

LJMU Research Online

Fan, S, Yang, Z, Blanco-Davis, E, Zhang, J and Yan, X

Analysis of maritime transport accidents using Bayesian networks

http://researchonline.ljmu.ac.uk/id/eprint/12523/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Fan, S, Yang, Z, Blanco-Davis, E, Zhang, J and Yan, X (2020) Analysis of maritime transport accidents using Bayesian networks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. ISSN 1748-006X

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

1 Analysis of maritime transport accidents using Bayesian Networks

Shiqi Fan^{1,2,4}, Zaili Yang⁴, Eduardo Blanco-Davis⁴, Jinfen Zhang^{2,3}, Xinping Yan^{1,2,3*} 2 3 ¹School of Energy and Power Engineering, Wuhan University of Technology, China ²Intelligent Transport Systems Research Centre (ITSC), Wuhan University of Technology, China 4 5 ³National Engineering Research Centre for Water Transport Safety (WTSC), MOST, Wuhan, China 6 ⁴ Liverpool Logistics, Offshore and Marine (LOOM) Research Institute, Liverpool John Moores 7 University, Liverpool, UK 8 *Corresponding Author e-mail: xpyan@whut.edu.cn (X. Yan) 9 *Permanent Address: Y125 mailbox, Yujiatou Campus, Wuhan University of Technology, 1178 Heping 10 Avenue, Wuchang District, Wuhan City, P. R. China, 430063 11 Abstract: A Bayesian Network-based risk analysis approach is proposed to analyse the risk factors 12 influencing maritime transport accidents. Comparing with previous studies in the relevant literature, it 13 reveals new features including 1) new primary data directly derived from maritime accident records by 14 two major databanks Marine Accident Investigation Branch (MAIB) and Transportation Safety Board of 15 Canada (TSB) from 2012 to 2017, 2) rational classification of the factors with respect to each of major 16 types of maritime accidents for effective prevention, and 3) quantification of the extent to which different 17 combinations of the factors influence each accident type. The network modelling the interdependency among the risk factors is constructed by using a Naïve Bayesian Network (NBN) and validated by 18 19 sensitivity analysis. The results reveal that the common risk factors among different types of accidents 20 are ship operation, voyage segment, ship type, gross tonnage, hull type, and information. Scenario 21 analysis is conducted to predict the occurrence likelihood of different types of accidents under various 22 situations. The findings provide transport authorities and ship owners with useful insights for maritime 23 accident prevention.

24 Keyword: Maritime safety, Accident analysis, Risk factors, Bayesian networks

25 **1. Introduction**

26 Waterborne transportation accounts for approximately 90% of the world trades in volume, representing 27 one of the essential transportation modes in ensuring the prosperity of internatioanl tarde and global 28 economy. Maritime accidents reveals new features in the past years. According to the 'Safety and 29 Shipping' Annual Report of 2017¹, published by Allianz Global Corporate & Specialty, there is more 30 than a quarter of ship losses in 2016 occurred in the South China, Indochina, Indonesia and Philippines 31 regions. Although the number of maritime casualties has declined over years, there is increasing 32 complexity of navigation risk exposed in the shipping industry (e.g. high demand on human reliability 33 in complicated operations introduced by advanced technologies). A study of the onboard duties and off-34 board entities involving Greek-flagged ships during 1993-2006 indicated that 57.1% of all accidents were 35 attributed to human element². Among them, 75.8% of accidents were detected onboard, and 80.4% of 36 the onboard human-induced accidents were related to errors and violations of the ships' masters. There 37 are numerous reasons for an individual to make errors, which may include communication failure, 38 ineffective training, memory lapse, inattention, poorly designed equipment, exhaustion or fatigue, 39 situation ignorance, noisy working conditions, and other personal and environmental factors (e.g. Fan, 40 Zhang³). The questionnaire survey on maritime operations conducted by Safahani⁴ emphasised the non-41 technical skills: 75% stated that a team leader should discuss the work plan with his/her teammates; 90% 42 thought that monitoring the task provided an essential contribution to effective team performance; almost 43 everyone in the survey believed that communication was a significant factor, and that teams who do not 44 communicate effectively would increase the possibility of making errors. Branch, House ⁵ disclosed that 45 watchkeeper manning levels and a master's ability to discharge his duties were significant factors

46 influencing collisions and groundings.

47	Studies on maritime accident analysis rely on the discretional context and experts' knowledge to extract
48	the causal relations among the process of accidents, as well as data-driven methodologies. Specifically,
49	casual relations were connected to one type of accidents through accident analysis methods, specifically
50	for grounding or collision ⁶⁻⁸ . Moreover, some studies focused on the probability or the frequency of
51	maritime accidents. Fabiano, Currò 9 investigated the occupational accident frequency affected by the
52	organisation, job experience, and productivity. Pristrom, Yang 10 estimated the likelihood of a ship being
53	hijacked in the Western Indian or Eastern African region by using the Global Integrated Shipping
54	Information System (GISIS) database together with expert judgement. Other studies concentrated on the
55	severity or the consequence of maritime accidents. Zhang, Teixeira ¹¹ predicted the accident
56	consequences in the Tianjin port by statistical analysis of historical accident data. Wang and Yang $^{\rm 12}$
57	analysed the key risk factors influencing waterway accident severity by using Bayesian Networks (BN).
58	In addition, some studies investigated the combination of the above two (i.e. likelihood and consequence)
59	^{13, 14} . However, few studies have been carried out to investigate the issues on how risk factors affect
60	maritime accident types, leaving a research gap to fulfil for effective accident prevention. The key factors
61	contributing to collisions are quite different from those resulting in groundings. In addition,
62	understanding differentiation among the key factors contributing to different types of accidents will help
63	generate useful insights for rational risk control measures.
64	This study aims at investigating how different risk factors generate, in an individual or combined manner,
65	an impact on different types of maritime accidents in terms of likelihood. Manual case by base analysis

66 of recorded maritime accidents from Marine Accident Investigation Branch (MAIB) and Transportation

	Ship type	Weng and Yang ¹⁹ . Heij and Knapp ²⁰
	RIFs	Literature sources
85 86	presented in Table 1 RIFs	contributing to maritime transport accidents.
ð4 9 <i>5</i>	identified fr	Table 1
83	frequently o	lescribed in accident reports were extracted. Such factors, complemented by the RIFs
82	To determin	he the RIFs in maritime transportation, risk factors that were commonly presented or
81	2012-2017 1	nave been reviewed.
80	the risk fact	ors of maritime transport, the latest related literature and maritime accident reports during
79	that influence	es the risk level of maritime transport is defined as risk influence factor (RIF). To determine
78	(9%), struct	ural failure (9%), crew error (17%), mechanical failure (5%), among others. ¹⁸ . The factor
77	Ship accider	nts are caused by various types of failures, e.g. deck officer error (26%), equipment failure
76	2.1 Risk fac	tors in maritime transportation
75	2. Literat	ure review
74	analysis. Fir	ally, conclusions are summarised in Section 5.
73	important R	IFs with respect to different 'accident types' and highlights the implications through scenario
72	Influence Fa	actors (RIFs) identification and BN modelling. Section 4 analyses the results of the most
71	based risk a	nalysis is conducted and presented in Section 2. Section 3 describes the methodology of Risk
70	is structured	as follows. The literature review on risk factors associated with maritime transport and BN-
69	based appro-	ach is proposed to analyse accident types in maritime transport. To do so, the rest of the paper
68	database to	support this study, as they are among the most representative from the literature ¹⁵⁻¹⁷ . A BN-
67	Safety Boar	d of Canada (TSB) that occurred from 2012 to 2017 is undertaken to develop a primary

1 51	e	0	5	11
Hull type	Wang a	nd Yang 12,	Balmat,	Lafont ²¹

Ship age (years) Balmat, Lafont ²¹, Zhang, Yan ²²

Length (metres)	MAIB19-2017, TSBM16P0362		
Gross tonnage (GT)	Balmat, Lafont ²¹ , Zhang, Yan ²²		
Ship operation	MAIB19-2017		
Voyage segment	MAIB19-2017		
Weather condition	MAIB19-2017, MAIB8-2013		
Sea condition	MAIB22-2017, MAIB19-2017, MAIB24-2016,		
	TSBM16P0362		
Fairway traffic	MAIB23-2017, MAIB18-2015,		
	TSBM15C0006		
Ship speed	Wang and Yang ¹² , Balmat, Lafont ¹⁴		
	MAIB20-2017, MAIB14-2013		
Vessel condition	MAIB23-2017, MAIB20-2017, MAIB19-2017		
Equipment/device	MAIB23-2017, MAIB22-2017, MAIB11-2017,		
	TSBM15C0006, TSBM14P0014, TSBM14C0106		
Ergonomic design	MAIB18-2015, MAIB26-2013, MAIB9-2013,		
	TSBM16P0362, TSBM16C0005, TSBM14C0045		
Information (whether effective and	MAIB23-2017, MAIB22-2017, MAIB19-2017,		
updated information provided)	TSBM16P0362, TSBM16C0005, TSBM15C0006		

87 Previous studies relied mainly on secondary database for risk factor identification in which primary

88 information from accident reports was absence. One of the new features of this study is to incorporate

89 new risk factors derived from accident reports into maritime accident analysis.

90 2.2 Risk analysis of maritime accidents

91 Since the UK Maritime and Coastguard Agency (UK MCA) proposed the formal safety assessment (FSA) 92 framework to International Maritime Organization, maritime accident risk models have been fast 93 developed because of the goal-setting risk regime. It takes into account ship conditions, organisational management, human operation, and hardware ¹⁸. To assess the risks in maritime systems, quantitative 94 95 risk assessments have been conduted to analyse maritime accidents. Yip, Jin ²³ applied econometrics 96 method to conclude that the number of passenger injuries is positively related to the number of crew injuries in ferry, ocean cruise and river cruise passenger vessel accidents. Talley and Ng ²⁴ proposed a 97 98 logical approach to select quality-of-service measures for port cargo, vessel and vehicle services, which

99	can be used as port performance indicators for evaluating the service performance of multi-service ports.
100	Ventikos and Psaraftis ²⁵ presented the relationship between an oil spill-assessing approach, namely the
101	event-decision network (EDN) and the FSA to describe the spill-scenario analysis and to pinpoint its
102	interconnections with the official instrument. Besides that, risk analysis of maritime accidents would
103	benefit the decision making systems onboard. Balmat, Lafont ²¹ presented a fuzzy approach to
104	automatically define an individual ship risk factor, which could be used in a decision-making system.
105	Wu, Zong ²⁶ integrated evidential reasoning and TOPSIS into group decision-making for handling ships
106	that are not under command. A fuzzy logic based approach was proposed by Wu, Yip ²⁷ for ship-bridge
107	collision alert, considering ship particulars, bridge parameters and natural environment, which can be
108	used for improvement of the ship handling in the bridge waterway area. Moreover, the causation analysis
109	and modelling of maritime risks have been conducted ^{28, 29} . Kum and Sahin ¹⁷ used Root Cause Analysis
110	(RCA) to clarify the causes and applied Fuzzy Fault Tree Analysis (FFTA) for a recommendation to
111	reduce the occurrence probabilities of maritime accidents. Also, Zhang, Yan ³⁰ estimated the navigational
112	risk of the Yangtze River using BN approach. Montewka, Ehlers ³¹ developed the risk framework using
113	BN for the estimation of the risk model parameters.
114	Analysis of maritime accident database is one of the most effective ways to investigate the causal chains
115	and the correlations among causal factors in risk assessment. Pristrom, Yang ¹⁰ used the Global Integrated
116	Shipping Information System (GISIS) database to estimate the likelihood of a ship being hijacked. Zhang,

118 Tianjin port. However, the maritime accident database contains limited information compared to 119 maritime accident reports. The investigation reports of maritime accidents provide the navigation

117

Teixeira¹¹ analysed historical accident data from 2008 to 2013 to predict the accident consequences in

120	information, process of event occurrence, direct or indirect causes of the accidents, the actions taken
121	during the accidents, and recommendations. A few studies utilised accident reports to conduct accident
122	analysis due to the time-consuming process of extracting the data from each report. For instance, Wang
123	and Yang ¹² analysed the key risk factors influencing waterway accident severity from all accident
124	investigation reports by China's Maritime Safety Administration (MSA). Chauvin, Lardjane ¹⁵ concerned
125	39 vessels involved in 27 collisions to show the importance of Bridge Resource Management for
126	situations of navigation in restricted waters. Chen, Wall ³² utilised the accident reports of the selected
127	cases from MAIB for accidents analysis to provide a complement measure. Akhtar and Utne ³³ conducted
128	a correlation analysis of fatigue-related factors identified from 93 accident investigation reports, and
129	identified the most influential factors related to top management: vessel certifications, manning resources,
130	and quality control.
131	The data acquisition through the investigation of accident reports brings new insights, which cannot be
132	achieved from the existing databases. Integrating the primary data with the advanced quantitative BN
133	analysis approach facilitates maritime accident analysis and prevention from an innovative perspective.
134	Despite previous attempts of using BN to model objective data from accident reports ¹² , the relevant
135	investigation relied on a small scale of database constrained in a pre-defined water/region. It requires
136	more experiments based on a wide range of maritime accident data to be conducted to generalise the
137	finding on BN's feasibility on RIF analysis and more importantly to reveal the most important RIF from
138	a global perspective, particularly with respect to different accident types.
139	2.3 Bavesian networks in maritime risk analysis

140 The interest of using BN as a tool in scientific risk analysis is continuously increasing, primarily related

141	to its advantages in terms of learning and inference. According to the literature review by Weber, Medina-
142	Oliva ³⁴ , the number of academic papers on BN in risk analysis increased every year. Compared with
143	other classical methods applied to dependability analysis, e.g. Markov Chains (MC) and Fault Trees (FT),
144	BN sustains its advantages. Specifically, FT allows for calculating the probability by binary decision
145	diagrams (BDD), which models the dependencies between events. However, it cannot represent the
146	multiple state variables when multiple failures result in different consequences in a system. On the
147	contrary, BN displays similar capabilities as the FT, but has additional ability to model a multi-state
148	variable and several output variables. Weber, Medina-Oliva ^{34,} Khakzad, Khan ³⁵ presented a comparison
149	of FT and BN approaches, while previous studies also explained how FT could be transformed into BN
150	³⁶⁻³⁸ , involving dynamic FT transformation ³⁹ . As far as MC is concerned, it analyses the exact probability
151	of a failure event with the dependencies among variables and integrates the knowledge to represent multi-
152	state variables. However, the system modelling tends to be sophisticated with increasing variables ³⁴ . In
153	light of this characteristic, BN has required a relatively low number of parameters and a small-size
154	conditional probability table. BN is widely utilised in maritime risk analysis, e.g. ship navigational risk
155	assessment, port safety assessment, Arctic water transportation, inland waterway transportation, and
156	collision assessment ^{11 40 41 42 6, 43} . It is proved to be powerful to model maritime accidents since it enables
157	quantitative analysis of Human and Organisational Factors (HOFs) 33, 44, 45. It explicitly reveals
158	probabilistic dependencies between factors and their causal relationships. Moreover, the feature that BN
159	can take advantage of experts' knowledge makes it suitable for maritime risk modelling, in case of that
160	failure data in the relevant investigations are incomplete. Therefore, experts' knowledge continues to be
161	an essential data source for shipping accident modelling ^{41, 46} , although it is subjectivity associated.

162 To avoid the subjective input in BN-model, a plain machine learning algorithm, the Naïve BN (NBN), is

- applied in the study. Due to its efficiency with the core idea of classification, the NBN model enables the
- 164 simplified BN structures without sacrificing its accuracy.
- 165 Compared with the studies on the probability and/or the frequency of maritime accidents, those
- addressing the relationship between risk factors and accident types are scanty in the literature. The risk factors contributing to collision may be different from the risk factors contributing to sinking. It reveals another new feature that is the analysis of accident types in maritime transportation and a new
- 169 understanding of differentiation among critical factors contributing to different types of accidents.
- 170 **3. Methodology**
- BN is a probabilistic directed acyclic graphical (DAG) model ⁴⁷, which is composed of nodes with the
- 172 links between them, representing variables and influences of one node on the other(s), respectively. The
- 173 directional arc from node A to node B refers that variable A has a direct causal effect on B, representing
- 174 conditional dependencies. In addition, the nodes that are not directly linked are conditionally independent
- 175 of each other. A BN model usually consists of the following steps: data acquisition, BN structure learning,
- 176 BN analysis, and sensitivity analysis and model validation ²². For applying the model into this study, a
- 177 methodology is developed by the following steps.
- 178 **3.1 Data acquisition**

To begin with, it is necessary to conduct a systematic procedure to search the maritime accident reports and select the reviewed reports, referring to Macrae ^{7,} Uğurlu, Köse ^{8,} Chauvin, Lardjane ^{15,} Wan, Yang ⁴⁸. The procedure consists of three stages: (1) online database searching; (2) reports screening and selecting; (3) refining and analysis. In this process, some of the reports involving accidents due to 183 disobeying rules of passengers or drowning in the swimming pool occurred in cruise ships, and extreme

- 184 accidents occurred in small fishing vessels, tugs and etcetera were discarded, as their reduced manning
- 185 requirements will easily lead to a distortion of results about the investigation on the factor impact². Then,
- 186 the maritime accident data is obtained according to the filtered accident reports.
- 187 **3.2 RIF identification**
- 188 With respect to RIFs in maritime accidents, it is necessary to identify the key factors from accident 189 investigation reports. According to the filtered reports (in Section 3.1), we derived the risk factors among 190 them according to their appearance frequency in accident reports to eliminate the factors of trivial effect 191 (i.e. appearing less than twice across the whole searching reports). As a result, 16 RIFs are identified 192 including Ship type, Hull type, Ship age (years), Length (metres), Gross tonnage (GT), Ship operation, 193 Voyage segment, Weather condition, Sea condition, Time of day, Fairway traffic, Ship speed (knots), 194 Vessel condition, Equipment/device, Ergonomic design, Information. The detailed explanation of RIFs 195 in BN is stated in Section 4.2.
- 196 **3.3 BN structure learning**

Once RIFs are identified, a BN structure is to be generated by using the RIFs as the nodes. There are mainly two approaches for BN structure learning. One is based on the expert knowledge, which is used to conduct a qualitative analysis based on the subjective causal relationships. The other is the data-driven approach to represent the interactive dependencies between variables. This study is to develop the BN modelling by the later method.

However, the complexity of a data-driven BN structure super-exponentially increases with the growing number of variables in the network ^{40, 49}. To overcome such a disadvantage, NBNs are usually applied instead. It is a commonly used model aiming at improving the classification ⁵⁰. To realize this, there is a

205 strong assumption in most NBN models that it has an independent node as the target node directly 206 connected with all the other nodes which are independent to each other in the structure. Referring to the 207 expert opinion and the previous studies¹², the interdependency among RIFs are insignificant in this study, 208which make it applicable for such strong assumption. In the study, the only child node of BN is 'accident type', i.e. the class variable (S). The parent node set 209 $R = \left\{ R_{ST}, R_{HT}, R_{SA}, R_{L}, R_{GT}, R_{SO}, R_{VS}, R_{WC}, R_{SC}, R_{TD}, R_{FT}, R_{SS}, R_{vc}, R_{E}, R_{ED}, R_{I} \right\} \text{ is the}$ 210 211 set of risk variables (R_k) including the 16 RIFs of (in a matching order) ship type, hull type, ship age, length, gross tonnage, ship operation, voyage segment, weather condition, sea condition, time of day, 212 213 fairway traffic, ship speed, vessel condition, equipment, ergonomic design, and information. Then, the 214 structure learning is simplified to demonstrate the relationship between S and R_k , as presented in 215 Fig.1.(a).

216

217 Fig. 1. (a). 'Accident type' as a child node

Fig. 1.(b). 'Accident type' as a parent node.

However, the size of the conditional probability table of the target node increases exponentially, resulting in the complex computation in this converging BN. To simplify the structure, a modified diverging NBN structure in which 'Accident type' have no parents but is the only parent of other RIFs is presented, as shown in Fig. 1(b). Compared to the structure in Fig. 1(a), this structure (i.e. Fig. 1(b)) significantly reduces the computation and number of conditional probability distributions. Hence, it is adopted to express the relationship between the RIFs in the NBN structure. Because BN has the ability to conduct

- 224 bi-directional risk analysis, the transformation from the converging to diverging connections will be well
- 225 reflected by the adapted conditional probability tables (CPT) and hence has no influence to the final BN
- results on risk analysis (e.g. Wang and Yang ¹²).
- 227 **3.4 Mutual information and sensitivity analysis**
- 228 3.4.1 Mutual information
- 229 In the probabilistic theory, the mutual information is a measure of the mutual dependence between two
- 230 variables. It describes the amount of information obtained about one random variable, through the other
- 231 random variables ⁴⁰. Mutual information is also interpreted as entropy reduction, measuring the mutual
- 232 dependence of different variables. Since the objective of this study is to identify the relationship between
- 233 RIFs and 'accident type', 'accident type' is determined as the fixed variable in mutual information.
- 234 The larger the value of mutual information is, the stronger relationship between individual RIF and
- 235 'accident type'. In this way, calculating the mutual information is able to filter out the RIFs that are
- 236 relatively less important in the model. Then the remaining RIFs are selected as significant variables with
- regards to a pre-defined accident type.
- 238 3.4.2 Sensitivity analysis True Risk Influence (TRI) of risk variables
- 239 Based on the significant RIFs screened from mutual information calculation, there is another form of
- sensitivity analysis, e.g. scenario simulation, to determine the effects of different variables, particularly
- in a combined way. The classical way is to set a scenario in which all the other nodes (apart from the
- investigated ones) are locked, and the target node is updated accordingly. It means, for example, 10% up
- and down for the node reveals the effects of the variable in the model. It is considerably applicable for
- variables with two states, but not suitable for variables with more than two states. For example, when the

from 100% to 90% accordingly. However, the integration of the other states of multi-state variables makes it difficult to appropriately decrease their values when a selected state increases its value by 10%. In this case, the traditional scenario simulation is inappropriate.

state value of a bi-stated variable is increased from 0% to 10%, the value of the other state will decrease

245

In order to overcome the drawback of the traditional way, a new method proposed by Alyami, Yang ⁵¹ is applied here. This method increases the probability of the state within the highest influencing on a type of accidents (e.g. collision) to 100% to obtain the High Risk Inference (HRI) of collision. Then it increases the probability of the state generating the lowest influence on the collision to 100% to obtain the Low Risk Inference (LRI) of collision. In this way, calculating the average value of HRI and LRI concludes the True Risk Influence (TRI) of each variable in the case of a particular accident type. It is described as:

$$TRI = \frac{HRI + LRI}{2} \tag{1}$$

257 where HRI refers to 'High Risk Inference' which is calculated for a variable influencing 'collision', LRI 258 is 'Low Risk Inference' calculated for a variable influencing 'collision', and TRI refers to 'True Risk 259 Influence' for a variable influencing 'collision'. To obtain the variable influence on 'accident type', a 260 similar analysis procedure is applied to other accident types, 'grounding' and 'flooding', etc. Then TRIs 261 for a variable influencing all accident types are obtained. After applying this method for each variable, 262 the TRIs for all variables for all accident types are available. Therefore, the sensitivity analysis illustrates 263 the ranking of variables' influences on accident types according to the value of TRI. In addition, the 264 average TRI values of all accident type priorities the variables' effects on the 'accident type'. The higher 265 a TRI is, the higher its corresponding RIF's effect on 'accident type'.

266 **4. Results and discussion**

267 **4.1 Raw data**

The accident reports are from MAIB in UK and TSB in Canada, as they are among the most 268 representative from the literature ¹⁵⁻¹⁷. The raw data derived from the MAIB and TSB contains general 269 270 information of the ship and the voyage, accident evolution process, and details related to the management 271 and organizational factors. In the screening process stage, the accident reports were screened with a focus 272 on errors-related accidents to ensure their representativeness and relevance. Some of the reports 273 involving accidents due to disobeying rules of passengers or drowning in the swimming pool occurred 274 in cruise ships, and extreme accidents occurred in small fishing vessels, tugs and etcetera were discarded, 275 as their reduced manning requirements will easily lead to a distortion of results about the investigation 276 on the accident ². In the final stage, these reports had been further refined and analysed, especially the 277 'safety issues' and 'common factors' Section in the accident reports. Some details of information 278 associated with the accident process were involved in the refinery. According to such analysis, there are 279 109 accident reports extracted from 152 reports in MAIB and 52 accident reports obtained from 61 280 reports in TSB, as shown in Appendix I. 281 In total, the 161 maritime accidents involving 208 vessels reported in MAIB and TSB between Jan. 2012

- and Dec. 2017 were carefully reviewed and analysed manually. The search was conducted in Jan. 2018
- and the general statistical analysis and findings are presented in Fig. 2 and Fig. 3(a) (b), which provide
- the raw data for our next in-depth analysis using NBN.

285

Fig. 2. Accident distribution by accident types

288 (a) Accident distribution by ship operations

290 (b) Accident distribution by voyage segments

291 Fig. 3. Accident distribution from MAIB

293	other kinds of accidents while sinking and flooding accounted for lower percentages. Specifically, there
294	were 23 grounding accidents from MAIB and 14 from TSB, while 3 sinking accidents from MAIB and
295	4 from TSB. And Fig. 3 shows accident distributions by ship operation and voyage segment from MAIB.
296	The number of accidents happened on passage was much higher than that others, followed by 'fishing'
297	and 'at anchor'. However, the number of accidents happened in mid-water was much higher than others
298	like 'departure' and 'in port'.
299	These reports had been further refined and analysed. And special attention are paid to the 'safety issues'
300	and 'common factors' in the accident reports. Some details of information associated with the accident
301	process were involved in the refinery. According to such analysis, the common factors contributing to
302	the accidents are generated.
303	4.2 RIF identification
304	With respect to the accident type, a maritime accident can be classified into collision (S1), grounding
305	(S2), flooding (S3), fire/explosion (S4), capsize (S5), contact/crush (S6), sinking (S7), overboard (S8),
306	and others (S9), which refers to the combined description and definition in MAIB and TSB. These 9
307	types of accidents consists of 9 states (S1~ S9) of the variable 'accident type' in the study.
308	Furthermore, the accident-related RIFs are retrieved in Table 2. In the quantitative analysis of BN
309	modelling, the accident type is defined as a dependent variable, variables in Table 2 are defined as

- 310 independent variables, as explained in Section 3.3.
- 311 Table 2 The accident-related RIFs

DIEs	Notation	Decomintion	Values of state
KIF S		Description	in BN
Ship type	R_{ST}	Passenger vessel, tug, barge, fishing vessel, container ship, bulk carrier,	1, 2, 3, 4, 5, 6, 7,
		RORO, tanker or chemical ship, cargo ship, others.	8, 9, 10
Hull type	R_{HT}	Steel, wood, aluminium, others	1, 2, 4, 5
Ship age (years)	R_{SA}	(0 5], [6 10], [11 15], [16 20], >20, NA	1, 2, 3, 4, 5, 6

Length (metres)	R_L	≤100, >100, NA	1, 2, 3
Gross tonnage (GT)	R_{GT}	≤300, 300 to 10000, >10000, NA	1, 2, 3, 4
Ship operation R_{SO}		Towing, Loading/unloading, Pilotage, Manoeuvring, Fishing, At anchor, On	1, 2, 3, 4, 5, 6, 7
		passage, others	8
Voyage segment	R_{VS}	In port, Departure, Arrival, Mid-water, Transit, others	1, 2, 3, 4, 5, 6
Weather condition	R_{WC}	Good or poor considering rain, wind, fog, visibility	1,2
Sea condition	R _{SC}	Good or poor considering falling/rising tide, current, waves	1,2
Time of day	R_{TD}	07:00 to 19:00, other	1, 2
Fairway traffic	R_{FT}	Good or poor considering complex geographic environment, dense traffic,	1.2
		or receptive nature of the route contributing to ignorance	1, 2
Ship speed*	R _{SS}	Normal, Fast	1,2
Vessel condition	R_{vc}	Good condition of vessels, or the condition of vessel has nothing to do with	
		the accidents;	
		Poor condition of vessels, or increasing complexity of propulsion	1,2
		arrangements, or modification made to vessels and size contributes to the	
		accidents	
Equipment/device	R_E	Devices and equipment on board operate correctly;	
		Devices and equipment not fully utilised or operated correctly (e.g., BNWAS	1,2
		switched off, alarm system not in the recommended position or not noticed)	
Ergonomic design	R_{ED}	Ergonomic friendly or ergonomic aspects has nothing to do with accidents;	
		ergonomic impact of innovative bridge design (e.g., visual blind sector	1,2
		ahead, motion illusion)	
Information	R_I	Effective and updated information provided;	
		Insufficient or lack of updated information (e.g., poor quality of equipment	1.2
		data, falsified records of information, relies on a single piece of navigational	1, 2
		equipment, without working indicators or light for necessary observing)	

312 RIFs: risk influence factors; BN: Bayesian network; RORO: roll on/roll off; NA: not applicable; BNWAS: bridge

313 navigational watch alarm system; MAIB: Marine Accident Investigation Branch.

*The ship speed is group into normal and fast states based on the description in the MAIB accident reports.

315 A majority of definitions of variables' states are derived from accident reports. To quantify such states,

316 majority of variables are defined and quantified based on the literature in Table 1. However, variables,

317 e.g. accident type, ship type, hull type, ship operation, and voyage segment, are divided into different

318 states according to the classification of MAIB or TSB investigation. The 'vessel condition' is quantified

- 319 into two states based on whether it is blamed for the faults in accidents, as described in the reports. The
- 320 grading of 'ship speed' is based on the description in the MAIB accident reports, rather than the grading
- 321 method by Wang and Yang ¹². The main reason is that accurate speeds of vessels involved in accidents

322 are not clearly indicated in the source database.

323 4.3 NBN modelling

324 Although the assumption that the variables are completely independent is not always true in reality,

- 325 modified diverging NBN simplifies the structure by reducing the number of conditional probability
- 326 distributions. Moreover, such an assumption does not significantly affect the posterior probabilities
- 327 calculated, which does not affect the scenario analysis in the study ¹², given the fact that the statistical
- 328 analysis of all the accidents did not indicate strong correlation among the RIFs. Therefore, assuming that
- 329 all the variables, i.e. the child nodes, are independent with each other, the NBN is constructed.
- 330 Based on the NBN model, the parameter learning of CPTs from the cases is conducted by the software

331 'Netica' using the counting-learning algorithm. Once the CPTs are constructed and obtained (Appendix

- 332 II), the posterior probabilities of each variable can be calculated. The statistical analysis of the probability
- 333 of variables reveals interesting initial findings in terms of safety caution and accident prevention as
- follows.

336 Fig. 4. Results of NBN

Fig. 4 presents the results of NBN involving all the retained 16 RIFs. Among the accidents, grounding
and collision are two most frequently occurred types of accidents: accounting for 20.3% and 21.2%,
respectively. A majority of vessel lengths (i.e., 65%) are less than 100*m*. Vessels with gross tonnages less
than 300 account for 37.5% of shipments involved in accidents. In addition, 67.5% of vessels are made
of steel.
In light of environmental factors, 40% of vessels in the accidents are involved in the ship operation of

- involved in accidents are in poor fairway traffic in the process of accidents, 45.7% are at night time.
- 345 Severe weather condition accounts for 40.2% of accidents, while tough sea condition accounts for 53.2%.
- 346 With regard to ship factors, fishing vessels constitute the largest proportion (i.e. 18.4%) of shipments in

^{343 &#}x27;on passage', 41.3% are involved in the voyage segment of 'mid-water'. In addition, only 19.1% of ships

accidents. Ships older than 20 years is presented in 33.2% of accidents. In addition, 46% of vessels
convey insufficient information, 14.2% have ergonomic design problems, 38.9% are faced with invalid

equipment or devices onboard, and 30.4% experience the condition of modification or increasing size.

- 350 4.4 Sensitivity analysis and model verification
- 351 4.4.1 Mutual information analysis

Table 3 demonstrates the mutual information shared between "accident type" and RIFs. When "accident 352 353 type" is the parent node, "ship operation" with the corresponding mutual information value of 0.28294, 354 has the strongest effect on the accident type. To select important variables, a threshold of the mutual 355 information value is set as 0.09, which is the average mutual information value. The variables with $I(S,R_k)$ 356 larger than 0.09, i.e. "ship operation", "voyage segment", "ship type", "gross tonnage", "hull type", and 357 "information", illustrate essential impacts on "accident type". Thus, these variables are to be computed 358 for the factor analysis in the next step. In addition, variables that have less impact on "accident type" 359 mainly include "ship age", "vessel condition", "ergonomic design", "length", "fairway traffic", "sea condition", "equipment or device", "ship speed", "time of day", and "weather condition". 360

361 Table 3 Mutual information shared with 'accident type'

Node	Mutual Info.	Percentage	Variance of Beliefs
Accident_type	2.95073	100	0.7352824
Ship_operation	0.28294	9.59	0.0156048
Voyage_segment	0.21515	7.29	0.0076025
Ship_type	0.13632	4.62	0.0048136
Gross_tonnage	0.12415	4.21	0.0037518
Hull_type	0.10076	3.41	0.0024178
Information	0.09665	3.28	0.0032523
Ship_age	0.07052	2.39	0.0019386
Vessel_condition	0.06771	2.29	0.0010538
Ergonomic_design	0.05944	2.01	0.0030873
Length	0.05745	1.95	0.0009204
Fairway_traffic	0.05660	1.92	0.0022666

Sea_condition	0.05270	1.79	0.001587
Equipment_device	0.03650	1.24	0.0008695
Ship_speed	0.03372	1.14	0.0012873
Time_of_day	0.01941	0.658	0.000732
Weather_condition	0.01907	0.646	0.0009535

362 4.4.2 Sensitivity analysis

- 363 In terms of sensitivity analysis, Table 4 demonstrates the TRI value of 'ship operation' against collision,
- 364 where S1 refers collision. Table 5 indicates the values of all RIFs for all accidents, where $S1 \sim S9$ are
- 365 defined in Section 4.2.

366 Table 4 TRI of a risk variable (ship operation) for collision

Ship_o	Ship_operation										
1	2	3	4	5	6	7	8	S1*	HRI	LRI	TRI
/	/	/	/	/	/	/	/	20.30	19.50	17.31	18.41
100%	0	0	0	0	0	0	0	2.99			
0	100%	0	0	0	0	0	0	5.99			
0	0	100%	0	0	0	0	0	4.41			
0	0	0	100%	0	0	0	0	11.00			
0	0	0	0	100%	0	0	0	10.80			
0	0	0	0	0	100%	0	0	7.26			
0	0	0	0	0	0	100%	0	39.80			
0	0	0	0	0	0	0	100%	10.70			

367

*S1 - Collison

368 Table 5 TRI of risk variables for all accident types

Nada	TRI										
Node	S1	S2	S 3	S4	S 5	S6	S7	S8	S9	Average	
Ship_operation	18.41	20.33	2.37	4.21	10.07	6.24	3.56	12.94	19.36	10.83	
Voyage_segment	16.44	14.94	1.96	2.06	9.07	13.38	2.03	9.06	14.82	9.30	
Ship_type	11.70	11.82	3.09	3.35	8.72	9.63	4.44	8.61	8.23	7.73	
Gross_tonnage	5.35	11.90	1.70	1.19	7.59	6.01	3.58	3.89	4.10	5.03	
Hull_type	7.00	7.30	3.91	8.23	4.67	3.47	4.02	9.41	8.51	6.28	
Information	4.25	9.40	1.53	1.70	3.11	6.20	0.51	3.24	4.25	3.80	

Specifically, in Table 4, the first row denotes the base-case scenario where the value of S1 is '20.3', and 369

370 the following rows represent the different scenarios with each state of the variable reaches 100%, for

371 example, the second row increases the probability of the state 1 of ship operation to 100% to obtain the

372 value of S1 (2.99). The same process is applied to all states of ship operation. According to column 'S1',

373	'39.8' is the largest.	which means the	e state 7 of ship	operation is the s	state within the	highest influencing
0,0	este ne me mageet		, or on one			ingitest minetering

on S1 (collision), and the difference between '39.8' and '20.3' (base-case scenario) is the HRI, i.e. '19.5'.

- 376 lowest influencing on S1 (collision), so the LRI is obtained as '17.31'. Then the TRI is calculated by
- averaging them. In this way, TRIs of each RIF of each accident type are obtained in Table 5.
- 378 To obtain the impact levels of such RIFs in accident types, TRIs are compared and ranked. Generally,
- 379 the most important variables lists for 'accident types' are as follows:

380 Ship operation > Voyage segment > Ship type > Hull type > Gross tonnage > Information

- 381 In detail, the most important variables lists for different accident types are demonstrated in Table 6.
- 382 Table 6 The most important variables

A soldant type	Ship	Voyage	Shin type	Uull tuno	Gross	Information
Accident type	operation	segment	Sillp type	nun type	tonnage	
S1 Collision	1	2	3	4	5	6
S2 Grounding	1	2	4	6	3	5
S3 Flooding	3	4	2	1	5	6
S4 Fire/explosion	2	4	3	1	6	5
S5 Capsize	1	2	3	5	4	6
S6 Contact/crush	3	1	2	6	5	4
S7 Sinking	4	5	1	2	3	6
S8 Overboard	1	3	4	2	6	5
S9 Others	1	2	4	3	6	5

383 4.4.3 Model validation

385 given RIFs. It is also used to test the combined effect of multiple RIFs to the accident types. There are

- 386 two axioms that have at least to be satisfied for the inference process ^{22, 52}:
- 387 Axiom 1: A slight increase/decrease in the prior probabilities of each test node should contribute to the
- 388 correspondence increase/decrease in the posterior probability of the target node.

³⁷⁵ However, '2.99' is the smallest value, which means the state1 of ship operation is the state within the

³⁸⁴ To validate the model, another sensitive analysis is conducted by investigating the results of the model

389 Axiom 2: The total influence of the combination of the probability variations of *x* parameters (evidence)

390 should be no smaller than the one from the set of $y (y \in x)$ risk factors.

391 Accounting for different states of the parent nodes, this study calculates the changed value of each state.

392 The 'information' is selected as the first node, the state generating the highest changed value of state 1

in 'accident type' is increased by 10%, while the state generating the lowest changed value of state 1 in

394 'accident type' is decreased by 10%. This procedure is written as '~10%' in Table 7. Then, the same

395 approach is applied to the next RIF, and the cumulative changed value is obtained and updated. The

396 updating procedure would continue until all the RIF nodes are involved. Similarly, the same updating

397 procedure is applied into the state 2, 3... 9 in 'accident type' respectively, until all states of accident type

are included, as seen in Table 7.

399 Table / Accident rate of minor change in variables	200	T 11 T			c ·	1	•	
<i>JJJJJJJJJJJJJ</i>	<i>xyy</i>	Table /	$\Delta ccident$	rate o	t minor	change	1n	variables
	577	raule /	recruciit	raic 0	1 mmoi	change	111	variables

Node	Accident rate of minor change									
Information	/	~10%	~10%	~10%	~10%	~10%	~10%			
Hull type	/	/	~10%	~10%	~10%	~10%	~10%			
Gross tonnage	/	/	/	~10%	~10%	~10%	~10%			
Ship type	/	/	/	1	~10%	~10%	~10%			
Voyage segment	/	/	/	1	/	~10%	~10%			
Ship operation	/	/	/	/	/	/	~10%			
S1	20.30	20.70	21.00	21.20	21.40	22.00	23.40			
S2	21.20	22.20	22.60	23.40	23.60	24.20	24.60			
S3	3.69	3.85	4.04	4.14	4.18	4.23	4.27			
S 4	5.53	5.71	5.90	5.96	6.01	6.08	6.17			
S5	11.10	11.40	11.50	11.90	12.10	12.30	12.50			
S 6	10.60	11.30	11.40	11.70	11.80	12.20	12.30			
S7	4.15	4.20	4.51	4.77	4.85	4.91	4.99			
S8	9.22	9.57	9.84	10.10	10.40	10.50	11.00			
S9	14.30	14.7	15.00	15.10	15.20	15.40	15.80			

400 The first column of the data in Table 7 shows the original values of 9 states of accident types in NBN,

401 and the rest columns state the updated changed values of results. However, each state of 'accident type'

402 is calculated separately, i.e. each row is computed through the change of states of RIFs in each accident

403	type. Specifically, for the first row, '20.30' is the original value of accident type S1 (grounding). Moreover,
404	'20.70' is calculated by the way that the state of 'Information' generating the highest changed value of
405	S1 is increased by 10% while the state generating the lowest changed value of $S1$ is decreased by 10%.
406	A further step is conducted based on '20.70' to obtain '21.00' in the table, which means the state of 'Hull
407	type' generating the highest changed value of $S1$ is increased by 10% while the state generating the lowest
408	changed value of S1 is decreased by 10%. Then 'Gross tonnage', 'Ship type', 'Voyage segment', 'Ship
409	operation' apply this method sequentially. Furthermore, the same updating procedure is applied into the
410	S3, S4,, S9 respectively, until accident types are included. Besides that, the updated values of the target
411	node demonstrate this model is in line with Axiom 1. Moreover, Axiom 2 is examined by comparing the
412	initial target value with the updated one under all states. From Table 7, the updated values of the target
413	node are gradually increasing or decreasing along with the continuous updating of RIFs.
413 414	node are gradually increasing or decreasing along with the continuous updating of RIFs. 4.5 Implications: scenario analysis
413414415	node are gradually increasing or decreasing along with the continuous updating of RIFs. 4.5 Implications: scenario analysis The study enables the understanding of differentiation among critical factors contributing to different
413414415416	 node are gradually increasing or decreasing along with the continuous updating of RIFs. 4.5 Implications: scenario analysis The study enables the understanding of differentiation among critical factors contributing to different types of accidents. BN modelling is applicable to analyse the occurrence likelihood of each accident type
 413 414 415 416 417 	 node are gradually increasing or decreasing along with the continuous updating of RIFs. 4.5 Implications: scenario analysis The study enables the understanding of differentiation among critical factors contributing to different types of accidents. BN modelling is applicable to analyse the occurrence likelihood of each accident type in different scenarios involving vessel condition and environmental factors. To do this, two scenarios are
 413 414 415 416 417 418 	node are gradually increasing or decreasing along with the continuous updating of RIFs. 4.5 Implications: scenario analysis The study enables the understanding of differentiation among critical factors contributing to different types of accidents. BN modelling is applicable to analyse the occurrence likelihood of each accident type in different scenarios involving vessel condition and environmental factors. To do this, two scenarios are proposed for useful research implications and managerial contributes.
 413 414 415 416 417 418 419 	node are gradually increasing or decreasing along with the continuous updating of RIFs. 4.5 Implications: scenario analysis The study enables the understanding of differentiation among critical factors contributing to different types of accidents. BN modelling is applicable to analyse the occurrence likelihood of each accident type in different scenarios involving vessel condition and environmental factors. To do this, two scenarios are proposed for useful research implications and managerial contributes. 4.5.1 Scenario 1: environmental factor
 413 414 415 416 417 418 419 420 	node are gradually increasing or decreasing along with the continuous updating of RIFs. A.5 Implications: scenario analysis The study enables the understanding of differentiation among critical factors contributing to different types of accidents. BN modelling is applicable to analyse the occurrence likelihood of each accident type in different scenarios involving vessel condition and environmental factors. To do this, two scenarios are proposed for useful research implications and managerial contributes. 4.5.1 Scenario 1: environmental factor In the first scenario, maritime accidents under specific shipping environmental factors are estimated.
 413 414 415 416 417 418 419 420 421 	node are gradually increasing or decreasing along with the continuous updating of RIFs. A.5 Implications: scenario analysis The study enables the understanding of differentiation among critical factors contributing to different types of accidents. BN modelling is applicable to analyse the occurrence likelihood of each accident type in different scenarios involving vessel condition and environmental factors. To do this, two scenarios are proposed for useful research implications and managerial contributes. A.5.1 Scenario 1: environmental factor In the first scenario, maritime accidents under specific shipping environmental factors are estimated. Shipping environmental factors contain ship operation, voyage segment, weather condition, sea condition

423 accidents reveal in different types.

- 424 When the nodes are assigned with the specific states in Fig. 5(a), the effects of the shipping environment
- 425 are revealed. The probability of collision is the highest among the 'accident type', accounting for 85.1%,
- 426 followed by grounding only accounting for 4.52%. Such probability indicates the considerable increase
- 427 in the risk of collision compared to the other types of accidents.

429 Fig. 5. (a). Posterior probability analysis in Scenario 1 - collision

431 Fig. 5. (b). Posterior probability analysis in Scenario 1 - grounding

432 With regard to the following states in Fig. 5(b), the effects of the environment are revealed. The

433 probability of grounding is the highest among the 'accident type', accounting for 79.9% of the accident

- 434 types. Therefore, transport authorities and ship owners should pay more attention to risk-reduction
- 435 measures for collision or grounding under specific navigational environment, especially the strong-
- 436 related variables, i.e. ship operation, voyage segment, fairway traffic, and sea condition.
- 437 4.5.2 Scenario 2: vessel factor

438 In the second scenario, attention has been paid to vessel factors associated with maritime accident types.

- 439 The variables include ship age, ship type, information, ergonomic design, equipment/device, vessel
- 440 condition, and ship speed. For different assigned states of these vessel factors, maritime accident types
- 441 have shown different likelihoods.

Assuming that variables are assigned with the certain states in Fig. 6(a), the effects of vessel factors on accident types are illustrated. The probability of collision is the highest among 'accident type', accounting for 82.1%. This probability indicates the considerable increase in the risk of collision compared to the initial states in Fig. 4 due to the combined effect of the involved RIFs.

447 Fig. 6. (a). Posterior probability analysis in scenario 2 – collision

449 Fig. 6. (b). Posterior probability analysis in scenario 2 – grounding

- 452 followed by sinking (i.e., 12.7%). This probability indicates the significant increase in the risk of
- 453 grounding and sinking compared to the initial states in Fig. 4.
- 454 According to the above analysis, transport authorities and ship owners can use this findings to put forward
- 455 the most effective risk control measures for different types of accidents derived from various vessel
- 456 factors, especially the strong-related variables, i.e. ship type, information, ship age, vessel condition, and
- 457 ergonomic design.

458 **5. Conclusions**

459 Compared to previous studies focusing on causal factors related to the severity and the probability of

⁴⁵⁰ Assuming that the variables are assigned with the specific states in Fig. 6(b), the effects of vessel factors

⁴⁵¹ are indicated. The probability of grounding is the highest among 'accident type', accounting for 62.6%,

460	maritime accidents, this study uses a NBN approach to investigate how different risk factors pose an
461	impact on different types of maritime accidents. To identify RIFs, maritime accident reports from MAIB
462	and TSB within a five-year period are extracted and reviewed to develop a primary database on maritime
463	accidents. Then the risk-based NBN model is constructed to analyse RIFs in maritime accidents. At last,
464	the sensitivity analysis is conducted, as well as scenario analysis to implicate research contributes. In
465	general, the results from the NBN model present the distinctions among the key factors contributing to
466	different types of accidents, which helps generate insights for accident prevention.
467	In summary, the findings of this study can be summarised as follows:
468	(1) According to the calculations of the mutual information, crucial RIFs are ranked under different
469	accident types. The results reveal that critical RIFs for maritime accident types are 'Ship operation',
470	'Voyage segment', 'Ship type', 'Gross tonnage', 'Hull type', 'Information'.
471	(2) There is the highest probability of overboard occurred on fishing vessels. When the ship operation is
472	'towing', the accident type has high likelihood of being 'capsize'; 'manoeuvring' and 'on passage'
473	operation contribute to the higher probability of grounding; 'pilotage' is closely related to 'contact/crush'.
474	(3) When ships are in 'mid-water' and 'transit' voyage segments, there is a higher probability of being in
475	collision. Grounding is more easily to happen in 'departure' and 'arrival' segments.
476	(4) The situation of poor information onboard exposes a higher risk of grounding, whereas the condition
477	of good information associates with the collision.
478	Among them, the scenario analysis reveals that environmental factors and vessel factors of maritime
479	accidents generate significant impact on accident types.
480	With respect to the environmental factors, the probability of collision is the highest among the 'accident

481 type' when a ship is in the below states: 'voyage segment – transit'; 'ship operation - on passage'; 'before 482 7:00 am or after 19:00 pm'; 'good weather and sea condition'; 'not considering the fairway traffic 483 appropriately'. The probability of grounding is the highest when a ship is in the below states: 'voyage 484 segment – departure'; 'ship operation – pilotage'; 'between 7:00 am and 19:00 pm'; 'severe weather and 485 sea condition'; 'not considering the fairway traffic appropriately'.

486 With regard to the vessel factors, the probability of collision is the highest among 'accident type' if a ship is in the following states: 'older than 20 years', 'effective and updated information provided', 487 'ergonomic problem', 'equipment operates correctly', 'good condition of vessel', 'fast ship speed'. The 488 489 probability of grounding is the highest among 'accident type' if a fishing ship is in the following states: 490 'older than 20 years', 'lack if updated information', 'ergonomic design friendly', 'equipment not fully 491 utilised', 'modification made to vessels and size', 'normal ship speed'. Therefore, such conclusions can 492 effectively assist maritime authorities in developing countermeasures for accident prevention. 493 There are also limitations in this study. The small number of flooding data makes the results not 494 significant and robust. Although BN has the ability to conduct bi-directional risk analysis, the 495 transformation from the converging to diverging connections does not intuitively represent the accident

- 496 development. Further research can be performed by using expert judgement to help model learning to
- 497 overcome the problems brought by data scarcity. Moreover, more human factors resources, underlining
- 498 communication, situation awareness, fatigue, and etcetera, will be processed to conduct further research
- to illustrate the influence of human errors on maritime accidents.
- 500 Acknowledgements

501 This research thanks the general help from the EU project RESET (H2020-MSCA-RISE-2016, 730888);

and EU Marie Curie RISE ENHANCE (H2020-MSCA-RISE_2018, 823904).

503 **Declaration of conflicting interests**

504 The authors declare that there is no conflict of interest.

505 Funding

- 506 The research was sponsored by the National Key Technologies Research & Development Program (grant
- 507 number 2017YFE0118000); Funds for International Cooperation and Exchange of the National Natural
- 508 Science Foundation of China (grant number 51920105014); Technical Innovation Project of Hubei
- 509 province (International Cooperation) (2018AHB003); and China Scholarship Council (grant number
- 510 201706950084).

511 Appendix I

512 Accident reports from MAIB and TSB

No	Code	Source	No	Code	Source
1	26-2017	MAIB	83	2-2014	MAIB
2	25-2017	MAIB	84	1-2014	MAIB
3	24-2017	MAIB	85	SB3/2014	MAIB
4	23-2017	MAIB	86	26-2013	MAIB
5	22-2017	MAIB	87	24-2013	MAIB
6	21-2017	MAIB	88	23-2013	MAIB
7	20-2017	MAIB	89	22-2013	MAIB
8	19-2017	MAIB	90	20-2013	MAIB
9	17-2017	MAIB	91	18-2013	MAIB
10	16-2017	MAIB	92	17-2013	MAIB
11	14-2017	MAIB	93	14-2013	MAIB
12	11-2017	MAIB	94	11-2013	MAIB
13	10-2017	MAIB	95	10-2013	MAIB
14	8-2017	MAIB	96	9-2013	MAIB
15	7-2017	MAIB	97	8-2013	MAIB
16	5-2017	MAIB	98	7-2013	MAIB
17	4-2017	MAIB	99	6-2013	MAIB
18	3-2017	MAIB	100	5-2013	MAIB
19	1-2017	MAIB	101	4-2013	MAIB

20	27-2016	MAIB	102	3-2013	MAIB
21	26-2016	MAIB	103	1-2013	MAIB
22	25-2016	MAIB	104	SB3/2013	MAIB
23	24-2016	MAIB	105	27-2012	MAIB
24	20-2016	MAIB	106	26-2012	MAIB
25	19-2016	MAIB	107	25-2012	MAIB
26	18-2016	MAIB	108	24-2012	MAIB
27	17-2016	MAIB	109	11-2012	MAIB
28	16-2016	MAIB	1	m16p0362	TSB
29	15-2016	MAIB	2	M16P0241	TSB
30	14-2016	MAIB	3	M16P0162	TSB
31	13-2016	MAIB	4	M16P0062	TSB
32	12-2016	MAIB	5	M16C0036	TSB
33	10-2016	MAIB	6	M16C0014	TSB
34	8-2016	MAIB	7	M16C0005	TSB
35	6-2016	MAIB	8	M16A0327	TSB
36	4-2016	MAIB	9	M16A0141	TSB
37	3-2016	MAIB	10	M16A0140	TSB
38	2-2016	MAIB	11	M16A0115	TSB
39	1-2016	MAIB	12	M15P0347	TSB
40	28-2015	MAIB	13	M15P0286	TSB
41	27-2015	MAIB	14	M15P0037	TSB
42	26-2015	MAIB	15	M15P0035	TSB
43	25-2015	MAIB	16	M15C0094	TSB
44	24-2015	MAIB	17	M15C0045	TSB
45	20-2015	MAIB	18	M15C0006	TSB
46	18-2015	MAIB	19	M15A0189	TSB
47	17-2015	MAIB	20	M15A0045	TSB
48	16-2015	MAIB	21	M15A0009	TSB
49	15-2015	MAIB	22	M14P0150	TSB
50	14-2015	MAIB	23	M14P0121	TSB
51	13-2015	MAIB	24	M14P0110	TSB
52	12-2015	MAIB	25	M14P0023	TSB
53	11-2015	MAIB	26	M14P0014	TSB
54	10-2015	MAIB	27	M14C0219	TSB
55	9-2015	MAIB	28	M14C0193	TSB
56	7-2015	MAIB	29	M14C0156	TSB
57	6-2015	MAIB	30	M14C0106	TSB
58	5-2015	MAIB	31	M14C0045	TSB
59	3-2015	MAIB	32	M14A0348	TSB
60	1-2015	MAIB	33	M14A0289	TSB

61	32-2014	MAIB	34	M14A0051	TSB
62	31-2014	MAIB	35	M13W0057	TSB
63	30-2014	MAIB	36	M13N0014	TSB
64	29-2014	MAIB	37	M13N0001	TSB
65	28-2014	MAIB	38	M13M0287	TSB
66	25-2014	MAIB	39	M13M0102	TSB
67	24-2014	MAIB	40	M13L0185	TSB
68	21-2014	MAIB	41	M13L0123	TSB
69	19-2014	MAIB	42	M13L0067	TSB
70	18-2014	MAIB	43	M13C0071	TSB
71	17-2014	MAIB	44	M12W0207	TSB
72	16-2014	MAIB	45	M12W0070	TSB
73	15-2014	MAIB	46	M12N0017	TSB
74	13-2014	MAIB	47	M12L0147	TSB
75	12-2014	MAIB	48	M12L0098	TSB
76	11-2014	MAIB	49	M12L0095	TSB
77	10-2014	MAIB	50	M12H0012	TSB
78	9-2014	MAIB	51	M12F0011	TSB
79	8-2014	MAIB	52	M12C0058	TSB
80	7-2014	MAIB			
81	6-2014	MAIB			
82	4-2014	MAIB			

513 Appendix II

514 Conditional probability tables (CPT) for RIFs

	Ship type										
Accident	1	2	3	4	5	6	7	8	9	10	
type	1	2	5	4	5	0	7	0	,	10	
1	7.5472	11.3207	3.7736	13.2076	5.6604	9.4340	5.6604	7.5472	15.0943	20.7547	
2	18.1818	7.2727	7.2727	10.9091	9.0909	9.0909	3.6364	7.2727	21.8182	5.4546	
3	5.8824	5.8824	5.8824	23.5294	5.8824	11.7647	11.7647	11.7647	11.7647	5.8824	
4	9.5238	9.5238	4.7619	23.8095	4.7619	4.7619	9.5238	4.7619	19.0476	9.5238	
5	6.0606	18.1818	9.0909	30.3030	6.0606	6.0606	3.0303	6.0606	3.0303	12.1212	
6	12.5000	6.2500	3.1250	12.5000	3.1250	12.5000	12.5000	12.5000	12.5000	12.5000	
7	11.1111	11.1111	16.6667	22.2222	5.5556	5.5556	5.5556	5.5556	5.5556	11.1111	
8	10.3448	6.8966	3.4483	41.3793	6.8966	3.4483	3.4483	3.4483	10.3448	10.3448	
9	17.5000	12.5000	10.0000	12.5000	2.5000	12.5000	2.5000	2.5000	15.0000	12.5000	

515

Equipment_ device

Accident type	1	2
1	64.4445	35.5556
2	48.9362	51.0638
3	66.6667	33.3333
4	69.2308	30.7692
5	60.0000	40.0000
6	62.5000	37.5000
7	30.0000	70.0000
8	80.9524	19.0476
9	65.6250	34.3750

Ergonomic design							
Accident type	1	2					
1	71.1111	28.8889					
2	85.1064	14.8936					
3	88.8889	11.1111					
4	92.3077	7.6923					
5	96.0000	4.0000					
6	75.0000	25.0000					
7	90.0000	10.0000					
8	95.2381	4.7619					
9	96.8750	3.1250					

Fairway traffic						
Accident type	1	2				
1	66.6667	33.3333				
2	74.4681	25.5319				
3	66.6667	33.3333				
4	92.3077	7.6923				
5	92.0000	8.0000				
6	79.1667	20.8333				
7	90.0000	10.0000				
8	95.2381	4.7619				
9	90.6250	9.3750				

Gross tonnage						
Accident type 1 2 3						
1	36.1702	23.4043	29.7872	10.6383		

2	18.3674	48.9796	28.5714	4.0816
3	36.3636	18.1818	36.3636	9.0909
4	46.6667	26.6667	20.0000	6.6667
5	62.9630	18.5185	7.4074	11.1111
6	19.2308	38.4615	38.4615	3.8462
7	75.0000	8.3333	8.3333	8.3333
8	52.1739	26.0870	13.0435	8.6957
9	38.2353	29.4118	20.5882	11.7647

Hull type								
Accident type	1	2	4	5				
1	72.3404	10.6383	8.5106	8.5106				
2	81.6327	6.1225	4.0816	8.1633				
3	45.4545	27.2727	9.0909	18.1818				
4	53.3333	33.3333	6.6667	6.6667				
5	59.2593	7.4074	11.1111	22.2222				
6	76.9231	7.6923	7.6923	7.6923				
7	41.6667	25.0000	8.3333	25.0000				
8	52.1739	4.3478	4.3478	39.1304				
9	67.6471	2.9412	5.8824	23.5294				

Information								
Accident type 1 2								
1	64.4445	35.5556						
2	31.9149	68.0851						
3	33.3333	66.6667						
4	69.2308	30.7692						
5	68.0000	32.0000						
6	25.0000	75.0000						
7	60.0000	40.0000						
8	71.4286	28.5714						
9	68.7500	31.2500						

	Length		
Accident type	1	2	3
1	58.6957	34.7826	6.5217
2	60.4167	37.5000	2.0833
3	50.0000	40.0000	10.0000

4	71.4286	21.4286	7.1429
5	84.6154	7.6923	7.6923
6	52.0000	44.0000	4.0000
7	81.8182	9.0909	9.0909
8	77.2727	18.1818	4.5455
9	63.6364	30.3030	6.0606

Sea condition						
Accident type	1	2				
1	55.5556	44.4444				
2	31.9149	68.0851				
3	66.6667	33.3333				
4	61.5385	38.4615				
5	24.0000	76.0000				
6	54.1667	45.8333				
7	40.0000	60.0000				
8	47.6191	52.3810				
9	59.3750	40.6250				

Ship age								
Accident type	1	2	3	4	5	6		
1	18.3674	16.3265	8.1633	8.1633	26.5306	22.4490		
2	13.7255	13.7255	11.7647	11.7647	45.0980	3.9216		
3	15.3846	7.6923	23.0769	7.6923	38.4615	7.6923		
4	11.7647	11.7647	17.6471	5.8824	35.2941	17.6471		
5	17.2414	10.3448	10.3448	13.7931	34.4828	13.7931		
6	21.4286	10.7143	10.7143	14.2857	21.4286	21.4286		
7	7.1429	14.2857	21.4286	7.1429	35.7143	14.2857		
8	12.0000	12.0000	12.0000	16.0000	24.0000	24.0000		
9	13.8889	19.4444	5.5556	11.1111	36.1111	13.8889		

Ship operation								
Accident type	1	2	3	4	5	6	7	8
1	1.9608	1.9608	1.9608	5.8824	5.8824	1.9608	78.4314	1.9608
2	18.8679	1.8868	18.8679	11.3207	1.8868	5.6604	39.6226	1.8868
3	6.6667	6.6667	13.3333	6.6667	20.0000	6.6667	33.3333	6.6667
4	5.2632	10.5263	5.2632	5.2632	5.2632	10.5263	52.6316	5.2632
5	29.0323	3.2258	3.2258	16.1290	22.5806	3.2258	16.1290	6.4516

6	10.0000	6.6667	13.3333	16.6667	6.6667	6.6667	33.3333	6.6667
7	18.7500	6.2500	6.2500	6.2500	6.2500	12.5000	37.5000	6.2500
8	7.4074	7.4074	7.4074	11.1111	37.0370	3.7037	22.2222	3.7037
9	18.4210	21.0526	7.8947	13.1579	10.5263	7.8947	18.4210	2.6316

Ship speed				
Accident type	1	2		
1	80.0000	20.0000		
2	89.3617	10.6383		
3	88.8889	11.1111		
4	92.3077	7.6923		
5	92.0000	8.0000		
6	70.8333	29.1667		
7	90.0000	10.0000		
8	95.2381	4.7619		
9	93.7500	6.2500		

Time of day					
Accident type	1	2			
1	42.2222	57.7778			
2	51.0638	48.9362			
3	55.5556	44.4444			
4	53.8462	46.1538			
5	60.0000	40.0000			
6	58.3333	41.6667			
7	70.0000	30.0000			
8	52.3810	47.6191			
9	65.6250	34.3750			

Vessel condition				
Accident type	1	2		
1	84.4445	15.5556		
2	68.0851	31.9149		
3	77.7778	22.2222		
4	53.8462	46.1538		
5	60.0000	40.0000		
6	79.1667	20.8333		
7	20.0000	80.0000		

8	80.9524	19.0476
9	62.5000	37.5000

Voyage segment						
Accident type	1	2	3	4	5	6
1	2.0408	12.2449	2.0408	51.0204	30.6123	2.0408
2	1.9608	15.6863	29.4118	39.2157	11.7647	1.9608
3	7.6923	7.6923	7.6923	46.1538	23.0769	7.6923
4	5.8824	5.8824	17.6471	52.9412	11.7647	5.8824
5	13.7931	17.2414	3.4483	44.8276	17.2414	3.4483
6	7.1429	10.7143	42.8571	10.7143	14.2857	14.2857
7	7.1429	7.1429	21.4286	28.5714	28.5714	7.1429
8	8.0000	4.0000	8.0000	60.0000	8.0000	12.0000
9	19.4444	5.5556	22.2222	36.1111	13.8889	2.7778

Weather condition				
Accident type	1	2		
1	66.6667	33.3333		
2	46.8085	53.1915		
3	44.4444	55.5556		
4	61.5385	38.4615		
5	60.0000	40.0000		
6	62.5000	37.5000		
7	60.0000	40.0000		
8	66.6667	33.3333		
9	65.6250	34.3750		

References

533	1.	Specialty AGC. Safety and Shipping Review 2017. 2018.
534	2.	Tzannatos E. Human Element and Accidents in Greek Shipping. Journal of Navigation. 2010; 63: 119-27.
535	3.	Fan S, Zhang J, Blanco-Davis E, Yang Z, Wang J and Yan X. Effects of seafarers' emotion on human
536	perf	pramance using bridge simulation. Ocean Engineering. 2018; 170: 111-9.
537	4.	Safahani M. human errors and non-technical skills IRISL Maritime Training Institute 2015.
538	5.	Branch MAI, House C and Place C. Bridge watchkeeping safety study. Department for Transportation, Marine
539	Acc	ident Investigation Branch, Southampton, 2004.

540 6. Hanninen M and Kujala P. Influences of variables on ship collision probability in a Bayesian belief network

- 541 model. Reliability Engineering & System Safety. 2012; 102: 27-40.
- 542 7. Macrae C. Human factors at sea: common patterns of error in groundings and collisions. *Maritime Policy & Management*. 2009; 36: 21-38.
- 544 8. Uğurlu Ö, Köse E, Yıldırım U and Yüksekyıldız E. Marine accident analysis for collision and grounding in oil
 545 tanker using FTA method. *Maritime Policy & Management*. 2015; 42: 163-85.
- 546 9. Fabiano B, Currò F, Reverberi AP and Pastorino R. Port safety and the container revolution: A statistical study
 547 on human factor and occupational accidents over the long period. *Safety Science*. 2010; 48: 980-90.
- 548 10. Pristrom S, Yang Z, Wang J and Yan X. A novel flexible model for piracy and robbery assessment of merchant
- 549 ship operations. *Reliability Engineering & System Safety*. 2016; 155: 196-211.
- 550 11. Zhang JF, Teixeira AP, Soares CG, Yan XP and Liu KZ. Maritime Transportation Risk Assessment of Tianjin
- 551 Port with Bayesian Belief Networks. *Risk Analysis*. 2016; 36: 1171-87.
- Wang L and Yang Z. Bayesian network modelling and analysis of accident severity in waterborne
 transportation: A case study in China. *Reliability Engineering & System Safety*. 2018; 180: 277-89.
- Bouejla A, Chaze X, Guarnieri F and Napoli A. A Bayesian network to manage risks of maritime piracy against
 offshore oil fields. *Safety Science*. 2014; 68: 222-30.
- Balmat J-F, Lafont F, Maifret R and Pessel N. A decision-making system to maritime risk assessment. *Ocean Engineering*. 2011; 38: 171-6.
- 558 15. Chauvin C, Lardjane S, Morel G, Clostermann J-P and Langard B. Human and organisational factors in
 maritime accidents: Analysis of collisions at sea using the HFACS. *Accident Analysis & Prevention*. 2013; 59: 26560 37.
- 561 16. Graziano A, Teixeira AP and Soares CG. *Application of the TRACEr taxonomy for the codification of* 562 *grounding and collision accidents*. 2015, p.215-26.
- 563 17. Kum S and Sahin B. A root cause analysis for Arctic Marine accidents from 1993 to 2011. *Safety Science*. 2015;
 564 74: 206-20.
- 565 18. Soares CG and Teixeira AP. Risk assessment in maritime transportation. *Reliability Engineering & System*566 *Safety*. 2001; 74: 299-309.
- Weng J and Yang D. Investigation of shipping accident injury severity and mortality. *Accident Analysis & Prevention*. 2015; 76: 92-101.
- 569 20. Heij C and Knapp S. Evaluation of safety and environmental risk at individual ship and company level.
 570 *Transportation Research Part D: Transport and Environment.* 2012; 17: 228-36.
- 571 21. Balmat J-F, Lafont F, Maifret R and Pessel N. MAritime RISk Assessment (MARISA), a fuzzy approach to
 572 define an individual ship risk factor. *Ocean Engineering*. 2009; 36: 1278-86.
- Zhang D, Yan XP, Yang ZL, Wall A and Wang J. Incorporation of formal safety assessment and Bayesian
 network in navigational risk estimation of the Yangtze River. *Reliability Engineering & System Safety*. 2013; 118:
 93-105.
- 576 23. Yip TL, Jin D and Talley WK. Determinants of injuries in passenger vessel accidents. *Accident Analysis & Prevention*. 2015; 82: 112-7.
- 578 24. Talley WK and Ng M. Port economic cost functions: A service perspective. *Transportation Research Part E:*579 *Logistics and Transportation Review*. 2016; 88: 1-10.
- 580 25. Ventikos NP and Psaraftis HN. Spill accident modeling: a critical survey of the event-decision network in the 581 context of IMO's formal safety assessment. *Journal of Hazardous Materials*. 2004; 107: 59-66.
- 582 26. Wu B, Zong L, Yan X and Guedes Soares C. Incorporating evidential reasoning and TOPSIS into group

- 583 decision-making under uncertainty for handling ship without command. *Ocean Engineering*. 2018; 164: 590-603.
- 584 27. Wu B, Yip TL, Yan X and Guedes Soares C. Fuzzy logic based approach for ship-bridge collision alert system.
- 585 *Ocean Engineering*. 2019; 187: 106152.
- Wang Y, Zio E, Wei X, Zhang D and Wu B. A resilience perspective on water transport systems: The case of
 Eastern Star. *International Journal of Disaster Risk Reduction*. 2019; 33: 343-54.
- Wan C, Yan X, Zhang D, Qu Z and Yang Z. An advanced fuzzy Bayesian-based FMEA approach for assessing
 maritime supply chain risks. *Transportation Research Part E: Logistics and Transportation Review*. 2019; 125: 22240.
- 30. Zhang D, Yan XP, Yang ZL and Wang J. An accident data-based approach for congestion risk assessment of
 inland waterways: A Yangtze River case. *Proceedings of the Institution of Mechanical Engineers Part O-Journal of*
- 593 *Risk and Reliability*. 2014; 228: 176-88.
- Montewka J, Ehlers S, Goerlandt F, Hinz T, Tabri K and Kujala P. A framework for risk assessment for maritime
 transportation systems-A case study for open sea collisions involving RoPax vessels. *Reliability Engineering & System Safety*. 2014; 124: 142-57.
- Solution ST, Wall A, Davies P, Yang ZL, Wang J and Chou YH. A Human and Organisational Factors (HOFs)
 analysis method for marine casualties using HFACS-Maritime Accidents (HFACS-MA). *Safety Science*. 2013; 60:
 105-14.
- Akhtar MJ and Utne IB. Human fatigue's effect on the risk of maritime groundings A Bayesian Network
 modeling approach. *Safety Science*. 2014; 62: 427-40.
- 34. Weber P, Medina-Oliva G, Simon C and Iung B. Overview on Bayesian networks applications for dependability,
 risk analysis and maintenance areas. *Eng Appl Artif Intell*. 2012; 25: 671-82.
- Khakzad N, Khan F and Amyotte P. Safety analysis in process facilities: Comparison of fault tree and Bayesian
 network approaches. *Reliability Engineering & System Safety*. 2011; 96: 925-32.
- 36. Mahadevan S, Zhang R and Smith N. Bayesian networks for system reliability reassessment. *Structural Safety*.
 2001; 23: 231-51.
- Bobbio A, Portinale L, Minichino M and Ciancamerla E. Improving the analysis of dependable systems by
 mapping fault trees into Bayesian networks. *Reliability Engineering & System Safety*. 2001; 71: 249-60.
- 38. Trucco P, Cagno E, Ruggeri F and Grande O. A Bayesian Belief Network modelling of organisational factors
 in risk analysis: A case study in maritime transportation. *Reliab Eng Syst Saf.* 2008; 93: 823-34.
- 612 39. Montani S, Portinale L, Bobbio A, Varesio M and Codetta R. A tool for automatically translating dynamic fault
- trees into dynamic bayesian networks. *RAMS '06 Annual Reliability and Maintainability Symposium, 2006.* 2006, p.
 434-41.
- 40. Yang ZS, Yang ZL and Yin JB. Realising advanced risk-based port state control inspection using data-driven
 Bayesian networks. *Transp Res Pt A-Policy Pract.* 2018; 110: 38-56.
- 41. Fu SS, Zhang D, Montewka J, Yan XP and Zio E. Towards a probabilistic model for predicting ship besetting
- 618 in ice in Arctic waters. *Reliability Engineering & System Safety*. 2016; 155: 124-36.
- 619 42. Baksh A-A, Abbassi R, Garaniya V and Khan F. Marine transportation risk assessment using Bayesian Network:
- 620 Application to Arctic waters. *Ocean Engineering*. 2018; 159: 422-36.
- 621 43. Liu KZ, Zhang JF, Yan XP, Liu YL, Zhang D and Hu WD. Safety assessment for inland waterway
- transportation with an extended fuzzy TOPSIS. *Proceedings of the Institution of Mechanical Engineers Part O- Journal of Risk and Reliability*. 2016; 230: 323-33.
- 624 44. Castaldo F, Palmieri FAN and Regazzoni CS. Bayesian Analysis of Behaviors and Interactions for Situation

- Awareness in Transportation Systems. *Ieee Transactions on Intelligent Transportation Systems*. 2016; 17: 313-22.
- 626 45. Thieme CA and Utne IB. A risk model for autonomous marine systems and operation focusing on human-
- autonomy collaboration. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and
 Reliability. 2017; 231: 446-64.
- 46. Zhang GZ and Thai VV. Expert elicitation and Bayesian Network modeling for shipping accidents: A literature
 review. *Safety Science*. 2016; 87: 53-62.
- 47. Pearl J. Probabilistic Reasoning in Intelligent Systems. 1988. San Mateo, CA: Kaufmann. 1988; 23: 33-4.
- 48. Wan C, Yang Z, Zhang D, Yan X and Fan S. Resilience in transportation systems: a systematic review and
- 633 future directions. *Transport Reviews*. 2017: 1-20.
- 49. Liu Q, Tchangani A, Peres F and Gonzalez-Prida V. Object-oriented Bayesian network for complex system
- risk assessment. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability.
 2018; 232: 340-51.
- 637 50. Friedman N, Geiger D and Goldszmidt M. Bayesian network classifiers. *Machine learning*. 1997; 29: 131-63.
- 638 51. Alyami H, Yang Z, Riahi R, Bonsall S and Wang J. Advanced uncertainty modelling for container port risk
- 639 analysis. Accident Analysis & Prevention. 2019; 123: 411-21.
- 640 52. Yang ZL, Wang J, Bonsall S and Fang QG. Use of Fuzzy Evidential Reasoning in Maritime Security
- 641 Assessment. *Risk Analysis*. 2009; 29: 95-120.