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ABSTRACT With the development of big data, artificial intelligence has provided many intelligent solutions
to urban life. For instance, an image-based intelligent technology, such as image classification of diseases,
is widely used in daily life. However, the image in real life is mostly unlabeled, so the performance of many
image-based intelligent models shows limitations. Therefore, how to use a large amount of unlabeled image
data to build an efficient and high-quality model for better urban life has been an urgent research topic. In this
paper, we propose an unsupervised image feature extraction method that is referred to as a stacked multi-
granularity convolution denoising auto-encoder (SMGCDAE). The algorithm is based on a convolutional
neural network (CNN), yet it introduces a multi-granularity kernel. This approach resolved issues with
image unicity by extracting a diverse category of high-level features. In addition, the denoising auto-encoder
ensures stability and improves the classification accuracy by extracting more robust features. The algorithm
was assessed using three image benchmark datasets and a series of meningitis images, achieving higher
average accuracy than other methods. These results suggest that the algorithm is capable of extracting
more discriminative high-level features and thus offers superior performance compared with the existing
methodologies.

INDEX TERMS Unsupervised learning, feature extraction, denoising auto-encoder, convolutional neural
network.

I. INTRODUCTION
With the development of big data, cloud computing and the
Internet of Things (IoT), artificial intelligence has brought
many conveniences to people’s lives. Applications such as
intelligent transportation systems and smart medical have
improved people’s quality of life and improved urban living
environment. These intelligent applications in cities involve
some emerging technologies, like image classification
[1]–[3] and speech recognition. For example, image classi-
fication plays an important role in both license plate recog-
nition and medical image analysis [4]. Many researchers
have proposed many novel intelligent image classification
algorithms in recent years, aiming to continuously improve
people’s living standards by solving problems in industrial
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production and daily life. However, with the development
of information technology, massive unlabeled image data
continues to emerge, and the performance of these intelligent
algorithms has declined to meet the needs of fast and efficient
data processing. Especially, in actual production and life,
the acquisition of image data labels still relies on traditional
manual work, which is inefficient and wastes resources. And
the correctness of labels depends heavily on prior knowledge,
so there is a high demand for personnel relevant domain
knowledge. In contrast, there is a large amount of unlabeled
image in reality, so research on unlabeled data processing has
always been a hot field of study. Currently, there are many
feature-based image classification algorithms, but many of
these techniques have failed to achieve satisfactory results
due to the unicity of extracted image features, which only
represent certain aspects of an image (e.g., color) and are not
conducive to acquiring comprehensive image information.
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The increasing availability of massive data collection and
storage have promoted the development of machine learning,
particularly for image recognition which requires large train-
ing sets.

Shao et al. divided image classification into three pri-
mary stages: (1) image preprocessing, (2) feature extraction,
and (3) classifier selection and design [5]–[7]. Feature extrac-
tion plays an especially critical role in this process because
it affects algorithm classification performance. Extraction is
conventionally conducted using a multi-type global or local
descriptor, including techniques such as local binary pattern
(LBP) [8], histogram of oriented gradients [9], scale invari-
ant feature transform (SIFT) [10], and independent compo-
nent analysis (ICA) [11]. Under certain conditions, these
approaches have achieved efficient classification for specific
applications or data types (e.g., grayscale images). However,
manually selected features are difficult to extend and the
performance of these algorithms can be inconsistent when
applied to other tasks. These models can also struggle with
large data sets because of their excessive dependence on
a priori knowledge.

Deep learning (DL) algorithms are currently an active area
of research within machine learning and can independently
learn high-level features from images [12]. Previous stud-
ies have shown that deep neural network, a self-learning
algorithm, can extract more general purpose features from
any image rather than domain adaptive features for specific
tasks [13]. The performance of such algorithms relies on
learned features and, as such, they are typically less depen-
dent on a priori knowledge than conventional machine learn-
ing models. Such as support vector machine (SVM) which
is a generalized linear classifier that classifies data binary
according to supervised learning [14], logistic regression
(LR) [15], and random forest (RF) that refers to a classifi-
cation algorithm that uses multiple trees to train and predict
samples [16]. Further, neural network have a high level of
abstraction ability for image and its hierarchical structure
can capture hidden features, which is beneficial to improve
the accuracy of the classification of image. Common deep
learning algorithms include network-in-network [17], deep
belief net (DBN) that is a probability generation model [18],
and convolution neural network (CNN) [19]. Effective feature
extraction is a critical component required for the successful
implementation of any DL algorithm. Among these, CNN is
perhaps the most common, due to its peculiarity of shared
weights and sparse connections, which can significantly
reduce model parameters. Despite its applicability in a wide
range of fields, this technique exhibits one obvious drawback:
it requires a massive labeled data set. These data are required
for training the network using a back-propagating (BP) error
approach [20]. The acquisition of data tags is difficult in most
practical settings, requiring extensive resources, which limits
the development and application of CNNs. In contrast, unsu-
pervised feature learning models can extract features from
unlabeled data automatically. In other words, it belongs to
the category of unsupervised learning [21]. An auto-encoder

(AE) is an unsupervised neural network that does not require
labeled data in its training process [20]. Stack AE is a
specific deep learning algorithm, the performance of which
is improved significantly by stacking deep learning lay-
ers [22], [23]. However, AE algorithm characteristic full
connectivity between layers, which introduces an excessive
number of network parameters. In other words, both CNN
and AE suffer from common feature extraction limitations.
Specifically, extracted features exist singularly and cannot
provide a comprehensive image description.

On the one hand, existing feature extraction algorithms
have some limitations. On the other hand, researchers know
that getting a lot of man-made work to get labeled data is
often difficult, expensive, and time consuming, and a large
amount of unmarked data can be easily collected. In an effort
to resolve these feature extraction issues from unlabeled data,
this study proposes a novel stacked multi-granularity con-
volution denoising auto-encoder (SMGCDAE). This method
can effectively adapt to the continuous increase of unlabeled
data volume and provide a new image classification solution
for smart applications in urban life. Firstly, this technique
effectively integrates a CNN and a denoising auto-encoder
(DAE) into the same neural network structure. The result-
ing network inherits the advantages of a CNN, which can
extract robust features from unlabeled data with a lower com-
putational learning cost and fewer parameters. In addition,
a multi-granularity convolution kernel is introduced using
ensemble learning [24]–[26]. The size of this kernel varies,
taking advantage of the fact that different convolution kernels
can acquire multifarious features. This approach is beneficial
because convolution kernels have different receptive fields,
allowing them to capture different image features. As a result,
the features extracted in this process exhibit a diverse range of
attributes, which can be combined to improve generalization
performance [27]. Moreover, we draw on the ideas of the
predecessors that multiple MGCDAEs were stacked to form
the deep network structure, which was then trained using a
greedy layer-wise pre-training approach [28]. In summary,
our contributions can be highlighted as follows.
(1) A novel multi-granularity convolution kernel is pro-

posed for automated extraction of image features.
These features exhibit diverse characteristics, which
can be combined to obtain comprehensive key image
features.

(2) This novel extraction approach combines the bene-
fits of CNN and DAE, using unsupervised learning
to extract robust features and improve classification
accuracy with a smaller computational learning cost
and fewer parameters.

(3) The proposed algorithm was applied to a real-world
data-meningitis data set, which could be used to effec-
tively assist clinicians in diagnosing the disease.

The remainder of this paper is organized as follows.
Section II introduces the CNN and AE algorithms uti-
lized in the proposed technique. Section III presents the
details of the MGCDAE and its corresponding deep model,
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SMGCDAE, developed by stacking seven MGCDAEs.
Section IV describes the experimental validation process
using benchmark andmeningitis data sets. Section V presents
the corresponding results and analyzes our approach. Finally,
conclusions and future work are included in Section VI.

II. RELATED WORK
This section provides an overview of both the convolution
neural network approach and the auto-encoder networks used
in our proposed algorithm.

A. CONVOLUTION NEURAL NETWORK
CNNs are composed of a convolution layer, a pooling layer,
and a full connection layer, which can process data ofmultiple
arrays, for instance, 1D for time series data [29], [30]; 2D for
images [31]; and 3D for video. There are three key technique
support CNNs that profit from the properties of ideas: shared
weights, local connections and use of many layers. The role
of the convolutional layer is to identify local feature conjunc-
tions in the previous layer, and the pooling layer then merges
semantically similar features [12]. Each unit is connected
to local patches, which mapped via kernels in convolution
layer. So, different feature maps utilize different kernels in a
layer. The architecture ensure that the data such as images can
be detected as comprehensive information as possible. The
reason is local features of values are highly correlated in array
data. CNNs possess unique local connections and shared
weights, giving them powerful feature learning capabilities
that can significantly reduce model parameters. As a result,
CNNs have been widely applied in the field of faces and
hands recognition [32], [33]. In 2012, a CNNmodel proposed
by Krizhevsky and Sutskever won first place at the ImageNet
competition [34]. Sun et al. used a CNN for multi-instance
object recognition [35]. Mattar et al. proposed a two-
dimensional locally connected CNN for remote image seg-
mentation [36], and experimental results showed this method
had significant potential for remote image recognition.
Nooka et al. proposed a hierarchical classification network
based on CNN [37]. However, it requires a massive labeled
data set and the static convolution kernel captures single
image features, which limits further improvements to classi-
fication performance. In view of these limitations, this paper
combines CNNs and AE into a single network and proposes
multi-granularity convolution kernels to extract integrated
features via unsupervised learning.

B. AUTO-ENCODER
AEs consist of a three-layer neural network structure: an
input layer, a hidden layer, and an output layer. Data transfer
from the input layer to the hidden layer is called encoding.
Transfer from the hidden layer to the output layer is referred
to as decoding. In this process, an input image acquires
a potential representation through an encoding operation,
which then reconstructs the input image through a decoding
step. The potential or distributed feature representation for the
input image is learned by minimizing the reconstructed error.

For each input vector x i, the latent features representation αi

and the reconstructed vector zi can be defined as (1) and (2),
respectively.

αi = f (W1x i + b1) (1)

whereW1 ∈ Rc×n is a weight matrix of encoder and b1 ∈ Rn

is encoding bias vector.

zi = g(W2α
i
+ b2) (2)

In the function, W2 ∈ Rc×n is a matrix between hidden layer
and output layer, and b2 ∈ Rc is a decoding bias vector. zi

is the reconstruction vector of x i. The reconstruction error of
the loss function in (3):

L(x i, zi) =
1
2

∥∥∥x i − zi∥∥∥2 (3)

However, an AE simply copies the input data. Although the
learned feature representation may perfectly reconstruct the
original input data, the abstract features are not adequately
representative for specific tasks. As a result, AEs include
multiple derivative algorithms such as the convolution auto-
encoder (CAE) [38], variational auto-encoder (VAE) [39],
sparse auto-encoder (SAE) [40], and denoising auto-encoder
(DAE) [41]. DAEs, first proposed by Vincent et al. in 2008,
are capable of robust feature extraction. This process can
effectively improve model generalization performance by
setting some input unit values to 0, encoding, and decod-
ing based on the corrupted input data. This process offers
powerful data representation and noise-removal features.
As such, it is widely used in music denoising [42] and speech
recognition [43]. However, DAEs feature full connectivity
between layers, which introduces an excessive number of
network parameters. As such, we propose a CNNwith unique
local connections and shared weights to reduce the required
parameters.

III. DESCRIPTION OF OUR APPROACH
Image processing has recently entered a new phase with
the development of computer vision. However, in prac-
tical implementations, feature extraction is susceptible to
interference from complicated factors. For example, inac-
curate data collection and instrumentation errors can lead
to data deviation. As such, this study proposes a stacked
multi-granularity convolution denoising auto-encoder
(SMGCDAE). This approach can be divided into two
parts: (1) construction of a single MGCDAE based on a
back-propagation (BP) algorithm and (2) stacking of a
multi-MGCDAE to form a deep network (using a greedy
layer pre-training method) with powerful non-linear mapping
and high-level feature extraction capabilities.

A. A SINGLE MULTI-GRANULARITY CONVOLUTION
DENOISING AUTO-ENCODER
Previous studies have focused on achieving sufficient fea-
ture learning, specifically based on unsupervised learning
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algorithms [44]. It is the truth that image features primar-
ily include color, texture, shape, and spatial relationships.
Among them, color feature and cultural feature are global
features, which describe the surface properties of the scene
corresponding to a certain area of the image. The shape fea-
ture mainly describes the contour feature of the image and the
spatial relationship feature refers to the spatial position or rel-
ative direction relationship corresponding to different targets
in the image. Thus, all of the features, which only describe
certain aspects of the image. Note that, one of the most import
sides in measuring the latent high-level feature representation
is whether more information can be capture [45]. In general,
multi-category features provide a more thorough analysis
of available information and can improve image classifica-
tion performance [46]. As such, comprehensive descriptions
require the integration of a diverse range of features. To this
end, we propose the concept of multi-granularity convolution
kernels to learn high-level features more effectively. In this
process, convolution kernels of varying sizes are utilized in
the same convolution layer, with each size kernel correspond-
ing to a specific feature of interest. This design ensures the
network extracts a diverse group of high-level features, which
are then integrated to represent general image information
from various mappings. The motivation for using multiple
kernel sizes in a single layer is to extract different features in
each image. As an added benefit, the resulting model network
is sparser than traditional single convolution kernel methods,
making it easier to avoid redundant features. In addition
to being highly similar to biological nervous systems, this
sparse deep network structure is conducive to representing
distributions of data [47].

In this study, convolution kernels of dimensions 1 × 1,
3 × 3, and 5 × 5 were selected to design the MGCDAE
pipelines. A 5 × 5 kernel can be problematic as it could
increase the computational complexity and required runtime.
When applied to convolution layers, the 1 × 1 kernel was
primarily used to decrease dimensionality, reduce network
parameters, and alleviate computational bottleneck. As such,
a convolution layer with a kernel size of 1 × 1 preceded the
multi-granularity convolution layer. A 1 × 1 CNN pipeline
was also included to ensure sufficient sparsity of the network
(see Figure 2), which was constructed to be as sparse as pos-
sible to allow local connection of each pipeline. The resulting
visual convolution network approximately simulates complex
image feature distributions.

Rather than improving generalization performance with
existing techniques, this study proposes a new approach with
automated feature learning capabilities. DAE is an unsu-
pervised approach, proposed in 2008, for extracting robust
features. Its operational theory, that robust features can be
learned from noisy images by contaminating the original
image, was used in this study. These robust features can
improve generalization performance and ensure stability.
There are many ways to add noise [40], where we use
random Gaussian noise to destroy the original clean input
image.

FIGURE 1. The architecture of auto-encoder.

In the encoder shown in Figure 2, a corrupt input vector x̃ i

is produced from the original input vector x i by randomly
adding Gaussian noise, then enter the nonlinear activation
function through linear mapping. As opposed to the AE,
the MGCDAE shared weights. The potential representation
of the ith feature map was defined for a single-channel input
x i as:

αi = f (W1 ∗ x̃ i + b1) (4)

where W1 is a weighting matrix for the encoder, b1 is the
encoding bias vector, and ∗ denotes a convolution oper-
ation. The term αi is a latent feature representation and
f (·) is an activation function for neurons, which is typi-
cally a sigmoid [48] or a Leaky Relu function (as in this
study) [49]–[51]. The Leaky Relu function used here can be
expressed as:

y =

{
x x ≥ 0
ωx x ≤ 0

(5)

Here, ω is a coefficient. After the addition of stochastic
Gaussian noise, the image was input to two hidden layers.
It was then transformed to obtain a high-level representation
of the hidden layer. These high-level features extracted from
different convolution kernels were diverse but each charac-
terized the same image from different perspectives. These
features, which had the same dimensions when extracted
from a given pipeline, were integrated using a weighted aver-
age (see Figure 2). A fusion of features was then performed
to acquire comprehensive image descriptions. This fusion
approach has been widely used in previous studies to select
optimal prognostic parameters [52], [53]. In this paper, fea-
ture fusion was achieved by matching the dimensions of the
convolution layer. Initially, a feature blending operation fused
the features extracted from each previous convolution layer
pipeline. Secondly, feature fusion enhanced the contribution
of each feature type to the corresponding comprehensive
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FIGURE 2. The MGCDAE architecture.

Algorithm 1 MGCDAE Training Algorithm, the Train-
ing Procedure of Multi-Granularity Convolution Denoising
Auto-Encoder

Input:
Training dataset X , cost function J (W , b), learning
rate α, the proportion of noise added η

Output:
Parameters (W1, b1); Loss value J (W , b).

1: Randomly set the parameters, (W1, b1) (W2, b2)
2: Get x̃ i by adding stochastic Gaussian noise in x i

3: For j = 1 to T do

J (W , b) = 1
2M

M∑
i=1

∥∥x i − zi∥∥2 + λ
′

2 ‖W‖
2
2

Use the BP algorithm to update (W1, b1), (W2, b2)
4: end for
5: return (W1, b1) and J (W , b)

feature, which is beneficial for improving generalization per-
formance [26], [27]. During the decoding step, a potential
feature representation αi (output from the intermediate layer)
was used in a nonlinear activation function to output the
reconstructed input vector zi:

zi = g(W2 ∗ α
i
+ b2) (6)

In this expression, g(·) is a decoding function,W2 is a matrix
between the hidden and output layers, b2 is a decoding bias
vector, and zi is a vector reconstruction of x i. Assuming
a given training set X =

{
(x1, y1), (x2,y2), . . . , (xM , yM )

}
,

the overall cost function for the MGCDAE on the data set
X can be defined as:

J (W , b) =
1
2M

M∑
i=1

∥∥∥x i − zi∥∥∥2 (7)

A regularization term can then be added:

J (W , b) =
1
2M

M∑
i=1

∥∥∥x i − zi∥∥∥2 + λ′
2
‖W‖22 (8)

Its role is to prevent overfitting by automatically weakening
unimportant feature variables. We considered the encoder to
be a feature extractor, which was learned by minimizing the
reconstruction error for the cost function in equation (8).
In this expression, W and b are the weight matrix and bias
vector for the entire MGCDAE network, respectively, and λ

′

is a regularization coefficient.

B. A STACKED MULTI-GRANULARITY CONVOLUTION
DENOISING AUTO-ENCODER
With only four hidden layers, the non-linearmapping capabil-
ities of the MGCDAE are somewhat limited. Wen et al. found
that deep neural networks possess remarkable data abstrac-
tion capabilities [54], [55]. Inspired by this, we stacked mul-
tiple MGCDAEs in a deep neural network based on a greedy
layer-wise pre-training algorithm. The first MGCDAE1 was
trained by the BP algorithm. The output of the encoder αi1 was
then used as the input for the second MGCDAE2, which was
then trained. The latent feature vector αi2 was then used as the
input toMGCDAE3. This process continued throughmultiple
layers as shown in Figure 3. The N stacked MGCDAEs
formed a deep stacked MGCDAE (SMGCDAE). The latent
feature representation αiN was then calculated as:

αiN = f (WN
1 ∗ α

i
N−1 + b

N
1 ) (9)

In this expression, WN
1 and bN1 are the weight matrix and

bias vector of the N th MGCDAEN, respectively. In this way,
the function conducts further feature mapping in which the
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FIGURE 3. The SMGCDAE network architecture.

output of each hidden layer is an abstract representation of the
original image. Therefore, the aim of the deep SMGCDAE is
to achieve multiple representation mappings. Feature layers
in the initial input image were abstracted layer-by-layer to
obtain the final high-level features, which were then input to
the classifier after the fusion process. This step completed the
final classification task.

Softmax classifiers are typically used for multi-
classification in neural networks [4], [56], [57]. In this study,
a softmax classifier was used to classify images as follows:

f (x) =
1∑k

j=1 e
∑M

i=0 wixi
j


e
∑M

i=0 wixi
1

e
∑M

i=0 wixi
2
. . . . .

e
∑M

i=0 wixi
k

 (10)

where k represents the image category and wi is the weight
of the sample xi. Training this deep network required a cost
function that minimized the reconstruction error, making
the output image as similar to the input image as possi-
ble. Figure 4 shows the SMGCDE training process, which
was divided into two components: pre-training and fine-
tuning [58]. In the pre-training phase, the superposition of
multiple MGCDAEs was unsupervised in a bottom-to-top
fashion. Supervised learning was then used to train the soft-
max classifier, which had the effect of fine-tuning the entire
architecture.

IV. SIMULATION EXPERIMENTS
This study primarily investigated a novel method for image
feature extraction, based on unsupervised learning, which
was then applied to specific image classification tasks. This
new approach to feature learning, based on a CNN, has
been discussed in detail above. It is necessary to examine

FIGURE 4. The SMGCDAE training process.

the practical efficiency of this model when applied to real
data sets. The stability of this approach was verified through
a variety of classification tasks, the results of which are
reported in this section. Experimental results are analyzed
and the advantages of this approach are discussed, along with
potential improvements. This verification process was con-
ducted as follows: (1) the fundamental concepts introduced
by our approach were compared with existing unsupervised
learning algorithms using three benchmark image data sets.
(2) Comparative testing was performed with conventional
machine learning models using the same data sets. (3) The
proposed algorithm was applied to a medical image dataset to
verify its stability and effectiveness. Classification accuracy
is a commonly adopted metric used to evaluate techniques in
the literature [15], [16], [38]. As such, the performance of all
comparative approaches was assessed using this criterion:

acc(f ;D) =
1
m

m∑
i=1

II (f (xi) = yi) (11)

Here, II (·) represents indicator function, yi is a true label of
xi and f (xi) is a predict label produced by a classification
algorithm.

A. BENCHMARK DATASET
Benchmark dataset are widely used in the fields of computer
vision and neural networks. In this section, we evaluate the
performance of the proposed model using the MNIST [19],
CIFAR-10 [59], and CIFAR-100 [59] benchmark dataset
for general classification tasks. The MNIST handwritten
digit classification dataset has 50,000 training examples and
10,000 testing images which consist of binary images with
28× 28× 1. These numbers range from 0 to 9, so there are ten
classes. Figure 5(a) shows some examples of MNIST dataset.
The CIFAR-10 dataset has 60,000 color natural images,
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FIGURE 5. Samples of the three image datasets: (a) MNIST, (b) CIFAR-10,
(c) CIFAR-100.

TABLE 1. Baseline dataset partitioning.

TABLE 2. MGCDAE parameter.

of which 50,000 are training sets and 10,000 are testing sets.
And the dimensions of the image are 32× 32× 3 pixels. This
dataset contains ten classes: (1) bird; (2) ship; (3) airplane;
(4) horse; (5) truck; (6) deer; (7) cat; (8) monkey; (9) car;
and (10) dog. These classes are completely mutually exclu-
sive. Figure 5(b) demonstrates some examples of this dataset.
The dataset of CIFAR-100 is as same as the CIFAR-10 dataset
in format and size, which has 100 classes (i.e., fish, flowers,
food, insects, household electrical devices, large man-made
outdoor things, medium-sized mammals, non-insect inverte-
brates, et. al) and distributed in the training and testing sets
equally. Figure 5(c) displays samples of CIFAR-100 dataset.
In this section, we will conduct two phases of experimenta-
tion. Differences in accuracy were first investigated between
the prototype model and our proposed method. They were
then compared with other existing classification approaches
to evaluate the effectiveness of our approach.

Using the model configuration listed in Table 2, we first
compared the influence of multi-granularity convolution ker-
nels and single-grained convolution kernels on classification
performance. As shown in Table 3, three convolution kernel
sizes were used in our approach, requiring a comparison to

TABLE 3. Classification accuracy on benchmark dataset.

CAE with a single granular convolution kernel. To improve
the generalization performance, we added noise to the image
when training the model. In contrast to previous studies (i.e.,
Vincent), the images were corrupted by adding 20% random
Gaussian noise. The addition of this noise further verifies the
generalization performance of our approach.

In this section, for each approach, we ran the experiment
for 10 times and averaged the value of each experimental
result in order to achieve a fair comparison. Table 3 displays
the average classification accuracy for each method included
in the study. On the one hand, MGCAE achieve the clas-
sification accuracy of 98.11% on MNIST dataset, 61.03%
on CIFAR-10 dataset and 42.76% on CIFAR-100 dataset,
respectively. The experimental results are significantly higher
than CAE (1× 1), CAE (3× 3) and CAE (5× 5). It is evident
that our approach outperformed the others across all three
datasets. It is due to that convolution kernels of varying sizes
can capture the comprehensive features of an image and con-
tribute to the improvement of classification accuracy. On the
other hand, MGCDAE achieve the classification accuracy
of 98.22% on MNIST dataset, 61.23% on CIFAR-10 dataset
and 43.99% on CIFAR-100 dataset, respectively. Comparing
noise free condition and noise adding, the accuracy of our
approach has been increasing by 0.11%, 0.2%, and 1.23%
respectively. It demonstrates that adding noise can produce
a more robust feature extraction in the original image, effec-
tively improving classification accuracy. The effect of varied
noise levels (in the training data set) on classification perfor-
mance are illustrated in Figure 6, Figure 7, and Figure 8. In the
figure, ‘MGCDAE’ corresponds to one MGCDAE, ‘stack-3’
represents the superposition of three MGCDAEs, ‘stack-5’
represents the superposition of fiveMGCDAEs, and ‘stack-7’
represents the superposition of seven MGCDAEs. Figure 6,
Figure 7, and Figure 8 indicate performance for different
proportions of added Gaussian noise in each dataset. It is evi-
dent that as the number of layers increases the generalization
performance of the model gradually increases. Furthermore,
adding noise during the training phase will improve general-
ization performance, as compared to noise-free conditions.

Different types of traditional machine learning classifica-
tion approaches were investigated to evaluate the stability and
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FIGURE 6. Testing accuracy on the MNIST dataset.

FIGURE 7. Testing accuracy on the CIFAR-10 dataset.

FIGURE 8. Testing accuracy on the CIFAR-100 dataset.

feasibility of our approach (MGCDAE-7), which was com-
pared with Deep Belief Net (DBN), support vector machine
(SVM), convolution neural network (CNN), and random
forests (RF). Model parameters are shown in Table 2, where
the parameters of other techniques were taken from the litera-
ture. As shown in Table 4, our approach achieved the highest
average classification accuracy of 98.97%, 65.33%, 46.06%,
respectively, across all three datasets, demonstrating superior
performance. This is likely because our approach not only
includes a sparse network structure, which is conducive to

TABLE 4. Classification accuracy for traditional machine learning
approach.

FIGURE 9. Image of different type meningitis: (a) purulent,
(b) tuberculous, (c) viral, (d) cryptococcal.

representing image distributions, but also can extract robust
features. The network layer structure used in our approach
could be improved further. While the performance of the
completely unsupervised and simple MGCDAE models indi-
cate this to be challenging, the dimensions of the network
depth could be leveraged by adding a pooling operation.

B. MENINGITIS DATABASE
In general, Medical image datasets are have two apparent
characteristics [60]:

1) The visual characteristics are not always easy-to distin-
guish, some are visually different while othersmay be slightly
similar.

2) Inherent complex situation in medical image data [61],
such as high-dimensionality and the presence of noise.

Thus, the proposed method was applied to a data set of
meningitis images acquired from a hospital in Kunming,
Yunnan Province, China. This test provided a useful assess-
ment of the approach, as medical images are notably complex
compared to other image types. Microscopy images were
grouped into four classes corresponding to the four types of
meningitis: (a) purulent meningitis, (b) tuberculous meningi-
tis, (c) viral meningitis, and (d) cryptococcal meningitis as
Figure 9 shows. The dataset consisted of 1320 RGB cere-
brospinal fluid images with dimensions of 2048 1356 3. In the
dataset, there are 360 purulent meningitis samples, 290 tuber-
culous meningitis samples, 368 viral meningitis samples
and 332 cryptococcal meningitis samples. By seeing from
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Figure 9, in these meningitis images, the cerebrospinal fluid
corresponding to each disease type was highly similar when
viewed under a microscope, with little difference between
classes. Doctors observing this fluid are biased by personal
experience, previous knowledge, and other conditions that
can affect the final diagnosis. The proposed algorithm could
be utilized to remove this bias and improve meningitis clas-
sification and treatment.

1) DATA PREPROCESSING
Deep neural networks possess extraordinary abstraction
capabilities. However, training a competitive depth model
requires a significant amount of data. Due to its limited
size, the meningitis image set did not meet the requirements
for accurately training a model of this type. Chawla et al.
proposed an oversampling data enhancement method known
as the Smote algorithm, which synthesizes new samples from
a few types [62]. The synthetic strategy randomly selects a
sample xj from its nearest neighbors for each minority class
sample xi. It then randomly selects a point on the line between
xi and xj as the new class of synthetic samples. This method
was employed in our study to process the images and produce
5280 additional samples. However, the size of the images was
still relatively large, which increased the complexity of the
algorithm and the required runtime. As such, bilinear inter-
polation with OpenCV was used to process the images and
reduce their size. Multiple experiments suggested an optimal
input image size of 256 × 256 × 3. After optimizing image
quantities and dimensions, the data set was standardized to
prevent oversensitivity to different indicators. Upon comple-
tion of this process, each indicator is on the same order of
magnitude, making it suitable for a comprehensive compar-
ative evaluation. Specifically, we introduced the MAX–MIN
scaling method to standardize data according to the following
equation:

f (xi) =
xi −min(X )

max(X )−min(X )
(12)

where max(X ) is the maximum value of X and min(X ) is
the minimum value of X . The data set was divided using a
random 80/20 division for training and testing, respectively.
So it has a training dataset (4224 samples) and a test dataset
(1056 samples).

2) EXPERIMENT
The performance of the proposed model in classifying the
meningitis data was evaluated by comparing its accuracy
with other models. This included prototype methods such as
stacked CAE (SCAE), stacked CDAE (SCDAE), and tradi-
tional machine learning approaches such as RF, SVM, DBN
and the state of the art CNN. Classification was conducted ten
times using each model and the average classification accu-
racy was recorded (see Table 5). The classification accuracy
of our approach has achieve 84.02%, which obviously higher
than both prototype approach and traditional classification
approach. It is evident that our approach was comparable to

TABLE 5. Classification accuracy for meningitis dataset.

FIGURE 10. Classification performance with noise in the meningitis
dataset.

existing classification models. At the same time, this result
demonstrates that our approach achieves high classification
accuracy for real-world data set. In practice, image data often
include artifacts caused by various factors in the collection,
storage, or retrieval processes. The stability of our approach
in the presence of noise was investigated using the meningitis
data. Gaussian noise was added to the deep model training
set to ensure extraction of robust high-level features from the
image. Gaussian noise was also included in the testing set
to simulate common image artifacts. This experiment was
repeated 10 times and the average classification accuracy
was recorded for various noise ratios. Experimental results
showed that our approach achieved good average classifica-
tion accuracy (see Figure 10). The reduction is smooth at
the noise level, which suggests the method is insensitive to
noise and performs well in practical applications. This again
validates the effectiveness and robustness of our model.

V. DISCUSSION
As reported above experiments, our approach achieved high
quality generalization performance with simple implemen-
tation technique yet competitive for general classification
tasks. By combining a CNN with a DAE, we introduced a
promising implementation technique for general classifica-
tion tasks. A series of simulations provided a comprehensive
investigation of the experimental results. The advantages of
our proposed algorithm include the following:

First, in order to simplicity and efficiency extract global
information of the image, drawing on the idea of ensemble
learning, we proposed an approach to automatically extract
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the abstract high-level features of images from images based
on CNN. That is, setting various convolution kernels in the
same layer. Different convolution kernels focus on different
features, which means that different features can be extracted.
These features were then fused, strengthening the contri-
bution of each category to the final classification accuracy.
In addition, this construction provided other technical advan-
tages. For example, the multi-granularity deep neural net-
work construction is structured as sparse as possible, which
can approximately simulate the complex data distribution
characteristics. The conclusion has been tested on a variety
of datasets, covering the three benchmarks image dataset.
As listed in Table 3, the simulation result demonstrate that
our approach provides better classification performance in
comparison with its prototype approach.

Secondly, the unsupervised feature extraction method
combines the strengths of CNN and DAE by constructing a
new symmetric MGCDAE network and avoiding their lim-
itations in classification tasks. On the one hand, based on
the convolution operation, we use the unsupervised learning
method to effectively learn the high-level abstract features
hidden in the unlabeled image. On the other hand, when train-
ing the model, Gaussian noise is added to the original input to
obtain the corrupted image, then the model is forced to learn
robust features from the noise image with a smaller compu-
tational learning cost and fewer parameters. According to the
results in Table 3, Figures 6-8, the generalization performance
of the model is obviously improved by adding noise in the
training stage. The other experimental results, Table 4 that
evaluate on benchmark datasets, and Figure 8 implement on
real-world dataset consistently demonstrate that our approach
not only achieve better classification performance than tra-
ditional machine learning approaches but also exceed the
state-of-the-art classification method like CNN. Moreover,
on real-world meningitis dataset, Figure 9 has shown that our
approach possesses some robustness when deal with noisy
image data compare with other methods. We analyzed that
it is due to our special training mechanism, which to some
extent increases the model insensitivity to noise data. During
all the experiments, we find that the following are particularly
indispensable in our approach:

(1) Multi-granularity Convolution Kernels. These convo-
lution kernels not only can extract various high-level feature
from images but also make the network as sparse as possible,
which is good for simulate the distribution of images.

(2) Adding Noise to Corrupt the Data. In practice, clean
data is inevitably corrupted. Then, when we train the model,
adding noise makes the model extract more robust features
and improve its robustness and generalization performance.

There are still something worth mentioning here. In our
work, we chose 1 × 1, 3 × 3, 5 × 5 three type convolution
kernels, which just was more convenience. In our framework,
other sizes of convolution kernels are also allowed.Moreover,
the type of noise added is not limited to Gaussian noise,
and other noise is also possible [63]. Further literature [64]
proposed a classification approach called denoising and spare

auto-encoder by combining DAE and SAE. In their research,
they increase the sparseness of the network by adding SAE
restrictions in the DAE, making it as sparse as possible to bet-
ter represent the distribution of data. In contrast, our approach
adopt multi-granularity convolution kernels in same layer
to make our network similar to human brain. Such design
significantly improves not only self-learning ability but also
the computing efficiency. This in turn leads to high-quality
classification analysis and much faster learning.

Although the experimental results show that our approach
reaches a competitive generalization performance on differ-
ent datasets, there still remain some issues that could impact
its practicability. Similar to other deep learning methods, our
novel approach is also need a number of data. Deep learning
researchers all know that deep learning algorithm is a kind
of data-driven methods, which means that the performance of
the algorithm depends on the amount of data. So our approach
cannot deal with the problem of small sample. Furthermore,
while our approach preset possesses three size convolution
kernels, how to automatic select the type of convolution
kernel for different data types is still a problem to be further
studied.

VI. CONCLUSION
In this paper, we proposed a simple but efficient unsupervised
approach to image feature extraction (SMGCDA), which
combined DAE and CNN to learn and extract high-level
features from unlabeled images. This approach improved
on existing algorithms by introducing the concept of multi-
granularity convolution kernels. Experimental results demon-
strated the effectiveness and robustness of this technique. The
nonlinear mapping capabilities of a single MGCDAE were
improved using a greedy layer-by-layer pre-training method
to stack multipleMGCDAEs, forming a deep neural network.
Simulation experiments were performed with handwritten
digits images, natural images, and microscopy slide images.
The results demonstrated the effectiveness and practicability
of this approach. In future research, we will further explore
a general model and apply it to other images (e.g., color
ultrasound of the heart) to solve the practical problems of
heart disease recognition.
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