 
populations, the current structure among Asian populations is 
shallow, similar to that found for Canadian lynx (FST = 0.09–0.10; 
Meröndun, Murray, & Shafer, 2019), the overall pattern is compat-
ible with an isolation by distance scenario (Figure S14) and there 
is little support for more than one genetic cluster. Quite homoge-
neous genetic patterns across Asia are striking given the range of 
habitats occupied (e.g., from semidesert in Omnogovi, Mongolia, 
to boreal forest–tundra in Yakutia), and the several previously de-
fined subspecies in this region.

4.2.1 | Anthropogenic impacts during the Holocene

The invention of agriculture produced a rapid human demographic 
expansion that started after the LGM in Europe, but only a few 
millennia ago in Asia (Gignoux, Henn, & Mountain, 2011; Nielsen 
et al., 2017; Skoglund et al., 2014), which eventually resulted in the 
emergence of urbanized and industrialized nation-states. A more 
extensive, contiguous and less anthropogenically altered habitat 
in Asia during the Holocene might have contributed to the homo-
geneous genetic pattern in the continent, while in Europe, higher 
anthropogenic pressure, intensified in recent times as documented 
in historical records (Table S2), resulted in genetically structured and 
eroded populations. Carnivore extermination policies at the turn of 
19th and 20th centuries extirpated the species from most of central 
Europe. Subsequent protection prevented total extirpation in rem-
nant populations and allowed some recovery, but today lynx popula-
tions in this region remain highly isolated from each other and from 
the more contiguous range further north and east (Hellborg et al., 
2002; Ratkiewicz et al., 2012; Schmidt et al., 2009). Demographic 
declines and genetic isolation during the last century have been 
particularly intense in Norway (together with neighbouring Sweden) 
and NE Poland. In Norway, the population was restricted to a few 
survivors in the central region from 1926 to 1965, although it has 
steadily recovered since then, apparently with little contribution 
of immigrants from outside Scandinavia (Linnell, Broseth, Odden, 
& Nilsen, 2010). In NE Poland the population became restricted 
to the Białowieża Primeval Forest (BPF), with apparent absence 
of lynx from 1890 to 1914 (Bieniek, Wolsan, & Okarma, 1998; 
Jędrzejewski et al., 1996), followed by a short bottleneck during 
the 1960s and 1970s and a modest recovery assisted by immigrants 
by the end of the 20th century (Jędrzejewski et al., 1996). In con-
trast, the Carpathians population has been considered relatively 
large, although largely isolated from other lynx populations, and has 
been used as the source of animals for reintroductions in central/

western Europe (Von Arx, Breitenmoser-Würsten, Zimmermann, 
& Breitenmoser, 2004). However, this population has not been ex-
empted from intense direct persecution that left around 100 indi-
viduals in Romania by 1930 (Kratochvil, 1968), and probably similar 
numbers in the Slovakian part (Hell & Slamečka, 1996). The protec-
tion of the species in both countries in the 1930s allowed a sig-
nificant recovery of the population with around 500 individuals in 
Romania by 1950 and 400–500 in Slovakia in the period 1960–1990 
(Kubala et al., 2019). Similar scenarios with western fragmented and 
bottlenecked populations due to continued human pressure during 
the Holocene versus more contiguous and stable ranges in the east 
have also been postulated for other carnivore species such as wolf 
and brown bear in Europe (Adamec et al., 2012; Hindrikson et al., 
2017; Pilot et al., 2014).

4.3 | Implications for conservation, 
management and taxonomy

For conservation and taxonomic purposes, it is critical to for-
mally assess possible adaptive intraspecific divergences within 
the Eurasian lynx, a possibility that is now made feasible by the 
availability of genomic data. Even though we find little to no sup-
port for most of the subspecies discussed in the literature in recent 
years, the finding of shallow differentiation at neutral regions of 
the genome does not exclude the occurrence of locally divergent 
selection at particular genes (i.e., local adaptation). In addition, we 
cannot discard the possibility that the morphological variation that 
sustained previous subspecific delimitations represents plastic re-
sponses to local environments mediated by epigenetic changes, as 
suggested by a recent study of Lynx canadensis (Meröndun et al., 
2019). Nevertheless, given our results, we argue that manage-
ment plans should focus on reversing the demographic trends to 
prevent further genetic erosion in the most affected populations, 
and allowing natural evolutionary processes, including the facili-
tation of population connectivity through migratory corridors in 
human-altered habitats, as already postulated for lynx and other 
large carnivores in Europe (Boitani et al., 2015). Management based 
on maintaining the current distinctiveness of endangered European 
populations may not be warranted given the shared history and 
sustained historical gene flow inferred in this study, and should 
be balanced against risks of inbreeding depression, which in the 
absence of further conclusive evidence are likely to exceed those 
of outbreeding depression in these populations (Frankham, 2015; 
Frankham et al., 2011).
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