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ABSTRACT 1 

This study combines in vivo ultrasound measurements of the Vastus Lateralis (VL) and 2 

Gastrocnemius Medialis (GM) muscles with electromyographic, kinematic and kinetic measurements 3 

during treadmill running at different speeds (10, 13 and 16 km×h-1) to better understand the role of 4 

muscle and tendon behaviour in two functionally different muscle-tendon units. In addition, the 5 

Force-Length and Force-Velocity relationships of VL and GM were experimentally assessed by 6 

combining dynamometry and EMG data with ultrasound measurements. With increasing running 7 

speed, the operating length of the fascicles in the stance phase shifted towards smaller lengths in the 8 

GM (P<0.05; moving down the ascending limb of the F-L relationship) and longer lengths in the VL 9 

(P<0.05; moving down the descending limb) at all speeds; however, both muscles contracted close 10 

to their optimal length L0, where isometric force is maximal. Whereas the length of VL SEE did not 11 

change as a function of speed, GM SEE lengthened and shortened more at higher speeds. With 12 

increasing running speed, the contribution of elastic strain energy to the positive power generated by 13 

the MTU increased more for GM (from 0.75 to 1.56 W×kg-1) than for VL (from 0.62 to 1.02 W×kg-1). 14 

Notwithstanding these differences, these results indicate that, at increasing running speeds, both the 15 

VL and GM muscles produce high forces at low contraction velocities, and that the primary function 16 

of both muscle-tendon units is to enhance the storage and recovery of elastic strain energy. 17 

 18 
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 28 

 29 
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 3 

INTRODUCTION 1 

 2 

In the past two decades, advancements in ultrasonographic techniques have made it possible to 3 

investigate in vivo the behaviour of human muscles and tendons during locomotion 1-3. Combining in 4 

vivo scanning with more standard biomechanical measurements, such as inverse dynamics 5 

techniques, has allowed studying the link between movement kinetics and muscle-tendon behaviour 6 
4,5. Most studies have focused on ankle function and the calf muscles1-10. For instance, it has been 7 

shown that the triceps surae muscle group (i.e. soleus, gastrocnemius medialis and gastrocnemius 8 

lateralis) produces forces up to 12 times body weight during running11-12 and is the main force 9 

producer amongst all the major lower-limb muscle groups12. When running speed increases, the 10 

plantar flexor muscles must generate force over an increasingly shorter period of time, and this 11 

requires more forceful and rapid contractions13. To achieve this and meet the energy demands for 12 

sustaining running, the muscle-tendon units (MTUs) of the ankle plantar flexors work in a highly 13 

complex and tightly integrated manner2,14. Due to their unique design, with short muscle fibres and a 14 

long Achilles tendon, the ankle plantar flexors can exert high levels of power with minimal energy 15 

demands, as the tendon’s mechanical behaviour allows the muscle to operate more isometrically, 16 

accommodating the behaviour of the MTU through a large tendon displacement4,5. This mechanism 17 

has a favourable effect on contractile force generation and the associated metabolic cost 4,5,15. 18 

Modelling studies have, indeed, demonstrated that tendon strain can optimize the region where 19 

muscle fibres operate on their Force-Length (F-L) and Force-Velocity (F-V) relationships during 20 

running at increasing speeds4,5. Furthermore, these studies have shown that the stretching and 21 

subsequent recoiling of the Achilles tendon during running allows storing and releasing substantial 22 

amounts of elastic strain energy, which increase as a function of running speed, thus contributing 23 

more to the positive mechanical work done by the MTU of the ankle plantar-flexors 4,5. For example, 24 

Farris & Sawicki5 as well as Lai et al.4 showed that the relative contribution of the Achilles tendon 25 

elastic strain energy to the positive power done by the MTU is about 65-75% at low running speeds 26 

and increases as a function of speed. It has, therefore, been postulated that this increasing elastic strain 27 

energy contribution with speed allows the muscles to undergo an increasingly smaller length change 28 

during contraction16. However, only few studies have so far investigated the in-vivo operating length 29 

and velocity of the ankle plantar flexor muscles, as well as the relative contribution of the elastic 30 

strain energy, during running at increasing speeds.  31 

 To fully understand the complex interplay between muscle and tendon behaviour during 32 

running, the contribution of other contributing MTUs with different characteristics to those of the 33 

plantar flexors should also be considered. The knee extensor muscles are of particular interest as they 34 
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have longer fascicles and a stiffer and shorter tendon compared to the ankle plantar flexors17-19, 1 

implying that the quadriceps muscle may undergo substantial length changes during locomotion20. 2 

Consistent with this notion are the findings of modelling studies, showing large fascicle length 3 

changes in the vastus lateralis (VL) during running, leading to hypothetical large shifts of the F-L and 4 

F-V relationships21,22. However, a more recent in vivo study23 showed that the VL fascicles operate 5 

close to their optimum length and quasi-isometrically when running at 10 km.h-1. As a consequence, 6 

the large displacement of the VL MTU was primarily associated with changes in the length of the 7 

patellar-quadriceps tendon complex. However, no studies have so far quantified the operating length 8 

and velocity of VL or the relative contribution of its tendon complex in determining mechanical 9 

power production during running at increasing speeds. 10 

Therefore, the present study combines in vivo ultrasound measurements of VL and 11 

gastrocnemius medialis (GM) muscle behaviour with electromyographic and kinetic measurements 12 

during treadmill running in order to investigate the behaviour of these two functionally different 13 

MTUs at different running speeds. In particular, we experimentally investigated: 1) the operating 14 

length and velocity of muscle fascicles and 2) the relative contribution of muscle fascicles and series 15 

elastic element (SEE) to the positive mechanical power done by the whole MTU, to better understand 16 

how they change as a function of running speed.  17 

Based on recent literature, we hypothesised that both muscles would demonstrate small 18 

fascicle length changes, close to their optimal length, allowing the muscles to operate at a high force 19 

potential during running at increasing speeds. Therefore, we expected that the SEE would 20 

accommodate the larger part of the MTU length changes at each running speed for both GM and VL. 21 

We also expected that, for both MTUs, power would be enhanced at faster running speeds as elastic 22 

strain energy would contribute a greater proportion of the MTUs positive work during the stance 23 

phase of running.  24 

 25 

METHODS 26 

 27 

Ethical Approval 28 

All participants received written and oral information and instructions before the study and gave their 29 

written informed consent to the experimental procedure. The experimental protocol was approved by 30 

the Ethical Committee of Liverpool John Moores University (protocol number: 18/SPS/028) and was 31 

performed in accordance with the Helsinki Declaration. 32 

 33 

Participants 34 
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Fifteen men (age: 24±2.4 years; body mass: 74±2.8 kg; height: 1.77±0.04 m) accustomed to 1 

endurance running participated in this study. The participants did not report any type of 2 

neuromuscular injury in the six months before the experiments. 3 

 4 

Experimental Design 5 

Each subject participated in two experimental sessions. In the first session, the Force-Length (F-L) 6 

and Force-Velocity (F-V) relationships of VL and GM were experimentally assessed by means of 7 

isometric maximal voluntary contractions (MVC) and isokinetic tests of the knee extensors and 8 

plantar flexors, respectively. During these experiments, an ultrasound apparatus was utilised to record 9 

the fascicle length of VL and GM. The force applied to the patellar and Achilles tendon was calculated 10 

from the knee/ankle joint moment and the tendon lever arms. Finally, during each contraction mode 11 

test (isometric or isokinetic) the EMG activity of VL or GM was measured as well as that of the 12 

corresponding antagonist muscle: biceps femoris or tibialis anterior.  13 

In the second session, the fascicle length of VL and GM, the kinematics of the body segments, 14 

the dynamics (ground reaction forces) and the EMG activity of the above two muscles were measured 15 

during running on an instrumented dual-belt treadmill at three different speeds: 10, 13 and 16 km.h-16 
1.  17 

 18 

Data Collection 19 

Assessment of the F-L relationship 20 

For the knee extensors measurements, the participants were secured on a dynamometer (Cybex 21 

NORM, USA), fixed with a trunk and pelvic strap and the arms positioned crossed in front of the 22 

chest. For the plantar flexor measurements, the participants were secured to the same dynamometer 23 

in a prone lying position with the right knee in the anatomical position and the foot of the dominant 24 

leg fixed to the dynamometer footplate.  25 

The F-L relationship was calculated from MVCs at various joint angles. For the knee 26 

extensors: the hip joint angle was set at 85° (0° refers to supine position) to reduce the contribution 27 

of the rectus femoris to the resultant moment of the knee extensors23,24; for the plantar flexors: the 28 

legs were fully extended in the anatomical position. For the knee extensors, eight MVCs of the right 29 

leg were performed from 90° to 20° of knee joint angle (0° = knee fully extended), whereas for the 30 

plantar flexors five MVCs were performed from 20° plantarflexion to 20° dorsiflexion (0° = foot at 31 

right angles to the shank) at 10° intervals.  32 

The actual knee and ankle angles during the MVCs were measured in 2D to obtain the leverage 33 

of both muscle groups. Two dimensional kinematics were recorded on the basis of five markers for 34 
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the leg: iliac spine and greater trochanter of the opposite side; lower portion of the patella (patellar 1 

tendon origin); upper anterior surface of the tibia (patellar tendon insertion); mid tibiofemoral gap 2 

(considered to represent the tibiofemoral contact point as the knee centre of rotation). Foot kinematics 3 

were based on seven surface markers: mid tibiofemoral gap point, heel, toe, medial malleolus, 4 

insertion of Achilles tendon and markers at 5 and 10 cm proximal to the calcaneal insertion. The 5 

marker positions were recorded by means of video analysis (Casio Exilim Camera) at 200 Hz and 6 

analysed with a video processing software (Tracker v4.0). The camera was positioned on the left side 7 

of the subject, at right angles to the longitudinal axis of the thigh. To eliminate any radial distortion, 8 

a rectilinear filter was applied during marker tracking on the video frames. The resultant marker 9 

trajectories were smoothed using a forward and reverse pass second order low pass Butterwoth filter 10 

(cut-off 15 Hz).  11 

During the MVC, fascicle length changes were captured by B-mode ultrasound imaging with 12 

a 6 cm linear array probe operating at 60 Hz (Philips EPIQ 5). For VL and GM, the probe was attached 13 

to the skin approximately at 50% of the femur length and at 30% of the distance between the popliteal 14 

crease and the malleolus, respectively. In both cases, the ultrasound probe was located on the muscle 15 

belly and corrected with respect to the superficial and deeper aponeurosis, in order to have a clear 16 

image of the perimysial connective intramuscular tissue that is indicative of the muscle fascicle 17 

structure6-10. In vivo muscle fascicle length and pennation angle were calculated from the ultrasound 18 

videos (see Data Analysis). 19 

Finally, the EMG activity of the VL and GM and the corresponding antagonist muscles, were 20 

recorded during the knee extensor and plantar flexor MVCs, respectively. Two bipolar Ag-AgCl 21 

electrodes were placed in the central region of the muscles after skin preparation (including shaving, 22 

gentle abrasion and cleaning with an alcohol-based tissue pad). The raw EMG data were recorded at 23 

1000 Hz with a Biopac System (MP100, Biopac System, Santa Barbara, USA) together with the 24 

dynamometer data (angular velocity, moment and position). All instrumentation used in these 25 

experimental procedures were synchronised with an external manual trigger (5 V).  26 

 27 

Assessment of the F-V relationship 28 

To obtain the F-V relationship, maximum isokinetic torque was recorded at the angular velocities of 29 

30, 90, 150, 180 and 210 deg×s-1
 for the plantar flexors and 45, 90, 150, 210 and 250 deg×s-1

 for the 30 

knee extensors. The range of motion used during the MVC was also used during the isokinetic trials 31 

and data were analysed only in the isokinetic phase of the contraction. After a familiarization trial, 32 

the subjects performed three consecutive contractions at each velocity with two min of recovery in 33 

between. Also in these cases, the tendon force was calculated by taking into account the tendon lever 34 
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arm and the influences of the antagonist muscle were subtracted, as described in the next section. All 1 

instrumentation was synchronised with an external manual trigger as above (5 V).  2 

 3 

Running trials 4 

Each athlete ran on an instrumented treadmill at three different constant speeds (10, 13 and 16 km×h-5 
1) for 6 min using a self- selected step frequency and step length. All participants were forefoot 6 

runners. Small retroreflective markers (14 mm diameter) were placed at specific anatomical locations 7 

on the participants’ trunk, arms, and lower limbs. The marker set used in this study was the same 8 

proposed by Lai et al.4. However, we added another ten markers (four on the right and left knee and 9 

the other six on the right shank/foot) to measure the tendon lever arm during running as described by 10 

Rasske et al. 25 (see Data Analysis). The 3D marker trajectories were recorded using 12 Vicon 11 

cameras (Vero 2.2, Oxford Metrics, UK) sampling at 250 Hz. Ground reaction forces (GRFs), the 12 

centre of pressure and the free moment vectors were recorded using two force plates embedded in the 13 

instrumented treadmill (M-GAIT, MOTEK) sampling at 1500 Hz.  14 

A B-mode ultrasound scanner (Telemed Echo Blaster 128, Vilnius, Lithuania) was used to 15 

record images at 60 Hz with a depth and width of 60 mm. Ultrasound data were recorded from the 16 

right VL and GM of each participant (in two separate running trials and in a randomized order) with 17 

the ultrasound probe positioned in the same location utilised during the dynamometric 18 

measurements6-10. Fascicle length and pennation angle were calculated with the software and 19 

procedures mentioned in the dynamometric measurements and described in the data analysis.  20 

Finally, EMG signals from Ag-AgCl bipolar electrodes were collected simultaneously with 21 

the ultrasound, kinematic and kinetic signals using a wireless system (Biopac System) sampling at 22 

1000 Hz. The location of the electrodes was the same used in the dynamometric measurements. All 23 

experimental data were synchronised by a digital output generated by the ultrasound scanner that 24 

triggered all instrumentation (the Vicon cameras, the treadmill ground reaction forces and the EMG 25 

signals).  26 

 27 

Data Analysis  28 

Dynamometric measurements 29 

The total moment generated by the knee extensor and plantar flexor muscles was corrected for the 30 

gravitational force effects (determined during a passive joint rotation driven by the dynamometer) 31 

and the joint and the dynamometer axes were aligned visually during contraction. Finally, the EMG-32 

moment relationships of the antagonist muscles (biceps femoris and tibialis anterior) were determined 33 

to estimate and account for the contribution of the antagonistic moment to the net joint moment, as 34 
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described in detail previously26.  1 

 To calculate the force applied to the tendon (patellar or Achilles), the joint moment measured 2 

with the dynamometer was divided by the tendon lever arm using a 2D approach. For the knee 3 

extensor, the lever arm was measured as the perpendicular distance from the tendon’s line of action 4 

to the centre of rotation of the knee, based on the position of three markers (origin and insertion of 5 

the patellar tendon and the mid tibiofemoral gap point that was considered to represent the knee centre 6 

of rotation). The location of surface markers on these anatomical landmarks was determined by 7 

ultrasound scanning. Particularly, the surface marker over the tibiofemoral contact point was 8 

positioned in the mid space between the femur condyle and tibia plateau. This “geometric method” 9 

(see Tsapoulos et al.27 for details) uses the tibio-femoral contact point to represent the knee centre of 10 

rotation and was used in different conditions and locomotion tasks26-28. In the case of plantar flexors, 11 

the lever arm was measured as the perpendicular distance from the tendon’s line of action to the centre 12 

of rotation of the ankle based on the position of four markers (medial malleolus representing the ankle 13 

centre of rotation, insertion of Achilles tendon, and markers at 5 and 10 cm proximal to the calcaneus 14 

to represent the Achilles tendon line of action), as suggested by Rasske et al.25. The location of each 15 

marker was determined by ultrasound scanning as previously suggested by Rasske et al. 25, in order 16 

to place the markers on the correct anatomical positions.  17 

By knowing the maximum force applied to the patellar/Achilles tendon during the MVCs and 18 

the corresponding muscle fascicle length, the F-L relationship was determined for each subject based 19 

on a second-order polynomial fit23. Based on this relationship, the maximal isometric force applied 20 

to the tendon (Fmax) and the optimal shortening length (L0, the length at which this peak occurs) were 21 

determined. 22 

The F-V relationship was determined based on the force and fascicle velocity values during 23 

the isokinetic test and these values were fitted using the following exponential equation29: 24 

𝑣 = 𝑒$
%
& − 𝑒$

%(
& 𝑎 25 

where v is the fascicle velocity (m×s-1), P is the force value, P0 the maximal isometric force recorded 26 

during the MVC and extrapolated by the polynomial fit and a and b are experimentally determined 27 

constants. Constants a and b were obtained from the intercept (a/b) and slope (1/b) of the linearized 28 

Hill’s plot of (P0 - P)/V vs. P, where P is the torque developed at different velocities of shortening, V 29 

is the angular velocity of shortening and P0 is the maximal force of contraction (isometric, as obtained 30 

from the F-L curve) 30,31. Finally, the intercept value on the abscissa was taken as the maximal fascicle 31 

shortening velocity (Vmax). 32 

For the ultrasound measurements, the length of muscle fascicles was defined as the distance 33 

between the deep and superficial aponeuroses. Pennation angle (α) was defined as the angle between 34 
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the collagenous tissue and the deep aponeurosis9. A validated automatic tracking algorithm was used 1 

to quantify the muscle fascicle length and pennation angle frame by frame32. At the end of the auto-2 

tracking, every frame of the tracked fascicle lengths and pennation angles was visually examined to 3 

check the algorithm accuracy. Whenever the fascicle length or pennation angle was deemed 4 

inaccurate, the two points defining the muscle fascicles were manually repositioned. For the 5 

dynamometry measurements, only the fascicle length was taken into consideration. 6 

The raw EMG signal during the isometric contractions was filtered with a band-pass third 7 

order Butterworth filter at 20-500 Hz, whereas the onset of muscle activity was detected by a 8 

threshold that was defined as the baseline activity plus three times its standard deviation. Finally, the 9 

root-mean-square of the signal was calculated. 10 

 11 

Running measurements 12 

In the last minute of each running trial, kinematics, kinetics, EMG and ultrasound data were analysed 13 

for ten stance phases for each participant. This timing was chosen to coincide with the determination 14 

of oxygen uptake. Data of each instrument were interpolated at 200 sample points. Each subject 15 

repeated the runs at 10, 13 and 16 km×h-1 twice, once for scanning the GM muscle and a second time 16 

to scan the VL muscle. 17 

During running, based on the kinematics and kinetics variables, a 2D inverse kinematics and 18 

inverse dynamics approach were used to compute ankle/knee joint angles and net joint moments, 19 

respectively7. Finally, joint powers were calculated by multiplying the net moment at each joint by 20 

the corresponding angular velocity, at each time interval. Net joint moments and joint powers were 21 

finally normalised to body mass. The calculations were performed with a custom written LabView 22 

program (v.10). 23 

For the EMG data collected during running, the same noise reduction and onset identification 24 

procedure used for the MVC was applied. Moreover, a linear envelope of the EMG signal was 25 

calculated using the root-mean-square of a moving window (100 ms). Each muscle’s linear envelope 26 

was then normalised to the peak magnitude of the respective linear EMG envelope measured during 27 

MVC and thus expressed in %RMS of MVC.  28 

 For the running measurements the MTU length of VL and GM were computed, at each instant, 29 

using the instantaneous joint angles as proposed by Hawkins and Hull33. The SEE length, representing 30 

free tendon and aponeurosis for each MTU, was calculated as the difference between MTU length 31 

and the ultrasound-measured muscle fascicle length, taking into account the influence of pennation 32 

angle1. MTU, muscle fascicle and SEE lengths were then normalised to their resting length (during 33 

static standing); velocities were then computed by differentiating the normalised lengths of each 34 
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component with respect to time4. A reliability and sensitivity study of the ultrasound-based 1 

measurement of the VL and GM fascicle behaviour and MTU behaviour throughout the entire stance 2 

phase revealed very good reliability between single trials at all investigated speeds, with the 3 

coefficient of multiple correlations (CMC) ranging from 0.90 and 0.98. Moreover, the average root 4 

mean square difference (RMSD) values were about 5-7 mm for GM and VL fascicle lengths and 5 

around  3-4 mm for the corresponding MTUs lengths (see Supplementary Material). 6 

The following parameters were calculated (both in GM and VL): i) average MTU length 7 

during the stance phase (upper panels in Figure 1); ii) fascicle shortening in the stance phase, taken 8 

as the peak (negative) value of the fascicle length during shortening (middle panels in Figure 1); iii) 9 

SEE strain, taken as the peak (positive) value in the stance phase; iv) SEE recoil, calculated as the 10 

mean of the maximum and minimum strain values in the late stance phase (from the maximum value 11 

of strain to the end of the stance phase; bottom panels in Figure 1). 12 

Achilles and patellar tendon forces were calculated as the net ankle or net knee moment 13 

divided by the tendon lever arm, where the moment arm was estimated as suggested by Rasske et 14 

al.25. The contribution of the antagonist moment (biceps femoris and tibialis anterior) to the net joint 15 

moment, was taken into account (as described above) and subtracted from that of the agonist muscles. 16 

As proposed by Farris & Sawicki5 the force attributable to GM and VL series elastic elements 17 

(FSEE) can be estimated by multiplying the “overall” tendon force by the relative PCSA of these 18 

muscles according to the literature (15.9% of the PCSA of plantar flexors for GM and to and 34% of 19 

the PCSA of the knee extensors for VL34,35). To estimate the force acting along the GM and along the 20 

VL muscle fascicles, the corresponding FSEE was divided by the cosine of their pennation angle, as 21 

proposed by Lichtwark & Wilson9. Finally, the MTU force of those two muscles was assumed to be 22 

equal to FSEE, as suggested by Farris & Sawicki5. 23 

The power output of the GM and VL MTU, of the GM and VL muscle fascicles and of the 24 

GM and VL SEE was then calculated as the product of their respective forces and velocities, where 25 

the velocity was the first derivative of the length changes5; the positive power (during the propulsive 26 

phase) was then estimated for each running trial: positive power for the fascicle (Pfas
+), for the SEE 27 

(PSEE
+) and for the MTU (PMTU

+). The interplay between these power values is indicative of the 28 

fascicle and tendon interaction5 where the most efficient scenario corresponds to Pfas
+ = 0, a condition 29 

in which the fascicles are contracting isometrically and all PMTU
+ is supplied by PSEE

+ (i.e. by SEE 30 

recoil). 31 

 Force and velocity variations with fascicle operating length of GM and VL during the active 32 

state of the stance phase (at the three running speeds) are plotted in Figure 2 over the F-L and F-V 33 

curves as obtained during the dynamometric measurements. Fascicle length and fascicles velocity 34 
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values were obtained from the analysis of the ultrasound scans.  As proposed by Bohm et al.23, force 1 

was normalised to the maximum force obtained during the maximal isometric knee extension and 2 

plantar flexors contractions (F/Fmax); fascicle length and fascicle velocity were normalized to the 3 

experimentally determined optimal fascicle length (L/L0) and maximum shortening velocity 4 

(V/Vmax), respectively. Therefore, the estimated forces corresponding to the fascicle lengths and 5 

velocities measured during running represent values at the activation level the contracting muscles 6 

exhibited during each running task.   7 

 8 

Statistical analyses 9 

A one-way ANOVA for repeated measures was conducted to test the possible differences among 10 

running speeds. The following outcome measures were tested (during the stance phase): mean length 11 

of MTU; fascicles shortening; SEE strain and recoil; average EMG activity (linear envelope); mean 12 

values of fascicle operating length, Fmax and Vmax; the mechanical power production of each 13 

component in both muscles (VL and GM). When significant main effects were found, a post-hoc 14 

pairwise comparison using Fisher’s least significant difference was used to determine the effect of 15 

speed. The alpha level was set to P < 0.05 and statistical analysis was performed with SPSS (v24.0). 16 

All data extracted for statistical analysis were normally distributed (Shapiro-Wilk normality test, P > 17 

0.05).  18 

 19 

RESULTS  20 

 21 

F-L and F-V relationships 22 

The F-L and F-V curves as obtained during the dynamometric measurements are reported in Figure 23 

2. The values of L0, Fmax and vmax derived from these relationships were 9.57±1.66 cm, 5107±882 N 24 

and 122.3±14.5 cm×s-1 for the VL and 5.37±1.01 cm, 1019±177 N and 107.4±11.3 cm×s-1 for the GM, 25 

respectively. The operating length of the fascicles, the force and the velocity of GM and VL during 26 

the active state of the stance phase (at the three running speeds) are also plotted in Figure 2 over the 27 

F-L and F-V curves. The average length of both muscles during the stance phase changed 28 

significantly as a function of running speed (Figure 2A: VL, Figure 2C: GM) (main effect: P<0.001). 29 

However, the length changes (L) in the muscles occurred in opposite directions: in respect to their 30 

corresponding optimal length (L0,), VL fascicle length increased significantly (main effect: P<0.01) 31 

while GM fascicle length decreased significantly (main effect: P<0.001) with running speed. For each 32 

muscle, the comparisons revealed significant differences between all running speeds. However, at all 33 

speeds, both muscles operated close to their optimal length, the relative values (L/L0) being 34 
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1.03±0.05, 1.06±0.06 and 1.1±0.06 for VL and 0.92±0.05, 0.88±0.07, 0.83±0.07 for GM, at 10, 13 1 

and 16 km×h-1, respectively.  2 

Contraction velocity of VL and GM fascicles showed significant differences as a function of 3 

running speed (Figure 2B: VL, Figure 2D: GM) (main effect: P<0.001). Contraction velocity 4 

decreased for VL when the speed increased (main effect: P<0.05), whereas it increased for GM (main 5 

effect: P<0.01). Similar to fascicle length changes, the comparison of velocities for each muscle 6 

between running speeds showed significant differences (P<0.05) between all conditions. For both 7 

muscles, contraction velocity (V) was lower than their corresponding maximum values, with the 8 

relative values (V/Vmax) being: 3.1±3, 1.8 ±3.5, -2.8±3.8 % for VL and 5±4.8, 8.1±6.7, 12±7 % for 9 

GM, at 10, 13 and 16 km×h-1, respectively.  10 

 11 

Muscle and tendon parameters during running 12 

Figure 3 shows the mean MTU length values, the fascicle shortening, the SEE strain and recoil for 13 

both muscles in each running trial. VL MTU length, as well as VL SEE strain and recoil, showed no 14 

significant differences between running speeds, whereas an increase in VL fascicle shortening (main 15 

effect: P < 0.001) was observed at each speed. The average length of the GM MTU increased with 16 

running speed (main effect: P < 0.001). The same was the case for the GM fascicle shortening (main 17 

effect: P < 0.001) and GM SEE strain and recoil (main effect: P < 0.001), with significant differences 18 

between all three speeds for the latter.  19 

 20 

EMG activity  21 

Figure 4 shows the average EMG values of VL and GM in all running conditions during the stance 22 

phase of the gait cycle. The mean EMG values of VL and GM showed significant differences as a 23 

function of speed (main effect: P<0.001 and P<0.01 for GM and VL, respectively), with significant 24 

differences found for each muscle between all running speeds.  25 

 26 

Kinetic parameters 27 

Figure 5 shows the average joint power at the level of knee and ankle during the stance phase at each 28 

running velocity (upper panels). Joint power parameters could be divided into two different phases: 29 

negative (absorption) or positive (propulsion). During the absorption phase the mean values of knee 30 

joint power were -6.25±0.88, -6.43±0.81, -6.53±0.77 W·kg-1, whereas during the propulsion phase 31 

were 2.3±0.45, 3.29±0.51, 3.39±0.54 W·kg-1, at 10, 13 and 16 km·h-1, respectively. Significant 32 

differences were observed between all running speeds (P<0.05 and P<0.01 for negative and positive 33 

phase, respectively). The mean absorption values of ankle were -3±0.23, -4.51±0.37, -7.12±0.44 34 
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W·kg-1, whereas during the propulsion phase were 5.40±0.88, 7.38±0.96, 9.72±0.91 W·kg-1, at 10, 1 

13 and 16 km·h-1, respectively. Significant differences were observed between all running speeds 2 

(P<0.001 for both stance phases). 3 

Increasing running speed from 10 to 16 km×h-1 resulted in an increase in average positive 4 

power produced by the MTU (PMTU
+) in both muscles (middle panel of Figure 5) (VL: P<0.05 and 5 

GM: P<0.001) and significant differences were observed among speeds. PSEE
+ increased in GM as a 6 

function of speed (P<0.01), whereas no significant difference was observed for VL. For both muscles, 7 

Pfas
+ showed significant differences as a function of speed (P<0.05).  8 

The relative contribution of the fascicles in determining PMTU
+ was different between 9 

muscles (lower panel in Figure 5). For VL, 45% of the PMTU
+ could be attributed to the fascicle 10 

behaviour (no significant changes among speeds), whereas for GM, only 35% of the positive power 11 

was generated by the fascicle (no significant changes among speeds). As a consequence, tendon 12 

elastic power contributed 55% and 65% to the positive power done by the MTU for VL and GM, 13 

respectively (as an average, at all investigated speeds).  14 

 15 

DISCUSSION  16 

 17 

In the present study, the fascicle and SEE behaviours of two functionally different MTUs (Vastus 18 

Lateralis in the knee extensors and Gastrocnemius Medialis in the ankle plantar flexors) were 19 

analysed during running at increasing speeds. Our data showed that, with increasing running speeds, 20 

both muscles operate at high contractile force potential and low velocity regions, confirming fully 21 

our first hypothesis. However, our second hypothesis is only partly confirmed as the SEE behaviour 22 

at increasing running speeds differed between the two MTUs.  23 

With faster running speeds, the GM muscle fascicle operating range shifted towards smaller 24 

lengths, on the ascending limb of the F-L relationship. This muscle fascicle shortening allows the 25 

SEE to provide more elastic energy during the propulsion phase and therefore to produce more 26 

positive power as speed increases. In contrast, the operating length range of the VL muscle fascicles 27 

shifted towards longer lengths, on the descending limb of the F-L curve, with faster running speeds. 28 

However, the VL fascicle length changes are much smaller than those in the GM fascicles (with no 29 

major differences as a function of speed), and there are no significant changes in either SEE recoil or 30 

the positive mechanical power done by the SEE. Notwithstanding the lack of advantage in terms of 31 

elastic energy recovery from the VL SEE, the quasi-isometric behaviour of VL fascicles during 32 

running at increasing speeds has the benefit of economical muscle force production during the 33 

propulsion phase.  34 
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Data reported in this study confirm the findings of the modelling study of Lai et al. 4 and the 1 

hypothesis formulated by Bohm et al. 23 for the GM MTU and extend these considerations to the in 2 

vivo behaviour of the VL MTU at different running speeds.  3 

As shown by our data, increasing running speed affected differently the mechanical output of 4 

the two muscles. Contrary to our second hypothesis, the mechanical power provided by the SEE 5 

during the propulsive phase of running increased as a function of speed in the GM only, while it 6 

remained relatively constant for VL. On the other hand, the relative contribution of tendon elastic 7 

strain energy to the positive work done by the MTU was found to be rather constant as a function of 8 

speed in both muscles and to amount to about 65% for GM and 55% for VL. 9 

A likely explanation for the lack of length changes in VL SEE at faster speeds (and therefore 10 

greater loading) is the high stiffness of the patellar-quadriceps tendon complex 17-19 in combination 11 

with the anatomical position of this structure distally to the point of ground reaction force application. 12 

These characteristics are consistent with a SEE suited more for effective contractile force 13 

transmission distally and joint position control, rather than elastic strain energy storage and release36. 14 

Furthermore, the architecture of the knee extensor MTU (longer muscle fascicles compared to the in-15 

series shorter tendon) is suited more for dissipation of the mechanical energy during the first instant 16 

of the shock-absorption phase (see Figure 5). Indeed, when the speed increased, the ankle plantar 17 

flexors absorbed most of the mechanical power, allowing the knee extensors to work with little energy 18 

changes as a function of speed (see Figure 5). Therefore, the small changes in the negative phase of 19 

power may not have been sufficient to further increase the elongation and consequent recoil in the 20 

VL SEE.  Indeed, as indicated by several authors 4,12,21,22 during the first part of stance, VL absorbs 21 

mechanical energy whereas in the second phase of stance (propulsion phase) its function is to stabilize 22 

the body. In the propulsion phase, the back thigh muscles (especially the hamstrings) play the most 23 

important role in force development (e.g. Farris & Sawicki5). Therefore, it can be expected that the 24 

contribution of VL to force production decreases as a function of speed, allowing the hip and the 25 

hamstrings to provide more force as running speed increases. 26 

The important differences in the SEE behaviour between GM and VL MTUs result in a 27 

different mechanical output for the MTU. During the energy absorption phase of running, both MTUs 28 

store elastic strain energy, but as showed in Figure 5, the power generated by GM is far larger than 29 

that of VL. Consequently, it is possible that the SEE of VL absorbs and dissipates mechanical power, 30 

where the SEE of the GM works more as an energy saving mechanism. One other possible 31 

contributing mechanism for the SEE behaviour of GM is proximal-distal power transfer between 32 

joints, since this is a bi-articular muscle37. Therefore, further studies should include multiple levels 33 

of analysis for the SEE. 34 
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 1 

VL muscle-tendon behaviour 2 

This is the first study that experimentally investigated the operating length and velocity of the human 3 

VL fascicles during level running at increasing speeds.  Our data provide evidence that the VL 4 

fascicles operate close to their optimum working length (L0) with small length changes during the 5 

stance phase, where the muscle is active and generates force and power. Furthermore, the same 6 

muscle fascicle behaviour was observed with increasing speed.  7 

As highlighted by our data, at increasing speeds, the VL muscle was activated in the initial 8 

stance phase, and this is associated with the function of the muscle to decelerate and support the body 9 

mass 12. In agreement with Bohm et al.23, during the active state, the MTU showed the largest 10 

elongation (Figure 1), whereas the fascicles operated with significantly smaller changes around their 11 

optimal length (L0). Indeed, as shown by Figure 1, the main length changes of the VL MTU were 12 

primarily associated with changes of the series-elastic elements of the VL (patellar and quadriceps 13 

tendon complex). This SEE behaviour, allows the fascicles to take advantage of the high force-length-14 

velocity potentials during the active phase of the stance phase where the VL muscle generates 15 

force23,38.  16 

With increasing running speed, the VL fascicles operate at longer lengths on the descending 17 

limb of the F-L curve (see Figure 3), however, the favourable fascicle length conditions (isometric 18 

behaviour during stance) seem to be the result of adjusted muscle activation. In all running conditions, 19 

VL muscle EMG activity was increased in the first part of the stance phase where the MTU is 20 

lengthened. This coordinated time course between EMG activity and MTU elongation provides 21 

evidence that time-adjusted muscle activation contributes to the minimisation of fascicle length 22 

changes during running at increasing speed. As a consequence, the MTU could operate at a high 23 

force-generating potential and absorb substantial power during the first phase of the stance, due to 24 

SEE strain (Figures 2 and 5, upper panel). On the contrary, during the propulsion phase the activation 25 

of VL muscle is much lower (10-20% of the EMG activity at MVC) (Figure 4), but sufficient to allow 26 

the VL muscle fascicles to remain quasi-isometric also in the second part of the stance phase. It is 27 

possible that the SEE recoil allows the muscle to maintain a rather constant length, while the SEE 28 

accommodates the larger part of the MTU length change. This speculation is supported by the pattern 29 

of mechanical power production during the propulsion phase in our tests, which show that about half 30 

of the positive power provided by VL is derived from SEE and that VL SEE elongation did not change 31 

significantly over the speeds tested (Figure 5, lower panel). 32 

Therefore, the favourable fascicle operating conditions observed in the present study may 33 

have functional importance for human running at increasing speeds, because less active muscle 34 
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volume would be required for a certain mechanical demand, allowing a reduction in metabolic cost 1 

during locomotion 4,14,39. Since during the propulsion phase the VL does not contribute to the positive 2 

power  generated (Figure 5, upper panel), the knee extensors do not need to provide additional energy 3 

and a simple energy exchange within the MTU close to the optimal length (L0) of the muscle fascicles 4 

may allow for a minimisation of the activation level and duration of muscle activity during the stance 5 

phase, which improves the economy of muscle force generation23,29. 6 

 7 

GM muscle-tendon behaviour  8 

This is the first study experimentally investigating the operating length and velocity of the human 9 

GM fascicles during level running at increasing speeds. The results indicate that the GM fascicle 10 

length continued to shorten (albeit moderately) throughout the period of high force development, 11 

irrespective of running speed. 12 

A previous modelling study investigating the behaviour of the GM MTU during running at 13 

increasing speed found similar results to ours, with the fascicles operating isometrically, at smaller 14 

lengths as a function of running speed4. Furthermore, GM fascicle length change has also been 15 

observed to be small during running in experimental studies but at lower running speeds3,5,10. In the 16 

present study, the GM fascicles shortened relatively little during the stance phase of running (Figure 17 

3), but more than those of VL. Operating on the ascending limb of the F-L curve may be a mechanism 18 

to lessen the likelihood of muscle damage caused by active eccentric contractions 40,41. Similar to the 19 

VL fascicles, the GM fascicles operated quasi-isometrically and close to their optimal length (L0, see 20 

Figure 2) allowing the GM muscle to develop large contractile forces. These muscle forces increase 21 

the stretch and recoil of the tendon, thereby facilitating greater storage and recovery of tendon elastic 22 

strain energy.  23 

We found that the GM elastic strain energy provided a greater relative contribution to the 24 

positive power done by the MTU compared to the positive power provided by the muscle fascicles 25 

and that this contribution increased as a function of speed in absolute terms but remained almost 26 

constant in relative terms (Figure 5). This result is consistent with previous studies suggesting that 27 

muscle fibres in distal limb muscles, such as the ankle plantar-flexors, contract isometrically to 28 

facilitate greater storage and recovery of tendon elastic strain energy at fast locomotion speeds42. 29 

The greater storage and recovery of elastic strain energy, however, is coupled with an 30 

unfavourable shift of the muscle fascicles on their force-length relationship. In fact, although the GM 31 

muscle fascicles work with small and almost isometric changes, their operating regions shift down 32 

on the ascending limb of the F-L curve. It is likely that the observed increase in EMG activity with 33 

increasing running speeds reflects a greater volume of active muscle recruited in an effort to 34 
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counteract these unfavourable contractile mechanics conditions.  1 

Regarding the contribution of the SEE in the GM MTU, our data are in agreement with those 2 

of previous studies that estimated the relative contribution of tendon elastic strain energy to the 3 

positive work done by the MTU for the ankle plantar-flexors during running 5: SEE strain energy was 4 

found to contribute 60% to the MTU positive work for the gastrocnemius when running at 7.2 km.h-5 
1. Our data confirm these findings and extend them to a wider range of speeds supporting the idea 6 

that elastic strain energy contributes a greater proportion of the MTU propulsive power developed by 7 

the ankle plantar flexors compared to their muscle fascicles during running.  8 

 9 

Limitations 10 

There are certain limitations to the in vivo ultrasound and inverse dynamics approach used in this 11 

study that require consideration. Firstly, we did not directly measure or calculate the individual forces 12 

generated by the GM and VL MTUs during running. Instead, our interpretation regarding the function 13 

of the two muscles was based on the measured length changes of the MTU, muscle fascicles and SEE, 14 

as well as on the net moments and powers generated by the muscles spanning the knee and ankle, 15 

computed from inverse dynamics. Secondly, we assumed negligible inter-muscular force 16 

transmission between the individual muscles comprising the ankle plantar flexor and knee extensor 17 

groups. In support of this assumption are the findings of Tijs et al.43, who have shown that non-18 

myotendinous forces are likely to have a minimal effect on the overall function of muscles. Thirdly, 19 

the geometric approach used in this study modelled the MTUs with individual SEEs rather than with 20 

a common Achilles or patellar tendon. Finally SEE length changes were indirectly calculated, rather 21 

than measured, using MTU and in vivo fascicle measurements. Such SEE length estimates represent 22 

all connective tissue structures in-series with the muscle fascicles, including the aponeurosis and free 23 

tendon.  24 

 A modelling study has previously indicated that the aponeuroses and the free tendon, despite 25 

being anatomically in-series, may not be mechanically in-series, meaning that the forces acting along 26 

them during contraction might differ 44. However, previous studies have shown that, at comparable 27 

speeds, 70% of MTU power is attributable to changes in SEE 5, and 66% of MTU power is attributable 28 

to Achilles tendon changes4. This striking similarity indicates that, irrespective of whether the 29 

aponeurosis and the tendon are mechanically in-series or not, the aponeurosis is quite stiff, as also 30 

considered by others45 and consequently, most of the plantar flexor SEE deformation likely resides 31 

in the free Achilles tendon. Therefore, the strain elastic energy estimates for the plantar flexor (Figure 32 

5) would reflect mostly the Achilles tendon contribution. However, a recent paper by Zelik and 33 

Franz46 indicated that the deformation of the plantar flexor SEE component, as calculated in the 34 
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present study, and that of the free Achilles tendon may be different. 1 

 2 

Conclusions and Future Perspectives 3 

Here we show for the first time that during running at increasing speeds: 1) the plantar-flexors SEE 4 

behaviour impacts positively on the mechanical power produced, and 2) both plantar-flexor and knee 5 

extensor muscle fascicles contract quasi-isometrically and close to their optimal length L0, thus 6 

producing high forces economically. Future studies should investigate the link between muscle-7 

tendon behaviour during running and the associated metabolic cost. 8 
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 11 

FIGURES LEGEND 12 
 13 

Figure 1. Mechanical behaviour of Vastus Lateralis (left panels) and Gastrocnemius Medialis (right 14 

panels) muscle-tendon unit, muscle fascicle and series elastic elements during the stance phase while 15 

running at three steady-state speeds: solid line: 10 km×h-1;  thick dashed line: 13 km×h-1; thin dashed 16 

line: 16 km×h-1. MTU, muscle fascicle and SEE lengths were normalised to their corresponding 17 

resting lengths during static standing. Negative and positive length values denote shortening and 18 

lengthening, respectively.  19 

 20 

Figure 2. Operating length (upper panels) and velocity (lower panels) of Vastus Lateralis (left) and 21 

Gastrocnemius Medialis (right) muscle fascicles (mean and standard deviation) during the stance 22 

phase of running onto the normalised force-length and force-velocity curve. Force is normalised to 23 

the maximum force obtained during the maximal isometric knee extension and plantar flexors 24 

contractions; fascicle length and fascicle velocity are normalized to the experimentally determined 25 

optimal fascicle length and maximum shortening velocity, respectively. Black dots: 10 km×h-1; grey 26 

dots: 13 km×h-1; white dots: 16 km×h-1; * P < 0.05; § P < 0.01; # P < 0.001. 27 

 28 

Figure 3. Average change of MTU, fascicle shortening, SEE strain and SEE recoil values for Vastus 29 

Lateralis (left panels) and Gastrocnemius Medialis (right panels) as a function of running speed. 30 

Values are means ± SD and are dimensionless (relative lengths, normalised for the condition of static 31 

standing). Black column: 10 km.h-1; dark grey column: 13 km.h-1; light grey column: 16 km.h-1. 32 

Significantly different from 10 km×h-1 (*: P<0.05; **: P<0.01; ***: P<0.001); significant difference 33 

between 13 and 16 km×h-1 (#: P<0.05; ##: P<0.01; ###: P<0.001). 34 
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 1 

Figure 4. EMG linear envelope for Gastrocnemius Medialis (upper panels) and Vastus Lateralis 2 

(lower panels) measured in the stance phase when running at three steady-state speeds (solid line: 10 3 

km×h-1; thick dashed line: 13 km×h-1; thin dashed line: 16 km×h-1). EMG activity was normalised to 4 

the peak EMG activity measured during the MVC.  5 

 6 

Figure 5. Upper panels: average net joint power (normalised to body mass) calculated at the knee  7 

(left) and ankle (right) level when running at three steady-state speeds (solid line: 10 km×h-1; thick 8 

dashed line: 13 km×h-1; thin dashed line: 16 km×h-1). Middle panels show the absolute value of the 9 

mechanical power done by the SEE (black columns) and by the muscle fascicles (white columns) for 10 

VL (left panel) and GM (right panel). The sum of the two components represent the total mechanical 11 

power of the MTUs. Lower panels show the relative contribution of the SEE (black columns) and 12 

muscle fascicles (white columns) in determining the mechanical power done by the MTU for VL (left 13 

panel) and GM (right panel). 14 


