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ABSTRACT 

Commercial fishing is an important industry that generates income directly or indirectly to 

many people in the world. It is impossible to carry out a fishing activity on this scale without a 

vessel. Therefore, fishing vessels are the most important element of the modern fishing industry. 

Fishing vessels play a key role in fishing, transporting and storing fish. Thousands of people 

die every year as a result of fishing vessel accidents. In order to carry out sustainable fishing 

operations, fishing vessel accidents should be investigated and measures should be taken to 

prevent them. Therefore, in this study for analysing accidents that occurred between 2008 and 

2018 in fishing vessels with full lengths of 7 meters and above, a Bayesian network and chi-

square methods were used. An Accident (Bayes) Network, which summarizes the occurrence 

of accidents on fishing vessels, is presented. These networks allow to understand the occurrence 

of accidents in fishing vessels and to estimate the occurrence of accidents in various conditions. 

It was also found that there was a significant relationship between the accident category and 

vessel length, vessel age, loss of life and loss of vessel. Based on the obtained results, 

recommendations were made to prevent possible fishing vessel accidents. 

 

Key Words: Fishing Vessel; Marine Accident; Accident Analysis; Bayesian Network; 

Maritime Safety. 
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1. Introduction  

Maritime activity, especially fishing is one of the most dangerous occupational groups 

with high mortality (Jaremin and Kotulak, 2004; Jin and Thunberg, 2005; FAO, 2014). On 

average, 24,000 fishermen died each year in this profession as a result of accidents (FAO, 2000; 

Petursdottir et al., 2001; Jensen et al., 2014). The rate of fatal accidents in the fishing sector is 

115 times higher than  other fatal accidents in the UK  and  25 times higher than the Australian 

and US national averages (Håvold, 2010). One of the most important reasons why the 

profession carries such a high risk is the difficulties in the implementation of compulsory safety 

measures applied on merchant vessels (Wang et al., 2005; Piniella and Fernández-Engo, 2009).  

When the fishing vessel accidents are examined, it is seen that most of the accidents 

occurred during the fishing activities (Havold 2009). Many researchers emphasize that human 

error is one of the main reasons of accidents in the fishing industry (Rothblum, 2000; Uberti, 

2001; Ozguc, 2019; Wang et al., 2005). Marine accidents are the sequence of events that occur 

as a result of chain reactions. Causal factors (latent failures) give rise to root causes (active 

failures) and the accident becomes inevitable if root causes have appropriate operational 

conditions (enviromental factors) (Uğurlu, 2015; Uğurlu et al., 2018). Environmental factors 

have a role as complementary factors in the transformation of human error into accidents 

(Uğurlu and Yıldız, 2016). In many studies, adverse weather conditions, operational status of 

the vessel, neglected or unsuitable fishing vessel structure were indicated as the main causes of 

fishing vessel accidents other than human error (Jaremin and Kotulak, 2004; Roberts, 2004; 

Wang et al., 2005; Laursen et al., 2008). In addition, vessel location, seasons and unsuitable 

fishing equipment also trigger accidents on fishing vessels (Jin et al., 2002; Davis et al., 2019; 

Pitman et al., 2019). 

Many researchers have studied fishing vessel accidents and their causes. Jin and Thunberg 

(2005) emphasized that the probabilities of accidents in the fishing vessels increase with wind 

speed. In addition, they have shown that accidents are more likely to occur in coastal waters 

and accidents are higher in winter conditions. Wang et al., (2005) found that the risk of accidents 

on fishing vessels increases as vessel length decreases. Jin (2014) exposed that the severity of 

vessel damage in fishing vessels was inversely proportional to the length of the vessel, and that 

the severity of the crew's injury was directly proportional to the loss of stability and sinking of 

the vessel. In addition to these studies, there are many investigations related to the analysis of 

occupational accidents in fishing vessels (Reilly, 1985; Törner et al., 1995; Roberts, 2004; 

Chauvin and Le Bouar, 2007; Laursen et al., 2008), analysis of accidents occurring in a certain 

period of time (Branch et al., 2002, 2008), and analysis of fishing vessel accidents occurring in 
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territorial waters of a particular region or country (Perez-Labajos et al., 2006; Roberts et al., 

2010). 

The share of fishing vessels in world maritime trade is approximately 40 times the share 

of commercial vessels, and accidents in fishing vessels are more frequent than other types of 

vessels (FAO, 2000; Petursdottir et al., 2001; Jensen et al., 2014). Today's technology and its' 

innovative applications have changed the way vessel accidents occur (Suuronen et al., 2012; 

Uğurlu et al., 2018). Fishing vessel accidents were also affected by this change 

(transfiguration). In order to ensure sustainable maritime safety in maritime transport, it is 

necessary to analyze the current accidents occurring in fishing vessels, to review the existing 

measures and to reveal the needed innovative measures. Therefore in this study, current 

accidents on fishing vessels were analyzed using a Bayesian network approach and Chi-square 

methods. In this study, the accident (Bayes) networks which make it possible to evaluate the 

occurrence of fishing vessel accidents are presented in terms of the causal factors, root causes 

and operational conditions that play an important role in the formation of fishing vessel 

accidents. Considering this network structure, all parties of the maritime trade (ship operators, 

accident investigators, accident researcher, etc.) can predict the risk of accident according to 

variable conditions in fishing vessels. The Chi-square independence test was used to check the 

presence-absence of the relationship between the vessel type, vessel length, vessel age, accident 

site, daylight, loss of vessel and loss of life. Such parameters are thought to be related to the 

type of accident. As a result, the relationship between them was revealed statistically. 

 

2. Bayesian Networks 

The Bayesian approach is a widely accepted conditional probability approach which is 

used in many studies. It is used in many sectors for modelling and interpreting sequences of 

events with uncertainty (Demirel and Bodur, 2004; Howson and Urbach, 2006; Yang et al., 

2008). In the Bayesian approach, a Directed Acyclic Graph model (DAG) is created by using 

nodes and edges in order to understand the formation pattern (Loughney and Wang, 2017). In 

the generated model, by means of directional arrows (edges), the statistical relationship between 

the variables is reflected in the network model as in real events. In other words, nodes in a 

network model represent variables with a finite set of states; edges express the relationship 

between nodes (states). In Bayesian network models, reasoning is also possible when 

constructing the causal relationship between nodes. Therefore, the creation of the Bayesian 

network represents a qualitative approach (Trucco et al., 2008; Loughney and Wang, 2017). In 

the established network, the part consisting of the Conditional Probability Table (CPT) 
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connected to each node and covering the determination of numerical values represents the 

quantitative approach (John et al., 2016; Li et al., 2014).  

In order to understand Bayesian networks, first of all, conditional probability logic must 

be understood. The concept of conditional probability means that additional information related 

to that event should be used in the calculation of the probability of occurrence of an event and 

explains how it will be used. For example, let A and B be two events connected to each other 

by conditional probability, and let B be seen when A is seen. In this case when event A is 

observed, the probability of event B can be expressed as: 𝑃(𝐵|𝐴) =  𝑝. Based on this 

information, when event B is seen, the probability of occurrence of event A can be expressed 

as follows (Trucco et al., 2008; Kragt, 2009; Akhtar and Utne, 2014): 

𝑃(𝐴│𝐵) =   𝑃(𝐴 ∩ 𝐵)/𝑃(𝐵) , 𝑃(𝐵)> 0           (1) 

P(A ∩ B) = P(A|B) . P(B) = P(B|A) . P(A)           (2) 

where P(A│B) = conditional probability of event A when event B occurs, P(A ∩ B) = 

intersection of probabilities where A and B are seen together, and P(B)  = probability of event 

B independent from event A (initial probability of event B) 

For the mathematical expression of Bayes theorem, given the concept of conditional 

probability (Equations 1 and 2), we assume that there are k number of A events that intersect 

with event B; Probability of event Ai given event B is known: 

P(Ai|B) =
P(Ai) P(B│Ai)

P(B)
 , i = 1, 2, 3, 4,…, k         (3) 

P(B) = P(A1) P(B|A1)+P(A2) P(B|A2)+…+P(Ak) P(B|Ak) = ∑ P(Aj) . P(B│Aj)
k
j=1         (4) 

where 𝑃(𝐴𝑖|𝐵) = the hypothesis’ posterior probability (𝐴𝑖 is likely to be seen in a specific 

“B” state); 𝑃(𝐴𝑖) = the predetermined probability of the hypothesis (independent of B), i.e. 

the probability that event A is in a certain “i” state; 𝑃(𝐵│𝐴𝑖) = conditional probability of B 

when a certain 𝐴𝑖  condition is observed; and 𝑃(𝐵) = the probability (initial probability) of B 

when it is independent from 𝐴𝑖. 

 

3. Chi-Square Test and SPSS 

The Chi-square test is based on whether the difference between observed frequencies (O) 

and expected frequencies (E) is statistically significant. The Chi-square test uses qualitative 

data (Lewis and Burke, 1949; Güngör and Bulut, 2008; McHugh, 2013). In determining the 

statistical test to be used in the Chi-square approach, the characteristics of the data set and the 

requirements are taken into consideration. There are three types of Chi-square tests commonly 
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used in the literature: good fit test, homogeneity test and independence test. A good fit test is 

used to test the suitability of the sample to a particular data set or distribution (Binomial, 

Poisson, Discrete, Normal) (Ergöl and Kürtüncü, 2014; Köksal and Türedi, 2014). The 

homogeneity test is used to measure whether a sample of a selected volume of sample selected 

from the population varies in similar characteristics to the population. The Chi-square 

independence test is used to determine whether there is a statistically significant relationship 

between the two variables (Bircan et al., 2003; Sirkin, 2006). In this study, it is decided to use 

the Chi-square independence test as a study is conducted to examine the relationship between 

variables. One of the major advantages of the Chi-square independence test is that it can be 

applied to nominal data as well as numerical data (Burns and Dobson, 1981; Sirkin, 2006). The 

general hypotheses of the Chi-square independence test are presented below (Burns and 

Dobson, 1981; McHugh, 2013). 

 H0: There is no significant relationship between the two variables compared (these 

variables are independent). 

 H1: There is a significant relationship between the two variables compared (these 

variables are dependent). 

 

4. Method  

In this study, accidents that occurred in motor fishing vessels with full lengths of 7 meters 

and over were investigated. Accident data was collected for a period between 2009 and 2018. 

The data consists of fishing vessel accidents in the very serious and serious accident categories 

that have occurred and reported worldwide. In this study, more than 6,000 accidents were 

obtained from sources including GISIS (Global Integrated Shipping Information System), 

MAIB (Marine Accident Investigation Branch), EMSA (European Maritime Safety Agency), 

ATSB (Australian Transport Safety Bureau), and TSB (Transportation Safety Board of Canada) 

databases. There are 226 fishing vessel accidents that meet the criteria of the study. The study 

consists of 3 steps. 

In the first step of the study, accident data on fishing vessels was collected. An accident 

database based on Microsoft Excel was created by evaluating such accident data. This database 

contains detailed information about the content of accidents. Thus, it became possible to analyse 

accidents more systematically and easily. 

After the database was prepared, the most appropriate accident analysis model was 

determined in the second stage of the study. In this study, it was decided to use the Bayesian 

network method which is frequently used in the literature in the context of accident analysis 
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(Akhtar and Utne, 2014; Lehikoinen et al., 2015; Zhou et al., 2018) and safety assessment 

(Brooker, 2011; Khakzad et al., 2011; Li et al., 2014; Pristrom et al., 2016). The Bayesian 

network is a logic network diagram that enables both qualitative and quantitative analysis. In 

this study, Bayesian Network (BN) was used to model and analyse the sequence of events that 

cause fishing vessel accidents according to conditional probabilities. This feature distinguishes 

the BN model from many models and methods used in the literature. In this study, the Bayesian 

network model was built for the most common types of accidents, such as sinking and collision 

in fishing vessels. At this stage of the study, BN models that summarize the occurrence of 

accidents were established by evaluating the root causes of accidents, causal factors, 

environmental factors and the formation of accidents. Hugin Software was used to analyse 

accident data (Hugin, 2018). The conditional probability tables in the study were formed based 

on the accident data (Tables A1 and A2). Axiom tests were performed to provide the validation 

of the network structure established. After the axiom tests were successfully completed, 

sensitivity analysis was applied to the network structure established to determine the effect of 

changes in the root nodes, child nodes and parent nodes on accident occurrences. Finally, the 

effect of active failures (root causes), latent failures (causal factors) and environmental factors 

(operational conditions) that cause fishing vessel accidents according to each accident category 

were determined. The network structures presented in this study make it possible to understand 

and analyse the occurrence of accidents in fishing vessels and to estimate the risk of accident 

occurrence in various conditions.   

In the third stage, the data presented in the first stage of the study was analysed 

statistically. For this purpose, the relationship between the accident type and vessel type, length 

of vessel, age of vessel, place of accident, daylight, loss of vessel and loss of life was 

investigated. Chi-square test of independence was used to examine the relationship. As a result 

of the Chi-square test, factors related to the type of accident were identified and 

recommendations were made to prevent accidents. 

 

4.1. Fishing Vessel Accidents 

In this study, accidents that occurred in fishing vessels are discussed in 7 accident 

categories: collision, grounding, sinking, fire-explosion, occupational accident, man overboard 

and other. The other category of accidents includes poisoning, gas leaking, etc. Table 1 provides 

information about the types of accidents occurring in fishing vessels and their contents.  

 

Table 1. Distribution of fishing vessel accidents 
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4.2. Formation of Accident Networks 

Accident networks (Bayes networks) were created to reveal the formation patterns of 

accidents occurring in fishing vessels. In this study, accident networks were established 

separately for two most common types of accidents: sinking (n = 55) and collision (n = 56) 

(Figures 1 and 2). Accident networks include 3 stages: causal factors, root causes and 

environmental factors. 

 

Figure 1. Bayesian Network structure of sinking accidents 

 

Figure 2. Bayesian Network structure of collision accidents 

 

The last events in the accident networks are accidents themselves (sinking, collision). 

Accident occurrences in this study are limited to sinking and collision accidents. The first level 

(yellow colour) in the Bayesian network represents causal factors, Level 2 root causes (green 

colour), Level 3 environmental factors (blue colour) and the last level represents accident 

occurrences (red colour).  

The relationship between the causes in each accident network has been established by 

considering the accident reports and the occurrences of accidents. For each accident, an accident 

network was created which summarized the occurrence of the accident. In this process, edges 

are drawn to the parent and child nodes where each node in the formation of the accident 

interacts. After this process was done for each accident, all accident networks were combined 

to form a general Bayes network (accident network). In this way, the relationship between the 

causes of accidents is preserved and reflected to the whole network. The probability values and 

conditional probability tables of the nodes are calculated on the basis of mathematical equations 

given under the Bayesian networks section (Equations 3 and 4) (Table A1, A2). The test case 

application for the calculations is given below. The descriptive information about the 

framework is presented in the following section.  

 

 

4.2.1.  Test Case  

The “Vessel Pipeline" (corroded / normal) child node in the sinking accident network for 

the example of the calculation of conditional probability tables was selected. This node has two 

parent nodes: “Planned Maintenance” (uncompleted/completed) and “Vessel Age” (old/new). 
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The probability value of the “Vessel Pipeline” node in the accident network shown in Figure 3 

varies depending on the two parent nodes. The probability value for the inappropriate condition 

(uncompleted) of the Planned Maintenance node is calculated as 10% (6/55). The appropriate 

condition (completed) is 90% (100-10). The initial probability value for the “old” condition of 

the vessel age node is 74% (41/55) and the probability value for the “new” condition is 26% 

(100-74). There are 4 conditions that affect the formation of the “Vessel Pipeline” node, and 

the conditional probability values for these 4 conditions are presented in Table 2. 

 

Figure 3. “Vessel Pipeline” node and its’ parent nodes 

 

Table 2. Probability values for “Vessel Pipeline” node 

 

Depending on these conditions, the probability of the “Vessel Pipeline” node to be 

corroded is 67% and its probability of being normal is 33%. According to Equations 3 and 4, 

the probability of the “Vessel Pipeline” node to be corroded is calculated as follows (VA: 

Vessel Age, PMS: Planned Maintenance): 

 

P(Vessel Pipeline (Corroded))= [(P(Vessel Pipeline (Corroded) | PMS (Sufficient), VA (New)) 

× P(PMS (Sufficient)) × P(VA (New))] + [(P(Vessel 

Pipeline (Corroded) | PMS (Sufficient), VA (Old)) × 

P(PMS (Sufficient)) × P(VA (Old))] + [(P(Vessel Pipeline 

(Corroded) | PMS (Insufficient), VA (New)) × P(PMS 

(Insufficient)) × P(VA (New))] + [(P(Vessel Pipeline 

(Corroded) | PMS (Insufficient), VA (Old)) × P(PMS 

(Insufficient)) × P(VA (Old))] 

      = [(0×0.90×0.26) + (0.9×0.9×0.74) + (0.08×0.10×0.26) +   

          (0.96×0.1×0.74)] 

      = 0.6725 (67.25%) 

 

Probability of being normal of the vessel pipeline node: 

P(Vessel Pipeline (Normal)) = 1- P(Vessel Pipeline (Corroded)) 

 = 1-0.6725 

 = 0.3275 (32.75%) 
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The network structure presented in this study can be used to determine the root causes, 

causal factors and environmental factors that cause accidents in fishing vessels, as well as to 

analyse how these factors interact (by conditional probability tables) in the accident (Figure 1, 

2). For example, the "Corroded" state of the "Vessel Pipeline" node varies depending on two 

parent nodes (four conditions) (Figure 3, Table 2): “Vessel Age (old/new)” and “Planned 

Maintenance (uncompleted / completed)”. For example, in Table 2, if the ship is old (over 20 

years) and planned maintenance of the ship is incomplete, it was observed that the probability 

of vessel's pipelines "corroded" is 96%. As in the example presented above, it is possible to 

analyse the interaction of the factors that caused the accident with the network structure and 

conditional probability tables presented in this study.  

The second advantage of the network presented in the study is that it can predict the risk 

of accident in variable conditions. In other words, this study allows modelling of fishing vessel 

accident scenarios and evaluating risks with Bayesian Network. For example, in case of an 

insufficient number of seafarers (minimum number=100%) on a fishing boat and restricted 

visibility (yes=100%), users can estimate the risk of collision in different types of navigation 

(coastal water, offshore and port) (Figure 2).  

 

4.2.2. Causal factors 

Causal factors form the basis of accident occurrences and offer the ground for the 

formation of root causes (Reason, 1997; Wiegmann and Shappell, 2001). Under this level in 

the Bayes network which was created for sinking accidents, vessel age (old/new), planned 

maintenance (improper/appropriate), loss of water tightness (present/absent), vessel structure 

(worn/normal), vessel pipeline (corroded/normal), used hunting equipment 

(improper/appropriate), hunting equipment overload (yes/no), design defect (yes/no), unstable 

loading (yes/no), overload (yes/no) were examined. Vessels aged 20 years and over are 

considered to be old vessels. Loss of water tightness means that the deck or hatch covers lose 

their water tightness. Improper use of hunting equipment refers to non-conformities in terms of 

width, length or weight in hunting equipment used. In the accident network created for collision 

accidents, under the causal factors level, manning (minimum number/optimum number), 

alcohol-drug use (yes/no), occupation with other tasks (yes/no), fatigue (yes/no), lookout 

(improper/proper), inter-ship communication (no/yes), bridge without a watchkeeper (yes/no) 

and use of navigation equipment (inadequate/adequate) were examined. Table 3 provides 

information on the causal factors of sinking accidents and Table 4 provides information on the 

causal factors of the collision accidents. Root nodes, child nodes, parent nodes, their probability 



10 
 

values, negative expressions and abbreviations are included in the tables. In the tables, nodes 

without parent node refer to root nodes.  

 

Table 3. Accident network content of causal factors for sinking accidents 

 

Table 4. Accident network content of causal factors for collision accidents 

  

4.2.3. Root Causes 

Root courses are also called unsafe actions. It is the visible face of accidents. It is the level 

in which accident researchers and readers have an interest (Li and Harris, 2006). Most accident 

reports provide detailed information about the factors under this level. While focusing on root 

causes allows us to understand what is happening, analysing causal factors and root causes 

together allows us to understand why and how unsafe actions and accidents occur. Thus, we 

can take more constructive measures to prevent accidents. In this study, in the accident network 

created for sinking accidents, water intake (yes/no), loss of buoyancy (yes/no), loss of stability 

(yes/no), and carrying load above the transport limits (yes/no) were examined under this level 

(Table 5). In the accident network created for the collision accidents, the intention of other 

(target) vessel (not understood/understood) and the presence of the target vessel (not detected / 

perceived) were examined under this level (Table 6). 

 

Table 5. Accident network content of root causes for sinking accidents 

 

Table 6. Accident network content of root causes for collision accidents 

 

4.2.4.  Environmental Factors 

At the last stage of accident occurrences, appropriate environmental factors are necessary 

for any unsafe action to result in an accident. Environmental factors include weather and sea 

conditions, type of navigation, day-night, heavy traffic, fog, currents, factors outside the 

structure of the vessel, which are not under the control of the operators of the vessel, and factors 

that affect vessel movement and are partially controllable by operators. In this study, 

environmental factors for sinking accidents are weather and sea conditions (bad/good) (Table 

7), and for collision accidents, restricted visibility (yes/no) and the type of navigation (coastal 

waters/offshore/port) (Table 8). 
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Table 7. Accident network content of environmental factors for sinking accidents 

 

Table 8. Accident network content of environmental factors for collision accidents 

 

4.2.5.  Consequence Nodes 

The consequence (resulting) nodes in the developed accident networks represent accident 

categories. The accident networks have 2 consequence nodes which are sinking and collision. 

In Table 9, the explanatory information is given about the consequence nodes of sinking and 

collision accidents. 

 

Table 9. Accident network content of consequence nodes  

 

4.2.6.  Validity of the Model 

The relationship between the nodes in this study, probability values and conditional 

probability tables are considered reliable because they are based on accident reports and 

statistical data in the database. However, sensitivity analysis was used in the study to provide 

confidence that the model was built correctly and worked as intended. If the model shown in 

Figures 1 and 2 makes sense, it should satisfy the following axioms (Pristrom et al., 2016):  

Axiom 1. A slight increase/decrease in the preliminary probabilities of each parent node 

should certainly result in the relative increase/decrease of the subsequent probabilities of the 

child node. 

Axiom 2. The effect of changes in the probability distributions of each parent node on the 

child nodes should be consistent. 

Axiom 3. The total effect of the combination effects of probability variations should 

always be greater than their individual effects on the parent nodes. 

 

4.2.6.1. Test of Axiom 1 

In the study, Axiom 1’s requirements were tested for the validity of the accident network 

which was established for sinking and collision accidents. For this purpose, the effect of 

changes in the parent nodes on the accident categories was observed for each accident. Table 

10 shows the effect of the change in the parent nodes affecting the occurrence of accidents on 

the occurrence of sinking accidents. The parent nodes that affect the occurrence of sinking 

accidents are loss of stability, loss of buoyancy, carrying load above the transport limits, 

weather and sea conditions. For example, if the loss of stability occurs, the probability of 



12 
 

sinking increases from 41.26% to 64.72%. If there is no loss of stability, the probability of an 

accident is reduced to 36.96%. Similarly, if the weather and sea conditions are bad, the 

probability of sinking increases to 76.42%, and if the weather and sea conditions are good, the 

probability of accident decreases to 23.94%. Table 11 shows similar results for collision 

accidents. Thus, Tables 9 and 10 show that changing the value of each parent node in the final 

stage of the accident network affects the probability value of the accident as in reality. 

Therefore, the accident network established in the study fulfilled the Axiom 1 requirements. 

 

Table 10. Axiom 1 test results for sinking accidents 

  

Table 11. Axiom 1 test results for collision accidents 

 

4.2.6.2. Test of Axiom 2 

Figure 4 shows the change in the probability of the "sinking" node with "weather and sea 

conditions", "loss of buoyancy", "loss of stability" and "carrying load above the transport 

limits". The shapes of the curves indicate that there are no outliers. If the probabilities of 

"weather and sea conditions = bad", "loss of buoyancy = yes", "loss of stability = yes" and  

"carrying load above the transport limits = yes" are changed, the occurrence probability for 

"sinking= yes" increases consistently. Similar observations were made for the collision node 

(Figure 5), and both consequence nodes were found to meet the Axiom 2 requirements. 

 

Figure 4. Probability changes of sinking accidents 

 

Figure 5. Probability changes of collision accidents 

 

4.2.6.3. Test of Axiom 3 

According to Axiom 3, the individual effect of each of the parent nodes on the child node 

should not have more effect than the collective effect. To explain this with an example, loss of 

stability (child node) consists of "hunting equipment overload", "design flaw" and "unstable 

loading" (parent nodes). "Hunting equipment overload = yes", "design flaw = yes" and 

"unstable loading = yes" are entered independently of each other. The occurrence probability 

of “sinking = yes” is estimated as 57.37%, 27.24% and 5178%, respectively. When "hunting 

equipment overload = yes", "design flaw = yes" and "unstable loading = yes" are entered 

together, the occurrence probability of "sinking = yes" is estimated as 100%. These results are 
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consistent with Axiom 3. In addition, the same tests were applied for the other levels of the 

accident network established in the study. All results are consistent with Axiom 3. 

 

4.2.7. Sensitivity Analysis 

Accuracy analysis, risk analysis, nonconformity analysis, failure modelling, sensitivity 

analysis are carried out in order to observe the impact of changes in data on the results. 

Sensitivity analysis reveals the effect of the measures taken to prevent the negative event on the 

system; it helps to predict the damage to the system if the negative event is maximum (Jin et 

al., 2002; Wang et al., 2005; Uğurlu et al., 2015; Uğurlu, 2016). In Bayesian network studies, 

sensitivity analysis reveals the effect of the change in root nodes, parent nodes or child nodes 

that the network hosts. In other words, it allows to predict how changes made to the inputs of 

the system will affect the outputs. 

In the Bayesian network, the parameters of the model are conditional probabilities of the 

model's inputs. The outputs of the Bayesian network created in this study are the probabilities 

of occurrence of collision and sinking accidents. Their inputs are root causes, environmental 

factors and causal factors that play a role in the occurrence of these accidents.  

In this study, sensitivity analysis was applied separately for all three levels in each 

accident category. Within the scope of sensitivity analysis, the probability of the node under 

which sensitivity analysis was applied was made 0%, then 100% while the other nodes were 

fixed. Then, the change in accident probability was examined for each accident category (Table 

12 and Table 13). The effects of the factors that play a role in the occurrence of accidents are 

observed in this stage. 

 

Table 12. Sensitivity analysis results of sinking accidents 

 

Table 13. Sensitivity analysis results of collision water accidents 

 

Accidents have a compact structure, so that the factors that cause the accident are 

evaluated independently and combined, allowing us to understand the occurrence of accidents. 

For this purpose, in the second stage of the sensitivity analysis, the effect of the sequence of 

events on the accident occurrences was evaluated. At this stage of the study, the most probable 

combinations and their effects that may lead to accident formation have been revealed.  Figure 

6 shows the results of the analysis of the main combinations of events that may cause sinking 

accidents and Figure 7 shows the combinations of collision accidents. 
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Figure 6. The most likely combinations that may cause sinking accidents 

 

Figure 7. The most likely combinations that may cause collision accidents 

 

4.3.  Application of Chi-Square Independence Tests and Test Results 

The validity of 14 hypotheses, including zero hypotheses, which were thought to affect 

the type of accident, was tested on 226 accident data using IBM SPSS statistics 22.0 software. 

The findings obtained from the Chi-Square test are presented below in order of hypothesis 

(Table 14). 

 

Table 14. Chi-square hypotheses established in the study and significance values  

 

According to the Chi-square test results (sig. = 0.051 > 0.05) between the accident type 

and vessel type, the H0 hypothesis was accepted and the H1 hypothesis was rejected (Table 14). 

In this case, there is no significant relationship between the accident type and vessel type. In 

other words, accident types showed random distribution on vessel types; they are not directly 

related to each other. The type of accidents occurring does not depend on the type of fishing 

vessels (Multi-purpose, dredger, trawler, etc.).  

According to the Chi-square test results (sig. = 0.001 < 0.05) between accident type and 

vessel length, the H2 hypothesis was rejected and the H3 hypothesis was accepted (Table 14). 

In this case, there is a significant relationship between the type of accident and the length of the 

vessel. The result of this study revealed that the length of the vessel affects the type of accident. 

The smaller the length of the vessel, the higher the risk of accidents. In particular, this increase 

is higher for sinking accidents. 

According to the Chi-square test results (sig. = 0.002 < 0.05) between the type of accident 

and vessel age, the H4 hypothesis was rejected and the H5 hypothesis was accepted (Table 14). 

In this case, there is a significant relationship between the type of accident and vessel age. The 

frequency of sinking accidents is directly proportional to the age of the vessel. The frequency 

of sinking accidents increases with increasing vessel age. Similarly, collisions, groundings, fire 

and explosion accidents have been observed to occur on a larger number (70-85%) on older 

vessels over 20 years of age. More than half of occupational accidents are also concentrated on 

older vessels over 20 years of age. When the general situation is examined, the number of 

accidents observed increases with the vessel age. One of the most important reasons of this 
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strong relationship (Phi value: 0.374) is that equipment of the old vessels offers the ground for 

each type of accident. 

According to the Chi-square test results (sig. = 0.051 > 0.05) between accident type and 

accident area, the H6 hypothesis was accepted and the H7 hypothesis was rejected (Table 14). 

In this case, there is no significant relationship between accident type and accident area. The 

type of accidents that occur does not depend on the operational area (port, coastal waters, etc.) 

where the accidents occur. Accidents were randomly distributed in operational areas; they are 

not directly related to each other. 

According to the Chi-square test results (sig. = 0.107 > 0.05) between accident type and 

daylight (0800-1959-day shift/2000-0759-night shift), the H8 hypothesis was accepted and the 

H9 hypothesis was rejected (Table 14). In this case, there is no significant relationship between 

accident type and accident area. In other words, dark or light weather does not affect the type 

of accidents (seaports, coastal waters, etc.) at the time of the accident. Day or night accident 

types were randomly distributed; the are not directly related to each other. However, 60.7% of 

collision accidents occurred during the night shift. The main reason for this is that night 

watching is more difficult than watching in daytime. 

According to Chi-square test results (sig. = 0.001 < 0.05) between the accident type and 

vessel loss, the H10 hypothesis was rejected and the H11 hypothesis was accepted (Table 14). In 

this case, there is a significant relationship between the type of accident and vessel loss. 80% 

of the sinking accidents experienced vessel loss. In addition, 50% of the total vessel losses 

occurred as a result of sinking accidents, in this context sinking accidents are the riskiest fishing 

vessel accident type in terms of vessel loss. Other types of accidents where vessel loss risk is 

high are collision (20.5%), grounding (15.9%), fire and explosion (11.4%). When the general 

situation is examined, 39% of the accidents in the data set have caused vessel loss. The 

relationship between accidents and loss of vessels (Phi value: 0.601) proves that accidents result 

in huge asset losses. 

According to the Chi-square test results (sig. = 0.001 < 0.05) between the accident type 

and loss of life, the H12 hypothesis was rejected and the H13 hypothesis was accepted (Table 

14). In this case, there is a significant relationship between the type of accident and loss of life. 

The riskiest accident in terms of loss of life is man over board. 80.8% of the man over boards 

resulted in loss of life. Other accident types with high risk of loss of life are occupational 

accidents (53.8%), sinking (43.6%) and collision (19.6%). When the general situation was 

examined, 37.6% of the accidents in the data set resulted in loss of life. The relationship between 
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accidents and loss of life proves (Phi value: 0.487) that accidents have resulted in significant 

moral destruction as well as asset losses. 

 

5. Result and Discussion 

The most common accident categories observed in fishing vessels are collision and 

sinking, respectively (Table 1). Trawlers are the most common type of vessel with fishing 

accidents (118 accidents). 66% of collisions and 53.8% of occupational accidents occurred in 

trawlers. Sinking is the riskiest category of accident in terms of loss of vessel. 84.6% of 

grounding accidents, 63.5% of sinking accidents and 51.8% of collision accidents occurred in 

coastal waters. 74.7% of the accidents occurred in vessels of 20 years or older. 

 The Bayesian networks (accident network) created in this study summarize the 

occurrence of accidents for both fishing vessel accident types (sinking and collision). This 

network allows us to analyse not only the root causes of accidents, but also the causal and 

environmental factors. In addition, this network structure shows the relationship between these 

factors by using a conditional probability approach. Thus, network users can both understand 

the occurrence of accidents and estimate the risk of accident due to various conditions. When 

the results of the accident network sensitivity analysis are examined, the most important causal 

factors that play a role in the formation of sinking accidents in fishing vessels are: old vessel 

structure (25.66%), overload vessel (19.06%) and loss of water tightness (14.54%) (Table 12). 

The most important root causes are: Loss of buoyancy (40.49%), taking water (38.87%) and 

loss of stability (27.96%). The results related to loss of buoyancy and negative stability obtained 

from the accident network are similar to those reported by Håvold (2010) and Davis et al. 

(2019). In addition, this study shows that old vessel structure and the loss of water tightness 

affect the occurrence of sinking accidents.  

As in the studies conducted by (Soares and Teixeira, 2001; Jin, 2014; Pitman et al. 2019) 

the most important environmental factor affecting the formation of sinking in fishing vessels 

was found to be bad weather and sea conditions. In this study, the effect of bad weather and sea 

conditions on the occurrence of sinking accidents is found to be 52.8%. The accident network 

sensitivity analysis results in the study show that sinking is highly probable in bad weather and 

sea conditions when loss of buoyancy occurs (94.72%). Unlike the studies in the literature, the 

accident network created in this study is able to estimate possible combinations of influencing 

factors and their probability values that may cause accidents in fishing vessels. The other most 

likely accident occurrence combinations are loss of stability (80.4%) in bad weather and sea 

conditions, and when carrying loads (fished seafood) above the transport limits in bad weather 
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and sea conditions (78.4%). The fact that all of the most probable accident occurrences take 

place in bad weather conditions reveals that this environmental factor is an important problem 

that should be considered in order to prevent accidents in fishing vessels.  

 Sometimes unsafe actions on one vessel and sometimes on both vessels can lead to the 

occurrence of collision accidents. In this study, only the role of fishing vessels in the occurrence 

of collision accidents was evaluated. The most important causal factors that play a role in the 

occurrence of collision accidents are respectively: improper lookout (39.78%), occupation with 

other tasks (34.48%), and remaining bridge without watchkeeper (34.26%) (Table 13). The 

most important root causes are not being able to understand the intention of the target vessel 

(41.02%) and not detecting the presence of the target vessel (40,26%). Collision accidents are 

inevitable as a result of the inability to understand the target vessel's intention and as a result of 

the inability to make appropriate collision avoidance manoeuvre (violation of COLREG (The 

International Regulations for Preventing Collisions at Sea) rules 8 and 17) (Figure 2). Many 

studies that analyse collision accidents in the literature have emphasized the COLREG violation 

(Uğurlu et al., 2015) and the failure to detect the risk of collision (Belcher, 2002; Wang et al., 

2005; Park et al., 2013; Kao and Chang, 2017). The failure to detect the target vessel is an 

indication that the lookout is improper. Although the emergence of this root cause at first glance 

seems to be incomprehensible, when the causal factors are examined, it is seen that the most 

important factors underlying this are occupation with other tasks, remaining bridge without 

watchkeeper and improper lookout. Occupation with other task and remaining bridge without 

watchkeeper are unacceptable unsafe acts. There is a high probability of a collision accident as 

a result of occupation with other task (net fishing, fishing activity, deck cleaning, etc.) (Table 

13). In other words, as a result of these actions, the target vessel cannot be detected because the 

lookout could not be performed properly. Collision accidents can become inevitable, especially 

if there is improper lookout during night shifts or in restricted visibility.  Even though the 

concentration of fishing vessel collisions at night can be related to the fact that fishing activities 

are usually carried out at night or in the early hours of the night, the limitation of the darkness 

of the night is the factor that plays a role in the formation of collision accidents. As it can be 

understood from the accident network established in the study, occupation with other tasks, 

fatigue and remaining bridge without watchkeeper on the other side are the most important 

reasons for this. Environmental factors that play a role in the occurrence of collision accidents 

are the type of navigation (navigating in coastal waters) (41.02%) and the restricted visibility 

(36.18%).  
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When the possible accident occurrence combinations are examined for collisions, it is 

seen that the accidents occur as a result of double and triple combinations. Binary combinations 

include type of navigation and root causes. Triple combinations include root causes, type of 

navigation and restricted visibility. The most likely dual accident occurrence combinations for 

collisions are one associated with ITV and CW (55.36%), and one with PTV and OS (54.84%). 

In other words, the risk of accident increases if a fishing vessel navigating in coastal waters 

does not understand the target vessel's intention or is unaware of the presence of the target 

vessel. These binary combinations have the highest value of the probability of collision 

accidents where there are factors restricting the visibility (e.g. presence of deck lighting, 

ambient lights and night). 

In this study, Chi-square independence tests were conducted to evaluate the existence and 

level of the relationship between the accident type and vessel type, vessel length, vessel age, 

accident area, daylight, loss of vessel and loss of life variables. As a result of the study, it was 

found that there was a significant relationship between accident type and vessel length, vessel 

age, loss of vessel and loss of life. It was observed that sinking, collision and grounding 

accidents increased as the length of the vessel became shorter. This is in line with the findings 

reported (Jin and Thunberg, 2005; Wang et al., 2005). The vessels where accidents are most 

common have a length of 15-23 m. Sinking is most commonly seen on fishing vessels with a 

length of 7-14 m (58.2%). As with other vessels, the legal regulations and safety measures to 

be applied in fishing vessels vary with the size of the vessel. As the vessel getting smaller, it is 

not subject to standard construction and operational safety requirements. Therefore, accidents 

and losses are more likely in these vessels. Unlike the studies in the literature (Turan et al., 

2003; Kim et al., 2013; Davis et al., 2019; Pitman et al., 2019), the important result obtained 

from the Chi-square test is that vessel age has a significant relationship with accident types. For 

all types of accidents, the number of accidents increases as vessels become older. There was 

also a significant relationship between the type of accident and the loss of vessels. According 

to this result, the riskiest type of accident in terms of vessel loss is sinking accidents. In 80% of 

the sinking accidents in the data set examined, the vessel was completely sunk. The second 

riskiest type of accident in this regard is grounding accidents (30.4%). Similarly, studies in the 

literature (Baldauf et al., 2014; Montewka et al., 2014; Lehikoinen et al., 2015; Uğurlu et al., 

2015) indicate that sinking and collision accidents are the riskiest types of accidents in terms of 

losses. Finally, the Chi-square test results also show that the type of accident was related to loss 

of life. When the number of accidents with loss of life is examined, the riskiest types of 
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accidents are man over board (80.7%), occupational accidents (48.7%), sinking (43.6%) and 

collision (19.7%) accidents, respectively.  

 

6. Conclusion 

Fishing vessel accidents often result in loss of life or loss of vessel. Most accident analysis 

studies conducted in the context of collusion and sinking accidents have focused on the 

responsibilities and role of commercial vessels in accidents (Jaremin and Kotulak, 2004; 

Håvold, 2010; Roberts et al., 2010; Jensen et al., 2014; Jin, 2014; Davis et al., 2019). In this 

study, an accident network is presented which summarizes the occurrence of collision and 

sinking accidents. This network allows to understand the occurrence of fishing vessel accidents 

and to take measures to prevent them. All results show that the safety measures applied in 

fishing vessels should be reviewed and additional measures should be taken in consideration 

with the above mentioned issues. The results of the study can be listed as follows: 

- It has been found that the risk of sinking accidents is very high when loss of buoyancy 

occurs in fishing vessels navigating in bad weather and sea conditions. The most important 

causal factor in the formation of loss of buoyancy is the old vessel structure. In this study, it is 

found that the risk of accident is very high especially in vessels with an old vessel structure of 

7-14 m long. In order to prevent sinking accidents, fishing vessels over 20 years of age, 

especially those under the length of 14 m, should be scrutinised in fishing activities. This is an 

important issue to be addressed. 

- In this study, it was determined that another important root cause that caused the sinking 

accidents in bad weather and sea conditions was loss of stability. Causes of loss of stability in 

fishing vessels are overloading resulting from overfishing, and the use of improper fishing 

equipment. In order to eliminate the factors that cause loss of stability in fishing vessels, it is 

necessary to establish a vessel-specific hunting limit by considering the vessel length and 

hunting vehicles, and to ensure that the appropriate standards in the fishing equipment are used. 

- Collisions have been observed in coastal waters as a result of inability to understand the 

target vessel's intention or to perceive the target vessel, especially at night. For fishing vessels, 

lookout (watchkeeping) activities should be meticulously carried out during night hours, 

especially in coastal waters, where the risk of collision accidents is high. It is important to have 

fishing vessels equipped with a sufficient number of seafarers and to ensure safety awareness 

of the personnel working on these vessels.  

- One of the important results of this study is that there is a significant relationship 

between the accident type and vessel length, vessel age, loss of life and vessel loss. A significant 
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increase was observed in all accident categories as the ship age increased. Although this 

increase is mostly seen in sinking accidents, there is also a high increase in other accident 

categories such as collision, grounding, fire and explosion. Therefore, the old vessel structure 

plays an important role in the formation of accidents in all accident categories in fishing vessels. 

Concentration of accidents, especially on old vessels, can be interpreted as an indication that 

sanctions are inadequate. In order to reduce the risk of accidents in fishing vessels, age 

limitation must be introduced (e.g. 20 years). 

- It has been observed that as the ship becomes smaller, the number of accidents increases. 

This increase is concentrated on vessels under 24 m. There is almost no accident occurrence in 

vessels over 24 m. Although this increase can be interpreted as the fact that the number of 

vessels over 24 m in the world fishing vessel fleet has a lower share compared to other boats, it 

can be thought that national and international measures applied to vessels over 24 m may play 

a role in avoiding frequent accidents. In other words, as the length of the vessel decreases, the 

minimum equipment required and the safety measures to be applied are reduced. This is the 

factor that causes the accident in fishing vessels. 

Accidents can be prevented by understanding how they occur. Therefore, determination 

of the factors that play a role in the formation of fishing vessel accidents is important to prevent 

these accidents in the future. In order to prevent the occurrence of accidents, it is necessary to 

focus on unsafe events as well as the causal factors leading to the formation of these unsafe 

events. Preventing accidents becomes possible by focusing on these causal factors and 

understanding their occurrence. 
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Table 1. Distribution of fishing vessel accidents 

 
 

 Collision Sinking Grounding 
Fire-

Explosion 

Occupational 

Accidents 

Man Over 

Board 
Other 

Number of accidents 56 55 26 21 39 26 3 

V
es

se
l 

ty
p

e
 Trawler 37 22 14 9 21 14 1 

Purse seiner 3 5 1 - 5 1 - 

Gillnet 5 14 - 4 5 - - 

Trap setter 4 8 8 4 2 8 1 

Dredger 4 3 3 2 5 3 1 

Multi-purpose 3 3 - 2 1 - - 

T
y

p
e 

o
f 

N
av

ig
at

io
n

 

Coastal waters 29 35 22 11 17 14 2 

Off Shore 20 15 - 7 18 10 1 

Port 7 5 4 3 4 2 - 

V
es

se
l 

ag
e
 

0-20 years (new) 10 14 7 3 18 5 3 

>20 years (old) 46 41 19 18 21 21 - 

L
en

g
th

 o
f 

v
es

se
l 7-14 m 16 32 6 - 6 9 1 

15-23 m 21 20 17 13 9 9 1 

>24 m 19 3 3 8 24 8 1 

Number of accidents with 

loss of life 
11 24 4 1 19 21 3 

Total number of lives lost 29 37 12 1 21 20 6 

Number of accidents with 

loss of vessel 
17 44 14 10 1 - 1 

 

 

 

Table 2. Probability values for “Vessel Pipeline” node 

 

Vessel Pipeline Planned 

Maintenance 
Vessel Age 

Corroded Normal 

0 1 Completed New 

0.9 0.1 Completed Old 

0.08 0.92 Uncompleted New 

0.96 0.04 Uncompleted Old 

 

 

 

 

 

 

 

 

 

 



Table 3. Accident network content of causal factors for sinking accidents 
 

Causal Factors Abbreviation 
Negative 

Expression 

Probability 

(%) 

Parent 

Nodes 

Children 

Nodes 

Vessel age VA Old 74 Root node 
LWT, VS, 

VPL 

Planned Maintenance PMS Uncompleted 10 Root node VPL 

Used Hunting Equipment UHE Improper 7 Root node HEO 

Design Defect DD Yes   4 Root node LS 

Unstable Loading UL Yes 13 Root node LS 

Overload O Yes 16.16 Root node CLATL 

Vessel Structure VS Worn 63.03 VA WI 

Loss of Water Tightness LWT Present 6.66 VA WI 

Vessel Pipelines VPL Corroded 67.25 VA WI 

Hunting Equipment Overload HEO Yes 19.09 UHE LS 

 

 

Table 4. Accident network content of causal factors for collision accidents 

 

Causal Factors Abbreviation 
Negative 

Expression 

Probability 

(%) 

Parent 

Nodes 

Children 

Nodes 

Manning M 
Minimum 

number 
13.5 Root node F, OOT 

Alcohol-drug Use ADU Yes 5.4 Root node L 

Occupation with other Tasks OOT Yes 3.28 M L, BWW 

Fatigue F Yes 25.18 M L 

Lookout L Improper 9.84 ADU 
UNE, ITV, 

PTV, ISC 

Inter-Ship Communication ISC Improper 14.68 L ITV 

Bridge Without a Watchkeeper BWW Yes 0.66 OOT PTV 

Use of Navigation Equipment UNE Inadequate 11.67 L ITV, PTV 

 

 

Table 5. Accident network content of root causes for sinking accidents 
 

Root Causes Abbreviation 
Negative 

Expression 

Probability 

(%) 
Parent Nodes 

Children 

Nodes 

Water Intake WI Yes 48.37 
LWT, VS, 

VPL 
LB 

Loss of Buoyancy LB Yes 50.44 WI Sinking 

Loss of Stability LS Yes 15.48 
HEO,DK, 

DY 
Sinking 

Carrying Load Above the 

Transport Limits 
CLATL Yes 16 AY Sinking 

 

 

Table 6. Accident network content of root causes for collision accidents 
 

Root Causes Abbreviation 
Negative 

Expression 

Probability 

(%) 
Parent Nodes 

Children 

Nodes 

Intention of Target Vessel ITV 
Not 

understood 
12.08 L, UNE, ISC Collision 

Presence of the Target 

Vessel 
PTV Not detected 9.57 

L, UNE, 

BWW 
Collision 

 

 

 

 

 



 

Table 7. Accident network content of environmental factors for sinking accidents 
 

Environmental Factors 
Abbreviation 

Negative 

Expression 

Probability 

(%) 
Parent Nodes Children Nodes 

Weather and Sea Conditions WSC Bad 33 Root Node Sinking 

 

 

Table 8. Accident network content of environmental factors for collision accidents 
 

Environmental Factors 
Abbreviation Negative Expression 

Probability 

(%) 

Parent 

Nodes 

Children 

Nodes 

Restricted Visibility RV Yes 72 Root Node Collision 

Type of Navigation TN 
Coastal Waters (CW), 

Off Shore (OS), Port (P) 

57 

30 

13 

Root Node Collision 

 

 

Table 9. Accident network content of consequence nodes 

 

Consequence Nodes 
Negative 

Expression 

Probability 

(%) 
Parent Nodes 

Children 

Nodes 

Sinking Yes 41.26 LB, LS, CLATL, WSC Not applicable 

Collision Yes 50.71 ITV, PTV, TN, RV Not applicable 

 

 

Table 10. Axiom 1 test results for sinking accidents 
 

Status 

Loss of Stability 

(Yes) 

(%) 

Sinking 

(Yes) 

(%) 

Status 
Loss of Buoyancy (Yes) 

(%) 

Sinking 

(Yes) 

 (%) 

Actual 15.48 41.26 Actual 50.44 41.26 

Worst  100 64.72 Worst  100 61.33 

Best  0 36.96 Best  0 20.84 

Status 

Carrying Load 

Above the 

Transport Limits 

(Yes) 

(%) 

Sinking 

(Yes) 

(%) 

Status 

Weather and Sea 

Conditions (Bad) 

(%) 

Sinking 

(Yes) 

(%) 

Actual 16 41.26 Actual 33 41.26 

Worst  100 57.27 Worst  100 76.42 

Best  0 38.21 Best  0 23.94 

 

 

Table 11. Axiom 1 test results for collision accidents 

 

 

 

 

 

Status 

Intention of 

Target Vessel 

(Not understood)  

(%) 

Collision   

(Yes) 

(%) 

Status 

Presence of the Target 

Vessel (Not detected) 

(%) 

Collision   

(Yes) 

(%) 

Actual 12.08 50.71 Actual 9.57 50.71 

Worst  100 86.77 Worst  100 87.12 

Best  0 45.75 Best  0 46.86 



 

Table 12. Sensitivity analysis results of sinking accidents 

 

Factors affecting accident occurrence Probability of sinking accident 

Causal Factors 0% 100% 
Effect 

(Difference) 

Vessel Age 31.24 44.78 13.54 

Planned Maintenance 41.23 41.54 0.31 

Used Hunting Equipment 40.39 52.89 12.5 

Design Defect 41.13 44.52 3.39 

Unstable Loading 39.76 51.34 11.58 

Overload 38.21 57.27 19.06 

Vessel Structure 25.09 50.75 25.66 

Loss of Water Tightness 40.29 54.83 14.54 

Vessel Pipelines 33.16 45.21 12.05 

Hunting Equipment Overload 38.52 52.89 14.37 

Root Causes 0% 100% 
Effect 

(Difference) 

Water Intake 22.46 61.33 38.87 

Loss of Buoyancy 20.84 61.33 40.49 

Loss of Stability 36.96 64.72 27.76 

Carrying Load Above the Transport Limits 38.21 57.27 19.06 

Environmental Factors 
0% 100% 

Effect 

(Difference) 

Weather and Sea Conditions 23.94 76.42 52.48 

 

 

Table 13. Sensitivity analysis results of collision accidents 
 

Factors affecting accident occurrence Probability of collision accident 

Causal Factors 0% 100% 
Effect 

(Difference) 

Manning 48.52 64.72 16.2 

Alcohol-drug Use 50.53 53.79 3.26 

Occupation with other Tasks 49.58 84.06 34.48 

Fatigue 46.96 61.84 14.88 

Lookout 46.79 86.57 39.78 

Inter-Ship Communication 47.64 68.56 20.92 

Bridge Without a Watchkeeper 50.48 84.74 34.26 

Use of Navigation Equipment 48.85 64.75 15.9 

Root Causes 0% 100% 
Effect 

(Difference) 

Intention of Target Vessel 45.75 86.77 41.02 

Presence of the Target Vessel 46.86 87.12 40.26 

Environmental Factors 0% 100% 
Effect 

(Difference) 

Restricted Visibility 24.66 60.84 36.18 

Type of Navigation 45.75 86.77 41.02 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 14. Chi-square hypotheses established in the study and significance values 
 

Hypothesis Significance Result 

H0: There is no significant relationship between accident type and vessel type. 
0.051 

Accepte

d 

H1: There is a significant relationship between accident type and vessel type. Rejected 

H2: There is no significant relationship between the type of accident and the length of 

the vessel. 
<0.001 

Rejected 

H3: There is a significant relationship between the type of accident and the length of 

the vessel. 

Accepte

d 

H4: There is no significant relationship between accident type and vessel age. 

0.002 

Rejected 

H5: There is a significant relationship between accident type and vessel age. 
Accepte

d 

H6: There is no significant relationship between accident type and accident area. 
0.051 

Accepte

d 

H7: There is a significant relationship between accident type and accident area. Rejected 

H8: There is no significant relationship between accident type and daylight. 

0.107 

Rejected 

H9: There is a significant relationship between accident type and daylight. 
Accepte

d 

H10: There is no significant relationship between accident type and vessel loss. 

<0.001 

Rejected 

H11: There is a significant relationship between accident type and vessel loss. 
Accepte

d 

H12: There is no significant relationship between accident type and loss of life. 

<0.001 

Rejected 

H13: There is a significant relationship between accident type and loss of life. 
Accepte

d 

 

 

 



 

Figure 1. Bayesian Network structure of sinking accidents 



 

Figure 2. Bayesian Network structure of collision accidents



 

Figure 3. “Vessel Pipeline” node and its’ parent nodes 

  

Figure 4. Probability changes of sinking accidents 
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Figure 5. Probability changes of collision accidents 

 

 

Figure 6. The most likely combinations that may cause sinking accidents 
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Abbreviations used in the figure: ITV: Intention of Target Vessel (not understood); PTV: Presence of the Target 

Vessel (not detected); CW: Type of Navigation (Coastal Water); OS: Type of Navigation (Open Sea); P: Type of 

Navigation (Port); P: Type of Navigation (Port); RV: Restricted Visibility 

Figure 7. The most likely combinations that may cause collision accidents 
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