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An Integrated Fuzzy Framework for Analyzing Barriers to the Implementation of 

Continuous Improvement in Manufacturing 

Abstract 

Purpose – Delivering premium services and quality products are critical strategies for success in 

manufacturing. Continuous improvement (CI), as an underlying foundation for quality 

management, is an ongoing effort allowing manufacturing companies to see beyond the present to 

create a bright future. We propose a novel integrated fuzzy framework for analyzing the barriers 

to the implementation of CI in manufacturing companies.   

Design/methodology/approach – We use the fuzzy failure mode and effect analysis (FMEA) and 

a fuzzy Shannon’s entropy to identify and weigh the most significant barriers. We then use fuzzy 

multi-objective optimization based on ratio analysis (MOORA), the fuzzy technique for order of 

preference by similarity to ideal solution (TOPSIS), and fuzzy simple additive weighting (SAW) 

methods for prioritizing and ranking the barriers with each method. Finally, we aggregate these 

results with Copeland’s method and extract the main CI implementation barriers in manufacturing. 

Findings – We show “low cooperation and integration of the team in CI activities” is the most 

important barrier in CI implementation. Other important barriers are “limited management support 

in CI activities,” “low employee involvement in CI activities,” “weak communication system in 

the organization,” and “lack of knowledge in the organization to implement CI projects.” 

Originality/value – We initially identify the barriers to the implementation of CI through rigorous 

literature review and then apply a unique integrated fuzzy approach to identify the most important 

barriers based on the opinions of industry experts and academics. 

Keywords: Continuous improvement; failure mode and effect analysis; fuzzy logic; Shannon’s 

entropy; Copeland’s method. 
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Introduction 

Companies are required to minimize the level of waste, preserve the quality-low price ratio, 

accelerate manufacturing the process, and trim the product lines to foster core competencies. These 

core competencies can be achieved by implementing a rigorous continuous improvement (CI) 

(Bhuiyan et al., 2006). In competitive environments, organizations’ prosperity depends upon the 

rate of process optimization and improvement (Salah et al., 2010) as well as the degree of 

progressive innovation (Bessant et al., 1994). Grounded in total quality management principles, 

CI is considered as an essential strategy in attaining manufacturing excellence (Tanco et al., 2012), 

minimizing failure, and achieving success (Bhuiyan et al., 2006). “CI must be adopted by each 

member of the organization” (Cheng and Podolsky, 1996), and one of the main challenges in 

implementing CI is the successful execution of its methodologies. The most widely-used CI 

methodologies in manufacturing are lean manufacturing (Kovach et al., 2008), Six Sigma (Kovach 

et al., 2008; Savolainen and Haikonen, 2007), lean Six Sigma (Timans et al., 2016), structural 

equation modeling (Kovach et al., 2008; Lee, 2004; Ni and Sun, 2009; Singh and Singh, 2010), 

the interpretive structural model (Jurburg et al., 2017), non-parametric tests (Oprime et al., 2011), 

failure mode and effect analysis (Doshi and Desai, 2017), activity based costing (Waeytens and 

Bruggeman, 1994), achieving competitive excellence (Bhuiyan et al., 2006), plan-do-check-act 

(Singh and Singh, 2015; Afrin et al., 2019), balanced scorecard (Dabhilkar and Bengtsson, 2004), 

theory of Inventive Problem Solving (Maia et al., 2015), Bayesian belief networks (Mark and 

Oppenheim, 2019), the Kaizen approach and just-in-time management (Afrin et al., 2019), and 

decision-making trail and evaluation laboratory (Costa et al., 2019). 

CI can be either incremental or radical. In the incremental phase, minor changes are 

incurred, and in the radical phase, significant changes are made, which may result in idea 

generation or innovative technology (Bhuiyan et al., 2006). Even though it happens gradually, a 

successful CI is a long-run process (Ni and Sun, 2009), and it requires changes in cultural, 

behavioral, and learning processes (Savolainen and Haikonen, 2007). In the manufacturing 

discipline, CI principles are applied for boosting quality and “diminishing costs while maintaining 

the same level of service” (Ross, 2015). 

  A science and technology parks (STPs) is an organization managed by specialized 

professionals, whose main purpose is increasing societal wealth and promoting justice and culture 

of competitiveness and innovation among its member companies and institutions (Tavares et al., 
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2009). As policy tools, STPs foster growth and promote innovation (Arauzo-Carod et al., 2018). 

They are also considered as driving forces of regional development.  One of the main goals of the 

STPs is to create products and services based on the most current science practices and customers’ 

needs.  The knowledge spillovers of STPs can also benefit out-park firms and other stakeholders, 

such as providers, research centers, and clients (Díez-Vial and Fernández-Olmos, 2015).  This 

requires them to improve their activities continuously, although there may be some barriers to its 

implementation. 

Although the previous literature examined the impact of on-park location on companies’ 

sales growth, improved R&D (Vásquez-Urriago et al., 2014), innovation (Vásquez-Urriago et al., 

2016), employment growth (Hobbs et al., 2017), and cooperation with universities (Albahari et 

al., 2019), research is scant on the barriers to implement CI in STPs. In this regard, with a rigorous 

literature review, this study initially explores the barriers of implementing CI. Secondly, based on 

the opinions of industry experts and academics active in STPs and using a unique integrated fuzzy 

approach, this study ranks the barriers to identify the most important factors. 

The failure mode and effect analysis (FMEA) is a systematic and structured method for 

discovering potential failures in processes, products, and/or services (Shaker et al., 2019).  FMEA 

evaluates three key process failure dimensions of severity, occurrence, and detection. Severity 

measures the seriousness, and occurrence measures the frequency of failures.  A failure that occurs 

several times a day is more critical than a failure that occurs now and then.  Detection measures 

the likeliness of detecting the failure before it occurs. FMEA has resulted in higher product quality 

and CI in manufacturing.   In addition, FMEA documents current knowledge about the risks of 

failures, for use in CI. In FMEA, a matrix is constructed based on the three dimensions of severity, 

occurrence, and detection. This matrix is then analyzed with various multi-criteria decision making 

methods such as multi-objective optimization based on ratio analysis (MOORA), the technique for 

order of preference by similarity to ideal solution (TOPSIS), or simple additive weighting method 

(SAW).  Finally, Copeland’s method is used to determine the most important factors. 

The novelty of this research is twofold. First, this study sheds light on the CI 

implementation barriers in STPs. Understanding the potential barriers are crucial for STPs as 

Cumming et al. (2019) argue technology parks are more likely to grow and succeed if they are 

supported by eliminating their barriers to success. Policymakers and top managers can nurture 

creativity and innovation in organizations if they recognize the CI implementation barriers and 
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develop policies and procedures to alleviate them. Second, the novelty of this research also resides 

on a unique and seamless integrated fuzzy framework where the fuzzy FMEA and fuzzy Shannon’s 

entropy are methodically combined to identify and weigh the most significant barriers; and fuzzy 

MOORA, fuzzy TOPSIS, fuzzy SAW, and Copeland’s method are systematically combined to 

prioritize and rank the barriers. This integrated framework is novel and has not been implemented 

in previous research.  

This paper is organized as follows. In Section 2, we review the literature and pinpoint 

factors associated with the barriers to CI implementation. In Section 3, we introduce an integrated 

model for analyzing barriers to CI implementation.  The proposed model integrates fuzzy FMEA, 

fuzzy Shannon’s entropy, fuzzy MOORA, fuzzy TOPSIS, and fuzzy SAW. In Section 4, we 

present a case study in the consumer electronics industry to demonstrate the applicability and 

efficacy of the proposed model. In Section 5, we present our conclusions and discussions.  In 

Section 6, we discuss the managerial implications of our study followed by the limitations and 

future research directions in Section 7.  

 
Literature review 

 
Continuous improvement  

Previous researches referred to CI as a process of continuous and focused incremental innovation 

extending throughout a company (Bessant et al., 1994; Bessant et al., 1999; Caffyn, 1999; Kumar 

et al., 2018; Savolainen and Haikonen, 2007; Tanco et al., 2012). Deming (1982) defines CI as 

improving continuously in the system of service and production (Principle 5 of transformation) 

(Sanchez and Blanco, 2014). CI also denotes a methodical endeavor undertaken to find and use 

novel approaches to continuous process improvement. Anand et al. (2009), Jha et al. (1996), and 

Terziovski (2002) indicate that CI is a set of activities which is consists of a process aimed to 

bolster performance improvement. The notion of a CI system refers to the intertwined collection 

of systematic, organized, and planned processes of steady transformation within the whole 

organization emphasizing on reaching higher quality, ergonomics, safety, business productivity, 

and competitiveness (Jurburg et al., 2016, 2017).  In this study, CI is defined as an ongoing effort 

to improve processes, products, and/or services through incremental and breakthrough 

improvements.  

CI is about “constant focus on achieving better outcomes” (Langabeer, 2008). The CI has 
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its roots in the Kaizen concept and the Deming cycle (Terziovski and Sohal, 2000). Kaizen, which 

means improvement and perfection in Japanese ( Singh and Singh, 2010), is intertwined with four 

characteristics: incremental, participative, continuous (Tanco et al., 2012), and betterment of the 

standard way of work (Singh & Singh, 2014). Deming adopted the CI concept as his main quality 

criterion and the core of the popular “plan-do-check-act” cycle (Eaidgah Torghabehi et al., 2016). 

In addition, the CI concept is also a part of quality management (Nilsson-Witell et al., 2005) and 

previous research considers the strategic pillars of TQM as CI, employee involvement, teamwork, 

process and customer focus (Dean Jr and Bowen, 1994; Murray and Chapman, 2003; van Assen, 

2018), fact-based emphasis, and management devotion (Dahlgaard et al., 1998). 

Savolainen (1999) mentions that ideological views bring forward practical intuitions and 

new conceptual ideas to CI implementation resulting in a unique competitive advantage. Drawing 

on five-year research work, Bessant and Caffyn (1997) investigate the issues pertinent to CI 

implementation. Based on a comprehensive case study, they develop a behavioral framework 

model of CI performance pinpointing its enablers and barriers, and they argue that “CI is about 

behavioral change, and it involves both learning and unlearning” (p. 21). In addition, examining 

CI strategies in the context of manufacturing companies in Australia, Terziovski and Sohal, (2000) 

indicate that the stimulation to CI adoption is contingent upon several factors, namely cost 

reduction, enhanced delivery reliability, high productivity, and refined quality conformance. Thus, 

managers should comprehend the merits of CI activities in terms of “soft” management initiatives. 

In a rigorous case-based investigation, Bessant et al. (2001) consider CI as organizational merit 

that is empowered by high involvement in behavioral transformation (culture change). They also 

indicate that, as this merit evolves, it triggers innovative capabilities, which leads to a reference 

model of progress appraisal. Investigating ten Singaporean and Australian case studies, Hyland et 

al. (2003) propose a methodology for delineating learning behaviors, and they construct a 

framework for persistent, innovative activities in product development practices.   

Oprime et al. (2011) conduct a study on the main variables of CI initiatives in Brazilian 

firms. The results of their explorative research highlight the significance of employees’ reciprocal 

interaction, motivations for suggestions, and training for using problem-solving tools in CI 

success. They also indicate that CI operational activities are conducive to firm performance in 

terms of higher quality and customer satisfaction, lower associated cost, and improvement in 

staffs’ capabilities.  
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Davison et al. (2005) have a different perspective on improving CI success. The CI 

effectiveness results from recognizing the knowledge resources for disseminating the best practice 

by utilizing a knowledge structure mapping technique. The study by Barber et al. (2006) showed 

an applied methodology for a knowledge-based system in aiding CI activities by using the data 

being stored in the company’s maintenance, quality, and production databases. They argue that 

such process-based systems can instigate CI. Furthermore, Anand et al. (2009) have a different 

perspective towards CI, while, in their proposed model, they view it as a dynamic potency to the 

organizations which broadens the knowledge on the CI concept, and their framework provides the 

crucial dimensions of infrastructure for CI.  

Heavey et al. (2014) validated a new framework consisting of the main forces of CI. These 

forces are enhanced methodology, better experts who are knowledgeable about employee 

performance, customer centralized strategic goals, and customer-driven co-leadership. They argue 

that their proposed model sheds more light on process-based organizations, improves employees’ 

role in companies, and results in positive outcomes, namely ROI.  

More researches are required for investigating the forces/barriers to CI implementation, as 

the relevant variables may change across the context/industry of the study. Moreover, Murray and 

Chapman (2003) raise the issue of lacking proper methodologies for CI, and they underline the 

need for an advanced, holistic, and unified CI methodology. Thus, this research proposes a unique 

integrated fuzzy approach. Finally, as shown in Table 1, this study summarizes the barriers of CI 

implementation based on a rigorous literature review.  

Insert Table 1 Here 

 

Science and Technology Parks (STPs) 

STPs are locations where R&D facilities and startup incubators are gathered together to conduct 

joint R&D for universities, public research institutions, and private research labs in support of 

high-tech industries (Kang, 2017). STPs are relatively new phenomena, arising from the idea of 

promoting economic and social development, acting on the undiscovered or unused potentialities 

of science, technology, and innovation (Rubini, 2002). STPs play an increasingly influential role 

in the promotion and development of the knowledge economy (Ribeiro et al., 2016). STPs provide 

technical substructure, logistics, and administration for small businesses to expand their products, 

increase their competitiveness, by creating an innovation culture (Ribeiro et al., 2016). 
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Murat Ar and Baki (2011) examined the antecedents of firms’ performance by using data 

collected from 270 managers in small and medium-sized enterprises (SMEs) located in Turkish 

STPs.	The results show that product and process innovation,	strategy, top management support,	

customer focus,	 organizational learning,	 creative capability, organizational collaboration, and 

supplier relationship have a positive association with a firm’s performance in STPs. 

Magalhaes and Zouain (2008) proposed an innovation service structure model for STPs in 

local or regional development. They created tools used to consider basic stakeholders’ needs in the 

STPs, especially SMEs, to increase their ongoing partnership with firms, universities and R&D 

centers, and government agencies. 

Basile (2011) investigated the relationship between networking and science parks’ 

innovative capability in providing the connection to all companies and agents in an inter-

organizational system of innovation. The empirical evidence of this research included 15 Italian 

STPs. The results showed that displaying the networking process facilitates innovation projects, 

but it will not necessarily lead to innovation success. 

Herrero-Villa et al. (2014) evaluated the performance of STPs by utilizing the SIGRID 

model, which is based on the sustainable models of the European Foundation for Quality 

Management (EFQM) and the balanced scorecard. They showed (i) most of the factors in their 

proposed model are coincidental in importance and comparability, (ii) the model in its primary 

proposal is not helpful in the comparison of parks and, (iii) the model offers helpful information 

for the interior management and exterior relationship of every park.  
Martínez-Cañas et al. (2011) used the concept of social capital to analyze how STPs 

facilitate the generation of goodwill and resources that companies obtain from their 

communications with other economic agents in the park. In their theoretical method, they proposed 

a model to understand how STPs make a valuable substructure for generating social benefits. They 

also proposed a theoretical approach for checking sources and materials, which create value at the 

company level. 

Mian et al. (2012) showed successful STPs could operate as platforms for incubating 

science and technology businesses.  In addition, Díez-Vial and Fernández-Olmos (2015) evaluated 

the role of STPs as places fostering local knowledge exchange. Empirical evidence was collected 

between 2007 and 2011 in a longitudinal analysis of 11,201 companies by using the Spanish 

database PITEC (Technological Innovation Panel). They concluded product innovation is higher 
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when companies with interior R&D reciprocally share their knowledge with other companies 

active in R&D. 

Vásquez-Urriago et al. (2016) investigated how STPs influence the cooperation between 

park companies and how this influence is channeled. Their findings indicated that being part of an 

STP increases the likelihood of collaboration for innovation and the intangible results of working 

with major innovation partners, mainly because of the higher degree of communication. 

In summary, previous studies show the role of STPs is crucial in achieving economic 

prosperity. STPs need a structure that fits their purposes, prophecies (prospects), functions, duties, 

and activities for accomplishing their goals.  STPs should stay current with the rapidly increasing 

up-to-date knowledge and scientific practices in a broad range of disciplines to implement CI in 

an ongoing and effective manner. STPs contribute to the growth and regional development when 

they are supported by creative and innovative stakeholders regularly. Furthermore, CI is a process 

allowing manufacturing companies to envision beyond the present time and focus on building a 

bright future.  According to Albahari et al. (2019), there is no unanimity on how companies inside 

the STPs create value. In this study, we reveal the STPs’ successful implementation gaps by 

identifying the barriers to CI implementation.  We further develop a unique, systematic, and 

integrated fuzzy framework to identify, weigh, prioritize, and rank the most significant CI 

implementation barriers.  The elimination of the CI implementation barriers is a prerequisite to 

STPs successfully appraise their goals, programs, and prospects, and achieve competitive 

advantage.   

 
Methodology 

In this study, a questionnaire was designed and distributed among industry experts and academics. 

The process of selecting the experts is purposeful/judgmental sampling. Purposeful/judgmental 

sampling seeks information-rich cases that can be studied in depth (Hoepfl, 1997) and is a 

conscious selection of a small number of data sources that meet particular criteria (Russell and 

Gregory, 2003). In this sampling method, the goal is to select experts who are knowledgeable 

about the study and its purposes. This is one of the few sampling methods that can be used to get 

information from specific people who have knowledge about the study and can provide the 

researcher with insightful information. This method is applicable when the number of qualified 

people in the field of the study is limited. Therefore, the current study used fuzzy FMEA, and the 
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decision matrix of expert opinions was obtained in the pattern of linguistic variables, which were 

converted to triangular fuzzy numbers. For the fuzzy FMEA method, we used the opinions of three 

experts who are professors and active participants in STPs.  We used a purposeful/judgmental 

sampling method since the number of qualified people who have the required knowledge and are 

willing to participate in the study is limited. In addition, for obtaining weighted and importance of 

expert opinions for failure modes (S, O, and D), this study applied fuzzy Shannon’s entropy 

method, based on the expert opinions in the form of linguistic variables, and for this reason, we 

utilized the opinions of two other experts who are active members of the STPs.  

In the next stage, for prioritizing and ranking the barriers, this research used fuzzy 

MOORA, fuzzy TOPSIS, and fuzzy SAW methods. Finally, this study applied the Copeland 

method to compare the result of the rankings. All the necessary steps of the proposed approach are 

illustrated in Figure 1. 

Insert Figure 1 Here 

The steps described in this research are as follows: 

Step 1: Identify barriers using a literature review. 

Step 2: Create the FMEA team, and make a list of the possible failure modes, and explain the 

relevant barriers. 

Step 3: Assess expert opinions on barrier factors concerning the failure mode. 

Step 4: Aggregate the fuzzy normalized matrix for “S, O, and D.” 

Step 5: Evaluate and obtain the subjective weights of the experts for the significance of “S, O, and 

D” of the barriers by fuzzy Shannon’s entropy approach:  

• The team members’ linguistic assessments of every failure mode for “S, O, and D.” 

• Determine the decision matrix normalized for “S, O, and D.” 

• Acquire the subjective fuzzy weights of the barrier variables. 

Step 6: Determine the weighted normalized fuzzy decision matrix for “S, O, and D.” 

Step 7: Rank the barriers using fuzzy MOORA concerning the weighted normalized fuzzy decision 

matrix obtained in Step 6. 

Step 8: Rank the barriers using fuzzy TOPSIS concerning the weighted normalized fuzzy decision 

matrix obtained in Step 6. 

Step 9: Calculating the fuzzy SAW method and ranking of the barriers by fuzzy SAW, concerning 

the weighted normalized fuzzy decision matrix obtained in Step 6. 
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Step 10: Using aggregation techniques by Copeland’s method. 

Step 11: Final ranking of the barriers. 

The followings describe the details of the integrated approach used in this study.  

 
Fuzzy FMEA 

FMEA is generally applied as a strong method for determining and evaluating possible failures in 

different stages of the product lifecycle (Zhang and Zhang, 2015), and is typically used as a 

problem prevention tool (Shahin, 2004). FMEA is “a systematic method of analysis and ranking 

the risks associated with various product (or process) failure modes (both existing and potential), 

prioritizing them for remedial action, acting on the highest-ranked items, revaluating those items 

and returning to the prioritization step in a continuous loop until marginal returns set in” (Paciarotti 

et al., 2014). The main goal of FMEA is to find and rank the possible failure modes that harm the 

performance of a system (Sharma and Sharma, 2010). FMEA includes the review of the following 

steps in its processes: Severity of the failure modes (what could go wrong?), denoting the extent 

of the “end effect” of a system failure. The occurrence of the possibility of the failure causes (why 

would the failure happen?), denoting the rate at which a “root cause” is probable to happen, which 

is portrayed in qualitative terms. Detection of the failure modes (what would be the consequences 

of each failure?), denoting the probability of discovering a “root cause” before a failure that could 

happen ( Victor et al., 2014; Jain, 2017). 

The fuzzy FMEA is an appropriate method for a review of disorders and problems in a CI 

project.  For example, the study by Doshi and Desai (2017) showed that in the context of 

automotive SMEs, continuous quality improvement is obtained by efficient FMEA 

implementation. Their study also indicated that even though FMEA’s implementation needs to be 

monitored, it has the potency to determine the associated risks of the processes and their remedies.  

Researches of the fuzzy FMEA method consider the experts that define the elements of 

risk in terms of O, S, and D  by applying the fuzzy linguistic variables (Kutlu & Ekmekçioǧlu, 

2012). The merits of this rule-based fuzzy method to FMEA (Chanamool and Naenna, 2016; 

Kumru and Kumru, 2013) is outlined below: 

• Using the linguistic elements of the fuzzy method allows the experts to allocate the relevant 

values for the variables being examined; therefore, improving the FMEA’s pertinence. In 

addition, it aids the analysts to apply the linguistic elements to evaluate the related risks of 
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failure instantly.  

• Another merit is that both qualitative and quantitative data, implicit information, and ambiguity 

can be applied in the FMEA’s evaluation and management consistently. 

• The arrangement in the composition of the parameters S, O, and D, have more flexibility. 

As experts allocate the different level of weights to the measures, they need to comprehend 

the implication of the linguistic terms as well as their assigned fuzzy numbers. The notion of 

linguistic variables is important for handling complicated instances which are not specified in 

detail and is less likely to be delineated by common quantitative statements (Zadeh, 1975). Fuzzy 

linguistic variables refer to the lingual statements or expressions such as sentences or words that 

are expressed in normal or unnatural language. In addition, a fuzzy digit that is suitably established 

for indicating the linguistic variable can be considered as a set value. The domain of this set value 

range between 0 and 1 and consists of real positive numbers (Zadeh, 1975). 

Table 2 shows the set of linguistic terms and their relevant fuzzy numbers to evaluate the 

rating as well as the preference weight versus the expert assessment indices (Amiri, 2010). 

Insert Table 2 Here 

 
Fuzzy Shannon’s entropy in terms of -level sets 

Shannon (1948) introduced the entropy method as a measurement for indeterminacy in a discrete 

distribution whose origin is grounded in the “Boltzmann entropy” of traditional statistical methods 

(Pourhamidi, 2013; Shannon, 1948). Shannon’s entropy is a useful approach in achieving the 

weights for a MADM method (Lotfi and Fallahnejad, 2010), and it is referred to as a measure of 

uncertainty which has its roots in probability theory as well (Liu et al., 2015). Lotfi and Fallahnejad 

(2010) enhanced this method for obscure data, particularly for fuzzy data and interval cases 

(Ebrahimi et al., 2016; Mohamadi et al., 2017). This study also employs fuzzy Shannon’s entropy 

method. The details of the fuzzy Shannon phases are expressed below: 

Step 1: Converting the fuzzy digits into set-level data by applying the -level sets. The -level 

set of a fuzzy variable refers to a class of terms about the fuzzy variable  with the 

participation of at least . The -levels set formula is 

shown subsequently: 
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where 	0 < 𝛼 ≤ 1.  

Based on situating a disparate degree of the confidence interval, specifically , the 

fuzzy data are hereupon converted to varying α -level sets  , where all of them are 

interval values. 

Step 2: The normalized numbers of  and  are computed using the following formulas: 

  (1) 

Step 3: In this step, the lower limit of  and the upper limit of  in the interval entropy, are 

extracted in the following formulas: 

  
(2) 

  

where , and  or  has a value of 0 if or . 

Step 4: Assigning the lower limit and upper limit of the diversification interval of  and  as 

shown below: 

  (3) 

Step 5: Set ,  ,  as the lower limit and upper limit of the 

interval weight of attribute . 

Step 6: To obtain the final weight, this study calculated  then computed , and 

subsequently calculated . 

 
Fuzzy MOORA 

In the literature, the MOORA method is characterized as an MCDM method (Akkaya et al., 2015). 
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Initially indicated in a study by Brauers and Zavadskas (2006), MOORA refers to an optimization 

process of two or more contradictory attributes happening synchronously, which is conditional 

upon specified constraints. This method is applicable to a variety of complicated decision-making 

issues in different industries: process/product design problems, the manufacturing sector, 

automobile design, the oil and gas industry, aircraft design, finance, and in any instances where 

the best decisions are desired considering the balance between two or more contradictory attributes 

(Chakraborty, 2011; Gadakh et al., 2013).  

Previous research builds upon a ranking criterion diverging from three computations: the 

“Ratio System,” the “Reference Point,” and the “Full Multiplicative Form of Multiple Objectives” 

(Ceballos et al., 2016). Then Brauers and Zavadskas (2006) introduced fuzzy MOORA as an 

MCDM method, and their study was the first that applied the method in the subsistence economy. 

According to the current literature, there are three distinguished ways to treat the issues emerging 

from fuzzy MOORA: the fuzzy ratio method, the full multiplicative form, and the reference point 

method. This study follows the guidelines of (Akkaya et al., 2015) in the fuzzy ratio approach. 

Following are the phases of the fuzzy ratio method applied in the current study: 

Step 1: Determine the decision matrix by applying for the relevant triangular fuzzy numbers. 

Step 2: Change the decision matrix to the normalized fuzzy decision matrix (according to the 

subsequent Equations (4), (5), and (6). 

   

  (4) 

  (5) 

  (6) 

Step 3: Determine and calculate the weighted normalized fuzzy decision matrix by applying W, 

which is computed using the fuzzy Shannon method (please refer to step 6 of the fuzzy Shannon 

method). 
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  (8) 

  (9) 

Step 4: Calculate the normalized performance values by deducting the wasteful measures from the 

overall value of the determined beneficial measures. 

  (10) 

   

   

g: refers to the utmost number of measures  

(n-g): refers to the least number of measures  

Step 5: Because normalized performance measures refer to fuzzy elements too, therefore, these 

measures ought to be converted to a non-fuzzy performance measure known as “best non-fuzzy 

performance” (BNP). In this research, the subsequent formula is applied to compute the BNP 

values: 

   

  (11) 

Finally, the calculated  values are ranked. 

 
Fuzzy TOPSIS 

Hwang and Yoon (1981) initially introduced the TOPSIS technique, which is a classic approach 

to untangle MCDM problems and provides a solution from a limited set of variables (Han and 

Trimi, 2018). This method is mainly applied to rank the issues (Sirisawat and Kiatcharoenpol, 

2018). The notion of the TOPSIS method is contingent upon the criterion that the selected 

alternative need to have the smallest distance from the “positive ideal solution” (PIS) and the 

greatest distance from the “negative ideal solution” (NIS) (Keshteli and Davoodvandi, 2017; Kutlu 

and Ekmekçioǧlu, 2012). In addition, the fuzzy TOPSIS method was introduced by Chen (2000) 
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to untangle MCDM problems in a fuzzy setting to address indeterminacy in adjudication and 

assessments (Seyedmohammadi et al., 2018). Research indicates that the fuzzy TOPSIS technique 

is more efficient than the traditional TOPSIS technique in solving MCDM problems in addressing 

the uncertainties in decision-makers’ assessments (Sirisawat and Kiatcharoenpol, 2018; Ighravwe 

and Ayoola Oke, 2017). This study follows the guidelines of Sun (2010) for the fuzzy TOPSIS 

technique as mentioned below: 

Step 1. Determining the fuzzy-decision matrix. 

Step 2. Creating the normalized fuzzy-decision matrix by Equations (4), (5), and (6). 

Step 3. Calculating the weighted normalized fuzzy decision matrix by Equations (7), (8), and (9). 

Step 4. Calculating the fuzzy PIS and the fuzzy NIS. 

Based on the weighted normalized fuzzy-decision matrix, it can be noticed that elements of are 

positively normalized TFN, and the spans of the sets are placed in the range between 0 and 1. 

Afterward, the fuzzy PIS  (aspiration levels) and the fuzzy NIS (the worst levels) can be 

specified as shown in the following formulas: 

  (12) 

  (13) 

Here: 

  
(14) 

Step 5. Calculating of each criterion by Equations (15), (16), and (17). 

  (15) 

  (16) 

  (17) 

Step 6. Calculating the closeness coefficients using Equation (18): 
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  (18) 

 

Fuzzy SAW 

This method was initially introduced by Churchman and Ackoff (1954), and they used the SAW 

approach in solving a portfolio selection problem. The SAW approach is one of the optimal 

methods which has been extensively applied for MADM problems. One of the reasons for its 

popularity is the simplicity of the method in addressing MADM issues. Some studies also refer to 

the SAW approach as the “weighted summation approach” (Deni et al., 2013; Kumar et al., 2013). 

This study follows the guidelines of Roszkowska and Kacprzak (2016) for the fuzzy SAW 

approach where positive trapezoidal ordered fuzzy numbers are explained  by the phases 

mentioned below: 

Step 1: Create a fuzzy decision matrix . 

Step 2: Determine the normalized fuzzy-decision matrix. 

Step 3: Calculate the weighted normalized decision-matrix by applying the important measures of 

every benchmark ,  where 

  (19) 

Step 4: Cumulate the performance ratings considering the whole specifications for every available 

possibility utilizing the subsequent formula: 

  (20) 

Step 5: The Rank ordering of the alternatives. 

 
Results 

We applied the method proposed in this study to find the barriers that hinder creativity and 

innovation in CI. Barriers to the implementation of the CI are identified through a rigorous and 

exhaustive literature review. Next, we formed the FMEA team and made a comprehensive list of 

the possible failure modes. We then used the fuzzy FMEA method to determine the S, O, and D, 

by using the assessments provided by the three experts, as shown in Table 2. This table shows the 

linguistic terms and their associated fuzzy numbers used to evaluate the ratings as well as the 
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preference weights. Table 3 presents the expert judgments on the barriers concerning the failure 

modes.  

Insert Table 3 Here 

Subsequently, we aggregated the evaluation matrices of the fuzzy failure modes obtained 

by the three experts into one evaluation matrix, as shown in Table 4. We then normalized the 

evaluation matrix using Equations (4), (5), and (6), as shown in Table 4. 

Insert Table 4 Here 

In the next step, the evaluation of two experts in linguistic variables is presented in Table 

2 to assess and obtain the subjective weight of barriers by using fuzzy Shannon’s entropy method. 

Next, the team members’ linguistic judgments are assessed for the S, O, and D failure modes, and 

the decision matrix is normalized for S, O, and D. Based on the interval data provided in Table 5, 

we calculated the values of the weights using Equations (1), (2), and (3). The fuzzy values are 

expressed as intervals using α-level sets. Jafarnejad Chaghooshi et al. (2012) found 0.3 alpha as 

an appropriate value for the Likert scale (see Table 2). The weighted barriers obtained by fuzzy 

Shannon’s entropy provided in Table 6.  

Insert Tables 5 and 6 Here 

After identifying the barrier weights according to fuzzy Shannon’s entropy method, we 

calculated the weighted normalized fuzzy-decision matrix. The results of the weighted normalized 

values are presented in Table 7. We then use the weighted normalized fuzzy decision matrix given 

in Table 7 and Equations (10) and (11) to rank the barriers based on fuzzy MOORA, fuzzy 

TOPSIS, and fuzzy SAW methods. The ranking results for the fuzzy MOORA method are 

presented in Table 8. 

Insert Tables 7 and 8 Here 

In the next step, we utilized the fuzzy TOPSIS method to obtain  for each barrier, 

using the weighted normalized fuzzy decision-matrix given in Table 8 and Equations (15), (16), 

and (17).  The results are presented in Table 9. The fuzzy PIS (aspiration levels) and fuzzy NIS 

(the worst levels) are determined based on Equation (14), and the closeness coefficient of the 

barriers are determined based on Equation (18).  The barriers are then ranked according to their 

closeness coefficients.  

Insert Table 9 Here 

,i id d+ -
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Afterward, we used the fuzzy SAW method to rank the barriers to CI implementation based 

on the weighted normalized fuzzy decision-matrix given in Table7.  We first determined the 

average fuzzy weight for each barrier, according to S, O, and D, and then calculated the aggregated 

S, O, and D based on Equation (20).  Table 10 presents the rankings of the barriers to CI 

implementation.  

Insert Table 10 Here 

MCDM approaches may produce different rankings for the same set of options, putting the 

decision-maker(s) in a dilemma on choosing the most suitable option (Azimi et al., 2014). In these 

situations, it is important to examine alternative solutions carefully.  However, examining different 

solutions produced by various MCDM approaches may turn into a complicated process 

(Ustinovichius et al., 2007). Several methods, known as “aggregation techniques,” have been 

proposed to solve this problem. These techniques include the average rank method, the Borda’s 

technique, and Copeland’s method. We use Copeland’s method to count the number of wins and 

the number of losses for each option because of its consistency and simplicity (Purjavad and 

Shirouyehzad, 2011).  If the number of nodes in the method is higher, we encode it with M, where 

the row is in the column, and if the column is in line or the number of votes is equal, we encode it 

with X. In this method, the basis for the ranking is the diversity among the number of  in row i 

and the number of  in the column j ( ); where the difference between the wins and the losses 

will be the basis of ranking (Moghimi and Taghizadeh Yazdi, 2016). The last row in Table 11 (ΣR) 

shows the number of losses for each option. The score produced by Copeland’s method for each 

option reduces the number of losses (ΣR) from the number of wins (ΣC).  The final ranking results 

of the barriers in CI implementation are presented in Figure 2 in addition to the ranking results 

produced by fuzzy MOORA, fuzzy TOPSIS, fuzzy SAW, and Copeland’s methods. 

Insert Table 11 and Figure 2 Here 

Conclusions and discussion 

STPs foster growth where creativity and innovation practices take place frequently, and they are 

considered the driving forces of regional development. Further, as the backbone of quality 

management and innovative practices, CI is an ongoing effort allowing manufacturing companies 

to see beyond the present, and to create a bright future. In the first step of this study, a rigorous 

and exhaustive literature review was conducted to identify the barriers to CI implementation in the 

STP companies. In addition, this study used fuzzy FMEA and fuzzy Shannon’s entropy to identify 

Ms

Xs ji =
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and weigh the most significant barriers. Fuzzy MOORA, fuzzy TOPSIS, and fuzzy SAW methods 

were used to prioritize and rank the barriers with each method. Finally, the results for each fuzzy 

method were aggregated using Copeland’s method to identify the pivotal CI implementation 

barriers in manufacturing. This research was first of its kind to develop a unique integrated fuzzy 

approach in CI. Organizations need to implement CI to improve the performance and  develop 

products and services with less waste, less cost, and higher quality to maintain their core 

competency in the competitive marketplace. Arauzo-Carod et al. (2018) quote that “being located 

inside the STPs has a dual effect on firm performance,” and there is a debate on how companies 

inside the STPs should create value (Albahari et al., 2019).  

In a rigorous and exhaustive literature review, we showed several barriers to CI 

implementation. These barriers were ranked using an integrated fuzzy FMEA, fuzzy Shannon’s 

entropy, fuzzy MOORA, fuzzy TOPSIS, and fuzzy SAW approach based on the expert opinions.   

In addition, to compare the outputs of fuzzy MOORA, fuzzy TOPSIS, and fuzzy SAW, we used 

Copeland’s method to aggregate the results and produce a final ranking of the barriers to CI 

implementation. “Low cooperation and integration of the team in CI activities” received the 

highest priority and other important barriers were identified as “limited management support in CI 

activities,” “low employee  involvement in CI activities,” “weak communication system in the 

organization,” and “lack of knowledge in the organization to implement CI projects.” 

Our study emphasized the importance of teamwork and cooperation among organizational 

members. Organizations must create necessary programs to ensure the coordination and 

communication between the staff and the stakeholders. We also showed the importance of top 

management’s role in providing the necessary resources and the need for using the senior 

leadership capabilities incentivizing the staff. The top management must ensure the front-line 

managers are knowledgeable and supportive of the CI project implementation. In addition, we 

concluded that one of the main strategies conducive to CI success is a high level of employee 

involvement. Without employee involvement, CI is doomed to deadlock. Therefore, before 

implementing any CI programs, the organization needs to train the employees and ensure their 

involvement and devotion to the process.  

An important barrier to CI implementation in our study is a weak communication system 

within the organization. For a successful CI implementation, effective communication systems 

need to be established to make sure that timely and adequate information flows within all levels 
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of the organization (both bottom-up and top-down). Knowledge is a necessary ingredient for the 

successful implementation of the CI projects in organizations, and organizations need to conduct 

necessary training for both managers and employees. Knowledge-sharing leads to learning, and all 

stakeholders must participate in knowledge-sharing practices to circumvent challenges. There will 

be a disruption in the CI implementation if knowledge is not shared, and the information does not 

flow horizontally and vertically within the organization. A knowledge-sharing culture should be 

established before the CI implementation project commences.  

Our ranking results also identified a lack of teamwork as an important barrier. Teamwork 

helps improve the employees’ understanding of the opportunities and threats in CI implementation. 

Face-to-face communication and team collaboration among employees lead to high motivation 

and, in turn, results in successful CI implementation. Lack of a predefined role and responsibilities 

in the team is also found to be a barrier to CI implementation. Top managers need to lay down 

detailed responsibilities without obscurity. Employees need to be aware of the importance of their 

role in CI implementation. This will ignite a sense of responsibility amongst employees and 

resonate a feeling of being part of the company’s success. In addition, organizations need to 

support employees’ involvement in the CI implementation by using motivation and employee 

satisfaction practices.   

Lack of management commitment to CI activities is another barrier to CI implementation. 

This barrier can have a direct impact on motivation, involvement, and teamwork. The lack of 

problem-solving skills is also a detrimental barrier to CI implementation. The results also suggest 

that lack of organizational culture and environment is another barrier to CI implementation. 

Successful and sustainable CI implementation needs a robust organizational system. As a result, 

the support of managers is important because they may otherwise prefer the status quo. A first and 

foremost matter in CI implementation is the corporate culture. The CI value needs to be injected 

into the organization and embraced by the employees. Garcia-sabater and Marin-garcia (2011) 

have shown that culture is a decisive factor in CI.  While CI is likely to be adopted enthusiastically 

in non-traditional cultural settings (because people are less resistant to change), more effort is 

needed in aging organizations where employees spent several years with traditional culture. 

Finally, the lack of a specific CI strategy is another barrier to CI implementation, and organizations 

must formulate an effective CI implementation strategy consistent with organizational mission, 

objectives, and culture. 
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Managerial implications 

STPs are the main mechanisms for public-private partnerships and initiatives, and the promotion 

of research, development, innovation, and technology transfer (Guadix et al., 2016). It is widely 

recognized that STPs are effective vehicles for promoting new technology-oriented companies, 

facilitating the commercialization of scientific study, and revitalizing regional economies (Zhang 

and Sonobe, 2011). STPs are generally staffed by academics and professionals with proven records 

of creating opportunities leading to innovation and economic growth. Through transferring R&D 

activities to other stakeholders such as start-ups, SMEs, large firms, universities, as well as public 

and private R&D, STPs create opportunities for innovation, economic development, and 

commercialization of new and emerging technologies. STPs need to appraise their goals, 

programs, and prospects to grow continuously to achieve a competitive advantage.  The findings 

of this study are useful for practicing managers and researchers in STPs.  Findings such as the need 

for communicating the values in STPs, facilitating cooperation and integration in cross-functional 

teams, the idea that management support resonates a successful innovation strategy and plays a 

major role in CI activities, ensuring a sound communication system to circulate a shared value 

across teams facilitating CI, and bolstering a culture of innovation and involvement in CI activities 

all foster growth and financial stability for emerging companies as well as established 

corporations.  In summary, we believe this paper has useful and practical implications for research, 

practice and/or society.  Our study shows the importance and impact of CI and STPs on economic 

and commercial growth, research and teaching, and public policy.  

 
Limitations and further research directions  

This study proposes a unique integrated fuzzy approach to distill the barriers to CI implementation. 

One of the limitations of the study is its reliance on the literature review. Therefore, future studies 

could employ inductive methods for investigating the barriers to CI implementation by using 

observations or interviews with top managers of STPs to revealing new factors, which are 

overlooked in the literature review.  Using inductive methods, future researchers can start with a 

set of observations and then move from particular experiences to general propositions (or from 

data to theory) about those experiences.  In addition, the chances are that some barriers to CI 

implementation are context-specific, and further research is needed to test the proposed integrated 

fuzzy approach in different contexts.  Future research could also conduct a gap analysis to examine 
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the extent to which the results vary across different contexts, industries, or cultures.     

  



23 
 

References  

Afrin, A. B., Islam, R., Fontaine, R. A. H., Ali, M. Y., & Rahman, M. (2019). A new model of 

continuous improvement in total quality management from an islamic perspective. Asian 

Academy of Management Journal, Vol. 12 No. 1, pp. 129–149.  

Ahmad, M. F., Yan, T. L., Wei, C. S., Aizat Ahmad, A. N., Raja Mohd Rasi, R. Z., Abdul Rahman, 

N. A., … Hashim, F. A. (2017). Continuous Improvement and its Barriers in Electrical and 

Electronic Industry. MATEC Web of Conferences, 135, 00045.  

Akkaya, G., Turanoʇlu, B., & Öztaş, S. (2015). An integrated fuzzy AHP and fuzzy MOORA 

approach to the problem of industrial engineering sector choosing. Expert Systems with 

Applications, Vol. 42 No. 24, pp. 9565–9573.  

Albahari, A., Klofsten, M., & Rubio-Romero, J. C. (2019). Science and Technology Parks: a study 

of value creation for park tenants. The Journal of Technology Transfer, Vol. 44 No. 4, pp. 

1256–1272. 

Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy 

TOPSIS methods. Expert Systems with Applications, Vol. 37 No. 9, pp. 6218–6224.  

Anand, G., Ward, P. T., Tatikonda, M. V., & Schilling, D. A. (2009). Dynamic capabilities through 

continuous improvement infrastructure. Journal of Operations Management, Vol. 27 No. 6, 

pp. 444–461.  

Anh, P., Alan, N., Nguyen, P. A., & Robinson, A. G. (2015). Continuous improvement in Vietnam: 

unique approaches for a unique culture. Journal of Asia Business Studies, Vol. 9 No. 2, pp. 

195–211.  

Arauzo-Carod, J.-M., Segarra-Blasco, A., & Teruel, M. (2018). The role of science and technology 

parks as firm growth boosters: an empirical analysis in Catalonia. Regional Studies, Vol. 52 

No. 5, pp. 645–658. 

Azimi, M. H., Taghizadeh, H., & Farahmand, N. F. (2014). Selection of industrial robots using the 

Polygons area method. International Journal of Industrial Engineering Computations, Vol. 

5 No. 4, pp. 631–646.  

Barber, K. D., Eduardo Munive-Hernandez, J., & Keane, J. P. (2006). Process-based knowledge 

management system for continuous improvement. International Journal of Quality & 

Reliability Management, Vol. 23 No. 8, pp. 1002–1018.  

Basile, A. (2011). Networking System and Innovation Outputs: The Role of Science and 



24 
 

Technology Parks. International Journal of Business and Management, Vol. 6 No. 5, pp. 3–

14.  

Bessant, J., & Francis, D. (1999). Developing strategic continuous improvement capability. 

International Journal of Operations & Production Management, Vol. 19 No. 11, pp. 1106-

1119.  

Bessant, J., Caffyn, S., Gilbert, J., Harding, R., & Webb, S. (1994). Rediscovering continuous 

improvement. Technovation, Vol. 14 No. 1, pp. 17–29.  

Bessant, J, & Caffyn, S. (1997). High involvement innovation through continuous improvement. 

International Journal of Technology Management, Vol. 14 No. 1, pp. 7–28. 

Bessant, J, Caffyn, S., & Gallagher, M. (2001). An evolutionary model of continuous improvement 

behaviour. Technovation, Vol. 21 No. 2, pp. 67–77. 

Bhuiyan, N., Baghel, A., & Wilson, J. (2006). A sustainable continuous improvement 

methodology at an aerospace company. International Journal of Productivity and 

Performance Management, Vol. 55 No. 8, pp. 671–687.  

Brauers, W. K. M., & Zavadskas, E. K. (2006). The MOORA method and its application to 

privatization in a transition economy. Control and Cybernetics, Vol. 35 No. 2, pp. 445–469. 

Caffyn, S. (1999). Development of a continuous improvement self-assessment tool. International 

Journal of Operations & Production Management, Vol. 19 No. 11, pp. 1138–1153.  

Ceballos, B., Lamata, M. T., & Pelta, D. A. (2016). A comparative analysis of multi-criteria 

decision-making methods. Progress in Artificial Intelligence, Vol. 5 No. 4, pp. 315–322.  

Chakraborty, S. (2011). Applications of the MOORA method for decision making in 

manufacturing environment. International Journal of Advanced Manufacturing Technology, 

Vol. 54 No. 9–12, pp.1155–1166.  

Chan, M., Dowden, M., McAullay, D., Sibthorpe, B., Sargent, G., & Gardner, K. (2018). Impacts 

of continuous quality improvement in Aboriginal and Torres Strait islander primary health 

care in Australia. Journal of Health Organization and Management, Vol. 32 No. 4, pp. 545–

571.  

Chanamool, N., & Naenna, T. (2016). Fuzzy FMEA application to improve decision-making 

process in an emergency department. Applied Soft Computing Journal, Vol. 43, pp. 441–453.  

Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy 

environment. Fuzzy Sets and Systems, Vol. 114 No. 1, pp. 1–9. 



25 
 

Cheng, T. C., & Podolsky, S. (1996). Just-in-time manufacturing: an introduction. Springer 

Science & Business Media. 

Choudhury, S., & Pattnaik, S. (2020). Emerging themes in e-learning: A review from the 

stakeholders' perspective. Computers & Education, Vol. 144, Article 103657, 

https://doi.org/10.1016/j.compedu.2019.103657. 

Churchman, C. W., & Ackoff, R. L. (1954). An approximate measure of value. Journal of the 

Operations Research Society of America, Vol. 2 No. 2, pp. 172–187. 

Costa, F., Lispi, L., Staudacher, A. P., Rossini, M., Kundu, K., & Cifone, F. D. (2019). How to 

foster Sustainable Continuous Improvement: A cause-effect relations map of Lean soft 

practices. Operations Research Perspectives, 6, pp. 100091. 

Cumming, D., Werth, J.C., & Zhang, Y. (2019). Governance in entrepreneurial ecosystems: 
venture capitalists vs. technology parks. Small Business Economics, Vol. 52 No. 2, pp. 455-
484. 

da Veiga, A., Astakhova, L.V., Botha, A., & Herselman, M. (2020). Defining organisational 

information security culture – Perspectives from academia and industry. Computers and 

Security, Article 101713, https://doi.org/10.1016/j.cose.2020.101713. 

Dabhilkar, M., & Bengtsson, L. (2004). Balanced scorecards for strategic and sustainable 

continuous improvement capability. Journal of Manufacturing Technology Management, 

Vol. 15 No. 4, pp. 350–359.  

Dahlgaard, J. J., Kristensen, K., Kanji, G. K., Juhl, H. J., & Sohal, A. S. (1998). Quality 

management practices: a comparative study between East and West. International Journal of 

Quality & Reliability Management, Vol. 15 No. 8/9, pp. 812–826.  

Davison, S., Gordon, J. L., & Robinson, J. A. (2005). Studying continuous improvement from a 

knowledge perspective. Knowledge-Based Systems, Vol. 18 No. 4, pp. 197–206. 

Victor B. de Souza, R., & Cesar R. Carpinetti, L. (2014). A FMEA-based approach to prioritize 

waste reduction in lean implementation. International Journal of Quality & Reliability 

Management, Vol. 31 No. 4, pp. 346–366.  

Dean Jr, J. W., & Bowen, D. E. (1994). Management theory and total quality: improving research 

and practice through theory development. Academy of Management Review, Vol. 19 No. 3, 

pp. 392–418. 

Deming, W. E. (1982). Out of the crisis. Cambridge, MA: Center for Advanced Engineering Study. 

Deni, W., Sudana, O., & Sasmita, A. (2013). Analysis and implementation fuzzy multi-attribute 



26 
 

decision making SAW method for selection of high achieving students in faculty level. 

International Journal of Computer Science Issues (IJCSI), Vol. 10 No. 1, pp. 674. 

Díez-Vial, I., & Fernández-Olmos, M. (2015). Knowledge spillovers in science and technology 

parks: how can firms benefit most? The Journal of Technology Transfer, Vol. 40 No. 1, pp. 

70–84. 

Doshi, J., & Desai, D. (2017). Application of failure mode & effect analysis (FMEA) for 

continuous quality improvement - multiple case studies in automobile SMEs. International 

Journal for Quality Research, Vol. 11 No. 2, pp. 345–360.  

Eaidgah Torghabehi, Y., Maki, A. A., Kurczewski, K., & Abdekhodaee, A. (2016). Visual 

management, performance management and continuous improvement: A lean manufacturing 

approach. International Journal of Lean Six Sigma, Vol. 7 No. 2, pp. 187–210.  

Ebrahimi, E., Fathi, M. R., & Irani, H. R. (2016). A new hybrid method based on fuzzy Shannon’s 

Entropy and fuzzy COPRAS for CRM performance evaluation (Case: Mellat Bank). Iranian 

Journal of Management Studies, Vol. 9 No. 2, pp. 333–358.  

Fryer, K. J., Antony, J., & Douglas, A. (2007). Critical success factors of continuous improvement 

in the public sector: A literature review and some key findings. TQM Magazine, Vol. 19 No. 

5, pp. 497–517.  

Gadakh, V. S., Shinde, V. B., & Khemnar, N. S. (2013). Optimization of welding process 

parameters using MOORA method. International Journal of Advanced Manufacturing 

Technology, Vol. 69 No. 9-12, pp. 2031–2039. 

Garcia-sabater, J. J., & Marin-garcia, J. A. (2011). Can we still talk about continuous 

improvement ? Rethinking enablers and inhibitors for successful implementation. Int. J. 

Technology Management, Vol. 55 No. 1/2, pp. 28–42. 

Guadix, J., Carrillo-Castrillo, J., Onieva, L., & Navascues, J. (2016). Success variables in science 

and technology parks. Journal of Business Research, Vol. 69 No. 11, pp. 4870–4875. 

Han, H., & Trimi, S. (2018). A fuzzy TOPSIS method for performance evaluation of reverse 

logistics in social commerce platforms. Expert Systems with Applications, Vol. 103, pp. 103, 

133–145.  

Heavey, C., Ledwith, A., & Murphy, E. (2014). Introducing a new continuous improvement 

framework for increased organisational return on investment. TQM Journal, Vol. 26 No. 6, 

pp. 594–609.  



27 
 

Herrero-Villa, M. ., López, S., & Molero, J. (2014). for Sigrid1 Validation Methodology as an 

Evaluation Method for Science Parks Management: The Case of the Madrid Science Park and 

Park of the University. Aijssnet.Com, Vol. 3 No. 5, pp. 72–82.  

Hobbs, K. G., Link, A. N., & Scott, J. T. (2017). The growth of US science and technology parks: 

does proximity to a university matter? The Annals of Regional Science, Vol. 59 No. 2, pp. 

495–511. 

Hoepfl, M. C. (1997). Choosing qualitative research: A primer for technology education 

researchers. Vol. 9 No. 1, pp. (Fall 1997). 

Hwang, C.-L., & Yoon, K. (1981). Multiple Attribute Decision Making. Chapman and Hall/CRC. 

Hyland, P. W., Soosay, C., & Sloan, T. R. (2003). Continuous improvement and learning in the 

supply chain. International Journal of Physical Distribution & Logistics Management, Vol. 

33 No. 4, pp. 316–335. 

Ighravwe, D., & Ayoola Oke, S. (2017). Ranking maintenance strategies for sustainable 

maintenance plan in manufacturing systems using fuzzy axiomatic design principle and 

fuzzy-TOPSIS. Journal of Manufacturing Technology Management, Vol. 28 No. 7, pp. 961–

992.  

Jafarnejad Chaghooshi, A., Fathi, M. R., & Kashef, M. (2012). Integration of fuzzy Shannon’s 

entropy with fuzzy TOPSIS for industrial robotic system section. Journal of Industrial 

Engineering and Management, Vol. 5 No. 1, pp. 102–114.  

Jain, K. (2017). Use of failure mode effect analysis (FMEA) to improve medication management 

process. International Journal of Health Care Quality Assurance, Vol. 30 No. 2, pp. 175–

186.  

Jha, S., Noori, H., & Michela, J. L. (1996). The dynamics of continuous improvement; aligning 

organisationa attributes and activities for quality and productivity. International Journal of 

Quality Science, Vol. 1 No. 1, pp. 19–47.  

Jing, S., Li, R., Niu, Z., & Yan, J. (2020). The application of dynamic game theory to participant's 

interaction mechanisms in lean management. Computers and Industrial Engineering, Vol. 

139, Article 106196, https://doi.org/10.1016/j.cie.2019.106196. 

Jurburg, D., Viles, E., Tanco, M., & Mateo, R. (2017). What motivates employees to participate 

in continuous improvement activities? Total Quality Management and Business Excellence, 

Vol. 28 No. 13-14, pp. 1469–1488.  



28 
 

Jurburg, D., Viles, E., Tanco, M., & Mateo, R. (2016). Continuous improvement leaders, followers 

and laggards: understanding system sustainability. Total Quality Management & Business 

Excellence, Vol. 29 No. 7-8, pp. 817-833.  

Kang, B.-J. (2017). Role and Policies of STP in the Era of 4th Industrial Revolution from Triple 

Helix Viewpoint. World Technopolis Review, Vol. 6 No. 2, pp. 90–101. 

Keshteli, R. N., & Davoodvandi, E. (2017). Using fuzzy AHP and fuzzy TOPSIS in fuzzy QFD: 

A case study in ceramic and tile industry of Iran. International Journal of Productivity and 

Quality Management, Vol. 20 No. 2, pp. 197–216.  

Kovach, J., de la Torre, L., & Walker, D. (2008). Continuous improvement efforts in healthcare: 

A case study exploring the motivation, involvement and support necessary for success. 

International Journal of Six Sigma and Competitive Advantage, Vol. 4 No. 3, pp. 254–269.  

Kumar, M., Jayaswal, P., & Kushwah, K. (2013). Exploring Fuzzy SAW Method for Maintenance 

Strategy Selection Problem of Material Handling Equipment. International Journal of 

Current Engineering and Technology, Vol. 3 No. 2, pp. 600–605. 

Kumar, P., Maiti, J., & Gunasekaran, A. (2018). Impact of quality management systems on firm 

performance, International Journal of Quality & Reliability Management, Vol. 35 No. 5, pp. 

1034–1059.   

Kumru, M., & Kumru, P. Y. (2013). Fuzzy FMEA application to improve purchasing process in a 

public hospital. Applied Soft Computing Journal, Vol. 13 No. 1, pp. 721–733.  

Kutlu, A. C., & Ekmekçioǧlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy 

TOPSIS-based fuzzy AHP. Expert Systems with Applications, Vol. 39 No. 1, pp. 61–67.  

Langabeer, J. R. (2008). Health care operations management: a quantitative approach to business 

and logistics. In Jones & Bartlett Learning,.  

Lee, H.-J. (2004). The role of competence-based trust and organizational identification in 

continuous improvement. Journal of Managerial Psychology, Vol. 19 No. 6, pp. 623–639. 

Liu, H. C., You, J. X., You, X. Y., & Shan, M. M. (2015). A novel approach for failure mode and 

effects analysis using combination weighting and fuzzy VIKOR method. Applied Soft 

Computing Journal, Vol. 28, pp. 579–588.  

Lodgaard, E., Ingvaldsen, J. A., Aschehoug, S., & Gamme, I. (2016). Barriers to Continuous 

Improvement: Perceptions of Top Managers, Middle Managers and Workers. Procedia CIRP, 

Vol. 41, pp.1119–1124.  



29 
 

Lotfi, F. H., & Fallahnejad, R. (2010). Imprecise Shannon’s entropy and multi attribute decision 

making. Entropy, Vol. 12 No. 1, pp. 53–62. 

Magalhaes, A. B. V. B., & Zouain, D. M. (2008, June). Innovation Services Structure for Science 

Technology Parks (STPs)–forging regional improvement mechanisms for companies, 

university and R&D centers and government partnership. In The Proceedings of the XIX 

ISPIM Conference. 

Maia, L. C., Alves, A. C., & Leão, C. P. (2015). How could the TRIZ tool help continuous 

improvement efforts of the companies? Procedia Engineering, Vol. 131, pp. 343–351. 

Mark, R., & Oppenheim, R. (2019). Ishikawa diagrams and Bayesian belief networks for 

continuous improvement applications. The TQM Journal, Vol. 31 No. 3, pp. 294–318.  

Martínez-Cañas, R., Ruiz-Palomino, P., & Sáez-Martínez, F. J. (2011). A literature review of the 

effect of science and technology parks on firm performance: A new model of value creation 

through social capital. African Journal of Business Management, Vol. 5 No. 30, pp. 11999. 

Message Costa, L.B., Godinho Filho, M., Fredendall, L.D., & Devós Ganga, G.M. (2020). The 

effect of Lean Six Sigma practices on food industry performance: Implications of the Sector's 

experience and typical characteristics. Food Control, Vol. 112, Article 107110, 

https://doi.org/10.1016/j.foodcont.2020.107110. 

McLean, R. S., Antony, J., & Dahlgaard, J. J. (2017). Failure of continuous improvement 

initiatives in manufacturing environments: a systematic review of the evidence. Total Quality 

Management & Business Excellence, Vol. 28 No. (3-4), pp. 219-237.  

Mian, S., Fayolle, A., & Lamine, W. (2012). Building sustainable regional platforms for incubating 

science and technology businesses: Evidence from US and French science and technology 

parks. The International Journal of Entrepreneurship and Innovation, Vol. 13 No. 4, pp. 235-

247. 

 Moghimi, M., & Taghizadeh Yazdi, M. (2016). Applying Multi-Criteria Decision-Making ( 

MCDM ) Methods for Economic Ranking of Tehran-22 Districts to Establish Financial and 

Commercial Centers ( Case : City of Tehran ). Vol. 5 No. 20, pp. 43–55. 

Mohamadi, S., Ebrahimi, A., & Alimohammadlou, M. (2017). An application of fuzzy screening, 

fuzzy AHP and fuzzy Shannon’s entropy on identification and prioritisation of effective 

factors in assessment of contractors in Fars Electric Power Distribution Company, Iran. 

International Journal of Procurement Management, Vol. 10 No. 2, pp. 194.  



30 
 

Murat Ar, I., & Baki, B. (2011). Antecedents and performance impacts of product versus process 

innovation. European Journal of Innovation Management, Vol. 14 No. 2, pp. 172–206.  

Murray, P., & Chapman, R. (2003). From continuous improvement to organisational learning: 

developmental theory. The Learning Organization, Vol. 10 No. 5, pp. 272–282. 

Newham, J., Schierhout, G., Bailie, R., & Ward, P. R. (2016). “There’s only one enabler; Come 

up, help us”: Staff perspectives of barriers and enablers to continuous quality improvement 

in Aboriginal primary health-care settings in South Australia. Australian Journal of Primary 

Health, Vol. 22 No. 3, pp. 244–254.  

Ngai, E. W. T., & Cheng, T. C. E. (1997). Identifying potential barriers to total quality management 

using principal component analysis and correspondence analysis. International Journal of 

Quality & Reliability Management, Vol. 14 No. 4, pp. 391–408.  

Ni, W., & Sun, H. (2009). The relationship among organisational learning, continuous 

improvement and performance improvement: An evolutionary perspective. Total Quality 

Management and Business Excellence, Vol. 20 No. 10, pp. 1041–1054.  

Nilsson-Witell, L., Antoni, M., & Dahlgaard, J. J. (2005). Continuous improvement in product 

development. International Journal of Quality & Reliability Management, Vol. 22 No. 8, pp. 

753–768.  

Oprime, P. C., Henrique de Sousa Mendes, G., Lopes Pimenta, M., Henrique, G., Mendes, D. S., 

& Pimenta, M. L. (2011). Continuous improvement: critical factors in Brazilian industrial 

companies. International Journal of Productivity and Performance Management, Vol. 61 No. 

1, pp. 69–92. 

Paciarotti, C., Mazzuto, G., & D’Ettorre, D. (2014). A revised FMEA application to the quality 

control management. International Journal of Quality & Reliability Management, Vol. 31 

No. 7, pp. 788–810.  

Pourhamidi, M. (2013). Prioritisation of knowledge management strategies in the learning 

organisation: an integrated Shannon’s entropy-TOPSIS methodology. International Journal 

of Learning and Intellectual Capital, Vol. 10 No. (3/4), pp. 213.  

Purjavad, E., & Shirouyehzad, H. (2011). A MCDM Approach for Prioritizing Production Lines: 

A Case Study. International Journal of Business and Management, Vol. 6 No. 10, pp. 221–

229.  

Ribeiro, J., Higuchi, A., Bronzo, M., Veiga, R., & De Faria, A. (2016). A framework for the 



31 
 

strategic management of science & technology parks. Journal of Technology Management 

and Innovation, Vol. 11 No. 4, pp. 80–90.  

Ross, D. F. (2015). Distribution Planning and control: managing in the era of supply chain 

management. Springer. 

Roszkowska, E., & Kacprzak, D. (2016). The fuzzy saw and fuzzy TOPSIS procedures based on 

ordered fuzzy numbers. Information Sciences, Vol. 369, pp. 564–584.  

Rubini, D. (2002). A critical analysis of Science and Technology Parks: Learning from the Italian 

Experience (Doctoral dissertation, Thesis for the Degree of Master of Science in Engineering 

Policy and Technology Management, Supervised by Manuel Fredrico Tojal de Valsassina 

Heitor, Universidade Tecnica de Lisboa, Instituto Superior Tecnico). 

Russell, C. K., & Gregory, D. M. (2003). Evaluation of qualitative research studies EBN users ’ 

guide Evaluation of qualitative research studies. Evidence Based Nursing, Vol. 6, pp. 36–40.  

Salah, S., Carretero, J. A., & Rahim, A. (2010). The integration of quality management and 

continuous improvement methodologies with management systems. International Journal of 

Productivity and Quality Management, Vol. 6 No. 3, pp. 269.  

Sanchez, L., & Blanco, B. (2014). Three decades of continuous improvement. Total Quality 

Management and Business Excellence, Vol. 25 No. 9-10, pp. 986–1001.  

Savolainen, T., & Haikonen, A. (2007). Dynamics of organizational learning and continuous 

improvement in six sigma implementation. The TQM Magazine, Vol. 19 No. 1, pp. 6–17.  

Savolainen, T. I. (1999). Cycles of continuous improvement. International Journal of Operations 

& Production Management, Vol. 19 No. 11, pp. 1203–1222.  

Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). 

Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for 

maize, rapeseed and soybean crops. Geoderma, 310(November 2016), pp. 178–190.  

Shahin, A. (2004). Integration of FMEA and the Kano model: An exploratory examination. 

International Journal of Quality and Reliability Management, Vol. 21 No. 7, pp.731–746.  

Shaker, F., Shahin, A., & Jahanyan, S. (2019). Developing a two-phase QFD for improving 

FMEA: an integrative approach. International Journal of Quality & Reliability Management, 

Vol. 36 No. 8, pp. 1454–1474.  

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical 

Journal, Vol. 27 No. 3, pp. 379–423. 



32 
 

Sharma, R. K., & Sharma, P. (2010). System failure behavior and maintenance decision making 

using, RCA, FMEA and FM. Journal of Quality in Maintenance Engineering, Vol. 16 No. 1, 

pp. 64–88.  

Singh, J, & Singh, H. (2018). Modelling of barriers and initiatives of continuous improvement 

approach for enhancing the performance of SMEs of Northern India. International Journal 

of Services and Operations Management, Vol. 29 No. 2, pp. 184–213.  

Singh, J, & Singh, H. (2010). Assessment of continuous improvement approach in SMEs of 

Northern India. International Journal of Productivity and Quality Management, Vol. 5 No. 

3, pp. 252–268.  

Singh, J, & Singh, H. (2014). Performance enhancement of a manufacturing industry by using 

continuous improvement strategies - a case study. International Journal of Productivity and 

Quality Management, Vol. 14 No. 1, pp. 36.  

Singh, J, & Singh, H. (2015). Continuous improvement philosophy – literature review and 

directions. Benchmarking: An International Journal, Vol. 22 No. 1, pp. 75–119.  

Sirisawat, P., & Kiatcharoenpol, T. (2018). Fuzzy AHP-TOPSIS approaches to prioritizing 

solutions for reverse logistics barriers. Computers and Industrial Engineering, 117(April 

2017), pp. 303–318.  

Sola, A.V.H., & Mota, C.M.M. (2020). Influencing factors on energy management in industries. 

Journal of Cleaner Production, Vol. 248, Article 119263, 

https://doi.org/10.1016/j.jclepro.2019.119263. 

Stelson, P., Hille, J., Eseonu, C., & Doolen, T. (2017). What drives continuous improvement 

project success in healthcare? International Journal of Health Care Quality Assurance, 30(1). 

Sun, C. C. (2010). A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS 

methods. Expert Systems with Applications, Vol. 37 No. 12, pp. 7745–7754.  

Swuste, P., Groeneweg, J., Gulijk, C., Zwaard, W., Lemkowitz, S., & Oostendorp, Y. (2020). The 

future of safety science. Safety Science, Vol. 125, Article 104593, 

https://doi.org/10.1016/j.ssci.2019.104593. 

Talib, F., Asjad, M., Attri, R., Siddiquee, A., & Khan, Z. (2019). Ranking model of total quality 

management enablers in healthcare establishments using the best-worst method. The TQM 

Journal, Vol. 31 No. 5, pp. 790–814.  

Tanco, M., Mateo, R., Santos, J., Jaca, C., & Viles, E. (2012). On the relationship between 



33 
 

continuous improvement programmes and their effect on quality defects: An automotive case 

study. Total Quality Management & Business Excellence, Vol. 23 No. 3-4, pp. 277–290. 

Tavares, R., Superiore, S., & Anna, S. (2009). Science and technology parks: An overview of the 

ongoing initiatives in Africa. African Journal of Political Science and International 

Relations, Vol. 3 No. 5, pp. 208–223. 

Terziovski, M. (2002). Achieving performance excellence through an integrated strategy of radical 

innovation and continuous improvement. Measuring Business Excellence, Vol. 6 No. 2, pp. 

5–14.  

Terziovski, M., & Sohal, A. S. (2000). The adoption of continuous improvement and innovation 

strategies in Australian manufacturing firms. Technovation, Vol. 20 No. 10, pp. 539–550. 

Timans, W., Ahaus, K., van Solingen, R., Kumar, M., & Antony, J. (2016). Implementation of 

continuous improvement based on Lean Six Sigma in small-and medium-sized enterprises. 

Total Quality Management & Business Excellence Vol. 27 No. 3-4, pp., 309–324. 

Ustinovichius, L., Zavadskas, E. K., & Podvezko, V. (2007). Application of a quantitative multiple 

criteria decision making ( MCDM-1 ) approach to the analysis of investments in construction. 

Control and Cybernetics, Vol. 36 No. 1, pp. 251–268. 

van Assen, M. F. (2018). The moderating effect of management behavior for Lean and process 

improvement. Operations Management Research. Vol. 11, No. 1–2, pp. 1–13. 

Vásquez-Urriago, Á. R., Barge-Gil, A., & Rico, A. M. (2016). Science and technology parks and 

cooperation for innovation: Empirical evidence from Spain. Research Policy, Vol. 45 No. 1, 

pp. 137–147. 

Vásquez-Urriago, Á. R., Barge-Gil, A., Rico, A. M., & Paraskevopoulou, E. (2014). The impact 

of science and technology parks on firms’ product innovation: empirical evidence from Spain. 

Journal of Evolutionary Economics, Vol. 24 No. 4, pp. 835–873. 

Waeytens, D., & Bruggeman, W. (1994). Barriers to successful implementation of ABC for 

continuous improvement: A case study. International Journal of Production Economics, Vol. 

36 No. 1, pp. 39–52.  

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate 

reasoning-I. Information Sciences, Vol. 8 No. 3, pp. 199–249. 

Zhang, F., & Zhang, W. (2015). Failure modes and effects analysis based on fuzzy TOPSIS. 2015 

IEEE International Conference on Grey Systems and Intelligent Services (GSIS), (2008), 



34 
 

pp.588–593.  

Zhang, H., & Sonobe, T. (2011). Development of Science and Technology Parks in China, 1988–

2008. Economics: The Open-Access, Open-Assessment E-Journal, Vol. 5 No. 6. 

  

 



35 
 

 
Figure 1: Proposed flowchart of the study 
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Figure 2: Comparing the ranking result of the barriers  
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Table 1:  Barriers to the implementation of continuous improvement 
  Barrier to CI Resources Methodology  

B1 Lack of management 
commitment to CI activities 

(Anh et al., 2015), (Singh and 
Singh, 2015) , (Ngai and Cheng, 
1997), (Singh and Singh, 2018), 

(Ahmad et al., 2017) 

Case study (Anh et al., 2015), 
Literature review (Singh and Singh, 2015), 

Lean Manufacturing tool (Ahmad et al., 2017), 
Principal component analysis (PCA) and Correspondence analysis (CA) 

(Ngai and Cheng, 1997), 
Options Field Methodology (OFM), Options Profile Methodology (OPM), 

Analytic Hierarchy Process (AHP), Fuzzy Set Theory (FST) and 
Structural Equation Modelling SEM (Singh and Singh, 2018) 

B2 Limited support from 
management to CI activities 

(Stelson et al.,2017), (Fryer et al., 
2007), (Newham et al., 2016), 

(Garcia-sabater and Marin-garcia, 
2011) 

Literature review (Stelson et al., 2017; Choudhury and Pattnaik, 2020), 
Literature review (Fryer et al.,  2007), 

Multiple case study approach (Newham et al., 2016), 
Grounded theory (Garcia-sabater and Marin-garcia, 2011) , 

Survey (Message Costa et al., 2020) 

B3 Lack of management 
involvement in CI activities 

(Lodgaard et al., 2016), (Talib et 
al., 2019) 

Case study (Lodgaard et al., 2016) 
Best-Worst-Method (Talib et al., 2019) 

B4 Lack of a specific strategy in 
the field of CI (Bessant et al., 1994) Literature review (Choudhury and Pattnaik, 2020) 

Case study (Bessant et al., 1994) 

B5 Lack of organizational culture 
and environment to support CI (Mclean et al., 2015) Literature review (Systematic reviews) (Mclean et al., 2015) 

B6 Lack of employee motivation 
in the organization  

(Oprime et al., 2011), (Ahmad et 
al., 2017), (Garcia-sabater and 

Marin-garcia, 2011) 

Non-parametric tests (Oprime et al., 2011), 
Lean Manufacturing tool(Ahmad et al., 2017), 

Grounded theory (Garcia-sabater and Marin-garcia, 2011) 

B7 Low employee involvement in 
CI activities 

(Oprime et al., 2011), (Mclean et 
al., 2015), (Ngai and Cheng, 1997), 

(Singh and Singh, 2015) 

Non-parametric tests (Oprime et al., 2011), 
Principal component analysis (PCA) and  Correspondence analysis (CA) 

(Ngai and Cheng, 1997), 
 Literature review (Systematic reviews) (Mclean et al., 2015) 

 Literature review (Singh and Singh, 2015) 

B8 Lack of knowledge in CI 
implementation (Ahmad et al., 2017) 

Survey (Sola and Mota, 2020; Message Costa et al., 2020) 
Lean Manufacturing tool (Ahmad et al., 2017) 

Literature review (Swuste et al., 2020) 

B9 
Lack of a culture of 

knowledge capturing among 
employees 

(Lodgaard et al., 2016) Survey (Sola and Mota, 2020; Message Costa et al., 2020) 
Case study (Lodgaard et al., 2016; Jing et al., 2020) 

B10 Lack of knowledge sharing 
culture among employees (Lodgaard et al., 2016) 

Survey (Sola and Mota, 2020) 
Case study (Lodgaard et al., 2016; Jing et al., 2020) 

Literature review (Swuste et al., 2020) 

B11 
Lack of abilities and skills in 
problem-solving of the teams 

in CI implementation 

(Oprime et al., 2011), (Stelson et al., 
2017), ( Bessant and Caffyn, 1997) 

Non-parametric tests (Oprime et al., 2011), 
Literature review (Kaizen event) (Stelson et al., 2017), 

Literature review(Bessant and Caffyn, 1997) 

B12 
Low cooperation and 

integration of the team in CI 
activities 

(Oprime et al., 2011), (Stelson et 
al., 2017) 

Non-parametric tests (Oprime et al., 2011), 
Literature review (Kaizen event) (Stelson et al., 2017) 

B13 Lack of teamwork 
(Fryer et al., 2007),( Newham et al., 
2016), (Ahmad et al., 2017), (Chan 

et al., 2018) 

Literature review (Fryer et al., 2007), 
Case study (Newham et al., 2016), 

Lean Manufacturing tool (Ahmad et al., 2017), 
Systematic database review (Chan et al., 2018) 

B14 Lack of covering all relevant 
CI initiatives (Lodgaard et al., 2016) Case study (Lodgaard et al., 2016) 

B15 Not user-friendly system 
[technical] in CI method (Lodgaard et al., 2016) Case study (Lodgaard et al., 2016) 

B16 Lack of employee reward 
system 

(Anh et al., 2015), (Ngai and 
Cheng, 1997) 

Case study (Anh et al., 2015), 
Principal component analysis (PCA) and  Correspondence analysis (CA) 

(Ngai and Cheng, 1997) 

B17 
Lack of defined role and 

responsibilities of each person 
in the team in CI 
implementation 

(Lodgaard et al., 2016) Survey (da Veiga et al., 2020) 
Case study (Lodgaard et al., 2016) 

B18 A weak communication 
system in the organization (Oprime et al., 2011) Non-parametric tests (Oprime et al., 2011) 
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Table 2: Linguistic variables 

Linguistic variables for rating the 
failure modes 

Linguistic variables for the weighting of each 
criterion 

Interval values 
for linguistic 

variables 

Linguistic variables 
Triangular fuzzy 
number for fuzzy 

FMEA 

Linguistic variables 
(priority weights) 

Triangular fuzzy 
number 

for fuzzy Shannon 

Interval data at 
 

Very low (VL) (0,0.1,0.3) Unimportant (UI) (0,0,0.2) [0,0.17] 
Low (L) (0.1,0.3,0.5) Slightly important (SI) (0,0.2,0.4) [0.07,0.42] 

Medium (M) (0.3,0.5,0.7) Fairly important (FI) (0.2,0.4,0.6) [0.32,0.67] 
High (H) (0.5,0.7,0.9) Important (I) (0.4,0.6,0.8) [0.57,0.92] 

Very High (VH) (0.7,0.9,1) Very important (VI) (0.6,0.8,1) [0.82,1] 
 
  

a3.0
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Table 3: Assessment of experts in linguistic variables of the barriers factors according to 
any failure mode 

DM Severity(S) Occurrence(O) Detection(D) DM Severity(S) Occurrence(O) Detection(D) 
DM1 DM2 DM3 DM1 DM2 DM3 

B1 0.5 0.7 0.9 0.3 0.5 0.7 0.5 0.7 0.9 B10 0.1 0.3 0.5 0.1 0.3 0.5 0.3 0.5 0.7 
B2 0.5 0.7 0.9 0.5 0.7 0.9 0.7 0.9 1 B11 0.3 0.5 0.7 0.1 0.3 0.5 0.5 0.7 0.9 
B3 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9 B12 0.3 0.5 0.7 0.5 0.7 0.9 0.5 0.7 0.9 
B4 0.3 0.5 0.7 0.5 0.7 0.9 0.5 0.7 0.9 B13 0.5 0.7 0.9 0.7 0.9 1 0.3 0.5 0.7 
B5 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 1 B14 0.5 0.7 0.9 0.3 0.5 0.7 0.5 0.7 0.9 
B6 0.7 0.9 1 0.5 0.7 0.9 0.5 0.7 0.9 B15 0.5 0.7 0.9 0.1 0.3 0.5 0.5 0.7 0.9 
B7 0.7 0.9 1 0.7 0.9 1 0.5 0.7 0.9 B16 0.7 0.9 1 0.3 0.5 0.7 0.5 0.7 0.9 
B8 0.5 0.7 0.9 0.7 0.9 1 0.5 0.7 0.9 B17 0.3 0.5 0.7 0.3 0.5 0.7 0.5 0.7 0.9 
B9 0.3 0.5 0.7 0.3 0.5 0.7 0.7 0.9 1 B18 0.5 0.7 0.9 0.7 0.9 1 0.5 0.7 0.9 
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Table 4: Aggregation of the experts and evaluation of the fuzzy normalized matrix for S, O and D 

DM Severity(S) Occurrence(O) Detection(D) DM Severity(S) Occurrence(O) Detection(D) 
Aggregate DM Aggregate DM Aggregate DM Aggregate DM Aggregate DM Aggregate DM 

B1 0.433 0.633 0.833 0.433 0.633 0.833 0.233 0.433 0.633 B10 0.166 0.366 0.566 0.500 0.700 0.900 0.433 0.633 0.800 
B2 0.566 0.766 0.933 0.500 0.700 0.900 0.433 0.633 0.800 B11 0.300 0.500 0.700 0.500 0.700 0.900 0.233 0.433 0.800 
B3 0.500 0.700 0.900 0.500 0.700 0.900 0.300 0.500 0.700 B12 0.433 0.633 0.833 0.566 0.766 0.900 0.566 0.766 0.900 
B4 0.433 0.633 0.833 0.400 0.566 0.733 0.233 0.433 0.633 B13 0.500 0.700 0.866 0.366 0.566 0.766 0.433 0.633 0.800 
B5 0.433 0.633 0.800 0.333 0.500 0.700 0.300 0.500 0.700 B14 0.433 0.633 0.833 0.300 0.500 0.700 0.500 0.700 0.866 
B6 0.566 0.766 0.933 0.266 0.433 0.633 0.200 0.366 0.566 B15 0.366 0.566 0.766 0.233 0.433 0.633 0.300 0.500 0.700 
B7 0.633 0.833 0.966 0.433 0.633 0.633 0.366 0.566 0.733 B16 0.500 0.700 0.866 0.233 0.433 0.633 0.300 0.500 0.700 
B8 0.566 0.766 0.933 0.433 0.633 0.833 0.366 0.566 0.733 B17 0.366 0.566 0.766 0.333 0.500 0.700 0.366 0.566 0.733 
B9 0.433 0.633 0.800 0.366 0.566 0.766 0.233 0.433 0.633 B18 0.566 0.766 0.933 0.500 0.700 0.900 0.300 0.500 0.700 

DM Severity(S) Occurrence(O) Detection(D) DM Severity(S) Occurrence(O) Detection(D) 
Normalized Normalized Normalized Normalized Normalized Normalized 

B1 0.037 0.080 0.139 0.040 0.087 0.150 0.013 0.045 0.097 B10 0.005 0.027 0.064 0.054 0.106 0.175 0.045 0.097 0.154 
B2 0.064 0.118 0.017 0.054 0.106 0.175 0.045 0.097 0.154 B11 0.018 0.050 0.098 0.054 0.106 0.175 0.017 0.045 0.087 
B3 0.500 0.980 0.163 0.054 0.106 0.175 0.021 0.060 0.118 B12 0.037 0.080 0.139 0.069 0.127 0.175 0.077 0.142 0.196 
B4 0.037 0.080 0.139 0.034 0.069 0.116 0.013 0.045 0.097 B13 0.050 0.098 0.151 0.029 0.069 0.127 0.045 0.097 0.154 
B5 0.370 0.800 0.128 0.024 0.054 0.106 0.021 0.060 0.118 B14 0.037 0.080 0.139 0.019 0.054 0.127 0.060 0.118 0.181 
B6 0.064 0.118 0.175 0.015 0.040 0.087 0.009 0.032 0.077 B15 0.027 0.064 0.118 0.011 0.040 0.087 0.021 0.060 0.118 
B7 0.080 0.139 0.188 0.040 0.087 0.138 0.032 0.077 0.130 B16 0.050 0.098 0.151 0.024 0.054 0.106 0.021 0.060 0.118 
B8 0.064 0.118 0.175 0.040 0.087 0.015 0.032 0.077 0.120 B17 0.027 0.064 0.118 0.029 0.069 0.127 0.032 0.077 0.130 
B9 0.037 0.080 0.128 0.029 0.069 0.127 0.013 0.045 0.097 B18 0.064 0.118 0.175 0.054 0.106 0.175 0.060 0.118 0.118 

 

 
  



41 
 

Table 5: Interval decision matrix of fuzzy Shannon’s entropy method 

Barriers Severity (S) Occurrence (O) Detection (D) Barriers Severity (S) Occurrence (O) Detection (D) 
DM1 DM2 DM1 DM2 DM1 DM2 Aggregate DMs 

B1 0.57 0.92 0.32 0.67 0.57 0.92 0.32 0.67 0.07 0.42 0.07 0.42 B1 0.445 0.795 0.455 0.795 0.070 0.420 
B2 0.57 0.92 0.57 0.92 0.57 0.92 0.57 0.92 0.57 0.92 0.07 0.42 B2 0.570 0.920 0.570 0.920 0.320 0.670 
B3 0.57 0.92 0.57 0.92 0.57 0.92 0.57 0.92 0.32 0.67 0.07 0.42 B3 0.570 0.920 0.570 0.920 0.195 0.545 
B4 0.32 0.67 0.57 0.92 0.82 1 0 0.17 0.32 0.67 0.07 0.42 B4 0.445 0.795 0.410 0.585 0.195 0.545 
B5 0.57 0.92 0.07 0.42 0.57 0.92 0 0.17 0.07 0.42 0.32 0.67 B5 0.320 0.670 0.285 0.545 0.195 0.545 
B6 0.82 1 0.57 0.92 0.57 0.92 0 0.17 0.07 0.42 0 0.17 B6 0.695 0.96 0.285 0.545 0.035 0.295 
B7 0.82 1 0.82 1 0.82 1 0.07 0.42 0.32 0.67 0.07 0.42 B7 0.820 1 0.445 0.710 0.195 0.545 
B8 0.57 0.92 0.82 1 0.57 0.92 0.32 0.67 0.07 0.42 0.32 0.67 B8 0.695 0.960 0.445 0.795 0.195 0.545 
B9 0.32 0.67 0.32 0.67 0.57 0.92 0.07 0.42 0.32 0.67 0.07 0.42 B9 0.320 0.670 0.320 0.670 0.195 0.545 

B10 0.07 0.42 0.07 0.42 0.57 0.92 0.57 0.92 0.07 0.42 0.57 0.92 B10 0.070 0.420 0.570 0.920 0.320 0.670 
B11 0.32 0.67 0.07 0.42 0.57 0.92 0.57 0.92 0.07 0.42 0 0.17 B11 0.195 0.545 0.570 0.920 0.035 0.295 
B12 0.32 0.67 0.57 0.92 0.32 0.67 0.82 1 0.32 0.67 0.82 1 B12 0.445 0.795 0.570 0.835 0.570 0.835 
B13 0.57 0.92 0.82 1 0.32 0.67 0.32 0.67 0.07 0.42 0.82 1 B13 0.695 0.960 0.320 0.670 0.445 0.710 
B14 0.57 0.92 0.32 0.67 0.32 0.67 0.07 0.42 0.32 0.67 0.82 1 B14 0.445 0.795 0.195 0.545 0.570 0.835 
B15 0.57 0.92 0.07 0.42 0.32 0.67 0.07 0.42 0.07 0.42 0.32 0.67 B15 0.320 0.670 0.195 0.545 0.195 0.545 
B16 0.82 1 0.32 0.67 0.57 0.92 0 0.17 0.32 0.67 0.07 0.42 B16 0.570 0.835 0.285 0.545 0.195 0.545 
B17 0.32 0.67 0.32 0.67 0.32 0.67 0.32 0.67 0.32 0.67 0.07 0.42 B17 0.320 0.670 0.320 0.670 0.195 0.545 
B18 0.57 0.92 0.82 1 0.57 0.92 0.57 0.92 0.07 0.42 0.32 0.67 B18 0.695 0.960 0.570 0.920 0.195 0.545 
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Table 6: Final weight of fuzzy Shannon’s entropy method for S, O and D 

 Severity 
(S) 

Occurrence 
(O) 

Detection 
(D) 

hl 0.6880 0.6650 0.5210 
hu 0.9920 0.0992 0.9880 
dl 0.0072 0.0073 0.0111 
du 0.3110 0.3340 0.4780 
wl 0.0064 0.0065 0.0099 
wu 12.069 12.962 18.528 
W' 6.0379 6.4840 9.2690 
Wi 0.2771 0.2976 0.4254 
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Table 7: The weighted normalized fuzzy decision matrix for S, O and D 

Barriers Severity(S) Occurrence(O) Detection(D) 

Weighted fuzzy 
Shannon 0.2770713 0.2975708 0.4253578 

B1 0.010 0.022 0.038 0.012 0.025 0.044 0.005 0.019 0.041 
B2 0.017 0.032 0.048 0.016 0.031 0.052 0.010 0.041 0.065 
B3 0.013 0.027 0.045 0.016 0.031 0.052 0.009 0.025 0.050 
B4 0.010 0.022 0.038 0.01 0.020 0.034 0.005 0.019 0.041 
B5 0.010 0.022 0.035 0.007 0.016 0.031 0.009 0.025 0.050 
B6 0.017 0.032 0.048 0.004 0.012 0.025 0.004 0.013 0.033 
B7 0.022 0.038 0.052 0.012 0.025 0.041 0.013 0.033 0.055 
B8 0.017 0.032 0.048 0.012 0.025 0.044 0.013 0.033 0.055 
B9 0.010 0.022 0.035 0.008 0.020 0.037 0.005 0.019 0.041 
B10 0.001 0.007 0.017 0.016 0.031 0.052 0.019 0.041 0.065 
B11 0.005 0.013 0.027 0.016 0.031 0.052 0.007 0.019 0.037 
B12 0.010 0.022 0.038 0.02 0.037 0.052 0.033 0.060 0.083 
B13 0.013 0.027 0.041 0.008 0.020 0.037 0.019 0.041 0.065 
B14 0.010 0.022 0.038 0.005 0.016 0.031 0.026 0.050 0.077 
B15 0.007 0.017 0.032 0.003 0.016 0.037 0.009 0.026 0.050 
B16 0.013 0.027 0.041 0.007 0.016 0.031 0.009 0.025 0.050 
B17 0.007 0.017 0.032 0.008 0.020 0.037 0.013 0.033 0.055 
B18 0.017 0.032 0.048 0.016 0.031 0.052 0.009 0.025 0.050 
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Table 8: Best non-fuzzy performance value and ranking of the barriers by fuzzy MOORA 

Barriers    yi
 Ranks Barriers    yi

 Ranks 
B1 0.0280 0.0670 0.1240 0.073 12 B10 0.0370 0.0800 0.136 0.084 9 
B2 0.0530 0.1050 0.1660 0.108 2 B11 0.0284 0.0640 0.116 0.070 13 
B3 0.0390 0.0840 0.1470 0.090 8 B12 0.0640 0.1200 0.174 0.119 1 
B4 0.0260 0.0620 0.1140 0.067 15 B13 0.0410 0.0890 0.145 0.092 7 
B5 0.0260 0.0640 0.1170 0.069 14 B14 0.0420 0.0880 0.147 0.092 6 
B6 0.0260 0.0580 0.1070 0.064 17 B15 0.0200 0.0550 0.109 0.061 18 
B7 0.0483 0.0970 0.1480 0.098 3 B16 0.0300 0.0690 0.123 0.074 11 
B8 0.0438 0.0917 0.1480 0.094 5 B17 0.0300 0.0716 0.126 0.075 10 
B9 0.0240 0.0620 0.1149 0.067 16 B18 0.0430 0.0900 0.151 0.094 4 
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Table 9: Determining , closeness coefficient and ranking order by fuzzy TOPSIS 

Barriers    Ranks Barriers    Ranks 

B1 2.926719 0.083746 0.0278182 12 B10 2.915815 0.094000 0.0312310 9 
B2 2.891763 0.118140 0.0392505 2 B11 2.930209 0.078944 0.0262347 14 
B3 2.909690 0.101156 0.0335972 8 B12 2.880546 0.128170 0.0425995 1 
B4 2.932368 0.077142 0.0256327 15 B13 2.907983 0.101703 0.0337920 7 
B5 2.930608 0.079112 0.0262854 13 B14 2.907469 0.102637 0.0340974 6 
B6 2.935891 0.072933 0.0242397 17 B15 2.938520 0.071762 0.0238389 18 
B7 2.902024 0.106741 0.0354766 3 B16 2.925745 0.084030 0.0279189 11 
B8 2.905524 0.104162 0.0346089 5 B17 2.924341 0.085537 0.0284189 10 
B9 2.932862 0.077048 0.0255980 16 B18 2.905410 0.105011 0.0348824 4 
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Table 10: Ranking of the barriers by fuzzy SAW 

Barriers Severity(S) Average Occurrence(O) Average Detection(D) Average Aggregate 
S, O, D Ranks 

B1 0.01 0.022 0.038 0.031 0.012 0.025 0.044 0.033 0.005 0.019 0.041 0.019 0.0840 10 
B2 0.017 0.032 0.048 0.042 0.016 0.031 0.052 0.040 0.01 0.041 0.065 0.035 0.1180 2 
B3 0.013 0.027 0.045 0.037 0.016 0.031 0.052 0.040 0.009 0.025 0.05 0.024 0.1020 6 
B4 0.01 0.022 0.038 0.031 0.01 0.02 0.034 0.026 0.005 0.019 0.041 0.019 0.0774 14 
B5 0.01 0.022 0.035 0.029 0.007 0.016 0.031 0.022 0.009 0.025 0.05 0.024 0.0772 15 
B6 0.017 0.032 0.048 0.042 0.004 0.012 0.025 0.017 0.004 0.013 0.033 0.015 0.0755 17 
B7 0.022 0.038 0.052 0.047 0.012 0.025 0.041 0.032 0.013 0.033 0.055 0.029 0.1090 3 
B8 0.017 0.032 0.048 0.042 0.012 0.025 0.044 0.033 0.013 0.033 0.055 0.029 0.1050 5 
B9 0.01 0.022 0.035 0.029 0.008 0.02 0.037 0.027 0.005 0.019 0.041 0.019 0.0760 16 
B10 0.001 0.007 0.017 0.012 0.016 0.031 0.052 0.040 0.019 0.041 0.065 0.035 0.0880 9 
B11 0.005 0.013 0.027 0.020 0.016 0.031 0.052 0.040 0.007 0.019 0.037 0.018 0.0790 13 
B12 0.01 0.022 0.038 0.031 0.02 0.037 0.052 0.043 0.033 0.06 0.083 0.049 0.1240 1 
B13 0.013 0.027 0.041 0.035 0.008 0.02 0.037 0.027 0.019 0.041 0.065 0.035 0.0993 7 
B14 0.01 0.022 0.038 0.031 0.005 0.016 0.031 0.022 0.025 0.05 0.077 0.043 0.0967 8 
B15 0.007 0.017 0.032 0.025 0.003 0.016 0.037 0.017 0.009 0.025 0.05 0.024 0.0670 18 
B16 0.013 0.027 0.041 0.035 0.007 0.016 0.031 0.022 0.009 0.025 0.05 0.024 0.0830 11 
B17 0.007 0.017 0.032 0.025 0.008 0.02 0.037 0.027 0.013 0.033 0.055 0.029 0.0825 12 
B18 0.017 0.032 0.048 0.042 0.016 0.031 0.052 0.040 0.009 0.025 0.05 0.024 0.1070 4 
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Table 11: The result of Copeland’s method 

Barriers ΣC ΣR ΣC- ΣR Ranks Barriers ΣC ΣR ΣR- ΣC Ranks 
B1 6 10 -4 12 B10 9 9 0 9 
B2 16 1 15 2 B11 4 11 -7 13 
B3 10 7 3 8 B12 17 1 16 1 
B4 3 14 -11 15 B13 11 6 5 7 
B5 4 12 -8 14 B14 12 6 6 6 
B6 1 16 -15 17 B15 0 16 -16 18 
B7 15 2 13 3 B16 7 10 -3 11 
B8 13 5 8 5 B17 8 9 -1 10 
B9 2 14 -12 16 B18 14 3 11 4 

 

 

 

 


