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ABSTRACT 26 

For the first time we aimed to: (1) assess fat-free mass (FFM) and RMR in youth soccer players, 27 

(2) compare measured RMR to estimated RMR using previously published prediction 28 

equations, and (3) develop a novel population specific prediction equation. In a cross-sectional 29 

design, ninety-nine males from a Premier League academy underwent assessments of body 30 

composition (DXA) and RMR (indirect-calorimetry). Measured RMR was compared to 31 

estimated RMR values from five prediction equations. A novel RMR prediction equation was 32 

developed using stepwise multiple regression. FFM increased (P<0.05) between U12 (31.6±4.2 33 

kg) and U16 (56.3±5.3 kg) after which no further increases occurred (P>0.05). RMR in the 34 

U12s (1655±195 kcal.day-1), U13s (1720±205 kcal.day-1) and U14s (1846±218 kcal.day-1) was 35 

significantly lower than the U15s (1957±128 kcal.day-1), U16s (2042±155 kcal.day-1), U18s 36 

(1875±180 kcal.day-1) and U23s (1941±197 kcal.day-1) squads (P>0.05). FFM was the single 37 

best predictor of RMR (r2=0.43; P<0.01) and was subsequently included in the novel prediction 38 

equation: RMR (kcal.day-1) = 1315 + (11.1 x FFM in kg). Both FFM and RMR increase from 39 

12-16 years old, thus highlighting the requirement to adjust daily energy intake to support 40 

growth and maturation.  The novel prediction RMR equation developed may help to inform 41 

daily energy requirements. 42 

 43 

Key words: RMR, DXA, fat-free mass, youth soccer  44 
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INTRODUCTION 45 

The function of soccer academies is to produce players who can progress to and represent the 46 

club’s first team (Wrigley et al., 2014). As a player transitions through the academy pathway 47 

to the first team and adulthood, they undergo distinct phases of growth and maturation 48 

(Buchheit and Mendez-Villanueva, 2013; Towlson et al., 2017). From a physical perspective, 49 

this elicits significant changes in fat-free mass (FFM), which has associated implications for 50 

the development of strength and soccer specific explosive movements (Wrigley et al., 2014). 51 

Indeed, whilst we previously observed that U18, U21 and first team players from an English 52 

Premier League team possess similar amounts of absolute fat mass (~8 kg), there is an 53 

approximate difference of ~7 kg in FFM between U18 and first team players (Milsom et al., 54 

2015). In relation to physical development, these data therefore suggest that fat mass is less 55 

affected by age and that it may be more appropriate to monitor changes in FFM in youth soccer 56 

players.  57 

 58 

Despite such comparisons of U18, U21 and first team players, no research has yet quantified 59 

changes in FFM as players progress through the academy pathway and through key phases of 60 

growth and physical development, i.e. pre, circa and post peak height velocity (PHV). An 61 

understanding of muscle growth and development (as quantified by dual-energy X-ray 62 

absorptiometry, DXA), is especially important as this will help practitioners tailor age-specific 63 

training and nutritional guidelines. Indeed, considering that FFM is the most metabolically 64 

active compartment (Müller et al., 2013), progressive increases in FFM will also influence an 65 

individual’s resting metabolic rate (RMR) and thus their energy requirements.  66 

 67 

In this regard, an assessment of RMR (a major component of total energy expenditure; TEE) 68 

at least provides a platform to begin to develop age-specific energy requirements. Indeed, data 69 
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from Indian youth soccer players demonstrates that RMR increases by ~400 kcal.day-1 from 70 

the (chronological) ages of 10 to 13 (Cherian et al., 2018). To the authors’ knowledge, however, 71 

no research has yet quantified RMR in Premier League academy soccer players across the full 72 

age-range of a professional soccer academy, i.e. U12-U23. Whilst RMR can be assessed via 73 

indirect calorimetry, this method can be time consuming and requires specialist equipment, 74 

thus making it impractical in the applied environment. Consequently, an array of predictive 75 

equations have been developed to estimate RMR, though such equations may be limited as 76 

they are derived from non-athletic populations (Cunningham, 1980; Henry, 2005), and may not 77 

take into account FFM (Schofield, Thorpe and Sims, 2019). The latter is especially important 78 

considering FFM is the most metabolically active tissue (Müller et al., 2013), and indeed it has 79 

recently been suggested that athlete specific equations should include FFM (within the 80 

equation) when estimating RMR (Schofield, Thorpe and Sims, 2019). Thus, there is a definitive 81 

need to develop population specific predictive equations according to changes in stature, body 82 

mass and FFM (Herrmann et al., 2017) and moreover, across the age-range that is 83 

representative of soccer academies. 84 

 85 

With this in mind, the aims of this study were three-fold: (1) to assess changes in body 86 

composition (in particular FFM) and RMR in a cohort of youth soccer players from a Category 87 

One academy in the English Premier League; (2) to compare measured RMR with estimated 88 

RMR according to previously published prediction equations, and (3) to develop a novel 89 

prediction equation that is specific to Premier League academy soccer players.  90 

 91 

MATERIALS AND METHODS 92 

Overview of Study Design 93 



 5 

In a cross-sectional design, participants were assessed for measures of body composition and 94 

RMR, under standardised conditions: 8 hours overnight fast and 12 hours after exercise 95 

(Bone and Burke, 2018), between 07:00–11:00. All testing procedures were conducted over a 96 

four-week period at the end of the 2017/18 season.  97 

 98 

Participants 99 

Ninety-nine (n=99; white = 82; black = 8; mixed race = 9) male soccer players from a Category 100 

One English Premier League soccer academy volunteered to participate the study, representing 101 

87% of the club’s academy players at the time of data collection. Players were categorised 102 

according to their respective age-group (U12, U13, U14, U15, U16, U18 and U23) based upon 103 

their age and/or the squad that they predominantly played for at the time of testing. Participant 104 

characteristics are presented in Table 1 and an overview of the typical in-season weekly 105 

training schedule is shown in Table 2. All experimental procedures and associated risks were 106 

explained to both the player and their parent/guardian, and written informed consent and assent 107 

were obtained respectively. Ethical approval was granted by the Wales Research Ethics 108 

Committee, UK (REC approval number: 17/WA/0228) and by the local University Ethics 109 

Committee. 110 

 111 

<TABLE 1> 112 

 113 

<TABLE 2> 114 

 115 

Anthropometric Measures 116 

Participants removed jewellery and wore only underwear for measures of stature, sitting height, 117 

body mass and whole-body DXA assessment. Participant’s body mass (SECA, model-875, 118 
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Hamburg, Germany), stature and sitting height (SECA, model-217, Hamburg, Germany) were 119 

measured to the nearest 0.1 kg, 0.1 cm and 0.1 cm respectively according to the International 120 

Society for the Advancement of Kinanthropometry (ISAK) guidelines (Marfell-Jones et al., 121 

2006) by an ISAK Level-1 practitioner. Two measurements were taken for each 122 

anthropometric measure, with a third taken if the first two measures differed by more than 2%. 123 

Where two measures were taken, the mean was recorded and if a third measure taken, the 124 

median was recorded.  125 

 126 

Each participant underwent a whole-body fan-beam DXA scan (Hologic QDR Series, 127 

Discovery A, Bedford, MA, USA) where the effective radiation dose was 0.01 mSv per person. 128 

All scans were performed and analysed by the same trained operator in accordance with best 129 

practice procedures (Nana et al., 2016). After conformation of regions of interest (left and right 130 

arms and legs and the trunk), each DXA scan was automatically analysed via the QDR 131 

software. Data included for analysis included whole-body and regional fat-free and fat mass 132 

and whole-body percent body fat. These measures were reported as a sub-total, i.e. whole-body 133 

minus the head. The test-retest reliability of the same DXA scanner used in the present study 134 

has been previously reported (Egan et al., 2006). The coefficient of variation (CV) for whole-135 

body FFM, fat mass and percent body fat were: 1.0%, 1.9% and 1.9% respectively. 136 

 137 

Resting Metabolic Rate 138 

Following all anthropometric measures, RMR was measured via open-circuit indirect 139 

calorimetry (GEM Nutrition Ltd, UK) using the recent protocol outlined by Bone and Burke 140 

(Bone and Burke, 2018). The calorimeter was calibrated against known gas concentrations: 141 

‘zero’ (0.0% O2 and 0.0% CO2) and ‘span’ (20.0% O2 and 1.0% CO2) gases (BOC, Guildford, 142 

UK), prior to each measurement. Following calibration and before starting data collection, 143 
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participants relaxed for ten minutes under a transparent ventilated hood in a supine position in 144 

a dark, quiet, thermoneutral room. Subsequently, data was collected over a 20-minute period 145 

(2 x 10-minute duplicates), in which data for the second 10 minutes was used to determine 146 

RMR. V̇O2 and V̇CO2 were measured continuously and mean one-minute values were provided 147 

throughout. V̇O2 and V̇CO2 were determined using the Haldane transformation (Haldane, 148 

1918) and energy expenditure (kcal.day-1) calculated using the Weir equation (Weir, 1949).  149 

 150 

Resting metabolic rate was also estimated for each player using five different prediction 151 

equations (as outlined in Table 3). These equations were selected as they were developed using 152 

a similar sample size to the present study (n range: 51 - 223), and adhered to the two pre-153 

determined criteria: 1) they were developed using participants of a similar age-range to those 154 

in the present study; and 2) they were developed using healthy, non-obese participants (athletic 155 

populations also included). The De Lorenzo (De Lorenzo et al., 1999), Kim (Kim et al., 2015) 156 

and Wong (Wong et al., 2012) equations were developed using athletic populations, with the 157 

Kim (Kim et al., 2015) equation using recreational soccer players. 158 

 159 

<TABLE 3> 160 

 161 

Calculation of Maturity Offset and Percent of Predicted Adult Stature 162 

Somatic maturity (timing) was estimated for each participant by calculating maturity-offset 163 

(Mirwald et al., 2002). This equation estimates the time in years from PHV and includes 164 

chronological age, stature, sitting height and body mass, and is accurate to ± 0.24 years 165 

(Mirwald et al., 2002). A maturity-offset value was calculated for players in the U12-U18 166 

squads as this is typically the timeframe in which PHV occurs in youth soccer players (Towlson 167 

et al., 2017) and also the age-range in which the equation was developed (Mirwald et al., 2002). 168 
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Predicted adult stature (PAS) was calculated using the Sherar equation (Sherar et al., 2005) for 169 

U12-U18 squads. This equation includes chronological age, stature, sitting height, body mass, 170 

maturity offset and is accurate to ± 5.35 cm (Sherar et al., 2005). Current percent of PAS 171 

(maturity status) was then calculated using the following equation: (Current Stature ÷ 172 

Predicted Adult Stature) x 100.  173 

 174 

Statistical Analyses 175 

Statistical comparisons between squads were performed using a one-way between-groups 176 

analysis of variance (ANOVA). Where significant main effects were present, Bonferroni post-177 

hoc analysis was conducted to locate specific differences. Ninety-five % confidence intervals 178 

(95% CI) for the differences are also presented.  179 

 180 

The relationship between body size variable(s) (stature and FFM) and RMR were initially 181 

checked for linearity (with a zero intercept), to identify if there was a linear, proportional 182 

relationship (significant correlation and slope b = 1.0) between body size variable and RMR 183 

(Tanner, 1949). Statistical and graphical (Figure 3) exploration identified that a linear, 184 

proportional relationship did not exist. Subsequently allometric scaling procedures were 185 

investigated to describe the relationship between body size variable and RMR. Firstly, a power 186 

function ratio (y/xb) for each body size variable had to be determined, from log-linear regression 187 

analysis. The slope of the log-linear regression line for each body size variable (stature = 0.825; 188 

FFM = 0.285) generated the b exponent for which each body size variable was scaled to. This 189 

allometric approach produces a size independent RMR value by correlating the power function 190 

ratio with the body size variable. If the influence of body size has been removed, then this 191 

correlation should not differ from zero.  192 

 193 
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Pearson’s correlation analysis was performed to determine the strength of association between 194 

measured RMR and predicted RMR (for each prediction equation). Least squares regression 195 

analysis was performed to determine the validity of the five prediction equations, where each 196 

prediction equation was regressed against the measured RMR value separately. If the intercept 197 

of the regression line was different from zero, it was deemed that fixed bias was present, and 198 

if the slope of the regression line was different from one, proportional bias was deemed present. 199 

Random error was quantified using standard error of the estimate (SEE) from the regression 200 

line. To evaluate the accuracy of each prediction equation, the mean 95% prediction interval 201 

(95% PI) was also calculated.  202 

 203 

A novel population specific prediction equation was derived using stepwise multiple 204 

regression. Stature, % PAS, body mass and FFM were all entered as predictor variables. This 205 

analysis selects (one or more) significant predictor variables that produce the best model (i.e. 206 

equation), as described in detail by Field (2018). Data for the regression analysis conformed to 207 

the assumptions of non-zero variance, no multicollinearity, homoscedasticity, independent and 208 

normally distributed errors, independent data points and linearity (Field, 2018). Similar to the 209 

other prediction equations, this novel prediction equation was also analysed via least squares 210 

regression. All statistical analyses were completed using SPSS (version 24, SPSS, Chicago, 211 

IL) where P<0.05 is indicative of statistical significance. Data are presented as mean ± SD. 212 

 213 

RESULTS 214 

Participant characteristics including age, maturity offset, percent of PAS, stature and body 215 

mass are presented in Table 1.  216 

 217 

Fat-Free Mass 218 
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There was a main effect of playing squad on FFM (P<0.01; Figure 1). FFM of the U12’s 219 

(31.6±4.2 kg) was not different compared to the U13’s (34.6±4.7 kg; P=1.00), though was 220 

lower than that of the U14’s (43.2±8.9 kg; 95% CI = -19.23 to -4.00; P<0.01), U15’s (49.3±6.5 221 

kg; 95% CI = -25.48 to -9.94; P<0.01), U16’s (56.3±5.3 kg 95% CI = -33.14 to -16.31; P<0.01), 222 

U18’s (57.9±6.6 kg; 95% CI = -32.58 to -19.00; P<0.01) and U23’s (62.6±5.9 kg; 95% CI = -223 

38.45 to -24.15; P<0.01). FFM of the U13’s was lower than that of the U14’s (95% CI = -16.25 224 

to -1.02; P=0.01), U15’s (95% CI = -22.50 to -6.96; P<0.01), U16’s (95% CI = -30.17 to -225 

13.33; P<0.01), U18’s (95% CI = -29.60 to -16.02; P<0.01) and U23’s (95% CI = -35.47 to -226 

21.17; P<0.01). There were no differences between the U14’s and U15’s (P=0.34), although 227 

the U14’s had lower FFM than the U16’s (95% CI = -21.53 to -4.69; P<0.01), U18’s (95% CI 228 

= -20.96 to -7.38; P<0.01) and U23’s (95% CI = -26.83 to -12.53; P<0.01). The U15’s and 229 

U16’s had similar FFM (P=0.25), however FFM of the U15’s was lower than the U18’s (95% 230 

CI = -15.05 to -1.11; P=0.01) and U23’s (95% CI = -20.91 to -6.27; P<0.01). FFM of the U16’s 231 

and U18’s (P=1.00) and U16’s and U23’s (P=0.25) was similar, and there was no difference 232 

between the U18 and U23 players (P=0.15). 233 

 234 

Fat Mass 235 

There was a main effect of playing squad on fat mass (P=0.02; Figure 1), with the U13’s 236 

(8.2±2.2 kg) displaying less fat mass than the U23’s (11.1±3.4 kg; 95% CI = -5.83 to -0.07; 237 

P=0.04). There were no differences in fat mass between any other squads (P>0.05 for all 238 

pairwise comparisons). 239 

 240 

Percent Body Fat 241 

There was a main effect of playing squad on percent body fat (P<0.01; Figure 1). Percent body 242 

fat of the U12’s (22.3 ± 5.7 %) was not different from the U13’s (18.7 ± 4.3 %; P=0.23), 243 
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however was higher than the U14’s (16.8±4.3 %; 95% CI = 1.18 to 9.82; P<0.01), U15’s (14.2 244 

± 2.2 %; 95% CI = 3.63 to 12.44; P<0.01), U16’s (15.0 ± 2.4 %; 95% CI = 2.47 to 12.02; 245 

P<0.01), U18’s (14.4 ± 2.1 %; 95% CI = 3.98 to 11.68; P<0.01) and U23’s (14.3 ± 2.8 %; 95% 246 

CI = 3.90 to 12.02; P<0.01). The U13’s percent body fat did not differ from the U14’s (P=1.00) 247 

or the U16’s (P=0.40), however was higher than the U15’s (95% CI = 0.04 to 8.85; P=0.05), 248 

U18’s (95% CI = 0.39 to 8.09; P=0.02) and U23’s (95% CI = 0.31 to 8.42; P=0.02). There were 249 

no differences in percent body fat between the U14, U15, U16, U18 and U23 playing squads 250 

(P>0.05 for all pairwise comparisons). 251 

 252 

<FIGURE 1> 253 

 254 

Resting Metabolic Rate 255 

There was a main effect of playing squad on RMR (P<0.01; Figure 2). RMR of the U12’s (1655 256 

± 195 kcal.day-1) was similar to that of the U13’s (1720 ± 205 kcal.day-1; P=1.00) and U14’s 257 

(1846 ± 218 kcal.day-1; P=0.23), however was lower than the U15’s (1957±128 kcal.day-1; 258 

95% CI = -534.90 to -67.67; P<0.01), U16’s (2042 ± 155 kcal.day-1; 95% CI = -639.90 to -259 

133.78; P<0.01), U18’s (1875 ± 180 kcal.day-1; 95% CI = -423.54 to -15.24; P=0.02) and U23’s 260 

(1941±197 kcal.day-1; 95% CI = -500.98 to -70.96; P<0.01). The U13’s RMR was not different 261 

to the U14’s (P=1.00), U18’s (P=0.42) or U23’s (P=0.04), however was lower than the U15’s 262 

(95% CI = -470.21 to -2.97; P=0.04) and U16’s (95% CI = -575.20 to -69.09; P<0.01). There 263 

were no differences in RMR between the U14, U15, U16, U18 and U23 playing squads (P>0.05 264 

for all pairwise comparisons). 265 

 266 

<FIGURE 2> 267 

 268 
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Once the influence of body size variable on RMR was removed, there was no significant 269 

relationship between stature (r2<0.01, p=0.78) and RMR or between FFM (r2<.01, p=0.85) and 270 

RMR respectively (Figure 3). 271 

 272 

<FIGURE 3> 273 

 274 

<FIGURE 4> 275 

 276 

Measured RMR vs. Predicted RMR 277 

Predicted RMR using the Cunningham (1578 kcal.day-1; 95% CI = 237 to 323; P<0.01), 278 

DeLorenzo (1769 kcal.day-1; 95% CI = 49 to 130; P<0.01), Henry (1758 kcal.day-1; 95% CI = 279 

58 to 142; P<0.01), Kim (1466 kcal.day-1; 95% CI = 359 to 427; P<0.01) and Wong (1693 280 

kcal.day-1; 95% CI = 131 to 200; P<0.01) equations all differed from measured RMR (see 281 

Figure 4). The random error (SEE) associated with each prediction equation was similar across 282 

all equations (163-165 kcal.day-1), as was the 95% prediction interval for each prediction 283 

equation (327 - 330 kcal.day-1; Table 4). The potential for any bias was assessed via visual 284 

inspection of the regression line (Figure 5). Apart from the novel prediction equation presented 285 

in the current study, all other prediction equations presented with both fixed and proportional 286 

bias, with the intercepts and slopes of all regression lines differing from zero and one 287 

respectively.  288 

 289 

<TABLE 4> 290 

 291 

<FIGURE 5> 292 

 293 
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Stepwise multiple regression revealed that stature (r2=0.41), % PAS (r2=0.34), body mass 294 

(r2=0.42) and FFM (r2=0.43) were all significant predictors of RMR (P<0.01). However, FFM 295 

was the single best predictor of RMR (accounting for 43% of the variation in RMR) and was 296 

the only predictor variable included in the novel prediction equation, with all other variables 297 

rejected as they did not significantly improve the fit of the model: 298 

 299 

RMR (kcal.day-1) = 1315 + (11.1 x FFM in kg) 300 

 301 

Given the potential difficulties of obtaining FFM (via DXA) and the simplicity of obtaining 302 

stature and body mass, we derived a second prediction equation (also using stepwise multiple 303 

regression) with only body mass and stature entered as predictor variables. In this second 304 

equation, body mass was the only predictor variable included, with stature being rejected: 305 

 306 

RMR (kcal.day-1) = 1254 + (9.5 x body mass in kg) 307 

 308 

DISCUSSION  309 

Using a cross-sectional design, we report for the first time the changes in both FFM and RMR 310 

(as assessed by DXA and indirect calorimetry) between different age groups of Premier League 311 

academy soccer players. Importantly, we demonstrate that the largest changes in FFM and 312 

RMR typically occur between U12-U16, demonstrating this is a key period for growth and 313 

maturation. We also demonstrate that common prediction equations significantly 314 

underestimate RMR (in some cases as much as -844 kcal.day-1) and that FFM is the single best 315 

predictor of RMR in this population. Subsequently, we present two novel prediction equations 316 

that are cost and time effective, accounts for FFM (and body mass) and that is specific to 317 

academy soccer players (U12-U23). From a practical perspective it is hoped that these data 318 
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will help formulate age-specific estimates of RMR which may assist in calculations of energy 319 

prescription. 320 

 321 

Similar to our previous observations on the transition from U18 to first team (Milsom et al., 322 

2015), we also observed little change in fat mass between the U12-U18 age groups. However, 323 

there was marked differences in FFM between the U12-U16 squads (Figure 1), with each year 324 

of development associated with a different magnitude in increase in FFM (U12-U13: ~3.0 kg; 325 

U13-U14: ~8.6 kg; U14-U15: ~6.1 kg; U15-U16: ~7.0 kg). The largest increase in FFM 326 

occurred during the transition from U13-U14, which also coincided with the largest increases 327 

in stature and body mass (Table 1). This is also the time-frame during which most players went 328 

through PHV (Table 1), the period of most rapid growth during the adolescent years (Malina 329 

et al., 2015). Whilst mean differences in FFM between the U16, U18 and U23 squads may not 330 

be statistically different, it is important to consider individual differences. For example, 331 

examination of Figure 1 clearly demonstrates the within and between squad differences in such 332 

parameters of body composition. Considering the focus of an academy is to develop their 333 

player’s characteristics towards those of the first team, our data clearly demonstrate the 334 

necessity to adopt an individualised approach to player development. 335 

 336 

In accordance with changes in stature, body mass and FFM, we also observed an increase in 337 

RMR between the U12-U14 age groups (U12: 1655 ± 195 kcal.day-1; U13 1720 ± 205 kcal.day-338 

1; U14: 1846 ± 218 kcal.day-1), thus highlighting the requirement to adjust total energy intake 339 

accordingly. Such data correspond with data from Indian soccer players where an increase in 340 

RMR of ~400 kcal.day-1 from the ages of 10 to 13 (Cherian et al., 2018) was also observed. It 341 

is noteworthy, however, that the RMR values in the present study are higher than those 342 

previously reported in youth soccer players. For example, the RMR values of the U13 players 343 
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(1720 ± 205 kcal.day-1) were higher than those of Indian soccer payers of a similar age (1118 344 

± 265 kcal.day-1), despite players in the present study being smaller in stature and having less 345 

body mass and FFM (Cherian et al., 2018).  Similarly, the U16 players studied here had higher 346 

RMR than age-matched Korean soccer players (2042 ± 155 vs. 1,648 ± 111 kcal.day-1), though 347 

players in the present study were comparatively taller, heavier and had more FFM (Kim et al., 348 

2015). Such differences may be due to ethnicity (Henry, 2005) or methodological differences 349 

between studies, e.g. different rest periods prior to RMR measurements. 350 

 351 

Once the influence of both stature and FFM were removed via allometric scaling (Figure 3), 352 

there was no significant relationship between either of these body size variables and RMR, i.e. 353 

when considering per cm of stature or per kg of FFM, RMR was the same across all age groups. 354 

These data contradict that of Harrell and colleagues (Harrell et al., 2005), who suggested that 355 

relative RMR is greater in children and adolescents than adults. However, these researchers 356 

used standard ratio scaling which is deemed inappropriate (Weinsier, Schutz and Bracco, 1992) 357 

due to the contribution of body size variable (i.e. stature or FFM) to RMR not being constant. 358 

 359 

The prediction equations evaluated in this study provide inaccurate estimations of RMR in 360 

Premier League academy soccer players (Figure 4). As an extreme example, estimated RMR 361 

using the Kim equation (Kim et al., 2015) underestimated RMR by ~850 kcal.day-1 in one 362 

individual, despite this equation being developed in a population most similar to those in the 363 

present study (16-year-old recreational soccer players). Whilst such differences may be due to 364 

population specific factors (e.g. ethnicity, elite athletes vs. non-elite), methodological 365 

differences in assessment of predictor variables may also contribute. For example, although the 366 

Cunningham and the Kim equations both include FFM as a predictor variable, different 367 

methods were used to assess FFM. Indeed, FFM was estimated by Cunningham (Cunningham, 368 
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1980) using an equation that included body mass and age, whereas Kim and colleagues 369 

estimated FFM using bioelectrical impedance (Kim et al., 2015). Thus, practitioners wishing 370 

to use prediction equations to estimate RMR should carefully consider not only the population 371 

in which the equation was developed, but also the precise methodologies used to determine the 372 

predictor variable(s). The use of inappropriate prediction equations could be potentially 373 

harmful to a player (or any athlete) if used to prescribe energy requirements, given the 374 

consequences of chronic low energy availability (Mountjoy et al., 2018). In this regard, the 375 

development of the novel prediction equation(s) presented here holds ecological validity owing 376 

to the assessment of FFM (using DXA) as well as the assessment of RMR during a training 377 

phase that is representative of the typical training loads undertaken by academy soccer players. 378 

In situations where assessment of FFM is not possible, an alternative equation with only body 379 

mass required as a predictor variable has been generated. 380 

 381 

The novel and population specific prediction equation presented here subsequently allows 382 

practitioners to estimate RMR in conditions where direct measurement is not possible. Further 383 

studies are now required in other cohorts of youth soccer players (perhaps in different 384 

ethnicities) to validate this equation. We also acknowledge that no information on training load 385 

or TEE is provided, both of which likely increase with age (Smith et al., 2018). Additionally, 386 

the cross-sectional design does not allow us to assess longitudinal changes during key phases 387 

of growth and maturation. Future research should therefore adopt such designs to quantify 388 

changes in body composition and RMR of academy soccer players as they progress through 389 

the academy pathway, particularly around PHV.  390 

 391 

In summary, we provide novel data describing changes in FFM and RMR of youth soccer 392 

players from a Category One English Premier League academy. We demonstrate that the 393 



 17 

largest changes in FFM and RMR typically occur between U12-U16, suggesting this is a key 394 

period for physical development during which energy requirements are increased. Our analysis 395 

also demonstrates that commonly used prediction equations significantly underestimate RMR 396 

and that FFM is the single best predictor of RMR in this population. As such, our novel 397 

prediction equation (that accounts for FFM) may be used when estimating RMR in academy 398 

soccer players.  399 
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