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Abstract

Widespread and ever-increasing anthropogenic impacts in the marine environment are driv-

ing a need to develop more efficient survey methods for monitoring changes in marine biodi-

versity. There is a particular urgent need for survey methods that could more rapidly and

effectively detect change in species richness, abundance and community composition.

Here, test the suitability of the Mackinnon Lists Technique for use in the marine environment

by testing its effectiveness for rapid assessment of fish communities. The MacKinnon Lists

Technique is a time-efficient and cost-effective sampling method developed for studying

avian tropical biodiversity, in which several list samples of species can be collected from a

single survey. Using the well-established MaxN approach on data from deployments of a

Baited Remote Underwater Video Systems for comparison, we tested the suitability of the

MacKinnon Lists Technique for use in marine environments by analysing tropical reef fish

communities. Using both methods for each data set, differences in community composition

between depths and levels of protection were assessed. Both methods were comparable

for diversity and evenness indices with similar ranks for species. Multivariate analysis

showed that the MacKinnon Lists Technique and MaxN detected similar differences in com-

munity composition at different depths and protection status. However, the MacKinnon Lists

Technique detected significant differences between factors when fewer videos (represent-

ing reduced survey effort) were used. We conclude that the MacKinnon Lists Technique is

at least as effective as the widely used MaxN method for detecting differences between

communities in the marine environment and suggest can do so with lower survey effort. The

MacKinnon Lists Technique has the potential to be widely used as an effective new tool for

rapid conservation monitoring in marine ecosystems.
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Introduction

Monitoring the abundance, diversity and distribution of species helps track the impacts of

environmental disturbance, detect changes in population dynamics and enables effective man-

agement [1–3]. This requires accurate and precise information on species richness, abundance

and assemblage composition, permitting the detection of community responses that might be

caused by environmental change [4]. Such data also contributes to understanding the factors

shaping community assemblages which can assist managers to make informed decisions [5,6].

In the marine environment a number of sophisticated methods such as mark and recapture,

acoustic surveys or destructive methods have been developed to survey and monitor biodiver-

sity for conservation and scientific purposes [7]. Many of these methods are costly and time

intensive, requiring considerable expertise in terms of data collection and analysis [8–10].

Moreover, species assemblages in the marine environment are often characterised by high spa-

tiotemporal variation and heterogeneity, making it difficult to fulfil the underlying assump-

tions of complex methodologies [9,11]. In many cases key conservation priority areas, such as

coral reef environments, are characterised by high species richness and patchy distribution of

key habitats and species. This adds considerable challenges to data collection, analysis and

interpretation [9,12,13].

Marine environments, including temperate and coral reefs, are changing rapidly in

response to climate change and other human disturbances [14,15], creating a need for methods

which can rapidly assess these communities in a standardized and comparable manner [16]. A

commonly used method for studying fish assemblages in coral reefs is the underwater visual

census (UVC) conducted by divers. UVC has a range of limitations such as the divers’ impact

on fish behaviour [17], effects of variation in diver swimming speed [18] and the need for

trained divers that can immediately identify the species encountered and estimate their length

[4, 19–21].

With the development of higher quality and relatively cheap video camera technology some

of these limitations have been overcome, in particular the problems of consistent species iden-

tification [22–24]. With advances in computer power and software, the ability to carry out

underwater photogrammetry, means that fish length and biomass estimates have greatly

improved. Deployments of stationary video cameras are also used in conjunction with bait to

attract fish to the camera [25–28].

One of the most common sampling approaches is to record the maximum number of indi-

viduals of each species seen at one time [29]. This value is known as the MaxN for that species

and is considered an index of abundance. This approach was suggested by Cappo et al. (2003)

and subsequently adopted by other teams in Australia and the US. The use of the MaxN

approach avoids repeated counts of the same individual. However, because it only uses the

maximum number of individuals at a single time it ignores much of the information recorded

by the video [4]. Furthermore, the number of individuals detected at one time depends on

behaviours of individual species. Changes in true abundance may not be detectable in species

that only come to the bait in ones and twos and at higher densities fish may actively chase each

other away [30]. Recognising that no survey method is without biases, it is useful to evaluate

and compare methods of counting animals from terrestrial systems to see if these can be

applied to marine systems. For example, the widely used Underwater Visual Census approach

to sampling coral reef fish developed by Brock (1954) was a successful adaptation of visual

counts of birds with an observer identifying and counting all the birds they saw along a tran-

sect [31].

Ideally, potential new sampling techniques should allow for analysis of both in situ data and

video footage. They should also be comparable across survey methods, reduce the potential for

PLOS ONE A new method for monitoring marine biodiversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0231820 April 22, 2020 2 / 15

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0231820


double counting in UVC survey, use the data available in video footage to a greater extent, be

widely applicable, fast and cost-efficient.

The MacKinnon Lists Technique (MLT) was developed for surveys of avifaunal communi-

ties in tropical forest ecosystems and has become an established technique for bird surveys,

particularly in highly species rich communities [32–36]. The MLT can accumulate samples

from any set of observational data where the order of individual detections can be recorded,

and could therefore be used widely in the marine environment including for UVC surveys,

baited and unbaited remote underwater video surveys.

We propose that MLT has unique features (further described below) that may make it use-

ful in the marine environments, in particular in species rich habitats such as coral reefs. As

such it is a highly flexible method to rapidly assess biodiversity in situ or using video, and, due

to its simplicity, lower survey costs, staff time; availability of technology or training. Moreover,

in comparison to MaxN more information is retained.

The MLT works by sequentially recording species detected during a survey in a standard-

length list sample of unique species. To create a list sample, each species observed is recorded

in order first seen until a pre-decided number of species is reached, normally either 5 or 10

unique species depending on the species richness of the study community [34,37]. A species

can only be recorded once in each list sample. Once a list is completed, a new sample is begun,

which can include species observed in the previous list(s). Typically, several lists are created

during each survey effort (e.g. a transect or video recording), these lists are the sample units.

For birds, this technique has been shown to rapidly generate consistent species richness

and relative abundance indices under a wide range of field conditions [34,37]. Bibby et al.

(2000) argue that the MLT provides sampling units that are independent of collection time,

observer expertise and spatial extent. This makes it a useful method to investigate changes in

assemblage composition in space and time. Species relative abundance can be generated using

MLT samples by calculating the proportion of samples each species occurs in. Previous studies

suggest that the MLT is an efficient method to survey species groups of special interests such as

species of conservation importance [37]. MacLeod et al. (2011) suggested that the MLT might

be suitable for measuring differences in abundance and communities of many other taxo-

nomic groups in addition to birds, including the marine environment.

In this study, we investigate for the first time the ability of MLT to rapidly generate moni-

toring data for marine fish communities, capable of 1) producing species richness and diversity

estimates, 2) providing measures of relative abundance of species, including species targeted

by fisheries, 3) detecting ecological relevant differences such as differences in community com-

position with depth and protection status and 4) its effectiveness at detecting changes in com-

munity composition as sampling effort decreases. In each case we compare MLT to results

from the MaxN method, which is already widely used in marine science.

Materials and methods

Study area

Video footage for this study was collected in the Houtman Abrolhos Islands, located on the

west coast of Western Australia, approximately 60 km offshore between 28˚15’S and 29˚S. The

Houtman Abrolhos consists of four main island groups. This study took place in the Easter

group, which lies South of North Island and the Wallabi Group but North of the Pelsaert

group [4]. The Easter group study area includes an area (22.29 km2) closed to fishing which

was established in 1994. For this study we used imagery collected between August and October

2005. Permits to conduct this work were obtained from the Department of Fisheries, Western

Australia, who also provided logistical assistance.
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Survey work. Imagery for this study was collected by baited remote stereo-video systems,

filming for one hour. Video cameras were deployed in four sites, three of which were open to

fishing and one was closed to fishing within the reef observation area (ROA). Within each of

these at least five replicate deployments were made, which were split between shallow (8–12

m) and deep (22–26 m) reef slopes. Therefore, survey work resulted in 34 one-hour videos

from a three-factor experimental design: protection status (St, two level fixed factor: fished or

ROA), depth (De, two level fixed factor: deep (22–26 m) or shallow (8–12 m)) and site (S,

nested random factor). This work was conducted by Warson et al. (2007). To account for cor-

relation between lists within the same videos, we also added video as a random factor for MLT.

Survey sites were standardized with each site representing the same general habitat (pre-

dominantly coral) and deployments were made randomly within these sites. Each deployment

site was separated by at least 250 m in order to minimize the chances of individual fish from

moving between sites. Surveys were carried out between 0800 and 1600 hours.

Image analysis

Each video was viewed in the video analysis program EventMeasure [38] and the following

information extracted. For MaxN, each individual or group of individuals were identified to

species level and then the maximum number of individuals of each species in the field of view

at any one time was established for each video [26]. In line with other studies for MLT [32,34],

we generated a chronologically ordered master list by recording a list of all individuals seen

during a video. To simplify recording, species had to be out of field of view for more than

three minutes before the same species was added as a new record. This avoided having to

record long sequences of a species from a single individual passing repeatedly through the field

of view. This was for convenience and is not an essential part of the technique, as repeated rec-

ords of the same species would in any event be eliminated at the next stage of the sampling

process. Once the data was assembled into this time ordered master list, we separated it into

list samples consisting of five species each. A list sample size of five species was selected rather

than ten species which is more common in avian studies, as the fish community species rich-

ness was less than found in most bird communities to which this method has been applied

(most bird communities surveyed comprised between 150 and 300, compared to approxi-

mately 90 fish species associated prior work conducted in our sampling location) [34,37]. Each

list sample provides a sample of the overall community present at a unique combination of

time and space, as each sample is made up of a fixed number of species it represents a fixed

proportion of the overall community studied. To ensure all data from the master list were used

to estimate species richness for each habitat (i.e. the same status and depth category), partial

list samples from individual videos (where less than five species were found at the end of a

video) were pooled and added as additional lists for each habitat. Additional lists were not ana-

lysed as part of the multivariate analysis as video was being used as a random factor.

Statistical analysis

Species richness estimation. Observed and estimated species richness accumulation

curves for MaxN (per video sample for the factors status and depth) and MLT (per list sample

for the factors status and depth) were generated using EstimateS v. 9.1 [39]. In order to remove

sample order effects, average observed species richness (Sobs accumulation curve) was calcu-

lated by bootstrapping order species 50 times. Species richness estimators were then used to

predict number of species within each habitat, with curves generated indicating if the area was

sufficiently sampled. We selected ACE, ICE, Chao 1, Chao 2, Jack 1, Jack 2m MMruns and
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MMMeans species richness estimators as previous studies have suggested that these estimators

produce the most consistent predictions over a range of species richness values [37].

Community diversity and evenness. Fisher’s alpha [40], Pilou’s J evenness [41], and Bril-

louin index for evenness [41] and diversity were calculated for MaxN (sample unit being video

within a habitat) and MLT (sample unit being a list sample within a habitat) using the Diver-

sity4 package. Standard deviations of the abundance indices were calculated using Diversity4.

The equations used to calculate the indexes are based on published sources [42,43].

Relative abundance indices for common and target species. Comparisons between

methods were made using the ten species with the highest relative abundance index for each

method within each habitat. We also calculated the relative abundance within each habitat of

species commonly targeted for fishing. MaxN and MLT species abundance indices were calcu-

lated as average MaxN and total abundance count for MLT (sum of all lists), per video in each

of the four habitat types.

Multivariate analysis. Community assemblage data were analysed with permutational

multivariate analysis of variance (PERMANOVA), in the PRIMER 6 statistical package [44].

Relative abundance based on MaxN and MLT were analysed separately according to a three—

factor design (MaxN) and four—factor design (MLT), as described above. Prior to analysis this

data was square root transformed and a dummy variable was added. The analysis used Bray

Curtis distance dissimilarly. Permutational distance based approaches are of advantage when

analysing abundance data as these tend to have many zero counts and are highly skewed

[45,46]. This enabled the examination of significant factors influencing the abundance data. In

order to understand the ability of each technique to discriminate patterns and distinguish

between factors at lower sampling efforts, we analysed a lower number of videos within each

habitat according to a balanced design with five, three and two videos per habitat. Videos were

chosen randomly, but were the same for both methods. At these lower sampling efforts, we

generated p-values for both methods using a Monte Carlo random samples from the asymp-

totic permutation distribution [47].

Results

Species richness and diversity measurement

The MLT consistently generated more samples across each of the habitats, with for example 53

list samples compared to 15 video samples in the Deep Fished habitat (Table 1). This is because

the MLT makes use of more of the observations captured in each video allowing several list

samples (each of which contains five species) to be complied from a single video. Using these

samples both methods yielded similar estimated species richness in each habitat (Paired t-test:

t = 0.80, df = 3, p = 0.48, Table 2). However, the greater number of MLT samples appeared to

result in species richness estimates and species accumulation curves levelling off to a greater

extent compared to MaxN thus providing more stable estimates of community species richness

in each habitat (Table 1 and Fig 1). This was investigated further using the sample-based

Chao2 species richness estimator, as this enables confidence interval calculation for species

richness estimates. In the Deep Fished, Shallow Fished and Deep ROA habitats, the MLT

Chao2 species richness estimate appeared to have stabilised by the final samples with the last

three, five and three samples respectively providing species richness estimates that differed by

less than one species (Table 1, S1 Table). For Shallow ROA the MLT Chao2 species richness

estimate was still changing by slightly more than one species per sample in the final samples

suggesting more sampling would be needed to produce a stable species richness estimate. In all

four habitats Chao2 species richness estimate was still changing between the final two samples

for MaxN, with a change between estimates of four species for Deep Fished, two species for

PLOS ONE A new method for monitoring marine biodiversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0231820 April 22, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0231820


Shallow Fished, three species for Deep ROA and two species for Shallow ROA (Table 1 and

supplementary materials). Even with only four habitat comparisons available this difference in

the final rate at which species richness estimates were changing was very close to significant

between the two methods (Paired t-test: t = 3.0, df = 3, p = 0.058), providing evidence of an

underlying difference in efficiency of methods. For the MLT Chao 2 species richness estimates

the range of the 95% confidence intervals was also somewhat smaller than for MaxN for three

out of the four habitats (95% CI Range: Deep Fished MLT 76.7 v MaxN 88.8, Shallow Fished

MLT 58.4 v MaxN 62.1, Deep ROA MLT 23.2 v MaxN 54.3, Shallow Fished MLT 47.2 v MaxN

26.8).

Fisher’s alpha (all sample index), Brillouin Diversity, Brillouin Evenness and PilousJ even-

ness were calculated for each habitat (Table 3). Based on the widely overlapping standard

errors the values for both methods are very similar with both methods identifying the same

pattern, with Deep Fished and Shallow Fished habitats characterised by greater species diver-

sity, but similar evenness compared to those in the ROA.

Abundant species and target species

We compared the ten most abundant species (numerically) for MLT and MaxN (Table 4).

Both methods identified very similar lists of the most abundant ten species. For each habitat,

the methods agreed on 9 out of 10 of the most abundant species and for Shallow ROA

Table 1. Samples generated by MaxN and MLT per habitat and stability of species richness (SR) estimates. As described in the methods, based on the master list, par-

tial list samples at the end of videos were added to form additional pooled list samples for a habitat. Total number of additional lists generated is given in brackets.

Number of video samples generated MaxN Final SR Estimate

Chao 2

MaxN Penultimate SR

Estimate

MaxN Final Rate of SR

Change

Deep Fished 14 97.00 93.18 3.82

Shallow

Fished

10 83.30 81.52 1.78

Deep ROA 5 51.54 48.72 2.82

ShallowROA 5 54.42 52.76 1.66

Number of list samples generated (pooled lists in

brackets)

MLT Final SR Estimate

Chao 2

MLT Penultimate SR

Estimate

MLT Final Rate of SR

Change

Deep Fished 53 (6) 90.70 91.13 0.43

Shallow

Fished

54 (4) 81.90 82.44 0.54

Deep ROA 14 (1) 39.04 39.21 0.17

ShallowROA 27 (2) 61.37 60.23 1.14

https://doi.org/10.1371/journal.pone.0231820.t001

Table 2. Species richness estimates for each habitat. Based on species estimators (S(exp), ACE, ICE, Chao1, Chao2, Jack1, Jack2 and MMruns).

Habitat Deep fished Shallow fished Deep ROA Shallow ROA

Index MaxN MLT MaxN MLT MaxN MLT MaxN MLT

S(exp) 58.00 58.00 58.00 59.00 32.00 32.00 45.00 45.00

ACE 79.00 82.16 74.4 81.21 50.27 45.15 51.84 59.36

ICE 105.35 92.45 83.56 79.08 66.68 49.38 62.35 61.6

Chao 1 79.34 84.19 74.97 77.97 43.30 37.04 78.92 59.96

Chao 2 97.00 90.70 83.30 81.90 51.54 39.04 54.42 61.37

Jack 1 84.00 82.53 78.70 79.61 47.20 45.00 59.40 61.37

Jack 2 101.67 99.03 91.41 92.27 55.90 48.30 64.80 70.88

MMruns 83.49 69.59 74.28 71.87 69.10 55.45 83.66 64.74

https://doi.org/10.1371/journal.pone.0231820.t002
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Fig 1. Species accumulation curves based on MaxN and MLT for four coral reef fish habitats.

https://doi.org/10.1371/journal.pone.0231820.g001
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provided agreement on 10 out of 10. Species ranks within the lists were also very similar, with

an average difference of one rank or less between the methods in each of Deep Fished, Shallow

Fished, Deep ROA and Shallow ROA.

The mean relative abundance of four species targeted for fishing was calculated per habitat

for both methods. Again, the methods identified very similar patterns of species abundance

across different habitats (Fig 2).

Table 3. Diversity and evenness indices for MaxN and MLT. Fishers alpha index, Brillouin Diversity, Brillouin Evenness and PilousJ evenness for community diversity

and evenness were obtained from Diversity 4 for both techniques including Jacknife Standard Error across the four habitats.

Habitat type Fishers alpha (+- Jacknife SE) Brillouin Diversity (+- Jacknife SE) Brillouin Evenness (+- Jacknife SE) PielouJ Evenness (+- Jacknife SE)

Max N

Deep Fished 16.19 (2.45) 3.10 (0.16) 0.81 (0.03) 0.80 (0.04)

Shallow Fished 15.19 (1.77) 3.00 (0.15) 0.77 (0.06) 0.77 (0.04)

Deep ROA 12.42 (3.77) 2.19 (0.25) 0.70 (0.12) 0.69 (0.08)

Shallow ROA 12.50 (2.38) 2.16 (0.20) 0.60 (0.05) 0.60 (0.05)

MLT

Deep Fished 17.35 (1.79) 3.13 (0.09) 0.82 (0.02) 0.81 (0.02)

Shallow Fished 15.83 (2.09) 2.96 (0.18) 0.76 (0.05) 0.76 (0.05)

Deep ROA 12.70 (1.87) 2.16 (0.38) 0.69 (0.16) 0.68 (0.13)

ShallowROA 12.74 (2.63) 2.18 (0.41) 0.61 (0.12) 0.61 (0.12)

https://doi.org/10.1371/journal.pone.0231820.t003

Table 4. Most abundant species in the four coral reef fish communities according to MaxN and MacKinnon Lists Technique. The rank of the top ten species is indi-

cated in brackets.

MaxN MLT MaxN MLT MaxN MLT MaxN MLT

Deep Fished Deep Fished Shallow Fished Shallow Fished Deep ROA Deep ROA ShallowROA ShallowROA

Chaetodon assarius 23 (8) 20 (8) 0 0 0 0 0 0

Chaetodon lunula 0 0 0 0 3 (9) 4 11 (8) 6 (9)

Chaetodon plebeius 0 0 0 0 3 (10) 2 (9) 0 0

Chlorurus sordidus 0 0 69 (2) 58 (2) 5 (7) 5 (6) 13 (6) 13 (5)

Choerodon rubescens 39 (4) 30 (3) 18 (9) 16 (10) 7 (4) 6 (5) 12 (7) 12 (6)

Chromis westaustralis 23 (7) 23 (5) 137 (1) 134 (1) 64 (1) 63(1) 218 (1) 203 (1)

Coris auricularis 37 (5) 22 (6) 38 (5) 24(8) 0 0 0 0

Dascyllus trimaculatus 0 0 28 (8) 26 (7) 0 0 0 0

Gymnothorax woodwardi 0 0 8 15 (9) 4 (8) 4 (7) 0 0

Kyphosus cornelii 0 0 0 0 0 0 42 (2) 43 (2)

Lethrinus nebulosus 0 0 0 0 6 (6) 3 (8) 17 (4) 17 (4)

Pagrus auratus 67 (2) 26 (4) 0 0 7 (5) 7 (4) 0 0

Parupeneus spilurus 20 (9) 18 0 0 0 0 0 0

Pentapodus nagasakiensis 16 16 (10) 0 0 0 0 0 0

Plectropomus leopardus 46 (3) 42 (2) 30 (7) 30 (4) 12 (2) 11 (2) 9 (9) 12 (8)

Pseudocaranx spp 68 (1) 62 (1) 56 (3) 56 (3) 0 0 0 0

Scarus ghobban 20 (10) 18 (9) 0 0 0 0 0 0

Scarus schlegeli 27 (6) 21 (7) 33 (6) 26 (6) 0 0 7 (10) 6 (10)

Scombridae spp 0 0 0 0 9 (3) 8 (3) 19 (3) 19 (3)

Stethojulis strigiventer 0 0 0 0 2 2 (10) 0 0

Thalassoma lunare 0 0 42 (4) 29 (5) 0 0 16 (5) 10 (7)

Thalassoma lutescens 0 0 17 (10) 16 0 0 0 0

https://doi.org/10.1371/journal.pone.0231820.t004
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Multivariate analysis

The square-root transformed relative abundance data generated from all the deployments with

each method analysed separately, showed the same significant differences in fish assemblage

composition for the factors conservation status and depth with both methods. The random

factor video was highly significant for MLT (Table 5).

Following this analysis, we randomly dropped the number of videos used in the analysis,

allowing us to investigate how MaxN and MLT perform at lower sampling efforts (Table 6).

Both techniques found significant differences between status and depth at a balanced sampling

effort of five video deployments per habitat. However, MLT found a highly significant differ-

ence for the interaction between status and depth. MLT continued to detect the effect of pro-

tection status, depth and their interaction as significant with a further reduction in sampling

effort to three videos per habitat. While MaxN only detected a significant effect of status with

no significant differences between depth and no interactions.

Discussion

For the first time, we have tested the ability of the MacKinnon Lists Technique to generate use-

ful results on biodiversity patterns in marine fish communities. Our results show that this new

approach is able to generate comparable results to the well-established MaxN methodology,

with species richness estimates, diversity indices, relative abundance and assemblage composi-

tion results similar between the two methods. Moreover, MLT continued to detect more key

Fig 2. Mean relative abundance for MaxN (average MaxN per video deployment) and MLT (fraction of lists the species occurred in within videos) in each habitat

of the most important fishing targeted species.

https://doi.org/10.1371/journal.pone.0231820.g002
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variables as significant effects compared to the MaxN methodology as sampling effort was

reduced. Due to the greater use of data available in video surveys, the MLT appeared to pro-

duce more stable estimations of species richness, suggesting that reliable assessments of biodi-

verse communities could be achieved with lower sampling effort.

These results suggest MLT is a viable method to assess spatial or temporal changes in spe-

cies richness, relative abundance and community composition in marine environments and

therefore could be a valuable tool for rapid conservation assessments in marine environments

and possibly more widely under other circumstances where resources for sampling are

limiting.

The consistency of both methods in generating similar ranks of the most abundant species

and in generating comparable patterns of relative abundance for species of key conservation

concern suggest that MLT should be a useful tool to assess the relative abundance of target spe-

cies. This is encouraging not only for surveys in the marine environment, but also more gener-

ally, as previous tests on highly diverse tropical avian communities have often struggled to

collect sufficient data from multiple methods to compare relative abundance ranks of more

than a few species [35,37].

The choice of sampling technique and method of analysis for biodiversity assessments in

general often depends on the researcher’s experience and preference, budget, study aim, focal

species and a choice between different biases associated with different techniques [12]. Fjeldsa

(1999) advocates the use of MLT for birds as being a highly time-efficient method as lists sam-

ples can be continuously generated while randomly moving through a habitat. This is a poten-

tially significant advantage of the MLT compared to other methods traditionally used in avian

studies, such as point counts where the time moving between survey points can significantly

reduce data collection time [37].

In the context of field surveys whether in terrestrial or marine environments, MLT could

allow a surveyor to cover a greater survey area in less time, generating a greater number of

samples and often will require almost no prior preparation time for laying out survey grids or

Table 5. Comparison of ability of MaxN and MTL methods to detect significant effects on community composition. PERMANOVA results of square root trans-

formed relative abundance data generated by MaxN and MLT using Bray Curtis dissimilarity matrix and one dummy variable. Significant values are highlighted bold.

Source Df MS Pseudo-F P(perm)

MaxN

Status 1 6528.5 4.1 0.007

Depth 1 8623.2 5.3 <0.001

StatusxDepth 1 3424.4 2.1 0.051

Site(Status) 8 1507.9 0.8 0.810

DepthxSite(Status)�� 7 1576.5 0.8 0.760

Residual 9 1902.8

Total 27

MLT

Source Df MS Pseudo-F P(perm)

Status 1 7373.4 2.4 0.007

Depth 1 9207.4 3.2 0.002

StatusxDepth 1 4484.1 1.6 0.100

Site(Status) 8 3070.2 1.0 0.610

Video(Site(Status)xDepth) 17 3296.2 1.3 0.006

Res 98 2604.1

Total 134

https://doi.org/10.1371/journal.pone.0231820.t005
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lines. In this study, the effort needed to analyse video footage to calculate relative abundance

and species richness was similar for both methods (one-person hour per 60 min video). When

measuring species richness and relative abundance, both methods require little technology

and are comparable in terms of time required for analysis. Therefore, both methods are likely

to be feasible options in environments where survey costs, staff time, availability of technology

and training is limited. In a snorkelling and diving context, the MLT may allow for a faster and

more standardized sampling approach, without the challenge of considering time restrictions,

swimming speed or transect length, therefore making it a much simpler approach that is easier

to implement in a standardised manner.

In a real-world context, areas of conservation importance often lack expertise and equip-

ment to fully assess fish community composition. MLT has been shown to generate consistent

relative abundance estimates across a range of personnel experience [34,37]. We suggest that

using MLT in the marine environment could allow personnel with a lack experience or scien-

tific support to focus on being able to confidently identify species of key conservation impor-

tance in the field, rather than on the more complex methodological requirements of other

techniques. This should then enable such observers to help assess the spatial and temporal

Table 6. Comparison of ability of MaxN and MTL methods to detect significant effects on community composition with lower sampling effort. PERMANOVA

results of square root transformed relative abundance data generated by MaxN and MLT. Significant values are highlighted in bold. The full experimental design was

reduced to five videos for all habitats. By reducing the sample size of the fished sites at both depths to five, maintaining ROA samples at five, following by reducing fished

and ROA video deployments to three and ultimately two. P(MC) denotes Monte Carlo permutations. Significant values are highlighted in bold.

Video/ habitat MaxN MLT

5 Source df MS Ps-F P(MC) Source df MS Ps-F P(MC)

Status 1 5923.7 3.8 0.014 St 1 7841.9 2.3 0.010

Depth 1 7087.4 4.1 0.010 De 1 8569.1 3.5 0.001

Site(Status) 6 1537.6 0.8 0.711 Si(St) 5 2972.8 0.9 0.613

StatusxDepth 1 3503.2 2.0 0.096 StxDe 1 4324.5 1.9 0.028

DepthxSite(Status) 5 1738.1 0.9 0.593 DexSi(St) 5 2101.8 0.7 0.966

Residuals 4 1902.7 Vi(Si(St)xDe) 7 3338.0 1.2 0.089

Total 18 Res 61 2710.4

Total 81

3 Source df MS Ps-F P(MC) Source df MS Ps-F P(MC)

Status 1 2932.3 2.5 0.086 St 1 4864.6 2.8 0.005

Depth 1 5683.7 3.0 0.072 De 1 10760.0 8.2 0.001

Site(Status) 3 1134.0 0.5 0.842 Si(St) 2 1480.2 0.4 0.991

StatusxDepth 1 4273.6 2.2 0.121 StxDe 1 6526.5 5.9 0.001

DepthxSite(Status) 3 1858.9 0.9 0.613 DexSi(St) 2 836.0 0.2 0.999

Residuals 2 2185.7 Vi(Si(St)xDe) 4 3808.9 1.4 0.049

Total 11 Res 41 2751.6

Total 52

2 Source df MS Ps-F P(MC) Source df MS Ps-F P(MC)

Status 1 2976.4 2.7 0.202 St 1 3214.4 2.0 0.119

Depth 1 5159.4 2.5 0.233 De 1 6017.1 3.6 0.017

Site(Status) 1 1023.0 0.5 0.697 Si(St) 1 1713.1 0.4 0.923

StatusxDepth 1 2349.7 1.4 0.413 StxDe 1 3365.5 2.5 0.053

DepthxSite(Status) 1 1693.2 0.8 0.538 DexSi(St) 1 1400.3 0.4 0.961

Residuals 2 2185.7 Vi(Si(St)xDe) 2 4375.9 1.5 0.065

Total 7 Res 26 2833.6

Total 33

https://doi.org/10.1371/journal.pone.0231820.t006

PLOS ONE A new method for monitoring marine biodiversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0231820 April 22, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0231820.t006
https://doi.org/10.1371/journal.pone.0231820


variation in fish assemblage composition more reliably, a key aim of many rapid assessment

surveys and for conservation monitoring.

It is worth also noting that because it collects multiple samples per video the MLT technique

may sample solitary fish species to a greater extent than MaxN, which only focuses on the max-

imum group size seen per video. This would make MLT a useful tool for assessing changes in

relative abundance of solitary and numerically less common species, which would be consis-

tent with data generated from terrestrial surveys [37]. In contrast, it is likely that the focus on

maximum group size will mean the MaxN technique will more readily detect changes in rela-

tive abundance of fish species that frequently move in large groups. For this reason, we suggest

that, where sufficient funds are available, an effective approach to marine biodiversity assess-

ments might be to use both the MLT and MaxN methods together to analyse videos, diver or

other surveys and report the results of both so that the strengths of each complement each

other and make the most of the data available.

An important aspect of the MLT is that as a sampling with replacement methodology, it

does not require all redetections of the same fish to be eliminated from the analysis. Most

methods of assessing biodiversity patterns can be used with sampling with replacement meth-

odologies that are not invalidated if some individuals are redetected. Here, we used a set of

rules to reduce redetections (i.e. a species had to have been out of the field of view for> three

minutes before the same species was added to a new list). Although a useful time-saving step

during processing of the videos this is not essential to the method.

As with all methods, MLT has some limitations. As such, it should be taken in consider-

ation that MLT tends to weight regularly spaced territorial species as more abundant than

schooling species, which can affect the calculation of diversity indices and may result in the

distribution of relative abundances to appear more even than using other methods such as

MaxN (which is likely to estimate solitary species and species abundance and makes it chal-

lenging to quantify sampling area in particular when bait is used). Moreover, Pourson (1997)

noted that while MLT is a useful tool to determine sampling effort and species richness, differ-

ences in species detectability mean that relative abundances can only be compared within spe-

cies across habitats or sites. The importance of considering similar habitats when making

comparisons has been noted by others previously [16,35,36].

There are currently a number of useful methods available to monitor and compare fish

assemblage composition, including MaxN. The results of our study suggest that MLT is also

likely to be a useful technique for the assessment of fish assemblages, enabling rapid assess-

ment of spatial and temporal variation in species relative abundance, and one that may com-

plement existing methods. The MLT method is a promising tool to collect biodiversity survey

data or analyse video footage in aquatic environments where there is a limited budget, staff

time, available technology and conditions might be too challenging to maintain some other

types of standardized sampling approach. In particular, we suggest MLT could be considered

for difficult to standardize conditions such as transects in coral reef and other marine applica-

tions such as diver and un-baited video or camera surveys.

In this study, as well as providing the first test of the MLT for marine sampling, we also car-

ried out the most comprehensive comparison to date between MLT and an existing biodiver-

sity sampling methodology. By showing that species richness estimates, diversity indices,

relative abundance and assemblage composition results were all consistent across methods our

results are likely to be useful not just in the marine context but also for biodiversity surveys in

general. We therefore suggest that the MLT methodology is likely to be effective not just for

coral reef fish, for bird communities and amphibian communities (49), but also in other spe-

cies-rich communities where biodiversity needs to be sampled cheaply, quickly and efficiently

for conservation monitoring or other purposes.
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