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Risk analysis of maritime accidents along the main route of 

the Maritime Silk Road: a Bayesian network approach  

Abstract: The safety of maritime transportation along the 21st century Maritime Silk Road 

(MSR) is important to ensure its development and sustainability. Maritime transportation poses 

risks of accidents that can cause the death or injury of crew members and damage to ships and 

the environment. This paper proposes a Bayesian network (BN) based risk analysis approach 

that is newly applied in the main route of the MSR to analyse its relevant maritime accidents. 

The risk data are manually collected from the reports of the accident that occurred along the 

MSR. Next, the risk factors are identified and the results from the modelling method can 

provide useful insights for accident prevention. Historical data collected from accident reports 

are used to estimate the prior probabilities of the identified risk factors influencing the 

occurrence of maritime accidents. The results show that the main influencing factors are the 

type and location of an accident and the type, speed and age of the involved ship(s). In addition, 

scenario analysis is conducted to analyse the risks of different ships in various navigational 

environments. The findings can be used to analyse the probability of each possible maritime 

accident along MSR and to provide useful insights for shipowners’ accident prevention. 

Keywords: Maritime Silk Road, maritime risk, maritime safety, Bayesian network, sensitivity 

analysis, scenario analysis 

 

1. Introduction  

More than 90% of international trade is achieved by the movements of seaborne 

cargoes due to the capability of ships in providing low-cost and efficient transportation 

(Valentine 2015). The 21st Century Maritime Silk Road (MSR), proposed by China in 

2013, is a new type of trade corridor connecting China to the world following newly 

developed global political and trade patterns. At present, 80% of China's oil imports, 

50% of natural gas and 42.6% of other seaborne cargoes’ goods are transported through 

the MSR (Jiang et al. 2018). Clearly, along with the development of the 21st Century 

MSR, the demand for shipping transportation and international logistics is significantly 

increased. This increase results in heavier traffic along the corridor, which in return 

causes higher navigational safety and security concerns. Serious maritime accidents 

could cause casualties, economic loss, environmental pollution and traffic congestion 

and further affect trading cost and volume (Zhang et al. 2013). Despite the massive 

investment to improve the infrastructure construction and development of the MSR in 

the past years, we have seen a large number of safety and security accidents occurred 

along the MSR. On April 22, 2014, a tanker was attacked by pirates in the Straits of 



 

 

Malacca (IMO, 2018). Approximately 2500 metric tonnes of oil and the crew’s personal 

belongings were stolen, and the master, chief officer and chief engineer were kidnapped 

by the robbers. On May 9, 2016, a flag of convenience product tanker was hijacked by 

armed pirates (IMO, 2018). In addition, off the coast of Kochi, India, a bulk carrier 

collided with a fishing vessel causing the death of two fishermen and bad injures of 

eleven crew members on June 11, 2017 (IMO, 2018). Managing risks is one of the 

priorities to ensure the success of the MSR (Wan et al. 2018), and it is therefore crucial 

to analyse previous accidents to identify important influencing factors and realise 

rational risk prediction to prevent the reoccurrence of similar accidents along the MSR. 

The markets of the nations along the MSR have a large consumption potential 

(Valentine 2015). The transported goods mainly include crude oil, ore and grain 

(Valentine 2015). Once an accident occurs, it will have an enormous negative impact 

on global trade. The countries along the MSR are developed at different levels in terms 

of infrastructure construction, which has an impact on shipping transportation (Lee at 

al. 2018). Once there is a detention in a certain port, it will cause delays throughout the 

whole transport supply chain. Therefore, accident prevention is a challenging yet 

essential task to be addressed. 

This paper aims to analyse the characteristics of the maritime accidents that 

occurred along the MSR (e.g. pirate attacks, ship hijackings and traffic accidents) and 

to develop a new risk analysis and prediction model based on a data-driven Bayesian 

network (BN). It includes the following three objectives:  

1) Collection of the accident data relating to the MSR from the database of the 

Marine Casualties and Incidents and Piracy and Armed Robbery reported by 

the International Maritime Organization (IMO). 

2) Identification and analysis of the factors influencing the investigated accidents.  

3) Development and validation of a BN-based risk prediction tool for maritime 

accident prevention along the MSR.  

To achieve these objectives, the rest of this paper is organized as follows. Section 

2 presents a literature review of maritime accident research and the application of BN 

in maritime risk analysis and prediction. Section 3 describes the method of data 

collection and processing to show the navigational safety status of the MSR. The results 

from Section 3 and the findings from Section 2 jointly address the first objective while 

highlighting the strong need for and research gap addressed by this study. The 

methodology of developing a BN-based risk analysis model for the MSR is proposed 

in Section 4 to address the above objective 2 (i.e. identification of the factors) and 



 

 

objective 3 (i.e. development of the methodology) in part. In Section 5, a sensitivity 

analysis is conducted to identify the main influential risk factors for addressing 

objective 2 (i.e. analysis of the risk factors) in full. The scenario analysis is applied to 

find useful information for maritime stakeholders to make decisions regarding risk 

reduction and accident prevention for addressing objective 3 (i.e., validation of the 

model). Section 6 concludes the paper with future research directions. 

 

2. Literature review 

In this paper, we collected papers on all kinds of aspects of maritime accidents 

from the academic journals written in English. The key words used to search the papers 

including maritime accidents, shipping safety/risk, maritime safety/risk. The data 

sources such as web of science, engineering village and science direct are used to search 

the papers. 78 papers were found and 52 papers were used in this paper. Then, these 

papers were categorized depending on aspects such as the main concerns, accident types, 

accident locations, major causes, methods and data sources. The key words included 

maritime accident, maritime risk, risk analysis and safety. 

2.1. Studies of maritime accidents 

Previous studies of maritime accidents refer to both safety and security risks, 

involving pirate attacks (Pristrom et al. 2013; Yang et al. 2013), ship hijackings 

(Pristrom et al. 2016), collision (Wu et al. 2019), grounding (Uğurlu et al. 2016), contact, 

and so on (Mullai and Paulsson 2011). The studied locations of maritime accidents 

include Western or Eastern Indian Ocean (Pristrom et al. 2016), Arctic waters (Baksh 

et al. 2018), Norwegian waters (Størkersen 2017),  Baltic Sea and Gulf of Finland 

(Mullai and Paulsson 2011), Greece (Nævestad et al. 2019), the UK (Akhtar and Utne 

2014), Turkish Straits (Uğurlu et al. 2016) and China's Yangtze River (Zhang et al. 2013; 

Wu et al. 2015; Wang et al. 2019). Maritime accidents at sea, in waterways and/or ports 

have been systematically analysed during the past 50 years (Luo and Shin 2016). 

 The causes of maritime accidents mainly include environmental effects, human 

factors, and ship conditions, or a combination of these factors (Luo and Shin 2016; Wu 

et al. 2017; Wang et al. 2018). Regarding environmental effects, previous papers 

consider the natural or oceanographic environment to be one of the influencing factors 

that affect maritime accidents. The environmental conditions (i.e., visibility, wind, light, 

sea, precipitation) and time are recorded when an accident occurs (Mullai and Paulsson 

2011). Raiyan et al. (2017) used an event tree with a quantitative analysis to recognize 

how a single factor, when coupled or not with other factors, was likely to lead to an 

accident, and the results showed that the ratio of success in avoiding an accident was 



 

 

largely influenced by the visibility in both good and bad weather conditions. Knapp et 

al. (2011) applied econometric models to measure the effect of significant wave height 

and wind strength on the probability of casualties and tested whether these effects 

caused any change. The results showed that although a seasonal pattern existed in the 

probability of casualties, especially during the winter time, the effect of wind strength 

and significant wave height did not follow the same seasonal pattern. Weng and Yang 

(2015) investigated whether the location of an accident affected mortality and found 

that the accidents that occurred far away from coastal areas typically resulted in higher 

mortality. 

Human factors are seen in many risk analysis studies in the maritime domain, and 

some human factor analysis models, such as the Human Factors Analysis and 

Classification System (HFACS), the Technique for Retrospective and Predictive 

Analysis of Cognitive Errors (TRACEr) and Accident Analyse Mapping (AcciMap), 

have been widely used. Uğurlu (2018) applied HFACS-PV to analyse human factors in 

passenger vessel accidents. Akyuz (2015) used the AcciMap and Analytical Network 

Process (ANP) methods to analyse the causes of marine accidents. The results showed 

that decision error as a human factor was one of the main contributory factors 

influencing marine accidents, especially the grounding of ships at sea. Sotiralis et al. 

(2016) presented an approach based on TRACEr and BN that incorporated human 

factor considerations into the quantitative risk analysis of ship operations. However, 

non-traditional security threats, such as pirate attacks and terrorism, have also to be 

considered. Pristrom et al. (2016) proposed an analytical model that incorporated BN 

to assess piracy and robbery. Analysis of the above studies helps investigate the 

influential factors in this study.  

In terms of ship conditions, Mullai and Paulsson (2011) considered a ship’s 

properties (i.e., flag, age and ship type) to design a conceptual model for the analysis 

of marine accidents. Pristrom et al. (2016) proposed a model that took into account the 

characteristics of a ship (i.e., ship speed and ship type) and environmental conditions 

to analyse maritime piracy and robbery related incidents. 

2.2. Risk analysis models 

In terms of maritime accident risk analysis, the IMO proposed a structured and 

systematic framework called formal safety assessment (FSA). The FSA was introduced 

as a process to evaluate risks and to provide a decision-making basis for maritime 

stakeholders. Mentes et al. (2015) proposed an FSA-based integrated methodology to 

identify and evaluate driving factors such as geographical locations and failure modes 

causing fatality for cargo ships. Furthermore, the authors also developed a risk analysis 



 

 

method to make maritime transport cleaner and safer. Although it is widely used (Wang 

et al. 2019; Mentes et al. 2015), FSA has some drawbacks, such as the inability to 

accurately quantify risks and the lack of reliability and effectiveness (Yang et al. 2013), 

when subjective knowledge is used in the absence of historical data. 

Advanced methods have been introduced to calculate the quantitative causal 

relationship between maritime risks and their influencing factors, including fuzzy 

logics, evidential reasoning and BNs. Although fuzzy logic and evidential reason (as 

well as their combination) have been widely used to deal with fuzziness and 

incompleteness in maritime risk data (e.g. Yang et al., 2009; Yang et al., 2013), they fail 

to model the causal relationship among the risk influential factors, for which BN shows 

its superiority. Having said that, it is revealed that the three main uncertainty treatment 

methods are often used in a combined way together with other traditional risk analysis 

methods such as Fault Tree Analysis (FTA). Kum and Sahin (2015) applied fuzzy FTA 

to investigate marine accidents and incidents and to reveal their causes via root cause 

analysis. For instance, Zhang et al. (2013) used the FSA concept and a BN technique to 

estimate the navigational risk of the Yangtze River, and undertake the scenario analysis 

based on the risk model that considered both the probability and consequences of 

accidents to demonstrate the application of the proposed model. Zhou et al. (2018) 

proposed a fuzzy and Bayesian network CREAM model to analyse human reliability 

and to control the risk level caused by human factors. Yang et al (2019) present a novel 

approach for combining evidential reasoning with BN to facilitate human reliability 

analysis. Moreover, fuzzy evidential reasoning approach has been applied in the 

CREAM model to overcome the problem of ignoring the uncertainty exists in practice 

(Wu et al. 2017).   Zhang (2014) discussed that fuzzy logic, evidential reasoning and 

BNs can address some hindrances to maritime risk assessments. These methods can 

facilitate risk assessment with uncertainties using objective data and subjective 

knowledge (e.g. Wu et al. 2019; Wu et al. 2018; Yang et al. 2019; Li et al. 2014).. 

However, in this study, BN is favoured due to its advantages of modelling the 

dependency between different influential factors and between the factors and the 

investigated risk types (Baksh et al. 2018). 

2.3. Applications of BN in maritime risk analysis 

BNs have been widely used in the risk analysis of maritime accidents because of 

their advantages, including forward (or predictive) analysis and backward (diagnostic) 

analysis. A BN can reflect the dependencies among variables, update the network with 

new evidence without changing the old network, handle uncertainties, and integrate 



 

 

historical data, related faults and expert knowledge (Baksh et al. 2018). BNs combine 

prior knowledge and historical data and are considered as a powerful tool for reasoning 

prediction and error diagnosis in an uncertain environment. Therefore, BNs enable 

complex risk analysis involving various influencing factors. Wang and Yang (2018) 

developed a novel risk analysis approach based on BNs to analyse accident severity in 

waterborne transportation. Bouejla et al. (2014) proposed an innovative solution, with 

a BN, to managing the risks of maritime piracy against offshore oil fields from the 

perspective of an entire processing chain. 

The first step to establish a BN for the risk analysis of maritime accidents is 

structure learning. Generally, the structure of a BN can be determined with the help of 

expert knowledge, literature review, data learning, or a combination of them. Bouejla 

et al. (2014) built their BN structure based on the database from the IMO and qualitative 

knowledge offered by experts in the maritime domain. Pristrom et al. (2016) used the 

data collected from the Global Integrated Shipping Information System (GISIS) 

together with six expert judgements, which were collected and weighted to estimate the 

likelihood of a ship being hijacked in the Western Indian or Eastern African region.  

In addition, the structure of the BN can be learned via a machine learning 

algorithm, but in this method, the problems of generating unreasonable and ambiguous 

relationships may occur. To avoid this phenomenon, previous studies had combined 

data-driven machine learning algorithms with expert knowledge to verify the final 

structure and to rationalize the meaning of the relationship. Zhang et al. (2013) 

estimated the navigational risk of the Yangtze River using a BN technique. The BN 

structure, called the preliminary BN, was first learned from data, and then parameter 

sensitivity analysis was used to justify the dependencies of the nodes. If any negative 

feedback occurred, the appropriate modification would be made. Cooper and 

Herskovits (1992) presented a Bayesian method realised by a K2 algorithm for 

constructing BN structure from database. Akhtar and Utne (2014) proposed a BN for 

modelling the risk of maritime ship accidents. Data were first collected to develop a 

BN structure and the associated conditional probabilities. However, due to the lack of 

data, expert judgement was required; then, the qualitative model and its taxonomy were 

developed for structure learning. 

In summary, this study conducts a pioneering experimental study by using the BN 

to analyse the risk of maritime accidents along the MSR. The probabilities of maritime 

accidents on the MSR are quantified using the BN based on the influencing factors and 

their associated probabilities. The methodology relies on historical data and a data-



 

 

driven machine algorithm in the process of building a BN. The main aim is to use the 

BN risk model to predict the risk consequence in maritime accidents along the MSR. 

3. Data collection and processing 

The main route of the 21st century MSR starts from Quanzhou, passes through 

Fuzhou, Haikou, Beihai, Henei, Kuala Lumpur, Jakarta, Colombo, Kolkata, Nairobi 

and Athens and finally arrives in Venice.  

This paper conducts a statistical analysis of the accidents that occurred from 2010 

to 2017 to effectively and comprehensively identify the main risk factors of the MSR. 

A total of 413 marine accidents, including detailed reports from the IMO, with the ship 

specification data from Lloyd’s Register Fairplay (LRF), were collected. The data from 

the IMO contains two kinds of information. The first category of information is about 

factual data collected from various sources and the second category is about more 

elaborated information based on the reports of accident investigations. Using these two 

kinds of information, this paper extracted the influencing risk factors referring to 

previous literature, expertise and available experience (e.g. Zhang et al. 2013; Wang et 

al. 2018; Baksh et al. 2018).Table 1 shows the data sources used to build the dataset. 

As the databases used different classifications of accidents, they were manually 

reclassified for their compatibility with the definitions developed by the IMO for three 

categories: very serious, serious, and less serious. With respect to seriousness, the 

definitions developed by the IMO and given in MSC-MEPC.3/Circ.1 were used (See 

Table 2). 

In this paper, the accident types include collision, pirate attacks, ship hijackings, 

contact, stranding, and other non-classified types in accordance with IMO (IMO. 2018). 

A collision refers to the situation in which two or more ships hit each other in a 

relatively short time. A pirate attack is defined as a situation in which a ship is attacked 

by robbers, typically with the goal of stealing cargo and other valuable items or 

properties. A ship hijacking refers to a situation in which a ship is hijacked by armed 

robbers using criminal violence, with the goal of hijacking ships and crews for ransom. 

A contact is defined as a situation in which a ship is struck by any fixed or floating 

objects. A stranding refers to the situation in which a ship strikes an object on the sea 

floor, or strikes or touches the bottom. 

According to the local time of sunrise and sunset, the time of the accident was 

defined as two categories: daytime and night-time (Pristrom et al. 2016). The natural 

environment data (i.e., fog, visibility, rain, wind) used in this study were collected from 

Remote Sensing Systems (RSS). RSS is a scientific research company engaged in 

processing and analysing microwave data from satellites. The data are rich with 



 

 

information about rain rates, cloud cover, wind speeds, etc. In this study, the RSS 

dataset that provides the wind speed, visibility and rain rate was added to the casualty 

data at the same time. The available experience such as Beaufort Wind Scale, Fog and 

Visibility Scale, and Classification Standard of Rainfall by China Meteorological 

Administration were used to define the states. The previous studies that mentioned the 

calculation of the states of risk factors can provide a reference to determine the optimum 

number of states (e.g. Wang et al. 2018).The states of ship type, accident location and 

ship flag were derived from the database of the IMO and LRF (Knapp et al. 2011; Weng 

and Yang 2015), while the investigation reports recorded in detail the states of ships 

(i.e., ship speed, ship type, ship age, ship flag, ship flow and location) at the time of the 

accidents. The unique IMO number of the ships is used to combine information from 

different databases to ensure the consistency of the input data in this study. In addition, 

the investigation reports with detailed information were applied to help better 

understand the progress of the accident (Akhtar and Utne 2014; Wang et al. 2018; Yang 

et al. 2019). 

Table 1 Data sources used for the dataset. 

Data type Data source 

Casualty data Lloyd’s Register Fairplay (LRF) 

International Maritime Organization (IMO) 

Ship characteristics LRF, IMO, and investigation reports 

Natural environment Remote Sensing Systems 

Table 2 The definition of three categories of accidents 

Categories Definition 

Very serious 
Very serious casualties are the casualties to ships that involve total loss of the ship, loss of life, 

or severe pollution 

Serious 

Serious casualties are the casualties to ships that do not qualify as very serious casualties and 

involve a fire, explosion, collision, grounding, contact, heavy weather damage, ice damage, hull 

cracking, or a suspected hull defect, etc., resulting in immobilization of main engines, extensive 

accommodation damage, severe structural damage, pollution and/or a breakdown necessitating 

towage or shore assistance 

Less serious 

Less serious casualties are the casualties to ships that do not qualify as very serious casualties 

or serious casualties and for the purpose of recording useful information, also include marine 

incidents which themselves include hazardous incidents and near misses 

Table 3 The statistical and processing results of the risk factors 

Factor Description states 

Ship speed (knots) 5 or less, 5-10, greater than 10 s1, s2, s3 

Ship type Container ship, bulk carrier, tanker or chemical 

ship, passenger ship, other 

s1, s2, s3, s4, s5 

Ship age (years) 0-5, 6-10, 11-15, 16-20, more than 20 s1, s2, s3, s4, s5 

Ship flag China, FOC, other s1, s2, s3 



 

 

Location Port, coastal waterway, sea s1, s2, s3 

Accident type Collision, pirate, ship hijacked, contact, 

stranding, other 

s1, s2, s3, s4, s5, s6 

Fog  No fog or unmentioned, fog s1, s2 

Visibility (km) 2 or less, 2-10, greater than 10 s1, s2, s3 

Rain No rain or unmentioned, rain s1, s2 

Wind (m/s) 0-4,4-7, greater than 7 s1, s2, s3 

Natural environment Good, poor s1, s2 

Ship flow Congestion, normal or unmentioned s1, s2 

Traffic environment Good, poor s1, s2 

Time of day  Daytime, night-time s1, s2 

Accident risk Very serious, serious, less serious s1, s2, s3 

4. Methodology 

4.1. Bayesian network 

A BN (Ghahramani 1998) is a probabilistic graphical model that includes a set of 

nodes and directed edges that connect these nodes contained in a directed acyclic graph. 

(DAG). A DAG is a pair ( , )G V E , where V is a set of nodes and E is a set of directed 

edges. The nodes represent random variables, and the directed edges represent the 

mutual relationship between the nodes, pointing from the parent node to their child 

nodes. The conditional probability is used to express the relationship strength. The root 

nodes without a parent node use the prior probability to express the information.  

The BN was first introduced by Pearl (1988) in 1985. A BN can handle incomplete 

data and infer reasoning from uncertain knowledge or information (Wang et al. 2018). 

The BN has proven to be a powerful tool for uncertain knowledge representation and 

reasoning and has been widely used in a variety of problems, such as scenario analysis, 

probability prediction, fault diagnosis, decision making and data updating (Canbulat et 

al. 2019; Li et al. 2014; Zhang et al. 2013; Bouejla et al. 2014; Sun and Sun 2015 ). 

The conditional independence and joint probability distribution are the basic rules 

of the BN and can be expressed by formulas (1) and (2): 

1 2

1

( , , , / ) ( / )( 1, 2... )
k

kP V V V v P V v i k                          (1) 

1 2

1

( , , , ) ( / ( ))( 1,2... )
k

k i iP V V V P V Parent V i k                        (2) 

where iV represents the variable, k is the number of the variables, 1 2( , , , / )kP V V V v    is 

the conditional probability function, 1 2( , , , )kP V V V    is the joint probability function, 

( )iParent V  represents the parent nodes of iV . 

The development of a BN model includes structure learning, parameter learning, 



 

 

and sensitivity analysis and model validation. 

4.2. BN structure learning 

The expert knowledge and data learning are two main methods to learn a BN 

structure (Wang et al. 2018). However, the large diversity of expert knowledge cannot 

guarantee objectivity and accuracy, and it is difficult to realize when the number of 

nodes is large. Many papers have proposed new methods to search Bayesian structures 

from data, among which the most common one is the scoring search method. Cooper 

and Herskovits (1992) proposed the K2 algorithm based on a scoring function and a 

climbing method. The algorithm calculates the score value of each point in the given 

order of input nodes. Given the maximum number of parent nodes, it is to select the 

node with the highest score or a combination of nodes as the parent of the point. 

However,  it will become difficult to search when the order among the nodes is 

unknown. Therefore, the improved K2 algorithm was applied to realize the structure 

learning in this paper (Li and Su. 2017). Because the random node ordering tends to 

lead to poor results, four nodes’ input strategies were designed. 

The four strategies of the order of nodes are listed as follows: 

1) Select node order randomly for comparison. 

2) The information gain method was used to calculate the value of each node. After 

10-fold cross-validation, the value of each node was arranged in order from the largest 

to the smallest, and the corresponding number was the input sequence. 

3) The values of the nodes were calculated by the chi-square test method, and the 

values were arranged in order from the largest to the smallest after 10-fold cross-

validation, and the corresponding numbers were input in the order. 

4) For each node, all nodes except it are traversed, and the node or node 

combination represented by the maximum value is selected as the parent node of that 

node. 

Information gain and chi-square test methods are effective to measure the 

importance of each nodes (Li and Su 2017). The chi-square test assigns weight to each 

node, and quantifies the correlation between nodes. The stronger the correlation is, the 

higher the score. The information gain method measures how much information nodes 

bring to the network. The more important nodes bring more information. 

The optimal network structure results that is obtained by a scoring function for the 

four node order input strategies are shown in Figure1. 
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Figure 1. The results of the BN structure for four input strategies 

All the four models will be further evaluated in Section 4.4. to test their robustness in this this study.   

4.3. BN parameter learning 

The causal relationships among the variables are embodied in the BN. Therefore, 

the conditional probability table (CPT) of each node, that is the states of the child nodes 

and the input values of parent nodes, must be determined. First, the prior evidence is 

incorporated into the directed graph; then, the prior information is updated by 

calculating the posterior probabilities. In addition, the backward analysis can be used 

to analyse the influencing factors. 

The most popular optimization method for learning the parameters of the BN from 

partially observed data is the expectation-maximization (EM) algorithm (Ghahramani 

1998; Wang et al. 2018). In this paper, some observation data such as ship speed at the 

time of the accident are sometimes not recorded in the IMO investigation report and/or 

LRF database. The EM algorithm addresses the incomplete data problem by selecting 

an initial set of parameters. We can apply inference to complete the data through the 

initial parameter set, or conversely, we can estimate the set of parameters using 

maximum likelihood estimation through complete data. The EM algorithm iterates two 

steps until convergence. The two iterates of the EM algorithm are named E-step and M-

step (Ghahramani 1998). 

E step: Let t  be the known estimated value of the current parameter and let X 

be the observed data. The E-step computes the expectation of the complete data Z=(X, 



 

 

Y) via the log-likelihood function of  . The expectation of the logarithmic likelihood 

function is defined as: 

( , ) [log ( , ) , ]t tQ E p X Y X                          (3) 

M step: To maximize the value ( , )tQ   , the value of   is defined as: 

arg max ( , )tQ


                              (4) 

4.4. Model evaluation 

To verify the accuracy and reliability of the BN model, a training dataset and 

testing dataset are assigned randomly from a dataset (Sun and Sun 2015). The overall 

accuracy (OA) metric in Eq. (5) is a simple and effective indicator of classification 

model accuracy. It has also been applied in the accuracy evaluation of risk prediction 

models (Sun and Sun 2015). 

This paper also uses precision (i.e. Eq. (6)) and recall (i.e. Eq. (7)) to evaluate the 

effective detection ability for only one level of risk. However, the precision and recall 

are mutually restrictive. The F-measure in Eq. (8), which is an average reconciliation 

index, is adopted to represent the ability of a model to detect high-risk incidents. The 

above metrics listed in Eq. (5) to Eq. (8) are based on the confusion matrix, as shown 

in Tables 4 and 5. PT  represents a positive sample predicted positive by the model, 

while NT  represents a negative sample predicted negative by the model. PF  refers to a 

negative sample predicted positive by the model, while NF   refers a positive sample 

predicted negative by the model. 

 P N

P P N N

T T
overall accuracy

T F F T




  
                       (5) 

/P P Pprecision T T F （ ）                            (6) 

/P P Nrecall T T F （ ）                             (7) 
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precison recall

 
 


                        (8) 

Table 4 Meaning of the parameters of the evaluation index 

 Predicted positive Predicted negative 

Real positive TP FN 

Real negative FP TN 

 

Table 5 Confusion matrix 

 Predicted high risk Predicted medium risk Predicted low risk 

Real high risk 𝑇ℎ𝑖𝑔ℎ𝑟𝑖𝑠𝑘 𝐹𝑚𝑒𝑑𝑖𝑢𝑚 𝐹𝑙𝑜𝑤𝑟𝑖𝑠𝑘  



 

 

Real medium risk 𝐹ℎ𝑖𝑔ℎ𝑟𝑖𝑠𝑘 𝑇𝑚𝑒𝑑𝑖𝑢𝑚 𝐹𝑙𝑜𝑤𝑟𝑖𝑠𝑘 

Real low risk 𝐹ℎ𝑖𝑔ℎ𝑟𝑖𝑠𝑘 𝐹𝑚𝑒𝑑𝑖𝑢𝑚 𝑇𝑙𝑜𝑤𝑟𝑖𝑠𝑘 

 

Table 6 Comparisons of the accuracy and reliability of different BN structures  

Structure OA Risk level Precision Recall F-measure AUC 

Fig. 1. (a) 0.663 

High risk 0.609 0.7 0.651 0.671 

Medium risk 0.7 0.683 0.691 0.574 

Low risk 0.65 0.591 0.619 0.687 

Fig. 1. (b) 0.723 

High risk 0.682 0.75 0.714 0.694 

Medium risk 0.75 0.732 0.741 0.669 

Low risk 0.714 0.682 0.698 0.812 

Fig. 1. (c) 0.783 

High risk 0.727 0.8 0.762 0.857 

Medium risk 0.805 0.805 0.805 0.712 

Low risk 0.8 0.727 0.762 0.862 

Fig. 1. (d) 0.855 

High risk 0.773 0.567 0.654 0.845 

Medium risk 0.878 0.878 0.878 0.872 

Low risk 0.9 0.818 0.857 0.896 

In addition, the area under the curve (AUC) of the receiver operating characteristic 

curve (ROC) is used to estimate the reliability of the model. The ROC is a plot of the 

sensitivity in Eq. (9) (Y-axis) against a false positive rate, which is equal to 1-specificity 

in Eq. (10) (X-axis). The AUC is generally between 0.5 and 1, and the larger the value 

of the AUC is, the better the reliability of the model.  

/ ( )P P Nsensiivity T T F                           (9) 

/ ( )N N Pspecificity T T F                         (10) 

The evaluation results based on the different structures shown in Figure 1 are 

shown in Table 6. The evaluation results indicate that the structure in Figure 1 (d) has 

the best accuracy and reliability. As a result, the structure in Figure 1 (d) was selected 

in the subsequent analysis. 

4.5. Sensitivity analysis 

Sensitivity analysis is a widely used method to analyse the sensitivity of associated 

variables to identify the influential factors that can minimize the uncertainty of the 

target factor (i.e. accident risk), which can be denoted by the degree of reduction in 

information entropy. All the formulas for sensitivity analysis are calculated with the 

software package NETICA. 

Information entropy is a statistic that describes the degree of dispersion of random 

variables. When the information entropy increases, the uncertainty of the variable also 

increases. The calculation formula is described as follows: 

( ) ( ) log ( )
y Y

H Y P y P y


                            (11) 



 

 

where ( )H Y  is the information entropy of random variable Y, and ( )P y  is the prior 

probability of Y. 

Mutual information represents the amount of information shared between two 

variables and is a measure of the degree of interdependence of variables. Mutual 

information is used to indicate the degree to which the entropy of the query node is 

reduced given the probability of evidence nodes. The mutual information of two 

discrete random variables X and Y can be defined as follows: 

( , )
( ; ) ( , ) log

( ) ( )y Y x X

P x y
H X Y P x y

p x p y 

 
  

 
                     (12) 

where ( , )P x y  is the joint probability distribution function of X and Y, and ( )p x  

and ( )p y  are the marginal probability distribution functions of X and Y, respectively. 

5. Results 

5.1. Marginal probability distribution of the BN 

As the node ‘accident risk’ has 14 parent nodes, its CPT is large. Therefore, a part 

of the CPT of ‘accident risk’ is calculated based on the database from the IMO and LRF, 

and shown in Table 7. Furthermore, the marginal probability distribution of the BN is 

shown in Figure 2, which aids the explanation of the effects of different influencing 

factors on maritime accident risk consequence.    

 

The accident type with the highest probability was pirate activity, accounting for 

45.36% of all accidents. Therefore, defence measures, such as barbed wire mounted on 

the bulwark, armed guards or long distance acoustic devices, should be applied in ships 

according to the ship type analysis. Other anti-piracy measures, such as arranging extra 

personnel to monitor suspicious vessels or conducting regular anti-piracy exercises, 

should also be taken into consideration. 

Most of the ships involved in accidents were bulk carriers (45.59%), and the most 

common flag was FOC (48.78%). Ships that were less than 5 years old accounted for 

the largest percentage (30.49%). Therefore, maritime stakeholders should strengthen 

the management of bulk carriers and improve their safety at sea. When choosing a ship, 

the shipper may take the flag and age of the ship as the reference. 

In terms of the navigational environment, 55.43% of the accidents occurred under 

good conditions, and the ship flow was usually normal (68.11%). Under favourable 

navigation conditions, however, the crew members should still not let their safeguard 

down, remaining vigilant all the time to ensure the safe navigation of their ships. 



 

 

Fog related to 17.43% of the accidents, rain was present in 22.63% of the accidents, 

poor visibility was a factor presented in 16.32% of the accidents, and strong wind 

counted for 6.65% of the accidents. Thus, the natural environment was usually shown 

to provide good conditions (58.28%). Moreover, 58.01% of the accidents occurred at 

night, and 39.92% occurred at a port. Therefore, when the ship is sailing at night, 

especially berthing in the port or at anchorage at night, the crew members must 

strengthen the monitoring to ensure the safety of their ships. Table 7 A demonstration of CPT 

for Accident risk. 

Traffic environment s1 Fog s1 Ship flow s1  

Time of day s1 Visibility s3 Location s1  

Natural environment s1 Rain s1 Ship flag s1  

Ship speed s1 Wind s1 Ship age s1  

Ship type s1      

Accident type s1 s2 s3 s4 s5 s6 

s1 0.258 0.177 0.723 0.018 0.001 0 

s2 0.379 0.451 0.263 0.519 0.321 0.449 

s3 0.363 0.372 0.014 0.463 0.678 0.551 
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Figure2. Prior distribution of the BN model 

5.2. Sensitivity analysis 

Sensitivity analysis is a useful way to evaluate factors that make the main 

contributions to the accident risk. The results of the sensitivity analysis with the 

software package NETICA are illustrated in Table 8 using mutual information. 

According to the mutual information shown in Table 8, the ‘accident risk’ is the 

target node, and ‘accident type’ has the strongest effect on the target node, with mutual 

information of 0.1842, followed by ‘location’, with the mutual information of 0.1758. 

This can also be interpreted as the accident risk having the most sensitivity to the change 

in the states of the accident type. 

Moreover, the variables with mutual information between 0.05 and 0.1, i.e. ‘ship 

type’, ‘ship speed’, ‘ship age’, ‘ship flag’, ‘time of day’ and ‘ship flow’, also have a 

significant effect on ‘accident risk’. The remaining variables, i.e. ‘natural environment’, 

‘visibility’, ‘wind’, ‘traffic environment’, ‘rain’, and ‘fog’, have relatively weak effects 

on ‘accident risk’. 

Table 8 Mutual information shared with ‘Accident risk’ 

Risk variables Mutual information 



 

 

Accident type 0.1842 

Location 0.1758 

Ship type 0.0989 

Ship speed 0.0926 

Ship age 0.0875 

Ship flag 0.0712 

Time of day 0.0681 

Ship flow 0.0514 

Natural environment 0.0378 

Visibility 0.0315 

Wind 0.0121 

Traffic environment 0.0098 

Rain  0.0057 

Fog 0.0018 

 

5.3. Scenario analysis 

Scenario analysis is an effective and valuable tool of BNs that can construct some 

useful risk simulations. In the scenario analysis, we can assign evidence in the BN to 

update the probabilities to generate useful insights. Here, three scenarios are 

summarized in Table 9 according to the findings from the above sensitivity analysis. 

Table 9 Three scenarios of propagation analysis  

Scenario No. Scenario description 

1 Accident type is set to collision, pirate, ship hijacked, contact and stranding 

2 Location is set to port, coastal waterway and sea 

3 Ship type is set to container ship, bulk carrier, tanker or chemical ship and passenger ship 

Scenario 1 assumes that the accident types are collision, pirate, ship hijacked, 

contact and stranding. As observed from Figure 3, if the state of ‘accident type’ is 

collision, the posterior probability of ‘accident risk’ of s1 increases from 24.21% to 

61.15%. It indicates that the accident type of collision can increase the severity of 

accidents. Moreover, the posterior probabilities of the other nodes when the accident 

type is collision are shown in Figure 4. In addition, if the states of ‘accident type’ are 

ship hijacked, stranding, pirate, and contact, respectively, the posterior probabilities of 

the ‘accident risk’ of s1 are 72.15%, 28.14%, 22.71%, and 20.76%, respectively. The 

results indicate the extent to which the type of accident affects the severity of accidents. 

Scenario 2 sets that the locations are port, coastal waterway and sea. As seen from 

Figure 5, when an accident occurs in port, coastal waterway or at sea, the probabilities 

of the ‘accident risk’ of s1 are 15.66%, 35.56%, and 47.61%, respectively. The results 

indicate that when the accident occurred at sea, the severity of the accident is the 

highest. 



 

 

Scenario 3 is associated with an observation that we make on the ship type. As 

seen from Figure 6, the probability of ‘accident risk’ of s1 increases from 24.21% to 

43.12% and 35.12%, respectively, when the ‘ship type’ is changed to bulk carriers and 

tanker/chemical ships. If the states of the ‘ship type’ are, changed to container ships 

and passenger ships,  the probabilities of the ‘accident risk’ of s1 are updated to 16.21% 

and 17.45%, respectively,. It indicates that bulk carriers, tankers or chemical ships are 

exposed to high risks. 

Based on the above analysis results, we analyse the worst-case scenario by 

combining the evidence of “hijacked” in accident types, “at sea” in locations, and 

“bulk carrier” in ship types and present the result in Figure 7. The probability of 

‘accident risk’ of s1 increases from 24.21% to 82.93%, indicating a very serious 

consequence. It  should attract safety attention from the involved ship owners and 

seafarers on-board the involved ships.  
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Figure 3. First scenario for different accident types
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Figure 4 First scenario for collision with detailed statistics 
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Figure 5. Second scenario for different locations 
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Figure 6. Third scenario for different ship types 
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Figure 7. The worst-case scenario by combining the evidence of three nodes 

6. Conclusion 

This study proposes a BN-based risk analysis model for the maritime accidents 

along the MSR. In this paper, the data were extracted from maritime accident 

investigation reports and an existing database, and the structure of the BN was learned 

from the data using the K2 algorithm and was trimmed based on the results of model 

validation to determine the best structure. The conditional probabilities of the BN were 

learned by the EM algorithm. The sensitivity analysis based on the mutual information 

reveals the rank of the impact of various factors influencing maritime accidents. The 

scenario analysis was conducted based on the sensitivity analysis to assess some 

potential scenarios. Three different scenarios including different observations were 

defined for effective safety management and accident prevention. The sensitivity and 

scenario analysis results show that the accident type has the most significant 

contribution to accident risk; if the state of the accident type is hijacked, the risk level 

of the accident risk is the highest; if the state of the accident type is contact, the risk 

level of the accident risk is the lowest. 
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