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ABSTRACT
Globular clusters (GCs) formed when the Milky Way experienced a phase of rapid assembly. We use the wealth of information
contained in the Galactic GC population to quantify the properties of the satellite galaxies from which the Milky Way assembled.
To achieve this, we train an artificial neural network on the E-MOSAICS cosmological simulations of the co-formation and
co-evolution of GCs and their host galaxies. The network uses the ages, metallicities, and orbital properties of GCs that
formed in the same progenitor galaxies to predict the stellar masses and accretion redshifts of these progenitors. We apply the
network to Galactic GCs associated with five progenitors: Gaia-Enceladus, the Helmi streams, Sequoia, Sagittarius, and the
recently discovered ‘low-energy’ GCs, which provide an excellent match to the predicted properties of the enigmatic galaxy
‘Kraken’. The five galaxies cover a narrow stellar mass range [M� = (0.6–4.6) × 108 M�], but have widely different accretion
redshifts (zacc = 0.57–2.65). All accretion events represent minor mergers, but Kraken likely represents the most major merger
ever experienced by the Milky Way, with stellar and virial mass ratios of rM�

= 1:31+34
−16 and rMh = 1:7+4

−2, respectively. The
progenitors match the z = 0 relation between GC number and halo virial mass, but have elevated specific frequencies, suggesting
an evolution with redshift. Even though these progenitors likely were the Milky Way’s most massive accretion events, they
contributed a total mass of only log (M�, tot/M�) = 9.0 ± 0.1, similar to the stellar halo. This implies that the Milky Way
grew its stellar mass mostly by in-situ star formation. We conclude by organizing these accretion events into the most detailed
reconstruction to date of the Milky Way’s merger tree.

Key words: Galaxy: formation – globular clusters: general – galaxies: evolution – galaxies: formation – galaxies: haloes –
galaxies: star formation.

1 IN T RO D U C T I O N

It is one of the main goals in modern galaxy formation studies to
reconstruct and understand the assembly histories of galaxies (e.g.
Eggen, Lynden-Bell & Sandage 1962; Searle & Zinn 1978; Ibata,
Gilmore & Irwin 1994; Belokurov et al. 2006; Bell et al. 2008; John-
ston et al. 2008; McConnachie et al. 2009; Cooper et al. 2010; Deason
et al. 2013; Pillepich et al. 2014; Kruijssen et al. 2019a). Specifically,
satellite galaxy accretion histories, often expressed in terms of merger
trees, represent a clear and testable prediction of structure formation
in the cold dark matter (�CDM) cosmology (e.g. Bullock & Johnston
2005; Deason, Belokurov & Weisz 2015; Fattahi et al. 2020). In
order to reconstruct these accretion histories, it is necessary to obtain
a comprehensive census of the redshifts at which satellites were
accreted and the (stellar or halo)1 masses of these systems at the time
of accretion. This can be done by identifying a set of observables that

� E-mail: kruijssen@uni-heidelberg.de
1We use the terms ‘halo mass’ and ‘virial mass’ to refer to the sum of the
dark matter and baryonic mass of the galaxy within its virial radius.

traces the galaxy merger tree of the host galaxy. In the Milky Way,
this has recently become possible thanks to two major developments.
First, the Gaia satellite has provided near-complete six-dimensional
(position–velocity) phase–space information for an unprecedented
number of stars and stellar clusters in the Milky Way (e.g. Gaia
Collaboration 2018; Baumgardt et al. 2019; Vasiliev 2019), which
together provides the potential means of inferring the accretion histo-
ries of a wide variety of satellite progenitors. Secondly, the modelling
frameworks have recently been developed to connect the observed
phase–space (e.g. orbital) information to the properties of the progen-
itor satellites (e.g. Belokurov et al. 2018; Haywood et al. 2018; Helmi
et al. 2018; Myeong et al. 2018; Koppelman et al. 2019a; Kruijssen
et al. 2019a, b; Massari, Koppelman & Helmi 2019; Helmi 2020).

In particular, the use of globular clusters (GCs) to trace the assem-
bly history of the Milky Way has seen an increase in applications
(e.g. Forbes et al. 2018a; Helmi et al. 2018; Myeong et al. 2018,
2019; Kruijssen et al. 2019b). Various combinations of GC energies
and angular momenta (i.e. orbits and integrals of motion; Helmi et al.
2018; Myeong et al. 2018), as well as GC ages and metallicities (e.g.
Forbes & Bridges 2010; Leaman, VandenBerg & Mendel 2013; Li &
Gnedin 2014; Choksi, Gnedin & Li 2018; Kruijssen et al. 2019b),
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have provided important constraints on the satellite population that
was accreted by the Milky Way. Most recently, these efforts have been
aided by the E-MOSAICS project, which is a suite of self-consistent,
hydrodynamical cosmological simulations with a complete model for
the formation and evolution of the GC population (Pfeffer et al. 2018;
Kruijssen et al. 2019a). Because these simulations simultaneously
reproduce young and old stellar cluster populations with a single,
environmentally dependent cluster formation and disruption model,
they enable linking the properties of the cluster population to the
assembly history of the host galaxy.

In a recent paper, we used the age–metallicity distribution of
Galactic GCs to infer the formation and assembly history of the
Milky Way, culminating in the partial reconstruction of its merger
tree (Kruijssen et al. 2019b). This work made use of the correlation
in the E-MOSAICS simulations between quantities describing the
formation assembly histories of galaxies (e.g. the dark matter halo
concentration, the number of accretion events, the total number of
progenitors, and the number of minor mergers) and the properties of
their host GC populations (e.g. the number of GCs, the slope of the
age–metallicity distribution, and the median age) to characterize the
assembly history of the Milky Way, and additionally used the detailed
distribution of Galactic GCs in age–metallicity space to derive the
number of accreted satellites and their stellar mass growth histories.
The main conclusions of that work are as follows:

(i) The Galactic GC age–metallicity distribution bifurcates into
a steep, ‘main’ branch of GCs that formed in situ in the Main
progenitor of the Milky Way and a shallow, ‘satellite’ branch at
lower metallicities that is constituted by accreted GCs that formed in
low-mass satellite galaxies. A total of ∼15 such satellites must have
been accreted based on the number of Galactic GCs and the slope
of their age–metallicity distribution, even if only a minority of these
satellites is expected to have brought in detectable numbers of GCs.
At least some of these accretion events may have had no associated
GCs at all (also see e.g. Koppelman et al. 2019b).

(ii) The steepness of the main branch implies that the Milky Way
assembled quickly for its mass, reaching {25, 50} per cent of its
present-day halo mass already at z = {3, 1.5} and half of its present-
day stellar mass at z = 1.2. The growth history of the Milky Way runs
ahead of those typical for galaxies of its z = 0 mass (e.g. Papovich
et al. 2015) by about 1 Gyr.

(iii) There are too many GCs on the satellite branch to be
attributable to a single progenitor, because the number of GCs found
in this branch is considerably larger than that expected for the low
masses of the galaxies (e.g. Harris, Harris & Alessi 2013; Harris,
Blakeslee & Harris 2017) forming stars at the low metallicities
characterizing the satellite branch. At least two (and preferably three)
massive satellites are needed to contribute most of the GCs on the
satellite branch, which is supported by the existence of multiple
kinematic components that were known pre-Gaia (including the
Sagittarius dwarf galaxy; Ibata et al. 1994). It is possible that the
satellite branch contains traces of a larger number of satellites (e.g.
those with only 1–2 GCs, which are not detectable due to Poisson
noise), but the age–metallicity distribution does not provide sufficient
constraints to tell apart small subgroups. Kinematic information
would be necessary to potentially lift this degeneracy.

(iv) The satellite branch in age–metallicity space is quite narrow,
with a total metallicity spread of �[Fe/H] ≈ 0.3 dex, implying that
the masses of the >3 progenitor satellites were similar at any given
lookback time or redshift. For this reason, Kruijssen et al. (2019b)
do not distinguish between the two most massive satellites, implying
that their masses were similar to within a factor of ∼2.

(v) Out of the three identified satellite progenitors, the most
recent (and at a given lookback time least massive) accretion event
corresponds to Sagittarius (Ibata et al. 1994). The next most massive
satellite brought in a large number of GCs, many of which were
formerly associated with the Canis Major ‘mirage’, a perceived
accretion event that never existed and rather represents a density
wave in the Galactic disc (e.g. Martin et al. 2004; Peñarrubia et al.
2005; Deason, Belokurov & Koposov 2018; de Boer, Belokurov &
Koposov 2018). The actual satellite that brought in these GCs has
since been found in the Gaia data (Belokurov et al. 2018) and was
dubbed the Gaia Sausage (Myeong et al. 2018) or Gaia-Enceladus
(Helmi et al. 2018).

(vi) The third progenitor was dubbed ‘Kraken’ and must have had
a mass very similar to that of Gaia-Enceladus. Until recently, it had
not been found. However, in a recent paper, Massari et al. (2019)
identified a group of GCs at low energies in the Gaia DR2 data.
These GCs represent a significant fraction of the satellite branch in
age–metallicity space and thus likely represent the Kraken progenitor
event needed to explain the age–metallicity ‘satellite branch’ GCs
after Sagittarius and Gaia-Enceladus have been accounted for.2

It is one of the main goals of this paper to determine the mass
and accretion redshift of the progenitor that brought in the ‘low-
energy’ GCs from Massari et al. (2019) and thus assess whether this
progenitor is Kraken.

In addition to Kraken, Gaia-Enceladus, and Sagittarius, Massari
et al. (2019) find that the satellite branch accommodates GCs from
two other accreted satellites, i.e. the progenitor of the ‘Helmi streams’
(Helmi et al. 1999) and ‘Sequoia’ (Myeong et al. 2019). In a recent
paper, Forbes (2020) used the numbers of GCs that Massari et al.
(2019) assign to each of the five satellite progenitors to estimate the
galaxy masses, confirming our interpretation that the low-energy
GCs match the predicted properties of Kraken. However, as we
discuss in Section 3.2.1, the approach of using present-day GC
numbers to estimate the host galaxy mass at accretion systematically
overestimates the galaxy masses by up to a factor of 3.

In this paper, we use the groups of GCs identified by Massari et al.
(2019) as having been accreted from the same satellite progenitors to
determine the masses and accretion redshifts of these five galaxies.
To do so, we train an artificial neural network to connect the
properties of the GCs contributed by individual accreted satellites
in the E-MOSAICS simulations to the properties of their host
accretion events. Specifically, we use the median and interquartile
ranges (IQRs) of the GC apocentre radii, eccentricities, ages, and
metallicities as feature variables to predict the target variables of the
accretion redshift and the host stellar mass at the time of accretion.
The resulting neural network is then applied to the groups of GCs
identified by Massari et al. (2019). By combining the resulting
predictions with the constraints on the assembly history of the Milky

2Massari et al. (2019) caution that the GCs suggested by Kruijssen et al.
(2019b) to have been potential members of Kraken do not quite match
their kinematic selection. However, Kruijssen et al. (2019b) used kinematic
information from the literature that preceded Gaia DR2 and therefore
explicitly refrained from associating individual GCs with any particular
satellites. Instead, we encouraged future studies to look for phase–space
correlations between the suggested sets of GCs and those that have been
proposed to be associated with particular accretion events. As such, the
proposed potential member GCs merely represented ‘wish lists’ of interesting
targets for kinematic follow-up work rather than definitive member lists. As
a result, the existence (or not) of Kraken cannot be evaluated based on the
possible membership of individual GCs proposed by Kruijssen et al. (2019b).
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2474 J. M. D. Kruijssen et al.

Way from Kruijssen et al. (2019b), we infer the merger tree of the
Milky Way, identifying five specific accretion events. Future work
applying a similar methodology to field stars is expected to extend
this analysis to additional satellite progenitors.

The structure of this paper is as follows: In Section 2, we
describe the procedure followed to train the neural network on the
E-MOSAICS simulations. In Section 3, we present the accretion
redshifts and stellar masses of the satellite progenitors, and compare
the resulting properties of the progenitors to scaling relations de-
scribing galaxies and their GC populations in the nearby Universe.
In Section 4, we combine this with the stellar mass growth history of
the Milky Way to determine the stellar mass ratios of the accretion
events and reconstruct the merger tree of the Milky Way. We present
our conclusions in Section 5.

2 A N A RT I F I C I A L N E U R A L N E T WO R K
PRED ICTING SATELLITE MASSES AND
AC C R E T I O N R E D S H I F T S F RO M G C
D E M O G R A P H I C S

2.1 Simulation suite and training set

In this paper, we use the suite of 25 zoom-in simulations from the
E-MOSAICS project (Pfeffer et al. 2018; Kruijssen et al. 2019a) to
provide a training set based on which the properties of the progenitor
galaxies of groups of GCs can be predicted. E-MOSAICS is a
suite of hydrodynamical cosmological simulations with a complete,
self-consistent model for the formation and evolution of the GC
population. This suite of simulations combines the model for galaxy
formation and evolution from EAGLE (Crain et al. 2015; Schaye
et al. 2015) with the subgrid model for the formation and evolution
of the entire stellar cluster population MOSAICS (Kruijssen et al.
2011, 2012; Pfeffer et al. 2018). All simulations adopt a �CDM
cosmogony, described by the parameters advocated by the Planck
Collaboration I (2014), namely �0 = 0.307, �b = 0.04825, �� =
0.693, σ 8 = 0.8288, ns = 0.9611, h = 0.6777, and Y = 0.248.

E-MOSAICS reproduces the demographics of young cluster
populations in nearby galaxies (Pfeffer et al. 2019b) (as well as
predicts those of high-redshift galaxies; see Pfeffer et al. 2019a;
Reina-Campos et al. 2019; Keller et al. 2020) and simultaneously
reproduces a wide variety of observables describing the old GC
population in the local Universe, such as the number of GCs per unit
galaxy mass, radial GC population profiles, and the high-mass (M >

105 M�) end of the GC mass function (Kruijssen et al. 2019a),
as well as the mass–metallicity relation of metal-poor GCs (the
‘blue tilt’; Usher et al. 2018; also see Kruijssen 2019), the GC age–
metallicity distribution (Kruijssen et al. 2019b), the kinematics of GC
populations (Trujillo-Gomez et al. 2020), the dynamical mass-loss
histories of massive GCs (Reina-Campos et al. 2018, 2020; Hughes
et al. 2020), and the association of GCs with fossil stellar streams
from accreted dwarf galaxies (Hughes et al. 2019).

The goal of this work is to predict the accretion redshifts (zacc) and
the stellar masses (M�) at the time of accretion on to the Milky Way
of the satellite progenitors identified by Massari et al. (2019). To
this end, we train an artificial neural network with ‘target’ variables
zacc and M� as a function of eight ‘feature’ variables that describe
the properties of the GCs associated with each of these progenitors.
In E-MOSAICS, the accretion redshift is defined as the moment at
which SUBFIND (Springel, Yoshida & White 2001; Dolag et al. 2009)
can no longer find a bound subhalo and the subhalo is therefore
considered to have merged into the halo of the central halo (see Qu
et al. 2017, for discussion). As feature variables, we use the medians

and IQRs of the GC age (τ ), GC metallicity ([Fe/H]), GC orbital
apocentre radius (Ra), and GC orbital eccentricity (ε).3

Across all 25 simulations, we identify all progenitor satellites
with stellar masses of log (M�/M�) ≥ 6.5 that host GCs and
are accreted on to the central galaxy, for a total of Nsat = 205
accretion events, or ∼8 per Milky Way-mass galaxy on average. For
each of these satellite progenitors, we tabulate the target variables
describing the accretion event and the feature variables describing
the properties of the subpopulations of GCs contributed by these
satellites. Because E-MOSAICS overpredicts the number of GCs
at masses much smaller than M ∼ 105 M� due to underdisruption
(Pfeffer et al. 2018; Kruijssen et al. 2019a), we only consider GCs
with z = 0 masses of M ≥ 5 × 104 M�. We verified that the
exact choice of this lower mass limit does not strongly affect the
results of this work, because the median and IQR of GC ages,
metallicities, apocentre radii, and eccentricities are not strongly
correlated with the GC mass. The adopted limit of M ≥ 5 × 104 M�
is found to provide the best compromise between minimizing the
effects of underdisruption (requiring high GC masses) and having a
sufficient number of GCs (requiring low GC masses). In addition,
we restrict the GC metallicities to −2.5 < [Fe/H] < −0.5, in order
to match the range of metallicities of Galactic GCs for which age
measurements are available (Marı́n-Franch et al. 2009; Dotter et al.
2010; Forbes & Bridges 2010; Dotter, Sarajedini & Anderson 2011;
Leaman et al. 2013; Kruijssen et al. 2019b). Had we included GCs
from E-MOSAICS with metallicities outside of that range, this could
potentially have introduced a systematic bias in our results.

Of course, the E-MOSAICS simulations themselves only provide
a finite (and quite small) sample of 25 Milky Way-mass galaxies and
their accretion histories. There is clear evidence that the accretion
history of the Milky Way is atypical for a galaxy of its mass (e.g.
Deason, Mao & Wechsler 2016; Belokurov et al. 2018; Kruijssen
et al. 2019b; Mackereth et al. 2019). Ideally, we would therefore
have been able to use many more simulations, in order to ensure
that the intricacies of the Milky Way’s particular accretion history
are captured by at least one of the galaxies in the sample. However,
we do not find strong variations in the relations between feature and
target variables across the suite of simulations (see Section 2.2 and
Pfeffer et al. 2020), which gives some confidence that the application
of these relations in this paper is robust.

2.2 Details of the neural network

We train a sequential neural network to predict the accretion redshifts
and stellar masses of galaxies accreted by the Milky Way using the
PYTHON packages SCIKIT-LEARN (Pedregosa et al. 2011; Buitinck
et al. 2013) and KERAS (Chollet et al. 2015), which are application
programming interfaces for machine learning and neural networks,
respectively. We construct a neural network with ‘dense’ hidden

3These are not the only possible feature variables, but it is the combination
that we found performs best. For instance, the GC age–metallicity distribution
observed in the Milky Way and simulations exhibits a characteristic shape
(Kruijssen et al. 2019a) that could potentially be better described by using
feature variables of a higher order than just the (uncorrelated) median and IQR
of the age and metallicity. However, as shown in Section 3.1, several of the
GC samples contain low numbers of GCs, which prohibits the use of higher
order diagnostics. We also experimented with including the vertical angular
momentum (Lz) and found that this leads to considerably lower validation
scores. In this case, these indicate that the addition of Lz causes the neural
network to overfit the training data. We have therefore chosen to omit the Lz

information.
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Figure 1. Validation of the neural network. Left: PDF of validation scores across all 10 000 Monte Carlo realizations of the neural network, for models including
different subsets of the feature variables as indicated by the legend. The data point with error bar and the annotation in the top right indicate the median and
16–84th percentiles for the experiment including all feature variables. Middle: PDF of the logarithmic scatter of the predicted stellar masses of the satellite
progenitors around their true stellar masses. Lines and annotation as in the left-hand panel. Right: PDF of the logarithmic scatter of the predicted accretion
redshifts of the satellite progenitors around their true accretion redshifts. Lines and annotation as in the left-hand panel. This figure shows that the neural network
performs well, predicting stellar masses (M�) within a factor of 2.5 and accretion redshifts (1 + zacc) within a factor of 1.35.

layers, i.e. one in which all nodes in successive layers are connected.
The hidden layers use a Rectified Linear Unit (ReLU) activation
function, i.e. f(x) = max (0, x). The architecture of the network is
chosen by optimizing the validation score while varying the number
of hidden layers in the range Nlay = 1–10 and the number of nodes per
layer in the range Nnode = 10–80. The validation score shows little
variation across the parameter space probed, with a slight maximum
around Nlay = 4 and Nnode = 50 (for which the validation score is
0.89+0.06

−0.06; see below). While we adopt these numbers throughout this
work, changing them by up to a factor of 2 does not qualitatively
affect our results. The hidden layers are connected to an input layer
and an output layer. By definition, the input layer consists of eight
nodes (reflecting the number of feature variables) and the output layer
consists of two nodes (reflecting the number of target variables). We
train the neural network 10 000 times, each time adopting a different
random seed and varying the hyperparameters of the network as
discussed below. This Monte Carlo approach allows us to obtain
probability distribution functions (PDFs) of the target variables,
where the resulting dispersion reflects the uncertainties of the neural
network.

We follow the standard practice of training the network on the
scaled feature variables, where across the Nsat data points we use
a standard scaler to subtract the mean and divide by the standard
deviation of each variable. The training set is randomly split into a
training subset and a testing subset. For each Monte Carlo realization
of the neural network, we set the fraction of the training data that
is used for testing the network by randomly drawing ftest from a flat
distribution between 0.2 and 0.3. The network is compiled using the
Adam optimizer with the default hyperparameters within KERAS and
a mean squared error loss function. The neural network is fitted to
the training data for a maximum of 50 epochs, but we use an early
stopping monitor with a patience value of 3. This means that
the fitting loop is stopped when the validation score of the neural
network does not improve for three successive epochs, so that in
practice 50 fitting epochs are never reached. The model with the
highest validation score is saved as a checkpoint and used when
applying the model. The validation score is calculated by separating
off a validation subset that is a fraction fval of the training subset,
where we randomly draw fval from a flat distribution between 0.1

and 0.2 for each Monte Carlo realization of the neural network. This
means that the validation subset consists of fval(1 − ftest)Nsat accretion
events. We then test the neural network by using it to predict the target
variables for the test subset and comparing them to the true values.
The above procedure is repeated for each of the 10 000 Monte Carlo
realizations. Throughout this paper, uncertainties on quoted numbers
reflect the 16th and 84th percentiles of PDFs resulting (or propagated)
from these 10 000 realizations. By drawing ftest and fval from the
aforementioned flat distributions for each Monte Carlo realization,
the uncertainties on the target variables account for the effects of
changing these hyperparameters. Finally, we repeat the entire process
when omitting certain subsets of the feature variables, i.e. when
omitting (1) GC age information, (2) GC metallicity information, (3)
GC age and metallicity information, and (4) GC orbital information.
The goal of carrying out these additional experiments is to identify
which of the feature variables are the best predictors of each of the
target variables and should thus always be included in observational
applications of these neural networks.

Fig. 1 shows the results of the above experiments.4 When including
all feature variables, the neural network achieves a satisfactory
validation score of 0.89+0.06

−0.06. This matches the typical training
score to within the uncertainties, indicating that the model is not
underfitting or overfitting. Omitting any of the feature variables
results in lower validation scores, even if their medians are generally
consistent with the validation score for all feature variables to within
the scatter. The neural network only performs significantly worse
when omitting the GC age and metallicity information, with a
validation score of 0.76+0.07

−0.07. This shows that the GC age–metallicity
distribution encodes crucial information on the stellar masses and
accretion redshifts of the Milky Way’s satellite progenitor galaxies.
This lends further support to the rich body of literature identifying
GC age–metallicity space as an important tracer of galaxy assembly
(e.g. Forbes & Bridges 2010; Leaman et al. 2013; Choksi et al. 2018;
Kruijssen et al. 2019b).

4Throughout this paper, PDFs reflect the 10 000 Monte Carlo realizations of
the neural network. All PDFs are smoothened using the default kernel density
estimator in the SEABORN PYTHON package (Waskom et al. 2020).
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We assess the precision with which the neural network predicts
the stellar masses and accretion redshifts of the satellite progenitors
by calculating the logarithmic standard deviation around the one-
to-one relation for the test subset in each Monte Carlo realization.
The resulting scatter on the stellar mass is σ [log10(M�,pred/M�,true)] =
0.41+0.05

−0.04 when including all feature variables. This precision enables
making quantitative predictions for the satellite progenitor masses.
As before, omitting the age–metallicity information leads to a signif-
icantly worse precision, with σ [log10(M�,pred/M�,true)] = 0.62+0.06

−0.06.
Interestingly, this is mostly driven by the GC metallicities, as omitting
these leads to a scatter of σ [log10(M�,pred/M�,true)] = 0.50+0.07

−0.06,
whereas omitting only the GC age information barely affects the
scatter around the one-to-one relation for true versus predicted
satellite progenitor mass. We conclude that the GC metallicities, in
combination with either GC ages or orbital information, are critical
for constraining the stellar masses of the accreted galaxies.

For the accretion redshifts, we achieve a precision of σ [log10(1 +
zacc,pred/1 + zacc,true)] = 0.13+0.01

−0.01 or about 30 per cent on 1 + zacc.
Accurate predictions for the satellite accretion redshift require
nearly all information to be used, with the exception of the GC
metallicities. Omitting any other feature variable (GC ages or GC
orbital information) leads to significantly worse constraints on the
accretion redshift, with σ [log10(1 + zacc, pred/1 + zacc, true)] > 0.16.
This shows that the accretion redshift is the most challenging of
the two target variables to constrain. The reason it depends on GC
ages is obvious – satellites that were accreted early must have older
GCs. The strong dependence on the orbital information is a bit more
subtle, but also works as expected. Satellites that were accreted early
deposit their GCs at small (apocentre) radii and these GCs end up
with a large spread in eccentricities by z = 0 (Pfeffer et al. 2020).

We do not explicitly consider the uncertainties on the observed
feature variables, but find that their impact must be small. The
GC ages carry the most significant uncertainty, which implies that
the impact of the measurement uncertainties must be smaller than
omitting the age information altogether (see Fig. 1). We can quantify
this as follows. The uncertainty on the median age of a sample of
size N is σ med = [π /2(N − 1)]1/2σ age. For a typical uncertainty of
σage = 0.5 Gyr and a typical number of N = 5–20 GCs per satellite
progenitor, we obtain σmed = 0.1–0.3 Gyr, which is much smaller
than the range of median GC ages considered in this work (both
in the simulations and the observational sample). The same applies
for the IQR, which is larger than 0.5 Gyr for all GC samples. We
thus consider the hyperparameters to be the dominant source of
uncertainty, as quantified in Fig. 1.

In summary, the inclusion of the complete GC age–metallicity in-
formation guarantees the most precise model predictions in general.
The orbital information plays an important role in helping constrain
the accretion redshift. In the following sections, we apply the model
to the GC population of the Milky Way, for which all eight feature
variables are known.

3 R E C O N S T RU C T I N G TH E P RO G E N I TO R
SATELLITE POP ULATION O F THE MILKY WAY

3.1 Definition of the observational sample

Massari et al. (2019) combine the orbital information of the Galactic
GC system with their age–metallicity distribution to identify subsets
of GCs that likely originated in a common progenitor. By dividing
the GC population in this way, they identify five groups of GCs that
plausibly have an extragalactic origin. Four of these they associate
with known accretion events, i.e. the Gaia-Enceladus–Sausage event

(Belokurov et al. 2018; Helmi et al. 2018; Myeong et al. 2018), the
progenitor of the Helmi et al. (1999) streams, the Sequoia accretion
event (Myeong et al. 2019), and Sagittarius (Ibata et al. 1994). In
addition, they identify a group of GCs at low energies (i.e. at high
binding energies), which is similar in number to the GCs associated
with the Gaia-Enceladus event.5 While Massari et al. (2019) are
unable to draw firm conclusions regarding the origin of these low-
energy GCs, we demonstrate below that this group represents the
Kraken accretion event predicted by Kruijssen et al. (2019b). After
identifying these five groups, Massari et al. (2019) combine the
remaining GCs with known ages, metallicities, and orbits in a ‘high-
energy’ group, which are distributed across parameter space and are
unlikely to have originated in a common progenitor. Instead, they
could represent an ensemble of low-mass accretion events that each
contributed one or two GCs. We therefore omit the high-energy group
from our further analysis.

We use the GC ages and metallicities from the compilation of
Kruijssen et al. (2019b, who combined literature measurements from
Forbes & Bridges 2010, Dotter et al. 2010, 2011, and VandenBerg
et al. 2013) and the orbital properties from Baumgardt et al. (2019).
For the five satellite progenitors, we adopt the GC membership
selection from Massari et al. (2019), with a small number of changes.
First, they consider Pal 1 to have formed in situ (i.e. in the ‘Main
progenitor’). However, given its position in age–metallicity space,
it unambiguously belongs to the satellite branch, having a relatively
low metallicity of [Fe/H] = −0.7 at an age of only 7.3 Gyr. In
order to have formed within the Main progenitor, Pal 1 would have
needed to have had roughly solar metallicity (Haywood et al. 2013).
Because it is not known to which satellite progenitor Pal 1 should
be attributed, we omit if from our analysis. Conversely, Massari
et al. (2019) associate NGC 6441 and E3 with the low-energy group
and (possibly) the progenitor of the Helmi streams, respectively.
However, based on their high metallicities ([Fe/H] = −0.6 and
−0.83) at old ages (τ = 11.3 ± 0.9 and 12.8 ± 1.4 Gyr) these GCs
must have formed in the Main progenitor. We therefore classify these
GCs as ambiguous, possibly being members of the low-energy group
or the Main progenitor, and the Helmi streams or the Main progenitor,
respectively. In practice, this means that we exclude E3 from our
analysis (also because of its low mass), and consider versions of the
low-energy group both including and excluding NGC 6441. Finally,
Horta et al. (2020b) argue that NGC 6121, which Massari et al. (2019)
associate with the low-energy group, has an in-situ origin. Based on
the age and metallicity of NGC 6121 (τ = 12.2 ± 0.5 Gyr and
[Fe/H] = −1.14), we consider it too metal poor to have formed in
situ and follow the choice of Massari et al. (2019) to associate it with
the low-energy group, even if we acknowledge that this is an edge
case. The results presented in this paper are unaffected by this choice.

Before proceeding, we note that not all memberships proposed
by Massari et al. (2019) are unambiguous. Several GCs have dual

5At first inspection, the critical binding energy used by Massari et al. (2019)
to separate the GCs belonging to Gaia-Enceladus and the low-energy group
may seem somewhat arbitrary. However, Horta et al. (2020a) recently showed
that the accreted population of metal-poor ([Fe/H] < −0.8) stars in the
bulge shows a clear dearth of stars between the Gaia-Enceladus and low-
energy groups in energy–angular momentum space, exactly at the point where
Massari et al. (2019) separated both groups of GCs. Furthermore, the satellite
branch of GCs in age–metallicity space (see the discussion below) contains
too many GCs at comparatively low metallicities to have been populated by
a single massive satellite progenitor (Kruijssen et al. 2019b). Therefore, we
conclude that the division between the Gaia-Enceladus and low-energy GCs
is well motivated empirically.
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Kraken reveals itself 2477

Figure 2. Orbital properties of the Galactic GC population, expressed in terms of their apocentre radii and eccentricities. In all the panels, we distinguish GCs
that formed in the Main progenitor and those that formed in satellites (largely following Massari et al. 2019, with changes as discussed in the text), as well as
fossil streams that are likely relics of GCs (taken from Bonaca & Kruijssen, 2020), which we do not associate to any specific accretion event here. In each of
the panels, the unambiguous members of each satellite progenitor are highlighted, demonstrating that GCs associated with different satellite progenitors have
different orbital properties.

associations (e.g. ‘low-energy/Sequoia’). We restrict our fiducial
analysis to the GCs that are unambiguously associated with a single
satellite progenitor. However, throughout this paper we systemati-
cally consider all possible membership permutations, i.e. all possible
assignments of ambiguous GCs to the satellite progenitors that
Massari et al. (2019) identify as possible hosts. The goal of this
procedure is to demonstrate how the uncertainties in GC membership
propagate into uncertainties on the stellar masses and accretion
redshifts of the satellite progenitors. From here on, we also refer
to the low-energy GCs of Massari et al. (2019) as Kraken GCs.

We show the distributions of Galactic GCs in the plane spanned by
apocentre radius and eccentricity in Fig. 2 and in the plane spanned
by age and metallicity in Fig. 3, colour coded by their memberships
of each of the five satellite progenitors. In the colour coding, we only
include the unambiguous memberships. In addition, here and in the
subsequent analysis we include observed GCs with masses of M <

5 × 104 M�, contrary to the selection of the training set. This mass cut
only needs to be applied to the simulations, because it compensates
the underdisruption of GCs in E-MOSAICS – real-Universe GCs do
not suffer from this problem, implying that a mass cut is not required.
The inclusion of low-mass GCs has the additional benefit that the
statistics of the observational samples improve somewhat. We do
not expect the inclusion of low-mass GCs to bias the predictions
of the neural network, because the masses of Galactic GCs are not
correlated with age, metallicity, or orbital parameters.

In Fig. 2, the five groups of GCs occupy distinct parts of apocentre–
eccentricity space. The Kraken GCs occupy the smallest radii, but

a considerably wider range of eccentricities than the other satellites
or even than the Main progenitor. This suggests that Kraken was
massive and accreted early (Pfeffer et al. 2020). The Gaia-Enceladus
GCs occupy intermediate radii and high eccentricities, whereas the
GCs associated with the Helmi streams orbit at intermediate radii
and (mostly) intermediate eccentricities. Finally, the Sequoia and
Sagittarius GCs have large apocentre radii, with high and interme-
diate eccentricities, respectively. These differences are suggestive of
differences in origin – the orbital characteristics of each group of
GCs reflect the orbital properties of the accretion events, which
in turn trace the masses and accretion redshifts of the satellite
progenitors.

For reference, Fig. 2 also includes the orbital properties of several
fossil stellar streams in the Galactic halo, taken from Bonaca &
Kruijssen (2020, and originally discovered by Balbinot et al. 2016,
Shipp et al. 2018, and Ibata, Malhan & Martin 2019), which plausibly
originated from disrupted GCs. The reasonable correspondence
between the apocentre–eccentricity distribution of these streams and
that of the GCs associated with each of the five progenitor satellites
implies that several of these streams may be associated with the
same progenitors. In general, the streams seem to be relics of GCs
with an ex-situ origin, as there is little correspondence with the
orbital properties of GCs that formed in the Main progenitor. The
orbital eccentricities of most streams do not reach values as high as
those of Gaia-Enceladus and Sequoia, but instead occupy the low-
to-intermediate eccentricity range. We find one stream (Fimbulthul)
that may possibly be a relic of a GC that formed in Kraken (here
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2478 J. M. D. Kruijssen et al.

Figure 3. Age–metallicity distribution of the Galactic GC population. In all the panels, we distinguish GCs that formed in the Main progenitor and those that
formed in satellites (largely following Massari et al. 2019, with changes as discussed in the text). In each of the panels, the unambiguous members of each
satellite progenitor are highlighted, demonstrating that GCs associated with different satellite progenitors follow different tracks in age–metallicity space. Each
panel also includes a vertical line indicating the time of accretion inferred in Section 3.2, with the shaded band representing the 1σ uncertainty.

selected using Ra � 7 kpc). Three streams (Ophiuchus, Phlegethon,
and Wambelong) may be associated with Gaia-Enceladus, given
their high orbital eccentricities (ε � 0.55) and intermediate radii
(7 � Ra/kpc � 30). A further five streams (Fjörm, GD-1, Ravi,
Sylgr, and Ylgr) orbit at radii (15 � Ra/kpc � 30) and eccen-
tricities (0.2 � ε � 0.55) similar to those of the GCs associated
with the Helmi streams, suggesting that these five streams could
have originated from GCs that were once part of the Helmi et al.
(1999) satellite progenitor. There are no streams unambiguously
associated with the Sequoia GCs, except possibly Gjöll, Jhelum,
Phlegethon, Slidr, and Turranburra (this depends critically on the
membership of IC 4499). Finally, nine streams (ATLAS, Aliqa Uma,
Elqui, Gjöll, Jhelum, Leiptr, Slidr, Turbio, and Turranburra) have
apocentre radii of Ra � 30 kpc and eccentricities of 0.4 � ε � 0.7,
suggesting that they could be disrupted GCs that were brought in
by Sagittarius. We refer to Bonaca & Kruijssen (2020) for more
details on the properties of the fossil streams and conclude this
brief discussion by emphasizing that the selection performed here is
deliberately generous – the inclusion of additional selection criteria
may further trim the sample of streams associated with the satellite
progenitors.

In Fig. 3, we show the age–metallicity distribution of the GC
sample. As for Fig. 2, it is immediately clear that the GCs associated
with the five satellite progenitors occupy a different part of the
plane than those that formed in situ within the Main progenitor.
The figure also shows that there are quantitative differences between

the individual satellites. At any given age, the Kraken GCs are the
most metal rich, which suggests that Kraken was the most massive
satellite at any given moment in time prior to its accretion on to
the Milky Way (in terms of both its stellar and halo mass).6 The
second most massive satellite at any given time is Gaia-Enceladus,
with the progenitor of the Helmi streams, Sequoia, and Sagittarius,
likely having had lower masses at any time, based on the fact that
the metallicities of their GCs are generally lower and their GC
populations are less numerous at young ages (τ < 11 Gyr). Finally,
we see no GCs with ages younger than the accretion redshifts inferred
in Section 3.2, which is an important consistency check. We do
note that the most massive satellites (Kraken, Gaia-Enceladus, and
Sagittarius; see Section 3.2.1) are able to form GCs all the way up
to their time of accretion, whereas the lower mass satellites (the
progenitor of the Helmi streams and Sequoia; also see Section 3.2.1)
have GC formation truncated earlier. This may happen because the
low-mass satellites are getting disrupted more rapidly after they enter
the Galactic halo, whereas the massive satellites survive longer.

6Despite possibly being the most massive at any time prior to its accretion,
Kraken need not be the most massive satellite that the Milky Way ever
accreted, if it was accreted significantly earlier than the other satellites. This
would truncate its growth, whereas satellites that were accreted later would
be able to continue growing their masses. See Section 3.2 for details.
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Kraken reveals itself 2479

Table 1. GC membership adopted in this work. For each satellite progenitor, we consider all possible membership permutations throughout our analysis. The
‘Abbreviation’ column lists the shorthand used to refer to these subsets of GCs in the figure legends.

Possible progenitors Abbreviation GCs

Kraken − NGC 5946, NGC 5986, NGC 6093, NGC 6121, NGC 6144, NGC 6254, NGC 6273, NGC 6287, NGC
6541, NGC 6544, NGC 6681, NGC 6712, NGC 6809

Kraken/Main progenitor Kraken/Main NGC 6441
Kraken/Sequoia Kraken/Seq NGC 6535
Gaia-Enceladus G-E NGC 288, NGC 362, NGC 1261, NGC 1851, NGC 1904, NGC 2298, NGC 2808, NGC 4147, NGC 4833,

NGC 5286, NGC 5897, NGC 6205, NGC 6235, NGC 6284, NGC 6341, NGC 6779, NGC 6864, NGC
7089, NGC 7099, NGC 7492

Gaia-Enceladus/Sequoia G-E/Seq NGC 5139
Helmi streams H99 NGC 4590, NGC 5024, NGC 5053, NGC 5272, NGC 6981
Helmi streams/Gaia-Enceladus H99/G-E NGC 5634, NGC 5904
Sequoia Seq NGC 5466, NGC 7006, IC4499
Sequoia/Gaia-Enceladus Seq/G-E NGC 3201, NGC 6101
Sagittarius – NGC 2419, NGC 5824, NGC 6715, Pal 12, Terzan 7, Terzan 8, Arp 2, Whiting 1

3.2 Application of the neural network

We take the neural network described in Section 2 and apply it to
the GC populations associated with each of the satellite progenitors
to obtain their stellar masses and accretion redshifts. We list the
adopted memberships in Table 1. As discussed above, some of
the memberships are ambiguous. Throughout the majority of the
following discussion, we consider all possible permutations that at
least include the unambiguous members of each satellite progenitor.
For progenitors that are listed {1, 2, 3, 4} times in Table 1, this means
that we need to consider {1, 2, 4, 8} possible permutations, for a total
of 23 permutations across all five satellite progenitors.

For each Monte Carlo realization of the neural network and for
each membership permutation, we subject the eight feature variables
(medians and IQRs of the GC age, metallicity, apocentre radius, and
eccentricity) to the same scaler transform as we did for the training
set in Section 2.2, i.e. we subtract the mean of the training set and
divide by the standard deviation of the training set. This transforms
the GC properties to the same coordinate space used to train the
network. We then use the neural network to predict the two target
variables (satellite progenitor stellar mass and its accretion redshift).
This results in 10 000 predictions for each target variable and for
each GC membership permutation.

3.2.1 Stellar masses at the time of accretion

Fig. 4 shows the PDFs of the stellar mass of the satellite progenitors
at the time of accretion (see Section 2.1 for its definition). The
satellite progenitors span a relatively narrow range of stellar masses
at the time of accretion, of a factor of 3–4. As expected, Kraken
and Gaia-Enceladus are the main accretion events, with stellar
masses of M� = 1.9+1.0

−0.6 × 108 and 2.7+1.1
−0.8 × 108 M�, respectively.

These masses exceed those of the progenitor of the Helmi streams
and Sequoia, which had stellar masses of M� = 0.9+0.5

−0.3 × 108 and
0.8+0.2

−0.2 × 108 M�, respectively. Somewhat surprisingly, Sagittarius
is predicted to have had a mass of M� = 2.8+1.8

−1.1 × 108 M�, similar
to Kraken and Gaia-Enceladus when they merged, despite the
Sagittarius GCs having lower metallicities when considering the
same GC age interval. This high mass is enabled by the late time
of its accretion, giving it more time to grow its stellar mass than
Kraken and Gaia-Enceladus had before they got cannibalized (see
Section 3.2.2).

The stellar masses that we infer for each of the satellite progenitors
are only weakly affected by the GC membership permutation. The

total spread of the median falls within the uncertainties on the
prediction for all progenitors except Sequoia, for which the inclusion
of ambiguous GCs can increase its mass by up to 0.2 dex. This is
not surprising, because a large fraction (40 per cent) of the GCs
potentially associated with Sequoia is ambiguous. For all other
progenitors, the impact of the membership ambiguity is smaller and
usually of the order of 0.1 dex.

Relative to other measurements in the literature, we find a lower
mass for Gaia-Enceladus than Helmi et al. (2018), who provide a
very rough estimate of M� ∼ 6 × 108 M� from the star formation rate
(∼0.3 M� yr−1) and duration (∼2 Gyr) necessary to reproduce the
α-poor stellar population (Fernández-Alvar et al. 2018). The back-
of-the-envelope nature of this estimate makes it quite uncertain and,
depending on the membership of the α-poor stellar population, it
may represent an upper limit. We therefore consider our predicted
stellar mass broadly compatible with the estimate of Helmi et al.
(2018), but point out that the prediction made here is likely to be
more accurate, as well as more meaningful thanks to the inclusion
of error bars on the predictions. In Kruijssen et al. (2019b), we
estimated that both Kraken and Gaia-Enceladus had masses as high
as 109 M� at the time of accretion, based on the age–metallicity–
mass distribution of central galaxies in the EAGLE simulation. In
this paper, we place them at a lower mass, because the satellites that
are accreted on to Milky Way-mass centrals have lower masses than
field dwarf galaxies, as their star formation may be halted soon after
falling into the halo. The neural network trained here automatically
accounts for this bias, which was left unaccounted for by Kruijssen
et al. (2019b).

The stellar masses inferred for the final three satellite progenitors
also agree with previous literature results. Koppelman et al. (2019a)
estimate that the progenitor of the Helmi streams had a mass
of M� ∼ 108 M� when it accreted, which is entirely consistent
with our prediction. Likewise, Myeong et al. (2019) estimate that
Sequoia had a stellar mass at the time of accretion of M� =
1.7 × 108 M�, with a factor-of-few uncertainty, again consistent with
the mass reported above. Finally, Niederste-Ostholt et al. (2010) and
Niederste-Ostholt, Belokurov & Evans (2012) find that the stellar
mass of Sagittarius at the time of accretion was M� = (2.0–2.9) ×
108 M� (assuming a mass-to-light ratio of M/L = 2 M� L−1

� ),
compatible with our prediction. Sagittarius is by far the best-studied
accretion event out of the five considered here. The fact that the
neural network’s prediction for the mass of this galaxy is in such
good agreement with independent mass estimates from the literature
adds credence to the network’s predictions for the masses of the
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2480 J. M. D. Kruijssen et al.

Figure 4. PDFs of the predicted stellar masses of the satellite progenitors, inferred by applying a neural network trained on the E-MOSAICS simulations to
their GC populations. Each PDF shows the distribution across all 10 000 Monte Carlo realizations of the neural network, applied to different GC membership
permutations as indicated by the legend (also see Table 1). In each panel, the solid data point with error bar and the annotation in the top right indicate the
median and 16–84th percentiles for the experiment using the unambiguous member GCs (corresponding to the solid line in that panel). The transparent data
point with error bar indicates the systematic uncertainty that applies to the full sample of progenitors. This figure shows that the five satellite progenitors span a
relatively narrow stellar mass range of M� = (0.6–4.6) × 108 M�.

other satellite progenitors (as well as their accretion redshifts; see
Section 3.2.2).

Forbes (2020) estimates the stellar masses of the satellite progen-
itors considered here by using the total number of GCs (including
ambiguous members) as a probe of the halo mass and converting it
to a stellar mass by adopting a stellar mass–halo mass relation. This
makes the strong assumption that the relation between the number
of GCs and the halo mass at z = 0 does not evolve with redshift. If
the number of GCs per unit halo mass is higher at high redshift (as
suggested by, e.g. Kruijssen 2015; Choksi & Gnedin 2019; El-Badry
et al. 2019; Bastian et al. 2020), this assumption overestimates the
galaxy mass. Likewise, the inclusion of ambiguous GCs as members
also maximizes the galaxy mass. For these reasons, the resulting es-
timates of the stellar masses represent (quite uncertain) upper limits,
because they effectively represent projected masses at z = 0 rather
than at the time of accretion. For Kraken, Gaia-Enceladus, the pro-
genitor of the Helmi streams, Sequoia, and Sagittarius, Forbes (2020)
estimates log (M�/M�) = {8.7, 8.9, 7.9, 7.9, 7.9}. Out of these, the
masses of the progenitor of the Helmi streams and Sequoia are con-
sistent with the masses derived here. The masses of Kraken and Gaia-
Enceladus are larger, most likely due to the biases described above.
The mass of Sagittarius is lower than both the result of Niederste-
Ostholt et al. (2012) and the mass derived in this paper, possibly be-
cause the sample of GCs attributed to Sagittarius may be incomplete.

We conclude the discussion of Fig. 4 by pointing out that the
quoted error bars on the predictions reflect random uncertainties.
A comparison to the standard deviation shown in the middle panel
of Fig. 1 (which is larger than the typical error bar) suggests the
existence of an additional systematic uncertainty that may affect all
stellar mass measurements by up to 0.3 dex.

3.2.2 Accretion redshifts

Fig. 5 shows the PDFs of the accretion redshifts of the satellite
progenitors, which is defined in E-MOSAICS as the moment at
which we can no longer detect a gravitationally bound subhalo (see
Section 2.1). As is immediately obvious from the figure, the satellite
progenitors span a wide range of accretion redshifts. Chronologically,
Kraken was the first galaxy to be accreted (zacc = 2.26+0.39

−0.45 or
tacc = 10.9+0.4

−0.7 Gyr), followed by the progenitor of the Helmi streams
(zacc = 1.75+0.42

−0.37 or tacc = 10.1+0.7
−0.9 Gyr). Sequoia (zacc = 1.46+0.17

−0.17 or
tacc = 9.4+0.4

−0.5 Gyr) and Gaia-Enceladus (zacc = 1.35+0.26
−0.23 or tacc =

9.1+0.7
−0.7 Gyr) accreted at approximately the same time, but still well

before Sagittarius (zacc = 0.76+0.22
−0.19 or tacc = 6.8+1.1

−1.1 Gyr), which
is the final accretion event considered here. For all five satellite
progenitors, the lookback time of accretion is consistent with (or
larger than) the age of the youngest associated GC, which provides
an important consistency check (see Fig. 3).
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Kraken reveals itself 2481

Figure 5. PDFs of the predicted accretion redshifts of the satellite progenitors, inferred by applying a neural network trained on the E-MOSAICS simulations
to their GC populations. Each PDF shows the distribution across all 10 000 Monte Carlo realizations of the neural network, applied to different GC membership
permutations as indicated by the legend (also see Table 1). In each panel, the solid data point with error bar and the annotation in the top right indicate the median
and 16–84th percentiles for the experiment using the unambiguous member GCs (corresponding to the solid line in that panel). The transparent data point with
error bar indicates the systematic uncertainty that applies to the full sample of progenitors. This figure shows that the five satellite progenitors accreted over a
wide redshift range of zacc = 0.57–2.65, corresponding to lookback times of tacc = 5.7–11.3 Gyr.

The large variety of accretion redshifts explains an apparent
inconsistency that appeared above. In the discussion of Fig. 3, we
previously inferred the mass-ranked order of satellites at a given
age from their metallicity offsets and suggested that Kraken was the
most massive satellite, whereas Sagittarius was one of the lowest
mass ones. As discussed above, this differs from their inferred mass-
ranked order at the time of their accretion (see Fig. 4). We now see
that this difference arises because satellites that were accreted early
had their mass growth cut short, whereas those that were accreted
late continued to grow long after the other; initially, more massive
satellites were disrupted.

For a subset of the satellite progenitors, the GC membership
permutation influences the accretion redshift more strongly than
it affects the stellar masses (see the discussion of Fig. 4). When
expanding the sample of unambiguous Kraken GCs with NGC 6441,
which most likely formed in situ in the Main progenitor (see Sec-
tion 3.1), the accretion redshift decreases considerably, to zacc ≈ 1.8.
However, this is extremely unlikely to be accurate given the high
metallicity ([Fe/H] = −0.6) and old age (τ = 11.3 ± 0.9 Gyr) of
NGC 6441. When omitting NGC 6441 from the ex-situ sample,
the GC membership permutation has no significant influence on the
accretion redshift of Kraken. Likewise, the accretion redshifts of
Gaia-Enceladus and the progenitor of the Helmi streams are not
significantly affected by the GC membership selection, as the shifts

of the median fall well within the quoted uncertainties. As for its
stellar mass, the accretion redshift of Sequoia changes for different
GC membership permutations. Specifically, when attributing the
ambiguous GC NGC 6535 to Sequoia, it systematically has a higher
accretion redshift of zacc ≈ 1.7. While the position of NGC 6535 in
age–metallicity space ([Fe/H] = −1.73 and τ = 12.2 ± 0.6 Gyr)
does not allow distinguishing between Kraken and Sequoia, its
orbital properties (Ra ≈ 4.5 kpc and ε ≈ 0.63) clearly place it in
a part of the orbital parameter space that is not covered by any
of the Sequoia GCs (which occupy Ra > 25 kpc in the selection
of Massari et al. 2019) and is rather consistent with the Kraken
GCs (which have Ra < 7 kpc).7 When omitting NGC 6535 from
the Sequoia membership permutations, the accretion redshift is
always consistent with the value reported for the unambiguous GC
membership assignment.

7We note that Myeong et al. (2019) associate additional GCs with Sequoia
that also have apocentres Ra < 10 kpc (NGC 5139 and NGC 6388). The
first of these is included in our other permutations for Sequoia (see Table 1),
implying that its inclusion or omission does not affect our results, whereas
we omit NGC 6388 altogether, because its age (τ = 12.0 ± 1.0 Gyr) and
metallicity ([Fe/H] = −0.77) imply that it likely formed in situ.
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Relative to other measurements in the literature, our predicted
accretion redshifts largely satisfy the constraints obtained through in-
dependent methods. Helmi et al. (2018) estimate that Gaia-Enceladus
was accreted ∼10 Gyr ago, whereas Belokurov et al. (2018) estimate
a range of 8–11 Gyr ago, and Mackereth et al. (2019) provide an upper
limit on the accretion redshift of zacc < 1.5 (or tacc < 9.5 Gyr). All
three of these constraints are consistent with our predicted range of
tacc = 9.1+0.7

−0.7 Gyr. The same applies for Sequoia, which has been
proposed to have been accreted 9–11 Gyr ago (Myeong et al. 2019),
consistent with our estimate of tacc = 9.4+0.4

−0.5 Gyr.
By contrast, Koppelman et al. (2019a) propose that the progenitor

of the Helmi streams was accreted 5–8 Gyr ago, whereas our
analysis predicts tacc = 10.1+0.7

−0.9 Gyr. As discussed above, extending
the GC membership leads to even later accretion redshifts. The
estimate of Koppelman et al. (2019a) is based on collisionless N-body
simulations of the Helmi streams, obtaining a best kinematic match
for accretion times of 5–8 Gyr. However, they do find that the stellar
age range of the Helmi streams is τ = 11–13 Gyr. The agreement
of the lower bound of the age range with our predicted accretion
time suggests that star formation in the progenitor of the Helmi
streams may have been truncated by its tidal disruption in the Galactic
halo. If this interpretation is correct, then it remains an important
open question how the dynamical constraints from Koppelman et al.
(2019a) can be reconciled with this picture. There are several possible
explanations. The upper limit on the accretion time reported by
Koppelman et al. (2019a) of 8 Gyr reflects the maximum of the range
of accretion times considered in their dynamical models, indicating
that earlier accretion times may be dynamically possible, but have
not been explored. The dynamical models also assume that the orbits
do not evolve in time and neglect dynamical friction. Finally, Helmi
(2020) notes that the orbit is close to a resonance, which would slow
the spreading of the stars away from the stream, thereby biasing
the analysis of Koppelman et al. (2019a) towards later accretion
times. In view of these considerations, a plausible solution would
be to extend the orbital parameter space surveyed by Koppelman
et al. (2019a) to look for a kinematic match that also satisfies the
prediction of our model, accounting for the effects of resonances
if necessary.

For Sagittarius, the simulations of Law & Majewski (2010) and
Niederste-Ostholt et al. (2012) suggest that it has been undergoing
intense tidal disruption for the past 4–7 Gyr. Which moment in this
interval corresponds to our time of accretion (as obtained from the
E-MOSAICS simulations) depends quite sensitively on its definition.
The large time interval over which the disruption of Sagittarius
has been taking place greatly complicates this interpretation. At
face value, the time over which Sagittarius has been strongly
disrupted is consistent with our prediction of tacc = 6.8+1.1

−1.1 Gyr.
Using the association of GCs with stellar streams from disrupted
dwarf satellites in E-MOSAICS, Hughes et al. (2019) find a relation
between the age range of accreted GCs and the stellar mass of the
satellite progenitor, where excursions from that relation are strongly
correlated with the infall time, i.e. the time at which the progenitor
crosses the virial radius of the halo. Applying these relations to
Sagittarius, Hughes et al. (2019) predict that it entered the halo of
the Milky Way tinfall = 9.3 ± 1.8 Gyr ago. This upper limit on the
time of accretion is consistent with our prediction, as well as with
the long time (at least 4–7 Gyr) spent by Sagittarius in the Galactic
halo.

Finally, we point out that the quoted error bars on the predictions
reflect random uncertainties. A comparison to the standard deviation
shown in the right-hand panel of Fig. 1 (which is larger than the
typical error bar) suggests the existence of an additional systematic

uncertainty that may affect all accretion redshift measurements by
up to 0.25 points in redshift.

3.2.3 Scaling relations between GC subpopulations and their host
satellite progenitor masses

There exist well-documented relations between the total number
(NGC) or mass (MGCS) of GCs and the stellar (M�) or halo virial (Mh)
mass of the host galaxy (e.g. Spitler & Forbes 2009; Durrell et al.
2014; Hudson, Harris & Harris 2014; Harris et al. 2017; Forbes et al.
2018b; Burkert & Forbes 2020). Because these relations are close to
linear, they are often expressed in terms of number ratios, such as
the specific frequency normalized by stellar mass (TN ≡ NGC/M�)
or by halo mass (ηN ≡ NGC/Mh), or in terms of the ratio between the
total GC system mass and the halo virial mass (ηM ≡ MGCS/Mh). It
is an important question whether these relations are fundamental and
were imprinted at the time of GC formation (Spitler & Forbes 2009;
Boylan-Kolchin 2017; Harris et al. 2017; Burkert & Forbes 2020)
or if they result from a combination of ongoing baryonic processes
and further linearization by hierarchical galaxy assembly (Kruijssen
2015; Choksi et al. 2018; van Dokkum et al. 2018; El-Badry et al.
2019; Bastian et al. 2020). The key underlying question is how these
metrics evolve with redshift. If they are imprinted at birth, they should
exhibit little redshift evolution. However, if they are the outcome of
gradual galaxy formation processes, then they should evolve with
redshift. It is hard to avoid this interpretation – the fact that GCs are
disrupted and galaxies grow with time means that the above metrics
(TN, ηN, and ηM) should be higher at higher redshifts. Now that we
have obtained the stellar masses, accretion redshifts, and number of
GCs of the satellite progenitors, we can infer the above metrics at
the times of satellite accretion and compare them to the relations
observed across the z = 0 galaxy population. In addition to shedding
light on the nature of the above scaling relations, placing the satellite
progenitors in the context of these scaling relations also serves as an
important consistency check.

To calculate the halo virial mass at the time of accretion for each
of the satellite progenitors, we use the semi-empirical determination
of the average relation between the stellar mass and halo mass as
a function of redshift from Moster, Naab & White (2013), which
is constrained by the observed evolution of the galaxy stellar mass
function. We use their analytical expression to predict the stellar
mass as a function of halo mass and redshift, and then numerically
invert it by cubic interpolation to calculate the halo mass over the
halo mass range Mh = 1010–1012 M� and the redshift range z = 0–5.
In addition, we obtain the number of GCs by simply counting the
members (see Table 1), and the total mass of the GC system by adding
up the individual (dynamical) GC masses from Baumgardt & Hilker
(2018). Strictly speaking, this provides a lower limit, because there is
no guarantee that the GC membership list is complete. The restriction
of the sample to GCs for which all eight feature variables are known
results in an underestimation of the number of GCs by 0.0–0.3 dex,
or 0.12 dex on average (compare our Table 1 to Massari et al. 2019).
Likewise, we necessarily omit any effects of GC disruption in the
Milky Way halo – if we could assign any of the fossil streams shown
in Fig. 2 to individual satellite progenitors, this would also increase
the number of GCs and their total mass. None the less, it allows us
to calculate (lower limits on) TN, ηN, and ηM at the time of accretion
for each of the five satellite progenitors and their GC membership
permutations. Uncertainties on the resulting numbers are obtained
by calculating the 16th and 84th percentiles across all 10 000 Monte
Carlo realizations of the neural network.
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Figure 6. GC specific frequency (top row, TN ≡ NGC/M�), the number of GCs per unit halo virial mass (middle row, ηN ≡ NGC/Mh), and the ratio between
the GC system mass and halo mass (bottom row, ηM ≡ MGCS/Mh), shown as a function of the galaxy stellar mass (left-hand column) and halo mass (right-hand
column). The predictions for the satellite progenitors considered in this work are shown by the coloured symbols, with colours matching the GC membership
permutations from Figs 4 and 5, and symbol shapes referring to the different progenitors as indicated by the legend. The observed galaxy population at z = 0
(Harris et al. 2017) is represented by the small grey symbols, showing early-type (E/S0) and late-type (S/Irr) galaxies. The solid line shows the running median
across a 1 dex window, with 16th and 84th percentiles indicated by the grey-shaded band. In the bottom row, the horizontal dashed line indicates the roughly
constant value of ηM = 2.9 × 10−5 observed at z = 0 (Harris et al. 2017). The predictions for the satellite progenitors are lower limits by 0.0–0.3 dex (0.12 dex
on average) due to sample incompleteness.

Fig. 6 shows how TN, ηN, and ηM vary as a function of M� and Mh,
both for the satellite progenitors considered here and for the z = 0
galaxy sample from Harris et al. (2017), which includes 257 early-
type galaxies (E/S0) and 46 late-type galaxies (S/Irr). In general,
the satellites satisfy the scaling relations between the number or
mass of GCs and the halo mass, exhibiting a similar scatter of ηN

and ηM as the z = 0 galaxy population. However, for the specific
frequency (TN), they fall above the observed relation, suggesting that

the relation between NGC and M� (or Mh) evolved since the accretion
redshifts of the satellite progenitors. Interestingly, the satellite that
accreted the most recently (Sagittarius) is the most consistent with the
observations, whereas the satellite that accreted the earliest (Kraken)
shows the strongest excess, together with Gaia-Enceladus, falling
0.5 dex above the observations at z = 0. This is no firm evidence,
but at least suggests that the stellar mass of isolated galaxies with
halo masses around Mh ∼ 1011 M� grew by a factor of ∼3 in stellar
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mass since zacc ∼ 1. This is consistent with the abundance matching
models of Moster et al. (2013), who predict a stellar mass growth
by a factor of ∼5 over the same time interval, and of Behroozi,
Wechsler & Conroy (2013), who predict a factor of ∼4. If true, this
result implies that future observations of GC populations at z > 1
should find higher specific frequencies.8

Across all six relations shown in Fig. 6, there is no strong
dependence on the GC membership permutation. As before, Sequoia
shows the most pronounced variation, but this falls within the scatter
of the relations observed at z = 0. The robustness of these results has
two main implications. First, the inferred stellar masses and accretion
redshifts of the satellite progenitors obtained here produce scaling
relations that are in satisfactory agreement with observations at z =
0, lending some further credence to the analysis presented in this
work. Secondly, we find some evidence that the specific frequency
TN changes with redshift, consistent with models suggesting that GC
formation is fundamentally a baryonic process that results in relations
with host galaxy properties that evolve in the context of hierarchical
galaxy formation and evolution (e.g. Kruijssen 2015; Choksi et al.
2018; Pfeffer et al. 2018; El-Badry et al. 2019; Kruijssen et al. 2019a;
Bastian et al. 2020).

4 ME R G E R H I S TO RY O F T H E MI L K Y WAY

4.1 Merger mass ratios

Having inferred the accretion redshifts and the stellar masses at
the time of accretion of Kraken, Gaia-Enceladus, the progenitor of
the Helmi streams, Sequoia, and Sagittarius, we place these results
in the context of the formation and assembly history of the Milky
Way. Because these accretion events took place at different points
in the Milky Way’s history, it is somewhat non-trivial to assess how
major (or minor) these mergers were. To calculate the merger mass
ratios, we combine the stellar masses and accretion redshifts of the
five satellite progenitors with the stellar mass growth history of the
Milky Way that we inferred in Kruijssen et al. (2019b, fig. 4). We
use a Monte Carlo approach to account for the uncertainties on
this mass growth history. The mass growth history results from
comparing the age–metallicity distribution of in-situ GCs, formed
in the Main progenitor of the Milky Way, to the age–metallicity–
mass distribution of central galaxies in the EAGLE simulations. Both
the mass growth history and its corresponding chemical enrichment
history are consistent with independent constraints inferred from the
chemical abundances of thick-disc field stars and the resulting star
formation history (see Kruijssen et al. 2019b, for further discussion;
Snaith et al. 2014, 2015). The merger mass ratio then follows as
M�/M�,MW(zacc), where M�,MW(zacc) is the stellar mass of the Milky
Way at the time of accretion. By following this procedure, we obtain
a predicted mass ratio for each of the 10 000 Monte Carlo realizations
of the neural network and for each GC membership permutation.

Fig. 7 shows the PDFs of the merger stellar mass ratio, i.e. the
ratio between the stellar mass of the satellite progenitors at the time
of accretion (see Section 2.1 for its definition) and the stellar mass of

8This prediction is not affected directly by the details of the GC formation
and disruption model in E-MOSAICS, because we use the observed numbers
of GCs rather than the numbers of GCs produced in the E-MOSAICS
simulations. Of course, the inferred satellite progenitor masses (i.e. the
denominators of TN, ηN, and ηM) do rely on the GC demographics from E-
MOSAICS, but the medians and IQRs of their ages, metallicities, apocentre
radii, and eccentricities are not as strongly affected by the details of GC
formation and disruption as their absolute numbers are.

the Milky Way at that time. Because the stellar mass ratio is a derived
quantity that combines several variables with their own uncertainties
(satellite stellar mass, accretion redshift, and Milky Way stellar
mass), the uncertainties on the mass ratios are considerable. None the
less, Fig. 7 reveals a wide range of mass ratios, even if all accretion
events represent minor mergers, i.e. with mass ratios of rM�

< 1:4.
Kraken is very likely to have been the most major merger that the
Milky Way ever experienced,9 with a mass ratio of rM�

= 1:31+34
−16.

This mass ratio is well in excess of that of Gaia-Enceladus (rM�
=

1:67+41
−27), because Kraken accreted much earlier, when the stellar

mass of the Milky Way was a factor of ∼3 lower than that when Gaia-
Enceladus accreted. Inspection of the PDF across all 10 000 Monte
Carlo realizations shows that Kraken has a probability of 0.3 per cent
to have been a major merger, with a mass ratio of rM�

> 1:4. For all
other satellite progenitors, this probability is <0.01 per cent – we can
only provide an upper limit, because among the 10 000 Monte Carlo
realizations there are no cases of a mass ratio rM�

> 1:4. The other
accretion events, i.e. of the progenitor of the Helmi streams, Sequoia,
and Sagittarius, are truly minor, with mass ratios of rM�

= 1:110+99
−54,

1:191+100
−67 , and 1:104+70

−43, respectively. This implies that the Milky
Way must have grown in mass mostly by gas accretion and in-situ
star formation (also see Trujillo-Gomez et al. 2020).

For Kraken and Gaia-Enceladus, the choice of GC membership
permutation affects the merger mass ratio by 0.1 dex or less,10

highlighting that these mass ratios are robust. However, the pro-
genitor of the Helmi streams and (especially) Sequoia have merger
mass ratios that are quite sensitive to membership selection. If
NGC 5634 and NGC 5904 (representing the ‘H99/G-E’ group in
Table 1) are included, the merger mass ratio of the progenitor of the
Helmi streams becomes rM�

= 1:70+59
−33, due to the combination of a

higher accretion redshift and a higher stellar mass. Likewise, adding
any of the ambiguous GCs to Sequoia increases its merger mass
ratio, which for most membership permutations also results from a
combination of a higher accretion redshift and a higher stellar mass.
In all cases including at least one group of ambiguous GCs, Sequoia’s
mass ratio increases to around rM�

≈ 1:130. While these represent
genuine systematic uncertainties, the qualitative conclusion remains
unchanged – both the progenitor of the Helmi streams and Sequoia
represent truly minor mergers.

There are no estimates of the merger mass ratio available in the
literature for any of the satellite progenitors considered in this work,
except for Gaia-Enceladus. Helmi et al. (2018) estimate that the mass
ratio of the Gaia-Enceladus accretion event was rM�

≈ 1:17, which
is about a factor of 4 higher than that predicted by our analysis.
Two ingredients contribute roughly equally to this difference. First,

9Of course, the Milky Way may have experienced very early major mergers
with galaxies hosting few or no GCs. In Section 4.2, we suggest that any such
mergers must have had masses considerably smaller than M� ∼ 108 M�,
suggesting that the Milky Way would have had a mass of M� � 109 M�. For
the stellar mass growth history of the Milky Way that we inferred in Kruijssen
et al. (2019b), this would imply merger redshifts of z � 4. These redshifts
were characterized by such high merger rates (with major merger rates of
∼1 Gyr−1; see e.g. Fakhouri, Ma & Boylan-Kolchin 2010) that it would be
challenging to identify discrete events. We therefore maintain the statement
made here and consider the accretion history of the Milky Way prior to z ∼
4 to have been ‘a mess’.
10This spread is smaller than the corresponding spread of satellite stellar
mass in Fig. 4, because the stellar mass and accretion redshift are covariant.
For lower accretion redshifts (and a more massive Milky Way at the time of
accretion), the model also predicts a higher satellite mass, which suppresses
the variation of the merger mass ratio.
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Figure 7. PDFs of the predicted merger stellar mass ratios of the satellite progenitor accretion events on to the Milky Way, inferred by applying a neural
network trained on the E-MOSAICS simulations to their GC populations. Each PDF shows the distribution across all 10 000 Monte Carlo realizations of the
neural network, applied to different GC membership permutations as indicated by the legend (also see Table 1). In each panel, the data point with error bar and
the annotation in the top right indicate the median and 16–84th percentiles for the experiment using the unambiguous member GCs (corresponding to the solid
line in that panel). This figure shows that the five accretion events are all minor mergers, spanning a wide range of mass ratios rM� = 1:(15–291). The accretion
of Kraken likely represents the most major merger that the Milky Way ever experienced.

we predict a mass of Gaia-Enceladus itself that is about a factor
of 2.2 lower than that quoted by Helmi et al. (2018). We discuss
in Section 3.2.1 why we expect our estimate to be more accurate.
Secondly, we predict that the mass of the Milky Way at the time of
accretion was about a factor of 1.8 higher than the mass adopted by
Helmi et al. (2018). Given the approximate nature of the numbers
quoted by Helmi et al. (2018), we consider our merger mass ratio to
be in rough agreement, but also expect it to be more accurate, because
it is based on the self-consistent orbital and chemical evolution of
satellite galaxies in hydrodynamical cosmological simulations.

To complement Fig. 7, Fig. 8 shows the PDFs of the merger
halo mass ratio, i.e. the ratio between the halo mass of the satellite
progenitors at the time of accretion (see Section 2.1 for its definition)
and the halo mass of the Milky Way at that time (again obtained
using the relation between stellar mass, halo mass, and redshift from
Moster et al. 2013). Despite the fact that the halo mass ratio is
a derived quantity that combines several variables with their own
uncertainties, the relative uncertainties on the halo mass ratio are
smaller than those on the stellar mass ratio, because the halo mass is
a sublinear function of the stellar mass. As a result, Fig. 8 reveals a
relatively narrow range of halo mass ratios, with rMh = 1:(5–24) and
most halo mass ratios being around rMh ≈ 1:10. The halo mass ratio
obtained for Gaia-Enceladus (rMh = 1:11+4

−3) is considerably smaller
than that estimated by Helmi et al. (2018), who find rMh ≈ 1:4. The

reason is the same as for the stellar mass ratios above – we obtain
masses of both Gaia-Enceladus and the Milky Way at the time of
accretion that are both somewhat lower. In part, the discrepancy
arises because Helmi et al. (2018) assume that Gaia-Enceladus was
similar in stellar mass to the Large Magellanic Cloud, which we find
is an overestimation.

The halo masses and merger halo mass ratios obtained here may
carry some systematic uncertainty, because the Moster et al. (2013)
model predicts a halo mass of Mh = 2 × 1012 M� for a galaxy with
the stellar mass of the Milky Way. This is twice as large as recent
estimates of the actual virial mass (1.1 ± 0.2 × 1012 M�; Cautun
et al. 2020) and causes galaxies in the Moster et al. (2013) model with
the stellar mass of the Milky Way to reach the currently observed
virial mass already by z = 1.4. It is not clear if the empirical model of
Moster et al. (2013) systematically overestimates all halo masses by
a similar factor or if the Milky Way is simply an outlier. In the former
case, our merger halo mass ratios are accurate, but the absolute halo
masses of the satellite progenitors are overestimated by up to a factor
of 2. In the latter case, our merger halo mass ratios are underestimated
by up to a factor of 2, but the absolute halo masses of the satellite
progenitors are accurate. Regardless, the estimated uncertainties of
empirical halo abundance matching models are large enough to be
consistent with the virial mass of the Milky Way (e.g. Behroozi et al.
2013, fig. 14).
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Figure 8. PDFs of the predicted merger halo mass ratios of the satellite progenitor accretion events on to the Milky Way, inferred by applying a neural network
trained on the E-MOSAICS simulations to their GC populations and adopting the relation between stellar mass and halo mass at the accretion redshift from
Moster et al. (2013) to obtain the halo masses. Each PDF shows the distribution across all 10 000 Monte Carlo realizations of the neural network, applied to
different GC membership permutations as indicated by the legend (also see Table 1). In each panel, the data point with error bar and the annotation in the top
right indicate the median and 16–84th percentiles for the experiment using the unambiguous member GCs (corresponding to the solid line in that panel). This
figure shows that the five accretion events are all minor mergers, spanning a wide range of mass ratios rMh = 1:(5–24). The accretion of Kraken likely represents
the most major merger that the Milky Way ever experienced.

4.2 Satellite accretion history and in-situ growth

Table 2 summarizes the properties of the five satellite progenitors
that we have quantified in this work, including each possible GC
membership permutation. We also include the numbers of GCs, but
point out that these are necessarily lower limits, because there is no
guarantee that any of the groups are complete. All quantities listed
in the table are evaluated at the time of accretion, corresponding to
the accretion redshift listed in each row.

In Kruijssen et al. (2019b), we estimated a total of 15 ± 3 accretion
events with stellar masses M� > 4.5 × 106 M�. Even though we
only discuss five such events in this paper, it is likely that these
represent the most massive galaxies ever accreted by the Milky Way.
Accordingly, the Milky Way never experienced a major merger since
reaching a mass of M� ∼ 109 M�, which it had already attained at
z = 4 (Snaith et al. 2014; Kruijssen et al. 2019b). This falls just
within the Poisson noise of the expected number of major mergers.
Milky Way-mass galaxies are expected to have experienced two
major mergers since z = 4, or their most recent one at around z =
2 (Fakhouri et al. 2010). We cannot rule out the possibility that the
Milky Way may have experienced a major merger before z = 4, but
it is questionable how useful the concept of a major merger is when
only up to a few per cent of the current Milky Way’s stellar mass
could have participated in the event.

Summing the stellar masses of the satellite progenitors at the
time of their accretion yields a total accreted stellar mass of
log (M�, tot/M�) = 9.0 ± 0.1, which is similar in mass to the stellar
halo [(1.4 ± 0.4) × 109 M�; see Deason, Belokurov & Sanders 2019]
and matches the total accreted stellar halo mass (0.9+0.2

−0.1 × 109 M�)
estimated from APOGEE DR14 by Mackereth & Bovy (2020). The
remaining 10 satellites are expected to have masses below M� ∼
108 M� (or otherwise they would have contributed �5 GCs, which
would plausibly have been identified), implying that the total accreted
stellar mass is likely to be close to the sum of the five satellites
discussed here [which is on the low side of, but consistent with the
predictions for Milky Way-mass galaxies by Behroozi et al. (2019)
and Moster, Naab & White (2019), who find (1–5) × 109 M�].
Therefore, the Galactic stellar halo can comfortably accommodate
the total accreted satellite population, especially because some
of the accreted mass is expected to contribute to the bulge and
thick disc. In a broader context, this result means that the vast
majority of the Milky Way’s stellar mass formed in situ, with only a
few per cent having been accreted in the form of stars from satellite
galaxies. By contrast, the five satellite progenitors characterized here
alone already contributed a total halo mass of log (Mh, tot/M�) =
11.57 ± 0.04. This represents 25–45 per cent of the Milky Way’s
halo virial mass [(1.1 ± 0.2) × 1012 M�; see Cautun et al. 2020] and
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Table 2. Summary of the inferred properties of the satellite progenitors, for all GC membership permutations (see Table 1 for the GC memberships). For each
progenitor, the first row lists the results obtained using the GCs that are unambiguous members. From left to right, the columns list the progenitor (and GC
membership permutation), the number of associated GCs, the accretion redshift, log stellar mass, log halo mass, specific frequency, log number of GCs per unit
halo mass, log total GC system mass per unit halo mass, the stellar mass ratio of the merger with the Milky Way, and the halo mass ratio of the merger with the
Milky Way (determined indirectly using the relation between stellar mass and halo mass from Moster et al. 2013; see the text). We remind the reader that the
quoted error bars represent random uncertainties. All values carry an additional systematic uncertainty of 0.30 dex in log M� and 0.25 points in zacc.

Progenitor NGC zacc log M� log Mh TN log ηN log ηM rM� rMh

(M�) (M�) (10−9 M−1
� ) (M−1

� )

Kraken 13 2.26+0.39
−0.45 8.28+0.18

−0.17 10.92+0.10
−0.10 69+33

−23 −9.81+0.10
−0.10 −4.50+0.10

−0.10 1:31+34
−16 1:7+4

−2

Kraken + Kraken/Main 14 1.88+0.37
−0.37 8.35+0.18

−0.19 10.95+0.10
−0.10 63+34

−21 −9.81+0.10
−0.10 −4.36+0.10

−0.10 1:39+36
−18 1:8+4

−2

Kraken + Kraken/Seq 14 2.17+0.34
−0.40 8.22+0.16

−0.16 10.89+0.09
−0.09 85+37

−26 −9.74+0.09
−0.09 −4.46+0.09

−0.09 1:39+40
−19 1:8+4

−3

Kraken + Kraken/Main + Kraken/Seq 15 1.82+0.32
−0.33 8.36+0.16

−0.17 10.96+0.09
−0.09 66+31

−21 −9.78+0.09
−0.09 −4.36+0.09

−0.09 1:40+34
−18 1:8+4

−2

G-E 20 1.35+0.26
−0.23 8.43+0.15

−0.16 10.98+0.07
−0.08 75+32

−21 −9.68+0.08
−0.07 −4.27+0.08

−0.07 1:67+41
−27 1:11+4

−3

G-E + G-E/Seq 21 1.34+0.25
−0.22 8.45+0.14

−0.15 10.99+0.07
−0.08 74+31

−21 −9.67+0.08
−0.07 −4.06+0.08

−0.07 1:63+39
−25 1:11+4

−3

G-E + H99/G-E 22 1.35+0.24
−0.21 8.44+0.13

−0.14 10.98+0.07
−0.07 81+32

−21 −9.64+0.07
−0.07 −4.23+0.07

−0.07 1:66+39
−26 1:11+3

−3

G-E + Seq/G-E 22 1.36+0.25
−0.22 8.44+0.14

−0.15 10.99+0.07
−0.08 79+32

−22 −9.64+0.08
−0.07 −4.26+0.08

−0.07 1:63+40
−25 1:10+4

−3

G-E + G-E/Seq + H99/G-E 23 1.34+0.23
−0.20 8.48+0.13

−0.14 11.00+0.07
−0.07 77+29

−19 −9.64+0.07
−0.07 −4.05+0.07

−0.07 1:61+37
−23 1:10+3

−3

G-E + G-E/Seq + Seq/G-E 23 1.34+0.25
−0.22 8.48+0.14

−0.15 11.01+0.07
−0.08 76+31

−21 −9.64+0.08
−0.07 −4.07+0.08

−0.07 1:59+37
−23 1:10+3

−3

G-E + H99/G-E + Seq/G-E 24 1.31+0.23
−0.20 8.48+0.13

−0.14 11.00+0.07
−0.07 80+31

−21 −9.62+0.07
−0.07 −4.23+0.07

−0.07 1:63+37
−24 1:10+3

−3

G-E + G-E/Seq + H99/G-E + Seq/G-E 25 1.26+0.21
−0.19 8.53+0.12

−0.13 11.03+0.06
−0.07 74+27

−18 −9.63+0.07
−0.06 −4.06+0.07

−0.06 1:60+33
−22 1:10+3

−2

H99 5 1.75+0.42
−0.37 7.96+0.19

−0.18 10.74+0.10
−0.10 54+29

−19 −10.04+0.10
−0.10 −4.71+0.10

−0.10 1:110+99
−54 1:14+6

−5

H99 + H99/G-E 7 1.93+0.35
−0.35 8.06+0.16

−0.16 10.80+0.09
−0.09 61+27

−19 −9.95+0.09
−0.09 −4.58+0.09

−0.09 1:70+59
−33 1:11+5

−3

Seq 3 1.46+0.17
−0.17 7.90+0.11

−0.11 10.70+0.06
−0.06 38+11

−8 −10.22+0.06
−0.06 −5.18+0.06

−0.06 1:191+100
−67 1:19+5

−4

Seq + Seq/G-E 5 1.52+0.17
−0.17 8.02+0.10

−0.10 10.77+0.05
−0.05 48+12

−10 −10.07+0.05
−0.05 −4.99+0.05

−0.05 1:132+69
−45 1:15+4

−3

Seq + G-E/Seq 4 1.46+0.20
−0.19 8.06+0.11

−0.11 10.79+0.06
−0.06 35+10

−8 −10.18+0.06
−0.06 −4.22+0.06

−0.06 1:134+76
−48 1:15+5

−4

Seq + Kraken/Seq 4 1.69+0.23
−0.24 7.92+0.11

−0.11 10.72+0.06
−0.06 48+14

−11 −10.12+0.06
−0.06 −5.18+0.06

−0.06 1:131+87
−52 1:15+5

−4

Seq + Seq/G-E + G-E/Seq 6 1.37+0.17
−0.15 8.14+0.11

−0.11 10.83+0.06
−0.06 43+12

−10 −10.05+0.06
−0.06 −4.23+0.06

−0.06 1:126+61
−41 1:15+4

−3

Seq + Seq/G-E + Kraken/Seq 6 1.71+0.20
−0.21 7.87+0.10

−0.10 10.69+0.05
−0.05 81+20

−17 −9.91+0.05
−0.05 −4.90+0.05

−0.05 1:143+88
−56 1:16+5

−4

Seq + G-E/Seq + Kraken/Seq 5 1.69+0.33
−0.32 8.00+0.15

−0.15 10.76+0.08
−0.08 50+20

−14 −10.06+0.08
−0.08 −4.19+0.08

−0.08 1:109+90
−51 1:14+6

−4

Seq + Seq/G-E + G-E/Seq + Kraken/Seq 7 1.56+0.25
−0.23 8.05+0.13

−0.13 10.79+0.07
−0.07 62+22

−16 −9.94+0.07
−0.07 −4.19+0.07

−0.07 1:115+77
−48 1:14+5

−4

Sagittarius 7 0.76+0.22
−0.19 8.44+0.22

−0.21 10.94+0.11
−0.10 25+16

−10 −10.10+0.10
−0.11 −4.34+0.10

−0.11 1:104+70
−43 1:14+5

−4

shows that the satellite progenitors are important contributors to the
Milky Way’s virial mass.

A similar balance can be made for the Galactic GC population.
We find 55 GCs that were likely accreted as part of the five satellite
progenitors. While this number is inevitably a lower limit on the
true number of ex-situ GCs, we do not expect the sample to be
hugely incomplete. If the scaling relations between the number of
GCs and the host galaxy mass discussed in Section 3.2.3 apply also
at the accretion redshifts of the satellite progenitors (which can be
disputed), we do not expect the current sample to be incomplete by
more than 40 per cent, such that the total might be as high as 90
accreted GCs. A comparison to the GC membership assignments
in Massari et al. (2019) confirms this interpretation. Given a total
number of 157 GCs in the catalogue of Harris (1996, 2010 edition),
this implies that 35–60 per cent of the Galactic GCs formed ex situ,
with the complementing 40–65 per cent having formed in situ. This
is consistent with the estimate that 40 per cent of GCs formed ex situ,
which we arrived at using the GC age–metallicity distribution only
in Kruijssen et al. (2019b) and also using the kinematics of the GC
population in Trujillo-Gomez et al. (2020).

Many of the results of this paper are summarized visually in
Fig. 9, which provides an extensive update to the merger tree
presented in Kruijssen et al. (2019b, fig. 6). Thanks to the discovery
and characterization of several new satellites with Gaia DR2 (e.g.
Koppelman et al. 2019a; Massari et al. 2019; Myeong et al. 2019)

and the interpretative framework provided by the E-MOSAICS
simulations (Pfeffer et al. 2018; Kruijssen et al. 2019a), we now
have a reconstruction of the Milky Way’s merger tree that specifically
includes five out of the 15 ± 3 expected satellites with stellar masses
of M� > 4.5 × 106 M�. This merger tree includes the stellar mass
growth history of the Milky Way’s Main progenitor, the stellar masses
and accretion redshifts of five satellite galaxies with stellar masses
of M� � 5 × 107 M�, and the lower limits on the numbers of GCs
contributed by each of these accretion events.

5 C O N C L U S I O N S

In this paper, we have used the E-MOSAICS simulations to quantify
the stellar masses and accretion redshifts of five satellite galaxies
that have been accreted by the Milky Way, as well as several other
of their properties. These satellites are Kraken (previously referred
to as the progenitor of the ‘low-energy GCs’ by Massari et al. 2019),
Gaia-Enceladus, the progenitor of the Helmi streams, Sequoia, and
Sagittarius. They likely represent the most massive objects that the
Milky Way accreted since z = 4. We predict their properties by
training an artificial neural network on the E-MOSAICS simulations,
which follow the co-formation and co-evolution of galaxies and their
GC populations. This network relates the ages, metallicities, and
orbital properties of a group of GCs that formed in a common satellite
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2488 J. M. D. Kruijssen et al.

Figure 9. Galaxy merger tree of the Milky Way, inferred by applying the insights gained from the E-MOSAICS simulations to the Galactic GC population.
This figure summarizes many of the results presented in this paper. The main progenitor is denoted by the trunk of the tree, coloured by stellar mass (based on
the reconstruction from Kruijssen et al. 2019b; see the colour bar). Black lines indicate the five identified (and likely most massive) satellites, with the shaded
areas visualizing the PDFs of the accretion redshifts from Fig. 5. The coloured circles indicate the stellar masses at the time of accretion (both with their colours
and sizes) and the subtly different colours of the outer rings and central dots visualize the uncertainties on the stellar masses. The annotations list the minimum
number of GCs brought in by each satellite. Light grey lines illustrate the global statistics of the Milky Way’s merger tree inferred by Kruijssen et al. (2019b),
but have no absolute meaning. Thin lines mark tiny mergers (with a mass ratio of rM� < 1:100) and thick lines denote minor (or possibly major) mergers (with a
mass ratio of rM� > 1:100). This merger tree is consistent with the stellar mass growth history of the Milky Way, the total number of mergers (Nbr), the number
of high-redshift mergers (Nbr,z>2), and the numbers of tiny and minor mergers (N<1:100 and N1:100–1:4) from Kruijssen et al. (2019b), as well as with the five
identified satellite progenitors discussed in this work, including their stellar masses, accretion redshifts, and GC populations. Note that only progenitors with
masses of M� > 4.5 × 106 M� are included. From left to right, the six images along the top of the figure indicate the identified progenitors, i.e. Sagittarius,
Sequoia, Kraken, the Milky Way’s Main progenitor, the progenitor of the Helmi streams, and Gaia-Enceladus.

progenitor to the properties of that progenitor. The conclusions of
this work are as follows:

(i) The neural network is capable of predicting the stellar
masses and accretion redshifts of the satellite progenitors to high
precision, with a validation score of 0.89+0.06

−0.06 and a scatter of
σ [log10(M�,pred/M�,true)] = 0.41+0.05

−0.04 and σ [log10(1 + zacc,pred/1 +
zacc,true)] = 0.13+0.01

−0.01 around the true values, respectively. Omitting
the GC age–metallicity information leads to considerably worse
constraints on both quantities. Additionally, the accretion redshifts
strongly rely on the GC orbital information (Fig. 1).

(ii) Modulo a small number of changes, we adopt the proposed GC
membership of the satellite progenitors from Massari et al. (2019,

see our Table 1). The five groups of GCs associated with the different
satellite progenitors show clear differences in apocentre–eccentricity
space and age–metallicity space. By comparing the orbital properties
of GCs to those of fossil streams from Bonaca & Kruijssen (2020),
we find that the streams have similar orbital properties as the
GCs associated with Kraken, Gaia-Enceladus, the progenitor of
the Helmi streams, and Sagittarius. The Fimbulthul stream falls
in between the orbital properties spanned by the GCs associated
with Kraken and Gaia-Enceladus, suggesting that it may be the
relic of a GC that formed in either of these two satellites. In age–
metallicity space, the Kraken GCs have the highest metallicities
at a given age, closely followed by the Gaia-Enceladus GCs,
suggesting that these two galaxies were the most massive at any
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Kraken reveals itself 2489

moment in time, with Kraken having a slightly higher mass (Figs 2
and 3).

(iii) By applying the neural network to the Galactic GCs associated
with the five satellite progenitors, we find that the satellites span a
relatively narrow stellar mass range at the time of accretion, of M� =
(0.6–4.6) × 108 M�. The top end of this range is occupied by Kraken,
Gaia-Enceladus, and Sagittarius, with the latter two being the most
massive. This differs from the stellar masses at any given moment
in time, because the accretion redshifts of these satellites differ. By
accreting later, Sagittarius was able to attain a higher mass, despite
initially being considerably less massive than Kraken and Gaia-
Enceladus. The predicted stellar masses are consistent with previous
literature estimates given their uncertainties,11 but considerably more
precise (Fig. 4).

(iv) The accretion redshifts of the five satellites span a wide
range, of zacc = 0.57–2.65 (corresponding to lookback times of
tacc = 5.7–11.3 Gyr). Kraken was the first galaxy to be accreted,
followed by the progenitor of the Helmi streams, Sequoia and Gaia-
Enceladus, and finally Sagittarius. This order explains why the stellar
mass of Sagittarius at the time of accretion exceeded that of Kraken,
despite having a lower mass at any given age prior to the accretion
of both satellites. The predicted accretion redshifts are consistent
with the rough ranges available from other works in the literature.
The only possible tension with previous results is the progenitor
of the Helmi streams, for which dynamical models predict a much
more recent accretion (tacc = 5–8 Gyr) than that obtained in this work
(tacc = 10.1+0.7

−0.9 Gyr), whereas the stellar age range of τ = 11–13 Gyr
is consistent with our prediction. Reconciling these predictions is an
important point of attention for future work (Fig. 5).

(v) The presented results are generally not sensitive to the details
of the GC membership. By including and excluding GCs with am-
biguous memberships, we find that the stellar masses and accretion
redshift of the satellite progenitors exhibit differences smaller than
the uncertainties estimated from the neural network. Only when
including GCs that are highly unlikely to have been a member
of a satellite progenitor do the results change by more than the
uncertainties (Figs 4 and 5 and Table 2).

(vi) Taking together the above results, the ‘low-energy’ group of
GCs identified by Massari et al. (2019) has the properties predicted
for Kraken by Kruijssen et al. (2019b), i.e. having a high mass
and contributing a large number of GCs, similar to that of Gaia-
Enceladus. This high mass is required by the position of the Kraken
GCs in age–metallicity space, where they occupy the high-metallicity
side of the ‘satellite branch’. In addition, the small apocentre radii of
the Kraken GCs (Ra < 7 kpc) require either a high progenitor mass
or a very high accretion redshift (Pfeffer et al. 2020). The fact that the
ages of the Kraken GCs reach down to z∼ 2 rules out the latter option.
The only alternative that remains is a satellite progenitor that at any
given time had a mass similar to (or higher than) Gaia-Enceladus, as
originally predicted. Kraken may represent the tip of the iceberg of
several further accretion events hidden towards the Galactic Centre
(Helmi 2020), where the identification of substructure is complicated
by high stellar densities and phase–space mixing on short orbital
time-scales. Alternatively, in view of its high mass, it is possible
that Kraken represents the main accretion event contributing to the
formation of the bulge. This interpretation seems to be favoured by
the recent chemical abundance analysis of Horta et al. (2020a), who

11Differences do exist relative to previous studies that estimate projected
stellar masses at z = 0 rather than considering these at the time of accretion.
See Section 3.2.1 for details.

find that Kraken contributed a significant fraction of the bulge stars
with an ex-situ origin.

(vii) We calculate the number and total mass of GCs per unit halo
mass in each satellite progenitor at the time of its accretion, finding
that these are consistent with the typical numbers found for the GC
populations of galaxies at z = 0. However, the specific frequencies
of the Kraken and Gaia-Enceladus exceed those of galaxies of a
similar mass at z = 0, suggesting that the scaling relations between
the number of GCs and the host galaxy mass evolve with redshift
(e.g. Kruijssen 2015; Choksi & Gnedin 2019; Bastian et al. 2020).
We propose that the excess can be explained by the continued stellar
mass growth of galaxies after zacc. As a result, we predict that future
observations of GC populations at z > 1 should find higher specific
frequencies than at z = 0 (Fig. 6).

(viii) By combining the stellar masses and accretion redshifts of
the satellite progenitors with the inferred stellar mass growth history
of the Milky Way’s Main progenitor, we infer the stellar mass ratios
of the five accretion events. We find that all accretion events are
minor mergers (i.e. with stellar mass ratios of rM�

< 1:4). Thanks to
its high mass and accretion redshift, Kraken is the most major merger
(i.e. the merger with the highest mass ratio) out of the five satellites
considered here, with a mass ratio of rM�

= 1:31+34
−16, making it very

likely to be the most significant merger ever experienced by the Milky
Way. Based on the full PDF obtained from the neural network, the
accretion of Kraken by the Milky Way has a chance of 0.3 per cent
to have been a major merger event (for which rM�

> 1:4). For all
other satellite progenitors, the merger mass ratios are smaller than
that of Kraken by factors of 2–6. This implies that the Milky Way
must have grown its stellar mass mostly by gas accretion and in-situ
star formation (Fig. 7).

(ix) Likewise, we find low merger halo mass ratios, in the range
of rMh = 1:(5–24), again indicating that all accretion events were
minor mergers. With a halo mass ratio of rMh = 1:7+4

−2, Kraken may
have been the last merger to have significantly disrupted the Galactic
disc (at zacc = 2.26+0.39

−0.45 or tacc = 10.9+0.4
−0.7 Gyr), as all subsequent

mergers (including Gaia-Enceladus) had halo mass ratios of rMh <

1:10 (Fig. 8).
(x) We tabulate all quantities inferred for the satellite progenitors

in Table 2. The sum of their stellar masses is log (M�, tot/M�) =
9.0 ± 0.1, similar to the mass of the Galactic stellar halo
[(1.4 ± 0.4) × 109 M�; see Deason et al. 2019] and in agreement
with the total accreted stellar halo mass (0.9+0.2

−0.1 × 109 M�) estimated
from APOGEE DR14 by Mackereth & Bovy (2020). We find that the
stellar halo can accommodate the total accreted satellite population,
and that only a few per cent of the Milky Way’s stellar mass was
accreted in the form of dwarf galaxies. The same applies for GCs,
for which we estimate that 35–50 per cent has an ex-situ origin. In
contrast with the stellar mass balance, the five satellite progenitors
did contribute a significant total halo mass of log (Mh, tot/M�) =
11.57 ± 0.04, which is 25–45 per cent of the Galactic virial mass
[(1.1 ± 0.2) × 1012 M�; see Cautun et al. 2020].

(xi) We combine the results of our analysis with those from
Kruijssen et al. (2019b) to present the most detailed reconstruction
to date of the Milky Way’s merger tree. This merger tree includes
a total 15 ± 3 expected satellites with stellar masses of M� >

4.5 × 106 M�, as well as the stellar mass growth history of the Milky
Way’s Main progenitor, the stellar masses and accretion redshifts of
the five satellite galaxies considered here, and the lower limits on the
numbers of GCs contributed by these accretion events (Fig. 9).

The above results represent an example of how the phase–space
clustering of stellar populations in the revolutionary Gaia data can
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unlock a wealth of information when interpreted using state-of-the-
art numerical simulations of galaxy formation and evolution. The
machine-learning approach employed here provides a very promising
way of achieving this. By applying our formalism to the complete
E-MOSAICS volume including all galaxies in a (34 comoving Mpc)3

region, we aim to further boost its precision and diagnostic power
through greatly improved statistics and a correspondingly larger
training data set. This will be a critical step, because increasing
the size of the training set allows the use of observables that are less
information rich. Therefore, it is to be expected that the expansion
of our formalism to a larger suite of simulated galaxies will enable
reconstructing the assembly histories of galaxies beyond the Milky
Way, for which less comprehensive diagnostics are available. While
this paper provides an application to only a single galaxy, it is
clear that the field has entered an era in which GCs are now firmly
established, quantitative tracers of galaxy formation and assembly.

Focusing on the assembly history of the Milky Way, our results add
to a growing body of evidence that the Milky Way experienced an
unusual path to adolescence. Not only did it assemble unusually
quickly for its mass, but it also experienced a striking paucity
of major accretion events, with only a handful of minor mergers
shaping the Galactic stellar halo. The fact that it grew most of its
stellar mass through secular processes and in-situ star formation
implies that it may not be the most representative example for
understanding the evolution and assembly of the galaxy population,
but is a correspondingly more pleasant environment to live in.
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in Versailles, France.

DATA AVAI LABI LI TY

The data underlying this article will be shared on reasonable request
to the corresponding author.

REFERENCES

Astropy Collaboration, 2013, A&A, 558, A33
Balbinot E. et al., 2016, ApJ, 820, 58
Bastian N., Pfeffer J., Kruijssen J. M. D., Crain R. A., Trujillo-Gomez S.,

Reina-Campos M., 2020, MNRAS, preprint (arXiv:2005.05991)
Baumgardt H., Hilker M., 2018, MNRAS, 478, 1520
Baumgardt H., Hilker M., Sollima A., Bellini A., 2019, MNRAS, 482,

5138
Behroozi P. S., Wechsler R. H., Conroy C., 2013, ApJ, 770, 57
Behroozi P., Wechsler R. H., Hearin A. P., Conroy C., 2019, MNRAS, 488,

3143
Bell E. F. et al., 2008, ApJ, 680, 295
Belokurov V. et al., 2006, ApJ, 642, L137
Belokurov V., Erkal D., Evans N. W., Koposov S. E., Deason A. J., 2018,

MNRAS, 478, 611
Bonaca A., Kruijssen J. M. D., 2020, ApJ, submitted
Boylan-Kolchin M., 2017, MNRAS, 472, 3120
Buitinck L. et al., 2013, in ECML PKDD Workshop: Languages for Data

Mining and Machine Learning. p. 108
Bullock J. S., Johnston K. V., 2005, ApJ, 635, 931
Burkert A., Forbes D. A., 2020, AJ, 159, 56
Cautun M. et al., 2020, MNRAS, 494, 4291
Choksi N., Gnedin O. Y., 2019, MNRAS, 488, 5409
Choksi N., Gnedin O. Y., Li H., 2018, MNRAS, 480, 2343
Chollet F. et al., 2015, Keras. available at: https://keras.io
Cooper A. P. et al., 2010, MNRAS, 406, 744
Crain R. A. et al., 2015, MNRAS, 450, 1937
de Boer T. J. L., Belokurov V., Koposov S. E., 2018, MNRAS, 473, 647
Deason A. J., Belokurov V., Evans N. W., Johnston K. V., 2013, ApJ, 763,

113
Deason A. J., Belokurov V., Weisz D. R., 2015, MNRAS, 448, L77
Deason A. J., Mao Y.-Y., Wechsler R. H., 2016, ApJ, 821, 5
Deason A. J., Belokurov V., Koposov S. E., 2018, MNRAS, 473, 2428
Deason A. J., Belokurov V., Sanders J. L., 2019, MNRAS, 490, 3426
Dolag K., Borgani S., Murante G., Springel V., 2009, MNRAS, 399, 497
Dotter A. et al., 2010, ApJ, 708, 698
Dotter A., Sarajedini A., Anderson J., 2011, ApJ, 738, 74
Durrell P. R. et al., 2014, ApJ, 794, 103
Eggen O. J., Lynden-Bell D., Sandage A. R., 1962, ApJ, 136, 748
El-Badry K., Quataert E., Weisz D. R., Choksi N., Boylan-Kolchin M., 2019,

MNRAS, 482, 4528
Fakhouri O., Ma C.-P., Boylan-Kolchin M., 2010, MNRAS, 406, 2267

MNRAS 498, 2472–2491 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/2472/5893320 by Liverpool John M
oores U

niversity user on 19 April 2021

file:www.dirac.ac.uk
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.3847/0004-637X/820/1/58
https://arxiv.org/abs/2005.05991
http://dx.doi.org/10.1093/mnras/sty1057
http://dx.doi.org/10.1093/mnras/sty2997
http://dx.doi.org/10.1088/0004-637X/770/1/57
http://dx.doi.org/10.1093/mnras/stz1182
http://dx.doi.org/10.1086/588032
http://dx.doi.org/10.1086/504797
http://dx.doi.org/10.1093/mnras/sty982
http://dx.doi.org/10.1093/mnras/stx2164
http://dx.doi.org/10.1086/497422
http://dx.doi.org/10.3847/1538-3881/ab5b0e
http://dx.doi.org/10.1093/mnras/staa1017
http://dx.doi.org/10.1093/mnras/stz2097
http://dx.doi.org/10.1093/mnras/sty1952
https://keras.io
http://dx.doi.org/10.1111/j.1365-2966.2010.16740.x
http://dx.doi.org/10.1093/mnras/stv725
http://dx.doi.org/10.1093/mnras/stx2391
http://dx.doi.org/10.1088/0004-637X/763/2/113
http://dx.doi.org/10.1093/mnrasl/slv001
http://dx.doi.org/10.3847/0004-637X/821/1/5
http://dx.doi.org/10.1093/mnras/stx2528
http://dx.doi.org/10.1093/mnras/stz2793
http://dx.doi.org/10.1111/j.1365-2966.2009.15034.x
http://dx.doi.org/10.1088/0004-637X/708/1/698
http://dx.doi.org/10.1088/0004-637X/738/1/74
http://dx.doi.org/10.1088/0004-637X/794/2/103
http://dx.doi.org/10.1086/147433
http://dx.doi.org/10.1093/mnras/sty3007
http://dx.doi.org/10.1111/j.1365-2966.2010.16859.x


Kraken reveals itself 2491

Fattahi A. et al., 2020, MNRAS, 497, 4459
Fernández-Alvar E. et al., 2018, ApJ, 852, 50
Forbes D. A., 2020, MNRAS, 493, 847
Forbes D. A., Bridges T., 2010, MNRAS, 404, 1203
Forbes D. A. et al., 2018a, Proc. R. Soc. A, 474, 20170616
Forbes D. A., Read J. I., Gieles M., Collins M. L. M., 2018b, MNRAS, 481,

5592
Gaia Collaboration, 2018, A&A, 616, A12
Harris W. E., 1996, AJ, 112, 1487
Harris W. E., Harris G. L. H., Alessi M., 2013, ApJ, 772, 82
Harris W. E., Blakeslee J. P., Harris G. L. H., 2017, ApJ, 836, 67
Haywood M., Di Matteo P., Lehnert M. D., Katz D., Gómez A., 2013, A&A,
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