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Abstract 

Cardiovascular diseases (CVD) are major causes of morbidity and mortality 

worldwide. Complications associated with CVD encompass the entire vascular system, 

including blood vessels that supply brain. Impairments to cerebral blood flow (CBF) 

and cerebrovascular function result in increased risk of cognitive impairment, vascular 

dementia and stroke. Identifying interventions that can attenuate the age-related 

decline in CBF and enhance cerebrovascular function are essential, especially in 

individuals at high risk of CVD. Remote ischaemic preconditioning (rIPC), which 

involves cyclical periods of ischaemia-reperfusion applied noninvasively to a limb, 

has been shown to improve measures of peripheral vascular function and 

cardiovascular endpoints when applied acutely (one episode) or repeatedly (e.g. daily, 

3 times per week). There is also emerging evidence that repeated rIPC elicits beneficial 

effects within the cerebral circulation in stroke patients. However, the mechanisms of 

how rIPC can improve cerebrovascular function are unknown. The overreaching aim 

of this thesis was to investigate whether acute and repeated rIPC could enhance 

cerebral and peripheral vascular function in cohorts with increased risk of CVD.  

In a crossover study design, Study 1 aimed to assess the impact of a single acute bout 

of rIPC on cerebrovascular function.  Eleven young healthy (28±4 years) and nine 

individuals at risk of CVD (53±7 years) underwent assessment of cerebrovascular 

function. Using Transcranial Doppler (TCD), markers of cerebrovascular function 

were assessed following either bilateral arm rIPC or sham condition. There was no 

change in middle cerebral artery velocity (MCAv) or blood pressure (BP) during rIPC. 

Application of rIPC did not alter cerebrovascular reactivity (CVR) compared to sham 

(0.002 MCACVC/mmHg, 95%CI= -0.001, 0.005, P=0.24), nor did it affect any 

parameter of dynamic cerebral autoregulation (dCA) (0.028 normalised 

gain%/mmHg-1, 95%CI= -0.080, 0.137, P=0.59). This study suggested that an acute 

bout of rIPC does not influence cerebrovascular function in healthy young individuals 

and older subjects with increased risk for CVD.          

In a randomised control-pilot design, Study 2 aimed to obtain estimates for the change 

in peripheral conduit and cerebrovascular function following a 7-day rIPC intervention. 

Twenty-one type 2 diabetes mellitus (T2DM) patients performed either 7-day daily 

rIPC or control (no rIPC). Peripheral conduit artery function was assessed using flow 
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mediated dilation (FMD) before and after an endothelial ischemia-reperfusion (IR) 

injury. Cerebrovascular function was assessed using TCD to examine dCA (0.10Hz 

squat stand manoeuvres). All measurements were performed at three time points; pre, 

immediately post intervention, and 8 days post intervention. Using pre-intervention 

data as a covariate, the change from pre-post in FMD was 1.3% (95%CI= 0.69, 3.80; 

P=0.09) and 0.23 %/mmHg-1 (95%CI -0.12, 0.59; P=0.18) in dCA normalised gain 

with rIPC versus control. The directional changes outline FMD can be enhanced by 

daily rIPC in patients with T2DM, whilst cerebrovascular function is unaltered.   

In Study 3, in a randomised design, nineteen participants at risk of CVD were allocated 

into either 8 weeks of aerobic exercise training and rIPC (rIPC +  Ex) or 8 weeks of 

rIPC only performed 3 times per week. Assessment of cerebrovascular function was 

performed using TCD and FMD was used to examine peripheral vascular function 

before and after an IR injury. Measurements were performed before (week 0) and 

immediately after (week 8) each intervention. Neither intervention changed resting 

CBFv, dCA (spontaneous or forced BP oscillations) or CVR. FMD increased by 1.6% 

(95% CI= 0.4, 2.8) in the rIPC + Ex intervention and by 0.3% (95% CI= -1.1, 1.5) in 

the rIPC only intervention, whilst no statistical difference was found between 

interventions (P=0.65). Data from this study suggests that combining exercise with 

rIPC does not result in greater changes in cerebral or peripheral vascular function.                

In Study 4, dCA and baroreflex sensitivity (BRS) data collected during 0.10Hz squat 

stands manoeuvres was obtained from 206 individuals and analysed using transfer 

function analysis.  Cross-sectional associations between ages were examined using 

linear regression adjusting for sex. Multivariable linear regression was used to adjust 

for sex, health status and VO2max. Age, sex, CVD risk and VO2max do not impact on 

dCA parameters normalised gain, phase or coherence (P>0.05). dCA (absolute) gain 

reduced with age when adjusting for sex, and CVD risk. The data from this study 

suggest that dCA parameters, when adjusted for BP, does not decline with age in either 

sex. 

Collectively, the data contained within this thesis suggests rIPC interventions appear 

to be effective in improving peripheral endothelial function, but have little effect on 

cerebrovascular function. Additionally dCA, a frequently measured marker of 
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cerebrovascular function seems to be unaffected by aging, CVD risk factors or cardio-

respiratory fitness. 
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Cardiovascular disease (CVD) including cerebrovascular disease is the leading cause 

of death worldwide (Townsend et al., 2016.). Cerebrovascular disease is a general term 

encompassing different disturbances of the vascularisation of the brain (Truelsen et 

al., 2006). The human brain receives ~15% of total cardiac output and uses ~20% of 

oxygen available in order to maintain normal function, therefore tight regulation of 

blood flow and oxygen delivery is essential for survival (Willie et al., 2011). Chronic 

reductions in cerebral blood flow (CBF) and the mechanisms regulating stable CBF, 

referred to as cerebrovascular function, are associated with neurodegenerative diseases 

including dementia and Alzheimer’s disease as well as stroke (Yonas et al., 1993, 

Mazza et al., 2011, Leijenaar et al., 2017). Interventions that target increasing CBF 

along with improving cerebrovascular function are essential in reducing the risk of 

cerebrovascular diseases. Ischaemic preconditioning (IPC) refers to non-lethal bouts 

of ischemia followed by reperfusion. IPC is a powerful technique that can protect the 

heart and the vasculature against prolonged ischemia (Thijssen et al., 2016a). There is 

emerging evidence within the last decade suggesting it can exert a positive effect on 

the cerebral circulation (Meng et al., 2012, Meng et al., 2015, Mi et al., 2016, Wang 

et al., 2017).   

The beneficial effects of IPC have been observed in the heart and the conduit arteries, 

i.e. at remote locations to where the ischemia-reperfusion stimulus was applied, which 

is termed remote IPC (rIPC) (Przyklenk et al., 1993). Importantly, application of rIPC 

can be performed non-invasively using a pressure cuff on limbs and still induces 

ischaemic protection (Kharbanda et al., 2001). Typically, a rIPC bout consists of 4 x 

5 minute periods of limb cuff occlusion (ischemia) separated by 5 minutes of cuff 

deflation (reperfusion). Despite the frequently examined impact of rIPC on coronary 
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arteries, few studies have examined the impact of an acute bout of rIPC on 

cerebrovascular function. Therefore, aim 1 of this thesis was to identify whether an 

acute bout of rIPC increases CBF velocity (CBFv) or improve a marker of 

cerebrovascular function in young healthy and/or individuals with risk factors for 

CVD.          

Increasing the ‘dose’ of the rIPC, may in theory provide longer or potent effects 

(Whittaker and Przyklenk, 2014) and this concept has been investigated by performing 

rIPC repeatedly as an intervention (Thijssen et al., 2016a), however few studies 

examined the human cerebrovasculature. The few studies that have employed repeated 

rIPC interventions and focused on cerebrovascular outcomes have identified positive 

clinical outcomes in stroke patients and individuals with cerebral small vessel disease 

following the rIPC interventions (Meng et al., 2012, Meng et al., 2015, Mi et al., 2016, 

Wang et al., 2017).  Whether these positive changes, which included increases in CBF 

and reduction in stroke reoccurrence, are related to improvements in the functional 

control of CBF (cerebrovascular function) is currently unknown. Individuals with 

Type 2 diabetes mellitus (T2DM) are at significantly higher risk of cerebrovascular 

disease and stroke (Chen et al., 2015) and are associated with impairments in vascular 

endothelial function (Hamilton and Watts, 2013).  To date, one repeated rIPC 

intervention in T2DM proved effective in reducing the size of the diabetic foot ulcer 

over 6 weeks (Shaked et al., 2015), but little is known about the impact of daily rIPC 

on cerebrovascular function and peripheral vascular function in T2DM. Consequently, 

aim 2 of this thesis was to implement a 7-day daily rIPC intervention in patients with 

T2DM and assess changes in cerebrovascular function. . 

The length of an rIPC intervention (in duration and frequency of rIPC bouts) might be 

related to a its effectiveness on the vascular system (Thijssen et al., 2016a). Indeed 
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rIPC interventions up to 1 year long have resulted in positive clinical outcomes (Meng 

et al., 2012, Mi et al., 2016). Recent work demonstrated that exercise has a potential 

preconditioning capacity. This allows for the opportunity to increase the 

preconditioning stimulus by combining IPC with exercise training. Incorporating an 

exercise training programme, alongside an rIPC intervention may add an additional, 

but not mutually exclusive, preconditioning stimulus for the vascular system. 

Accordingly, the combination of ischaemic and exercise preconditioning may increase 

the beneficial adaptations observed with repeated rIPC alone. Therefore, aim 3 of this 

thesis was to investigate whether 8 weeks of aerobic exercise combined with repeated 

rIPC could enhance cerebral and peripheral vascular function more than repeated rIPC 

alone in individuals with increased risk of CVD. 

The regulation of stable CBF during changes in blood pressure (BP), termed dynamic 

cerebral autoregulation (dCA), represents an important functional marker of cerebral 

blood vessels regulating CBF (Willie et al., 2011) and is assessed in each study chapter 

of this thesis. Despite the growing body of literature, little is known about how age, 

sex and various CVD risk factors affect dCA. Similarly, there is currently conflicting 

evidence within the literature as to the mechanisms involved in dCA and to what extent 

control of BP, assessed with cardiac baroreflex sensitivity (BRS), is related to dCA. 

By identifying impairments in dCA, which can render the brain vulnerable to hyper- 

or hypoperfusion (van Beek et al., 2008), and understanding the contribution of cardiac 

BRS on dCA, appropriate interventions can then be developed to improving potential 

impairments or limitations. Therefore, aim 4 of this thesis was identify whether age, 

sex, cardio-respiratory fitness or CVD risk factors impact dCA and the contribution of 

the cardiac baroreceptors on dCA.  
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1.1 Aims  
 

The specific aims of this thesis are to:  

1. To assess the impact of bilateral arm rIPC on resting cerebral blood flow 

velocity, dynamic cerebral autoregulation and cerebrovascular carbon dioxide 

(CO2) reactivity compared to a sham condition in both young healthy 

individuals and older individuals at risk of CVD. 

2. Obtain estimates of the change in cerebrovascular function and peripheral 

conduit artery endothelial function before and after endothelial ischemia 

reperfusion (IR) injury following 7-days of daily limb rIPC in patients with 

type 2 diabetes. 

3. Examine whether 8 weeks of exercise combined with repeated rIPC could 

enhance cerebrovascular and conduit artery function more than repeated rIPC 

alone in individuals with increased risk of cardiovascular disease. 

4. Identify using squat stand manoeuvers and transfer function analysis whether 

age, sex, cardio-respiratory fitness or CVD risk factors impact dynamic 

cerebral autoregulation and the role of the cardiac baroreceptors. 

1.2 Objectives  
 

The aims outlined above will be achieved through the following objectives: 

In line with Aim 1: 

1. Utilising transcranial Doppler ultrasound, assess cerebral blood flow velocity 

during and following a bout of rIPC.  

2. Compare the effects of acute rIPC vs a sham procedure on cerebral 

autoregulation and cerebrovascular CO2 reactivity. 
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3. Identify whether acute rIPC can reduce the impairment to cerebral 

autoregulation induced by hypercapnia.  

4. Identify if the effects of rIPC differ between the young healthy individuals and 

those at high risk of CVD. 

In line with Aim 2: 

5. Compare the effects of 7 days of daily upper arm rIPC versus non-rIPC control 

on conduit artery endothelial function before and after an induced temporary 

ischaemia reperfusion injury in patients with T2DM.  

6. Compare the effects of 7 days of daily upper arm rIPC on cerebral blood flow 

velocity and dynamic cerebral autoregulation. 

7. Establish if the effects of 7 days of daily rIPC are still present 8 days following 

the end of the intervention.   

In line with Aim 3: 

8. Engage individuals with increased risk of CVD in either an 8-week supervised 

moderate intensity aerobic exercise programme plus rIPC 3 times per week or 

8 weeks of rIPC 3 times per week only.  

9. Compare the effects of combining exercise training with rIPC verses rIPC 

alone on cardio-respiratory fitness, cerebral blood flow velocity and dynamic 

cerebral autoregulation and conduit artery endothelial function before and after 

an induced temporary ischaemia reperfusion injury. 

In line with Aim 4: 
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10. Establish whether dynamic cerebral autoregulation is affected by age, sex, 

fitness and a number of cardiovascular disease risk factors in a large cohort of 

individuals aged 18-70 years.  

11. Identify if there is a relationship between cardiac baroreceptor function and 

dynamic cerebral autoregulation.   
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The focus of this literature review is two-fold; firstly, to outline cerebrovascular 

function measurements, the links with peripheral vascular function and the associated 

changes in the vasculature following interventions. Secondly, to introduce the concept 

of remote ischaemic preconditioning (rIPC), highlight the protective effects of rIPC 

on the heart and peripheral vessels and describe the potential impact of repeated rIPC 

as an intervention on the peripheral and cerebral vasculature.  

 
2.1 The Cerebrovasculature and Cerebrovascular Function 

 

2.1.1 Anatomy of the Cerebral Vasculature  
 

Blood flow to the brain is supplied via four large extra-cranial arteries bilaterally; the 

internal carotid (ICA) and vertebral arteries (VA). Approximately 70% of total 

cerebral blood flow (CBF) is supplied through the ICA’s, with the remaining ~30% of 

total CBF being delivered by the two VA’s (Willie et al., 2014). The ICA continues 

upwards to the base of the brain to form the anterior (ACA) and middle (MCA) 

cerebral arteries bilaterally, whilst the basilar artery bifurcates to eventually form the 

posterior cerebral arteries (PCA) (Figure 2.1). The anterior circulation begins distal to 

the carotid sinus and supplies both the forebrain (frontal and parietal lobes) and 

midbrain (temporal lobes) on both left and right hemispheres. The ICA has a branch 

that feeds the ophthalmic artery, prior to trifurcating to form the MCA, ACA and 

posterior communicating artery. The anterior communicating artery allows the 

anterior circulation to supply both left and right hemispheres by joining the two ACAs. 

The MCA and ACA branches deliver blood throughout the brain through the smaller 

stem and cortical branches which feed into smaller arterioles before eventually feeding 

into the anterior cerebral capillary beds.  
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The posterior circulation arises from the two VAs joining together at the vertebro-

basilar junction to form the basilar artery which supplies the hindbrain regions (brain 

stem and cerebellum) and the occipital cortices. The cerebral circulation is joined in a 

number of locations, which forms the vascular structure termed the Circle of Willis. 

This anatomical ring situated at the base of the brain connects the anterior and 

posterior circulations via the posterior communicating arteries (Figure 2.1).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.1: Anatomy of the cerebrovasculature including intra and extra cranial 
vessels. Abbreviations; Anterior cerebral artery (ACA), Middle cerebral artery (MCA), 
Posterior communicating artery (PCoA), Anterior communicating artery (ACoA), 
Posterior cerebral artery (PCA), Basilar artery (BA), Vertebral artery (VA), Internal 
carotid artery (ICA), left sided artery (L) & right sided artery (R). Adapted from Ren 
et al. (2015).   
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2.1.2 Regulation and control of Cerebral Blood Flow 
 

In order to maintain normal functioning, the brain requires constant adequate 

nutritional flow due to its high metabolic demand. In resting conditions the brain is 

accountable for approximately 25% of total oxygen (O2) consumption and receives 

15-20% of total cardiac output (Q) (Franco Folino, 2007), a remarkable amount given 

the brain accounts for approximately 2% of total body mass. Despite the high 

metabolic demand, the brain has a very limited ability to store energy, therefore CBF 

needs to be highly regulated in order to maintain a constant supply of nutrients and O2 

(Peters et al., 2004). CBF is determined by cerebral perfusion pressure (CPP) and 

cerebrovascular resistance (Ainslie and Duffin, 2009, Tzeng and Ainslie, 2014). CPP 

is the difference in BP and intracranial pressure (ICP), with the latter formed from 

central venous pressure and pressures within the cerebrospinal fluid (Ainslie and 

Duffin, 2009). Cerebrovascular resistance refers to the resistant forces acting on blood 

flow through the brain. Resistance to flow occurs mostly in the cerebral arteries and 

capillary beds, with increasing vascular tone in turn increasing resistance (Ainslie and 

Duffin, 2009).  

 

Measurement of CBF can provide information of the functional status of blood vessels 

supplying the brain. The non-invasive nature and high temporal resolution make 

transcranial Doppler (TCD) ultrasound an ideal instrument for the assessment of 

cerebral blood flow velocties (CBFv), in centermeters per second (cm.s-1) as reviewed 

in detail by Willie et al. (2011). TCD was first used in 1982, and has since been 

extensively used in order to assess CBFv (Aaslid et al., 1982). The basic principle of 

TCD ultrasound is a transmitter emitting pulsed ultrasound waves from a Doppler 

probe at 2 MHz. Due to its thin acoutic window, the ultrasound waves are transmitted 
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through the temporal region of the cranium to assess a vessel of interest. The 

assessment of CBFv is derived from the Doppler shift, created by the reflection of 

ultrasound waves from moving erythrocytes (red blood cells) within the blood vessel 

that are returned to the receiver unit in the Doppler probe. Simply, the Doppler shift 

refers to the difference between the transmitted and received ultrasound signals 

(Aaslid, 1986), with faster erythrocyte movement associated with higher velocities, 

and by extension, blood flow. Using TCD, the ACA, MCA and PCA can be assessed, 

in addition to the Basillar artery and Vertebral arteries. Vessels can be insonated from 

four different accoustic windows; Transorbital, Transtemporal, Submandibular and 

Transforaminal (Figure 2.2). 

 

 

Figure 2.2: Acoustic windows used in order to insonate cerebral blood vessels.  

 

Vessel identifcation is achieved based on knowledge of anatomical structure of the 

circle of Willis. (Willie et al., 2011). Understanding of isonation depths and flow 
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direction of the vessel of interest is vital in order to aquire reliable and valid signals 

(Table 1.1).  Additionally, certain stimuli can be applied in order to confirm correct 

vessel isonation including; carotid artery compression will result in reduction in 

MCAv, whereas PCAv will remain largerly unchanged. In addition, PCAv will 

increase by 15-20% with activation of occitital lobe (eyes open-eyes closed) whereas 

MCAv will have small response to this stimulus (<5%). Typically, the MCAs are used 

to examine CBF and cerebrovascular function as they account for ~80% of total CBF 

and have the closest proximity to the temporal window (Skow et al., 2013).  

 

Table 1.1: Typical patterns for identification of cerebral arteries using Transcranial 
Doppler ultrasound 

Abbreviations; Anterior cerebral artery (ACA), Middle cerebral artery (MCA), 
Posterior cerebral artery (PCA).  

 

    

The regulation of CBF is an integrative and complex process with a number of 

mechanisms involved including; BP (cerebral autoregulation), cerebral metabolism 

(neurovascular coupling), chemical control (cerebrovascular reactivity) and 

autonomic nervous system (Willie et al., 2011, Willie et al., 2012, Willie et al., 2014).  

The main regulatory features of the cerebral circulation applicable to this thesis are: 

 

Vessel Probe 
Directon 

Depth 
(mm) 

Flow 
Direction 

Ipsilateral 
carotid 
compression 

Contralteral 
caroitd 
compression 

ACA Anterior 60-75 Away Flow reversal Increased 
velocity 

MCA Perpendicular 35-60 Toward Reduced 
velocity 

No change 

PCA Posterior 55-70 Toward No change or 
incresed 
velocity 

No change 
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2.1.3 Blood Pressure (Cerebral Autoregulation) 
 

Autoregulation of CBF refers to the brain’s intrinsic ability to maintain a relatively 

constant blood flow despite changes in arterial BP. The autoregulatory response to 

changes in arterial BP protects against brain injury caused by potential hyper- or 

hypoperfusion. Indeed, evidence shows that brain injury does occur when 

autoregulatory mechanisms are lost (Novak et al., 1998, Euser and Cipolla, 2007). 

This pressure-flow relationship was noted as early as 1895, when Bayliss, Hill and 

Gulland concluded that ‘In all physiological conditions a rise in arterial pressure 

accelerated the flow of blood through the brain, and a fall slackens it’ (Bayliss et al., 

1895). In 1959 Lassen published a review plotting average BPs and related total CBF 

from seven studies, including 11 different patient groups. Lassen identified that there 

appears to be a plateau region, whereby CBF appears to be stable across a wide range 

of BPs (60-150 mmHg) (Lassen, 1959). More recent studies have established that the 

regulation of CBF is more pressure passive than originally suggested by Lassen (1959), 

with evidence now showing a 0.82 % ΔCBF/ mmHg ΔMAP-1 (Lucas et al., 2010). 

Subsequently, this so called ‘autoregulatory plateau’ outlined by Lassen (1959) may 

not exist, or in fact exists but within a considerably smaller range (± 5-10 mmHg from 

baseline) (Tan, 2012) (Figure 2.3).     
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Figure 2.3: Representation of the classical (left) and modern (right) interpretation of 
cerebral autoregulation. Red dotted lines represent the original ‘autoregulatory plateau’ 
(left) and the modern interpretation (right). Blue dotted lines represent cerebrovascular 
resistance; black dotted line represents stable cerebral blood flow; black solid line 
represents cerebral blood changes. Adapted from (Willie et al., 2014)  

 

Cerebral autoregulation can be classified into static (sCA) or dynamic (dCA). sCA 

refers CBF responses to long-term (minutes) changes in BP whereas dCA refers to 

acute (seconds) changes (Aaslid et al., 1989, Tiecks et al., 1995). Assessment of dCA 

has arisen from the ability to monitor beat-to-beat changes in cerebral blood flow 

velocity (CBFv) and mean arterial pressure (MAP) concurrently (Willie et al., 2014).  

Adequate CBF is maintained across a range of BPs due to changes in cerebrovascular 

resistance. Vasodilation occurs in response to decreases in BP and vasoconstriction as 

a result of increase in BP within the upper and lower limits of autoregulation (Figure 

2.4) (Pires et al., 2013). The functions together ensure sufficient blood flow reaches in 

the brain (Willie et al., 2014). Fascinatingly, it appears that cerebral vascular resistance 

is more effective at maintaining CBF during increases in CBF compared to decreases, 

however this difference is lost when studies corrected for changes in PaCO2 (Numan 

et al., 2014).      
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Figure 2.4: Cerebral blood flow in relation to artery lumen diameter. Dotted lines 
represent the lower and upper limits of cerebral autoregulation. Red circles represent 
the cerebral arteries, and blue line represents cerebral blood flow. Adapted from (Pires 
et al., 2013).  

 

The underlying mechanism(s) controlling this pressure-flow relationship remains 

unclear and are likely to differ with increases vs decrease in BP. It is likely that these 

mechanisms are multifactorial and include neurogenic, metabolic, myogenic and 

endothelial factors (Tzeng and Ainslie, 2014) and impairment has been observed in 

some clinical conditions.  A reduction in autoregulation (rate of regulation) has been 

reported in T2DM (Vianna et al., 2015), acute ischaemic stroke (Eames et al., 2002) 

obstructive sleep apena (Urbano et al., 2008) and  sporadic Alzheimer’s disease (den 

Abeelen et al., 2014). When patients display impaired cerebral autoregulation, the 

brain may be excessively sensitive to any changes in arterial BP and a failure to the 
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autoregulatory response has been associated with increased morbidity and mortality 

(Hu et al., 2008).  

The mechanism(s) controlling dCA are still largely unknown but are believed to vary 

depending on the frequency range in which the changes in arterial BP occur. A number 

of studies have attempted to investigate the underlying mechanisms primarily using 

blockades and a number of interesting observations have been made. In the very low 

frequency (VLF: <0.07 Hz), this is thought to be under the influence of myogenic 

properties as shown by studies using cholinergic blockades (Hamner et al., 2012, Tan 

et al., 2013) and ganglion blockade (Zhang et al., 2002).  Within an intermediate 

frequency range; low frequency (LF; 0.07-0.20 Hz), is controlled by more sympathetic 

influences, as demonstrated by sympathetic agonist drugs midazolam (Ogawa et al., 

2010) and antagonist drugs prazosin (Purkayastha et al., 2013). The highest frequency 

(HF; >0.20) range, the range in which CBF is most poorly regulated is largely under 

the control of normal respiration rate (Reinhard et al., 2003).  Nevertheless, clear and 

definitive answers to the mechanism controlling dCA still require significant 

investigations. The relationship between myogenic, sympathetic and local neuronal 

mechanisms and their control of dCA is uncertain and new innovative measurement 

methods are required to unlock the true controlling mechanisms.      

Despite the growing interest in assessing dCA the question remains as to the exact 

location in which the regulation takes places. Dilation and constriction has been shown 

to occur in pial vessels in response to fluctuations in BP (Fog, 1938, Lassen, 1959). 

On the other hand, there is data to suggest that larger cerebral arteries respond to the 

changes in BP as well as the extra cranial vessels within the neck (Heistad et al., 1978, 

Kontos et al., 1978). Studies to investigate the main site(s) of dCA are however 
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extremely difficult to perform in humans. Future studies employing advanced imaging 

techniques are required to answer such questions.         

Typical assessment of dCA is carried out with the combined use of TCD and finger 

photoplethysmography. In order to examine the dynamic response between CBFv and 

BP, transient changes in BP are induced. Whilst there is no ‘gold standard’ method 

available for the assessment of dCA  (Panerai, 1998), a number of techniques have 

been previously used to achieve these rapid fluctuations in BP. Instant deflation of 

bilateral thigh cuffs after a period of inflation to supra-systolic levels was used to 

induce transient decreases in BP (Sorond et al., 2009), however this technique is 

associated with high levels of discomfort as well as a variability in the levels of BP 

change with each cuff deflation. More recently, a simple squat to stand (or sit to stand) 

procedure has been found to produce transient changes in BP, yet with less discomfort 

than the bilateral thigh cuffs (Lipsitz et al., 2000). Repeated squat-stand manoevers 

has now emerged a popular method to assess dCA and has been performed in a range 

of clincal and older populations (Claassen et al., 2009a, Aengevaeren et al., 2013, 

Oudegeest-Sander et al., 2014, Smirl et al., 2014a, Lewis et al., 2019) and is 

representative of BP fluctations experienced in daily life (Simpson and Claassen, 

2018).  

  
2.1.3.1 Baroreflex Sensitivity   

 

Both dCA and baroreflex sensitivity (BRS) are key mechanisms that maintain stable 

CBF (de Heus et al., 2018). The baroreflex regulates BP via baroreceptors which 

detect changes in arterial BP. BRS reflects the complex interaction between autonomic 

and vascular function to manage BP fluctuations (Subramanian et al., 2019). The 
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baroreceptors (stretch receptors in the walls of the aorta and carotid artery) send 

signals via the vagus and glossopharyngeal nerves to the Nucleus Tractus Solitarius 

when a rise or drop in BP is detected which results in either increased vagal nerve 

activity and a reduction in sympathetic activity or vice versa, in order to maintain BP 

(Parati and Bilo, 2012). Importantly, BRS carries prognostic value in the development 

and progression of a number of cardiovascular diseases (CVD) including; 

hypertension, coronary artery disease, myocardial infarction and heart failure, with 

sympathetic-parasympathetic imbalances contributing to the complications (La 

Rovere et al., 2008). The assessment of BRS can be performed using several different 

techniques which have been reviewed in detail (La Rovere et al., 2008). 

Pharmacological techniques involve the infusion of vasoactive drugs to induce BP 

changes whilst monitoring heart rate.  A popular none-invasive method includes the 

neck chamber technique which specifically manipulates the carotid baroreceptors 

(Fadel et al., 2003), whereas cardiac BRS can be assessed using the relationship 

between R-R interval and systolic BP (Zhang et al., 2009, Dutoit et al., 2010, 

Aengevaeren et al., 2013).  Evidence suggests that cardiac BRS provides a good 

estimate of overall baroreflex function when measurements of sympathetic outflow 

are unavailable (Taylor et al., 2015) and has been validated against the Modified 

Oxford technique (Horsman et al., 2013) which is often referred to as the ‘gold 

standard’ method of BRS assessment (Gasch et al., 2011, Hissen et al., 2018).   

Impairment to cardiac BRS may lead to orthostatic hypotension which can result in 

cerebral hypoperfusion or syncope (Zhang et al., 2009). Some (Tzeng et al., 2010, 

Witter et al., 2017), but not all (Aengevaeren et al., 2013, Xing et al., 2017) studies 

have observed an inverse relationship between cardiac BRS and dCA. Identifying the 
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relationship between BRS and dCA represents the fourth aim of this thesis and is 

presented in chapter 6.  

 

2.1.4 Cerebral metabolism (neurovascular coupling) 
 

CBF is closely linked to metabolic activity as activations of regions of the brain result 

in changes to local CBF (Willie et al., 2014). This relationship between neural activity 

and CBF is termed neurovascular coupling (NVC), and whilst the coupling between 

neural activity and increases in blood flow is well known, the exact underlying 

mechanisms are still not fully understood (Phillips et al., 2016). Cerebral blood vessels 

are structurally unique and different from other arteries based on their close 

relationship with neurons and glia. The close relationship is between the smooth 

muscle of the vessel walls, the neuron and the astrocyte glial cell together form what 

is known as the neurovascular unit. NVC is impaired in certain pathological conditions 

such as ischaemic stroke, Alzheimer’s and hypertension (Girouard and Iadecola, 2006, 

Lefferts et al., 2018), resulting in the CBF response not meeting the metabolic 

requirement of the tissue.  

Whilst the relationship between brain neural activity and CBF has been known for 

over a century (Roy and Sherrington, 1890), the mechanisms responsible for this 

response are not fully understood. When the supply of oxygen, glucose and other 

nutrients required by the brain are adequate, the smooth muscle cells and pericytes are 

thought to be in a state of basal tone (Muoio et al., 2014). Activation of the neuron 

sends a signal to the astrocyte via the release of glutamate, increasing calcium with 

the astrocyte. This causes a reaction within the astrocyte that in turn leads to the release 

of vasoactive substances from the end-feet causing pericytes and vascular smooth 
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muscle cells to hyperpolarise. The hyperpolarisation of these cells initiates either 

vasodilation (release or NO, adenosine or arachidonic acids) or vasoconstriction 

(release of endothelin or thromboxane) of the local cells (Muoio et al., 2014). The 

change in local vascular tone regulates a change in local vascular resistance, increasing 

or decreasing CBF.  

 

2.1.5 Chemical Control (Cerebrovascular Reactivity) 
 

The partial pressure of arterial carbon dixoide (PaCO2) has a sigificant impact on CBF. 

An increase in PaCO2 (hypercapnia) results in cerebral arteriolar vasodilation, whereas 

a decrease in PaCO2 (hypocapnia) will cause vasocontriction reducing CBF (Ainslie 

and Duffin, 2009). This highly sensitive relationship between changes in PaCO2 and 

CBF responses is termed cerebrovascular CO2 reactivity (CVR) and is recognised as 

a crucial homestoatic function that helps maintain and regulate central pH and cellular 

function (Ainslie and Duffin, 2009). This response can be viewed as a defence 

mechanism, whereby elevations in PaCO2 leads to an increase in CBF in an attempt to 

“wash out” CO2 from brain tissue. Consequently, the increase in CBF contributes to 

normalising or reducing the rise in PaCO2. Typically, the slope of cerebrovascular 

response to CO2 is approximately 3-6% increase per mmHg in PaCO2 above rest and 

1-3% reduction per mmHg decrease below resting values (Willie et al., 2012). This 

means that the cerebrovasculature is more sensitive to a given increase in PaCO2 

compared to a decrease in PaCO2.  It has been suggested that this lower responsiveness 

to hypocapnia (compared to hypercapnia) may be a protective mechanism to avoid 

cerebral ischaemia during reductions in PaCO2, which do occur in a number of 
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physiological conditions (e.g. exercise or change in posture) as well as 

pathophysiological (syncope) (Ainslie and Duffin, 2009).  

The term CVR reflects an index of the ability of the cerebral vessels to dilate or 

constrict in response to changes in arterial blood gases content, typically CO2. It is 

believed that this serves as a control mechanims for respiration-induced changes in 

CO2. Within the brainstem respiratory chemoreceptors are present which are highly 

sensitive to alterations in pH. CVR to changes in CO2 has been applied in clinical 

practice to evalute cerebrovascular function. One large scale project ‘The Rotterdam 

Study’ demonstrated in a cohort of 1695 participants, lower cerebral reactivity to 5% 

CO2 stimulus was assosiated with increased risk of all-cause death (Portegies et al., 

2014). In addition, lower response to a CO2 stimulus has been observed in patients 

with; Alzheimers (den Abeelen et al., 2014), multiple sclerosis (Marshall et al., 2014) 

and heart failure (Georgiadis et al., 2000). Clinically, this impairment may represent 

dysfunction from a number of mechanistic inputs. The mechanims responsible for the 

role of CO2 in regulating vascular tone and pH are not fully identified. Activation of 

potassium (K+) channels in the vascular smooth muscle is a potential mechanism 

which has received attention given its ability to relax (dilate) cerebral vessels (Ainslie 

and Duffin, 2009). Additionally, nitric oxide (NO) and prostaglandins may play a role 

in the hypercapnic induced vasodilation as a result of increased shear stress (Ainslie 

and Duffin, 2009) and that an individuals reponse to CO2 depends on the intergrity of 

the vascular endothelium (Ainslie et al., 2007). Indeed, mechanistic studies have 

identfitied the role of shear-stress mediated vasodilation as a result of increased CO2 

suggesting the use of such measurements to quanify cerebrovascular endothelial 

function  (Carter et al., 2016, Hoiland et al., 2017).  
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The cerebrovasculature is not only sensitive to changes in CO2, but oxygen (O2) also 

plays a role in vascular tone. Hypoxia effects the cerebrovasculature, but only when 

PaO2 levels drop below ~50mmHg (Willie et al., 2012, Willie et al., 2014). Acute 

hypoxia induces increases in CBF before plateauing (Harris et al., 2013) and the 

impact of hypoxia on cerebral autoregulation is still debated (Subudhi et al., 2010, 

Smirl et al., 2014b).  The response to hypoxia however is still affected by CO2 given 

that studies have shown it is the ventilatory response to the hypoxia which ultimiately 

determines the CBF response, as hypercapnia increase and hypocapnia decreases the 

sensitivity of the cerebrovasculare to hypoxia (Mardimae et al., 2012, Willie et al., 

2014).  

CVR has typically been assessed in one of three potential ways. The earliest technique 

used was breath holding, whereby participants would hold their breath in order to 

progressively increase PaCO2. This technique has a number of limitations. First, 

individual variability between individuals in factors such as; gender, size of lungs, age 

all affected the CBF response to breathe holding (Fierstra et al., 2013). A second 

potential strategy relates to the rebreathing of exhaled gas, which became and remains 

a common technique to achieve increases in PaCO2. This method requires minimal 

equipment with just an exhaled gas reservoir and gas sensors necessary. Limitations 

to this strategy is that rebreathing of exhaled gas causes a ramp-like response with 

each breath causing an increase in PaCO2. This prevents performing a stable 

measurement of increased CBF. A third and final strategy is the use of external CO2 

supplied to a participant by means of a non-rebreathing face mask, with inspired CO2 

concentrations ranging from 2-7% (Fierstra et al., 2013). This method is favourable as 

it can induce a standardised hypercapnic stimulus (Vernieri et al., 2004) and is used 

throughout this thesis. 
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2.1.6 Cerebral and Peripheral vascular function 
 

Functional markers of the cerebral and peripheral circulations can change 

simultaneously. Improvements in cerebral and peripheral vascular function are seen 

with exercise training (Bailey et al., 2013, Tarumi et al., 2015) and reductions in both 

have been observed with Alzheimer’s and stroke (Silvestrini et al., 2006, Dede et al., 

2007). Collectively, assessment of cerebral and peripheral vascular function is 

important in providing a representation for systemic vascular function. However, 

impairment in one artery does not seem interchangeably with changes in another artery. 

The endothelium is a single layer of cells that forms the inner lining of the entire 

circulatory system. Once considered a passive layer of inert cells, the vascular 

endothelium is now known to be highly biologically active. The endothelium occupies 

a strategically important location between the circulating blood and vessel wall and 

has the ability to respond to changes in its physical, chemical or humoral environment 

(Rubanyi, 1993). The endothelium continuously produces the freely diffusible gas 

nitric oxide (NO) at a low basal rate, which helps maintain the health of the vessel 

wall and regulate vascular tone. NO is a potent anti-atherogenic molecule, inhibiting 

platelet and leukocyte adhesion and a powerful vasodilator (Green et al., 2011). 

Increases in blood flow, therefore increases in intimal shear stress (the fricitional drag 

force exerted by the blood flow on the arterial wall), represents the physioloigcal 

stimulus for the release of NO (Pohl et al., 1986). 

Assessment of peripheral vascular function can be performed non-invasively on 

peripheral conduit arteries using the flow mediated dilation (FMD) technique 

(Celermajer et al., 1992). The dilation that occurs during an FMD can be significantly 

attenuated/abolished using NO blockade  (Joannides et al., 1995, Lieberman et al., 
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1996, Mullen et al., 2001, Kooijman et al., 2008), making the FMD a largely NO-

dependent test of endothelial function,  Collectively, the evidence from these 

physiological studies reinforces the validity of the technique as an assessment of 

endothelium dependent and NO-specific index of endothelial function (Thijssen et al., 

2011). FMD is reduced with CVD risk factors, relates to coronary artery endothelial 

function, and independently predicts CVD outcomes (Thijssen et al., 2019b). 

Additionally, it is recognised as a reproducible technique in examining the acute and 

long-term impact of physiological and pharmacological interventions in humans 

(Thijssen et al., 2011, Thijssen et al., 2019b). 

2.1.7 Interventions targeting cerebral and peripheral function 
 

2.1.7.1 Cerebrovascular function  
 

Reductions in cerebrovascular function are strongly associated with clinical conditions, 

whilst pharmacological approaches represent some of the interventional strategies to 

enhance CBF, CBFv and cerebrovascular function. For the purpose of this thesis, 

studies focusing on cardio-respiratory fitness and exercise interventions are 

summarised below.        

2.1.7.2 Exercise training in healthy humans 
 

Humans display a natural age-related decline in CBF, however evidence does show 

that maintaining high cardiorespiratory fitness does attenuate this age-related decline 

(Ainslie et al., 2008b). This maintenance of CBF could potentially explain lower rates 

of cerebrovascular disease/incidents in individuals that are physically more active 

(Ainslie et al., 2008b). A small number of studies have implemented structured 

exercise interventions in an attempt to increase CBF and improve cerebrovascular 
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function or attenuate the age-related decline, but the results are conflicting. Eight 

weeks of moderate aerobic cycling evoked an increase in CBFv in postmenopausal 

women (Akazawa et al., 2012), whilst others found 8-12 weeks of aerobic exercise 

does not induces changes in CBFv in healthy young and older individuals (Murrell et 

al., 2013, Lewis et al., 2019). A 6 week HIIT intervention in endurance trained men 

resulted in no change in CBFv and a slight reduction in dCA (Drapeau et al., 2019). 

This reduction in dCA with elevated cardio-respiratory fitness has been noted in a 

small number of other studies (Labrecque et al., 2017, Labrecque et al., 2019a), which 

is somewhat confusing given that elevated cardio-respiratory fitness has been linked 

to increased CBFv (Ainslie et al., 2008b) and better CVR (Bailey et al., 2013). Taken 

together, various factors, including intervention duration, exercise type and intensity, 

and population contribute to whether exercise training changes CBFv and 

cerebrovascular function. Furthermore, functional markers of the cerebrovascular 

system appear to respond differently to exercise training, strongly suggesting a need 

for further research to understand exercise training (Barnes and Corkery, 2018).  

 

2.1.7.3 Exercise training in clinical populations 
 

As outlined in section 2.1, reductions in CBF and cerebrovascular function often 

manifest in various patient cohorts. Therefore, exercise interventions, which have the 

potential to improve both may be of greater importance for individuals at increased 

CVD risk. A small number of studies have examined the impact of exercise training 

on CBF and cerebrovascular function in clinical groups. Eight weeks of aerobic 

training in patients with chronic obstructive pulmonary resulted in no change in 

cerebrovascular function (dCA & CVR) or CBFv (Lewis et al., 2019), whilst in 

individuals with mild cognitive impairment, 12 weeks of moderate aerobic training 
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lead to increased CBF and cognitive function (Alfini et al., 2019). Stroke survivors 

following 6 months of aerobic treadmill exercise improved CVR (Ivey et al., 2011) 

yet no such changes were evident following 18 weeks of training in congestive heart 

failure patients (Tanne et al., 2005).  The patient population being assessed in each 

study may represent a critical factor as to whether the exercise intervention improves 

CBF or functional markers. Another factor that may influence the impact of exercise 

training on CBF is the duration of the intervention, especially as increase in CBF was 

typically found in those adopting a longer period of training. It is clear that more 

research is warranted to understand possible beneficial effects of exercise on 

cerebrovascular health in clinical and preclinical populations.  

 

2.1.7.4 Peripheral vascular function  
   

As outlined in section 2.1.6, peripheral vascular function is frequently used as a marker 

for systemic endothelial function (Thijssen et al., 2019b). Impaired peripheral vascular 

function (endothelial dysfunction), in the form of reduced FMD has been associated 

with conditions predisposing atherosclerosis and CVD (Charakida et al., 2010). The 

following sub section will summarise the literature that employed exercise 

interventions to change peripheral vascular function in healthy and clinical 

populations   

 
2.1.7.5 Exercise training in healthy humans 

 

Peripheral vascular function measured using FMD demonstrates a progressive decline 

with age as the result of reduced NO bioavailability (Celermajer et al., 1994, Thijssen 

et al., 2016b). However, a recent meta-analysis which pooled data from 14 studies 
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concluded that long-term aerobic exercise appears to attenuate the age related decline 

in FMD (Campbell et al., 2019). In young healthy individuals, a number of studies 

have shown that short-term exercise training increases vascular function (FMD) 

(Green et al., 2004, Tinken et al., 2010, Birk et al., 2012, Schreuder et al., 2015) with 

prolonged training inducing structural adaptations (i.e. increased artery diameter) 

(Green et al., 2012, Green et al., 2014b). This sequence of functional improvements 

preceding structural changes appears now to be a consistent observation. Studies 

involving 2-weekly measurements across an 8-week period of large (i.e. 

cycling/running exercise) (Tinken et al., 2008, Birk et al., 2012) or small muscle group 

(i.e. handgrip exercise) (Tinken et al., 2010) training in healthy young volunteers have 

consistently demonstrated that 2 weeks of exercise training is sufficient to 

significantly enhance vascular function. This initial rapid increase in vascular function 

is often normalized after 6–8 weeks of training as arterial structural remodelling occurs 

(Tinken et al., 2008, Green et al., 2017). These observations support the idea that 

exercise training leads to time-dependent adaptation in conduit artery function, which 

is superseded by arterial remodelling (Schreuder et al., 2015). 

 

2.1.7.6 Exercise training in clinical populations 
 

Vascular endothelial dysfunction is present in various clinical and pre-clinical groups 

such as hypertension, obesity and T2DM (Widmer and Lerman, 2014). Exercise 

represents an intervention that has numerous physiological benefits including 

improved endothelial function. Brachial artery FMD was enhanced following 8 weeks 

of aerobic training in patients with T2DM (Schreuder et al., 2015), with a similar 12 

week intervention improving FMD in adolescents with T2DM (Naylor et al., 2016).  
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Numerous systematic reviews and meta-analysis have been performed concluding 

exercise improves peripheral vascular function in heart failure (Pearson and Smart, 

2017), T2DM (Qiu et al., 2018), cancer survivor (Beaudry et al., 2018) and obese (Dias 

et al., 2015) patients. Different exercise types have evoked vascular improvements, 

with an 8-week HITT intervention increasing FMD in a cohort of obese individuals 

(Sawyer et al., 2016) and interestingly Boff et al concluding that HITT was more 

effective in improving FMD compared to moderate training in patients with type 1 

diabetes (Boff et al., 2019).           

 

In summary, tight regulation of CBF is essential in maintaining normal functioning 

and reducing the risk of cerebrovascular disease/complications. Nevertheless, the 

impact of exercise interventions on cerebrovascular function is unclear in both healthy 

and diseased groups. Unlike the changes in peripheral vascular function, measuring 

using FMD, that on balance suggest positive peripheral vascular functional changes 

with exercise training. Therefore, alternative or additional interventions might provide 

a larger stimulus to improve cerebrovascular function.    

2.2 Ischaemic Preconditioning  
 

In 1986, investigators discovered that brief intermittent episodes of ischaemia had 

protective effects on the myocardium that was later subject to a sustained bout of 

ischaemia (Murry et al., 1986). Murry and co were the first to identify the phenomenon 

known as ischaemic preconditioning (IPC) which involved 5 minutes of canine left 

anterior descending coronary artery occlusion, followed by 5 minutes of reperfusion 

repeated 4 times. Evidence of cardioprotective effects following IPC was supported 

when a number of follow-up studies confirmed their original observations (Li et al., 
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1990, Murry et al., 1990, Murry et al., 1991, Ovize et al., 1992). These data contributed 

to the concept that exposure to (non-lethal) cardiac ischaemia in the period preceding 

coronary ischaemia may protect against the impact of reperfusion of the occluded 

artery on the magnitude of myocardial damage.  

2.2.1 Remote IPC 
 

Przyklenk and colleagues performed a landmark study in 1993, in which they 

demonstrated that cyclical ischaemia and reperfusion of the circumflex coronary artery 

was associated with protection of cardiac territory supplied by the left anterior 

descending artery (i.e. an area remote from the preconditioning stimulus of the 

circumflex coronary artery) (Przyklenk et al., 1993). These findings from Przyklenk’s 

group provided the first evidence demonstrating the effects of what is now termed 

‘remote’ ischaemic preconditioning (rIPC).  

Preclinical studies investigating the impact of rIPC on the heart have classically 

collected perfusate from animals who have been subject to IPC. When naive hearts 

have subsequently been perfused using a Langendorff preparation, a number of studies 

have identified that in both the donor heart subject to the IPC and the naive recipient 

heart that has received the perfusate from the preconditioned donor, infarction size 

was significantly smaller following a prolonged ischaemic event (Dickson et al., 1999, 

Huffman et al., 2008).  These finding demonstrated the ability of rIPC to reduce the 

damage induced by ischaemic injury in remote areas, potentially through a blood-

borne pathway.  Intriguingly, evidence has shown the rIPC can provide protection 

between-species, since rabbit hearts displayed protection against a prolonged bout of 

cardiac ischaemia when perfused with human preconditioned serum (Shimizu et al., 

2009, Michelsen et al., 2012). This suggested a similarity in the factors conferring 
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protection across species, and that such agent/s remain conserved during such 

procedures, allowing binding to the recipient receptors.          

Clinical human studies exploring the effects of rIPC have typically applied the rIPC 

cycles using a blood pressure cuff on a limb, before (planned) prolonged myocardial 

ischaemia. A small number of studies have investigated the use of rIPC in patients 

undergoing coronary artery bypass graft (CABG) or percutaneous coronary 

interventions (PCI), as these procedures involve global myocardial ischaemia (and 

subsequently cardiac damage) as shown by elevated cardiac troponins post-procedure. 

Consequently, strategies that can attenuate the damage as a result of global myocardial 

ischaemia have clinical relevance. Meta-analyses (Brevoord et al., 2012, D'Ascenzo 

et al., 2012) have identified lower peri-postoperative levels of troponins in patients 

undergoing CABG and PCI if rIPC is applied. More importantly, evidence suggests 

that rIPC may reduce overall perioperative myocardial infarction (Thielmann et al., 

2013, Candilio et al., 2015). For example, Thielmann et al. (2013), demonstrated in 

329 patients undergoing CABG proceeding a bout of rIPC, reduced post-CABG 

troponin concentrations and also lowered all-cause mortality after a 1.5 year follow-

up. Therefore, rIPC may in turn provide long-term clinical benefits to humans.     

 

In 2010, Bøtker and colleagues explored this concept in humans by randomizing 

patients with suspected acute myocardial infarction to a rIPC group or control group 

during transition to hospital (Botker et al., 2010). They identified that rIPC on 

transition along with standard treatment was associated with better myocardial salvage, 

assessed by myocardial perfusion imaging, compared to standard care alone. 

Intriguingly, a follow-up performed on the same patient group approximately 3.8 years 

later reported that the rIPC treated patients experienced fewer major adverse cardiac 
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and cerebrovascular effects (Sloth et al., 2014). Whereas it is important to present the 

evidence of the beneficial effects of rIPC, it is also essential to acknowledge the work 

that has found no positive clinical impact. In a large scale randomised control trial 

including 1612 patients undergoing CABG, rIPC did not improve clinical outcomes 

in patients (Hausenloy et al., 2015), with a similar observation in patient requiring 

cardiopulmonary bypass for cardiac surgery (Meybohm et al., 2015) 

 

Whilst the beneficial effects of rIPC on the cardiovascular system has attracted 

attention, its effect on the cerebrovascular system has certainly received less. 

Nevertheless, there is a growing body of animal research that supports the notion that 

rIPC provides protection against ischaemic injuries in the cerebrovascular system and 

provides neuroprotection. This is of clinical relevance as brain ischaemia is one of the 

leading causes of morbidity and mortality in the world (Liu et al., 2009). Hoyte et al., 

(2006) conducted a study in mice and employed 15 minutes of MCA occlusion 72 

hours prior to inducing a 45-minute injurious cerebral ischaemia. They reported an 

increase in regional brain blood flow during the injurious occlusion, measured via 

magnetic resonance perfusion and laser Doppler flowmetry in the mice that received 

the IPC as well as a reduction in infarct size (Hoyte et al., 2006). Ren and colleagues 

extended this work by applying rIPC to the left femoral artery of rodents, 2 days prior 

to inducing cerebral ischaemia. They reported that rIPC was associated with a 

reduction in infarction size compared to the animals with no preconditioning (Ren et 

al., 2008). Jensen and colleagues also observed that pigs who received rIPC to the limb, 

displayed an accelerated recovery in neurological function and ECG pattern and 

demonstrated a lower brain lactate concentration compared to controls following 

ischaemic injury as a result of hypothermic circulatory arrest (Jensen et al., 2011).  
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These data provide evidence that (r)IPC can offer cerebrovascular and neural 

protection against cerebral ischaemia. Nevertheless, research in humans is warranted 

to be able to translate this into clinical practice. This will be the focus of study 1 within 

the current thesis. 

2.2.1.1 Ischaemia-reperfusion injuries  
 

When arterial blood flow is blocked, it is essential that blood flow is restored in order 

to prevent irreversible tissue damage. When organs become ischaemic, the deprivation 

of blood flow and oxygen have long been recognised as the critical factor in clinical 

outcomes. However, the reperfusion phase (restoring of blood flow) is not without 

consequence and induces even further cellular damage that is greater than the damage 

caused by the ischaemia itself (Eltzschig and Collard, 2004). Evidence for this was 

shown when 3 hours of ischaemia followed by 1 hour of reperfusion induced cellular 

damage that exceeded that of the damage caused by a 4 hour ischaemic protocol (Parks 

and Granger, 1986). Cellular damage induced by the reperfusion phase following a 

period of ischaemia is referred to as ischemia reperfusion injury (IRI).  IRI can occur 

in a variety of clinical scenarios; thrombolytic therapy, organ transplant, coronary 

angioplasty, cardiopulmonary bypass or aortic clamping (Eltzschig and Collard, 2004) 

as well in cardiovascular events/disorders such as; myocardial infarction, stroke and 

peripheral vascular disease (Kalogeris et al., 2012). This highlights the clinical 

relevance to minimise IRI.  

Ischaemia promotes a proinflammatory state that intensifies tissue vulnerability to any 

further damage during reperfusion. The extent of the injury caused by a period of 

ischaemia is heavily influenced by the duration of the blood flow restriction (Eltzschig 

and Collard, 2004) and crucially the organ in which is affected by the ischaemia, with 
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the brain being the most sensitive organ to reductions in blood supply (Ordy et al., 

1993).  When reperfusion occurs following ischaemia, levels of oxygen are rapidly 

restored and the extracellular pH returns to normal. Even with this restoration of 

oxygen and extracellular pH, the intracellular pH remains acidic and this pH gradient 

facilitates extrusion of H+ from the cell in exchange for Na+ (Murphy and Steenbergen, 

2008). Additionally, increases in ROS during ischaemia and re-oxygenation is 

believed to be due to damage to components of the electron transport chain resulting 

in inefficient transfer of electrons resulting in the generation of superoxides. The 

significant increase in ROS production induces further oxidative damage to cellular 

structures (Murphy and Steenbergen, 2008). IRI occurs in a wide range of organs 

including the heart, gut, kidney, lung, skeletal muscle and brain and may involve not 

only the ischaemic organ itself but may also induce systemic damage to distant organs, 

potentially leading to multi-system organ failure. Reperfusion injury is a multi-

factorial process resulting in extensive tissue destruction and vascular interventions to 

improve IRI outcomes are important. A growing body of evidence suggests that rIPC 

has the ability to reduce the level of cellular tissue damage following an IRI, both 

planned or unplanned (Heusch et al., 2015). 

 

2.2.2 Repeated rIPC interventions 
 

The ‘traditional’ doses of rIPC applied in the majority of studies have principally used 

4 x 5 minutes of occlusion followed by reperfusion. Whittaker and Przyklenk outlined 

the potential use of repeated rIPC, referring to this traditional dose (4x5 minutes) but 

applied more often (e.g. daily or weekly) (Whittaker and Przyklenk, 2014). Given the 

potent effects of a single dose of rIPC, repeated episodes may, in theory, provide 

longer or more potent reduction of ischaemic myocardial damage (Whittaker and 
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Przyklenk, 2014). Table 2.1 provides a summary of all human studies to do date that 

have employed repeated rIPC interventions.  
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 Table 2.1: O

verview
 of all published studies to date investigating repeated (rem

ote) ischaem
ic preconditioning interventions 

 

A
uthor (Y

ear) 
Population 

rIPC
 

or IPC
 

IPC
 protocol 

D
uration 

U
nilateral 

or bilateral 
C

ontrol 
Included 

Findings 

K
im

ura 
et 

al. 
(2007) 

H
ealthy young 

rIPC
 

6 x 5 m
inute 

daily 
4 w

eeks 
U

nilateral 
Y

es 
↑ V

ascular function (venous 
occlusion plethysm

ography 
infusion) 

↑ E
ndothelial progenitor cells 

Shim
izu et al. 

(2010) 
H

ealthy m
iddle 

aged 
rIPC

 
3 x 5 m

inute 
daily 

10 days 
U

nilateral 
N

o 
↓ N

eutrophil adhesion 
↓ Phagocytosis 

W
ei 

et 
al. 

(2012) 
R

ats 
(m

yocardial 
infarction) 

rIPC
 

4 x 5 m
inute 

daily 
28 days 

U
nilateral 

Sham
 

↓ Infarct size 
↓ L

V
 rem

odelling 

M
eng 

et 
al. 

(2012) 
Intracranial 

arterial stenosis 
rIPC

 
5 x 5 m

inute 
daily 

300 days 
B

ilateral 
Y

es 
↓ Stroke recurrence 
↑ C

erebral perfusion 
Luca 

et 
al. 

(2013) 
H

ealthy young 
rIPC

 
3 x 5 m

inute 
daily 

7 days 
U

nilateral 
N

o 
↑ V

ascular function (FM
D

) 

K
ono 

et 
al. 

(2014) 
H

ealthy m
iddle 

aged 
rIPC

 
4 x 5 m

inute 
tw

ice daily 
7 days 

U
nilateral 

N
o 

↑ C
oronary flow

 reserve 
↔

 L
V

 end-diastolic volum
e 

Jones 
et 

al. 
(2014) 

H
ealthy young 

rIPC
 &

 
IPC

 
4 x 5 m

inute 
daily 

7 days 
U

nilateral 
N

o 
↑ B

ilateral vascular function (FM
D

) 
↑ B

ilateral skin perfusion 
K

ono 
et 

al. 
(2014) 

H
eart failure 

rIPC
 

4 x 5 m
inute 

tw
ice daily 

7 days 
U

nilateral 
N

o 
↑ C

oronary flow
 reserve 

↔
 L

V
 end-diastolic volum

e 
Jones 

et 
al. 

(2015) 
H

ealthy young 
rIPC

 &
 

IPC
 

4 x 5 m
inute, 

three tim
es per 

w
eek 

8 w
eeks 

U
nilateral 

Y
es 

↑ B
ilateral vascular function (FM

D
) 

↔
 B

ilateral skin perfusion 

Liang 
et 

al. 
(2015) 

C
oronary heart 

disease 
rIPC

 
4 x 5 m

inute 
three tim

es daily 
20 days 

U
nilateral 

Y
es 

↑ V
ascular function (FM

D
) 

↑ eN
O

S m
R

N
A

 levels 
↑ E

ndothelial progenitor cells 
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bbreviations: eN
O

S, endothelial nitric oxide synthase; FM
D

, flow
 m

ediated dilation, rIPC
; rem

ote ischaem
ic preconditioning, LV

; Left 
ventricular, IPC

; Ischaem
ic preconditoning Sym

bols:  ↑ Increase, ↓ decrease, ↔
 no change.    

 Y
am

aguchi 
et 

al. (2015) 
R

ats 
(m

yocardial 
infarction) 

rIPC
 

5 x5 m
inute daily 

4 w
eeks 

B
ilateral 

Y
es 

↑ L
V

 ejection fraction 
↑ L

V
 diastolic function 

M
eng 

et 
al. 

(2015) 
Intracranial 

arterial stenosis 
rIPC

 
5 x 5 m

inute 
tw

ice daily 
180 days 

B
ilateral 

Sham
 

↓ Stroke recurrence 

Shaked 
et 

al. 
(2015) 

T
ype 1 and 2 
diabetics  

rIPC
 

3 x 5 m
inute, 

every 14 days 
6 w

eeks 
B

ilateral 
Sham

 
↓ D

iabetic ulcer w
ound size 

M
i et al. (2016) 

C
erebral sm

all-
vessel disease 

rIPC 
5 x 5 m

inute 
tw

ice daily 
1 year 

B
ilateral 

Sham
 

↓ W
hite m

atter lesions 
↑ m

iddle cerebral artery velocity 
Lindsay et al. 
(2017) 

H
ealthy young 

rIPC
 

4 x 5 m
inute 

daily 
7 days 

U
nilateral 

leg 
Sham

 
↑ M

ean cycling pow
er 

↑ V
O
2peak  

 
W

ang 
et 

al. 
(2017)  

C
erebral sm

all-
vessel disease 

rIPC
 

5 x 5 m
inute 

tw
ice daily 

1 year 
B

ilateral 
Sham

 
↓ W

hite m
atter hyperintensities 

↓ C
ognitive decline 

Pryds 
et 

al. 
(2017) 

H
eart Failure 

rIPC
 

4 x 5 m
inute 

daily 
28 days 

U
nilateral 

N
O

 
↓ B

lood pressure 

A
hm

ed 
et 

al. 
(2018) 

C
laudication 
patients 

rIPC
 

4 x 5 m
inutes 

every 4 days  
28 days 

U
nilateral 

Y
es 

↑ Im
provem

ents in pain-free 
w

alking distance 
↑ A

nkle-brachial pressure indices 
(Jeffries et al., 
2019) 

H
ealthy young 

rIPC
 

4 x 5 m
inute 

daily 
7 days 

B
ilateral leg 

Sham
 

↑ T
im

e to exercise exhaustion 
↑ T

issue oxygenation during 
subm

axim
al cycling 

H
yTong et al. 

(2019) 
H

ypertensive 
patients   

rIPC
 

3 x 5 m
inutes 

daily 
30 days  

B
ilateral  

N
o 

↓ B
lood Pressure (clinic and 

am
bulatory) 

↑ M
icro-vessel endothelial function 
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2.2.2.1 The myocardium  

 

Only a relatively small number of studies on repeated rIPC have focused directly on 

the myocardium and the ability of episodic rIPC to impact the magnitude of 

myocardial damage. For example, 40 patients with coronary artery disease who were 

scheduled for CABG surgery were randomized to a 20 day period of repeated rIPC 

(three rIPC sessions daily, n = 20) or a control intervention before surgery (n = 20). 

Patients undergoing repeated rIPC demonstrated   approximately 50% lower troponin 

expression levels after CABG compared with the control group (Liang et al., 2015). 

The ability of repeated rIPC to reduce postoperative cardiac troponin is in line with 

previous work on single rIPC scheduled before CABG.  Wei et al. (2011) explored 

different protocols of rIPC in rats undergoing planned cardiac ischaemia, including a 

single episode of rIPC and repeated (every 3 days versus daily) rIPC across 28 days 

post-injury. Although the reduction in infarct size on days 4 and 28 was comparable 

across the protocols, repeated rIPC was associated with a dose-dependent protection 

against adverse remodelling and improved survival. In parallel with these findings, 

work from Yamaguchi et al. (2015) divided rats post-myocardial infarction into a 4 

week repeated rIPC group and a control group and reported that repeated rIPC prevents 

adverse cardiac remodelling (and fibrosis in the boundary region).  

A short one week rIPC intervention, consisting of twice-daily unilateral arm rIPC 

increased coronary flow reserve, through improvements to coronary microcirculation 

in both healthy participants as well as in patients with heart failure (left ventricle 

ejection fraction <40%) (Kono et al., 2014), suggesting the potential use of daily rIPC 

in the lives of patients with heart failure. Additionally, a 28 day rIPC intervention 

consisting of daily limb rIPC in patients with chronic ischaemic heart failure 
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demonstrated a significant reduction in systolic BP, the N-terminal pro-brain 

natriuretic peptide (as a marker of heart failure) and improved global longitudinal 

strain in patients with the most severe heart failure (Pryds et al., 2017) 

The potential effects of repeated rIPC are not isolated to reducing the magnitude of 

cardiac damage following prolonged ischaemia. Repeated rIPC interventions appear 

to also have an effect on vascular endothelial function. Given that previous work has 

demonstrated that improvements in peripheral and coronary vascular function is 

related to lower risk for future cardiovascular events (Green et al., 2011), this is of 

particular importance.    

2.2.2.2 The peripheral vasculature  
 

Kimura et al. (2007) were the first to examine the effects of repeated rIPC following 

28 days of rIPC on forearm resistance artery endothelial function in healthy 

individuals. They provided evidence that repeated rIPC improved resistance artery 

endothelial function via increase in NO production and numbers of endothelial 

progenitor cells (EPCs). Luca et al. (2013) followed this work by exploring if repeated 

(daily) rIPC altered the efficacy of a single bout of rIPC against an induced ischaemia-

reperfusion injury. In line with their hypothesis, daily rIPC provided more sustained 

protection against an endothelial IRI compared to a single bout, measured with FMD. 

More recently, these findings of enhanced vascular endothelial function were extended 

when it was found that 7 days of daily rIPC improved both brachial artery FMD and 

skin perfusion (microvascular function), whilst these benefits were evident in the 

ipsilateral (exposed to IPC stimulus) and the contralateral arm (remote location to rIPC 

stimulus) (Jones et al., 2014). Importantly, these effects of the repeated rIPC 

intervention persisted for 7 days after the end of the intervention, suggesting that 



40 
 

improvements are related to a more prolonged adaptation rather than a transient 

change (Figure 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: (A) Brachial artery flow-mediated dilation (FMD); expressed as a 
percentage and (B) resting forearm cutaneous vascular conductance before (Pre), after 
(Post) and 8 days after (Post+8). the 7 day daily IPC intervention in the IPC (open 
circles) and contralateral arm (filled circles) of healthy volunteers (n = 13). Error bars 
represent SEM. ∗Post hoc significantly different from day 0. Adapted from (Jones et 
al., 2014). 
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It has been suggested that infarct-sparing effects from rIPC are present for 1–2 h 

following an rIPC episode (early phase), whereas these protective effects return after 

24 h for a period of 3–4 days (late phase) (see section 2.2.4). Although described in 

relation to protection of the ischaemic myocardium, a similar pattern may also be 

found in peripheral vessels. Therefore, repeated rIPC bouts may be timed 24–72 h 

apart to ensure that the tissue will be exposed simultaneously to the ‘early phase’ and 

‘late phase’. Given the relatively long duration of the ‘late’ phase of protection, Jones 

and colleagues explored the impact of less frequent and more spaced rIPC bouts by 

administering rIPC for 8 weeks (3 cycles per week) (Jones et al., 2015). They 

identified that rIPC significantly increased brachial artery FMD and that these 

improvements were apparent after two weeks (six rIPC bouts) in young healthy males. 

The impact of repeated rIPC as an intervention on vascular function, including the 

impact on endothelial IRI, in individuals with vascular dysfunction is currently 

unknown and will be investigated in patients with T2DM in study 2 and CVD risk 

factors in study 3 of the present thesis. 

In support of repeated rIPC having a beneficial impact on those with endothelial 

dysfunction, patients with T2DM have complications which are vascular in nature 

where ischaemia plays a critical role i.e. in the development of diabetic foot ulcers. In 

one study, patients with diabetic foot ulcers were randomised into 6 weeks of bilateral 

(upper limb) rIPC or control group (no rIPC). The ratio of patients who reached 

complete healing of their ulcer was significantly higher in those who received repeated 

rIPC compared with the control group (41 versus 0%, respectively), and the remaining 

ulcer area was smaller (25 versus 61%, respectively) (Shaked et al., 2015). A higher 
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prevalence of wound healing is of major clinical significance given that 20% of 

patients with diabetic foot ulcers ultimately require amputation (Eldor et al., 2004).    

2.2.2.3 The cerebrovasculature  
 

Research examining the impact of repeated rIPC on cerebrovascular function and 

clinical outcomes in humans is limited. Two large-scale clinical trials have been 

conducted examining the potential benefits of repeated rIPC on human 

cerebrovascular function in patients with intracranial arterial stenosis. The studies 

employed bilateral limb rIPC twice daily for 300 days and found a significant 

reduction in stroke recurrence along with a significant increase in cerebral perfusion 

and improved modified Rankin Scale score (measurement scale for neurological 

disability) (Meng et al., 2012). Remarkably, the same group later observed a 

significant reduction in ischaemic events following a course of 180 days of bilateral 

limb IPC, twice daily, applied within an older population of IAS patients, with no 

adverse changes to heart rate or arterial BP (Meng et al., 2015). Additionally, a one-

year rIPC intervention involving bilateral rIPC twice daily applied to patients with 

cerebral small vessel disease outlined that rIPC can help in slowing down cognitive 

decline as well as reduce white matter hyperintensities (Wang et al., 2017). The use of 

rIPC as an additional treatment for ischaemic stroke has been reviewed in detail 

(Landman et al., 2019), this based on preclinical and clinical evidence demonstrating 

that rIPC is feasible, safe and free of adverse incidents in the clinical populations 

studied thus far. Landman et al discusses how rIPC related to the brain is a few steps 

behind that of cardiology in terms of research and advocates future studies exploring 

rIPC. Whilst the current studies provide indirect evidence that rIPC may have an 

impact on cerebrovascular function in humans, no study to date has directly assessed 



43 
 

how the cerebrovasculature is changing to mediate beneficial improvement in stroke 

risk and cognitive function. The focus of studies 2 and 3 in the present thesis will 

investigate the impact of repeated rIPC on cerebrovascular function in individuals with 

CVD risk factors. 

 

2.2.2.4 Phases of rIPC  
 

rIPC has a characteristic temporal nature, involving two independent ‘phases’ of 

protection. The acute phase is believed to arise immediately after the rIPC and 

disappears approximately 2 hours after, and a delayed phase that appears around 24 

hours after the preconditioning stimulus, lasting longer but regarded as less protective 

and potent (Heusch et al., 2015). The acute protection depends on immediate 

recruitment of signalling molecules, whereas increased expression of protective 

proteins is a hallmark of the delayed protection (Bolli et al., 2007). Whilst endogenous 

NO, generated from endothelial and inducible nitric oxide synthase does not seem to 

be involved for immediate protection, it is involved in the delayed protective effects 

of IPC (Bolli et al., 1998). The contribution of NO to the late phase of rIPC was further 

supported when a NO synthase inhibitors abolished the impact of rIPC in an animal 

model (Takano et al., 1998). Expression of other cardioprotective proteins has also 

been shown to be unregulated during the delayed protection (e.g. cyclo-oxygenase-2, 

superoxide dismutase (Zhou et al., 1996, Guo et al., 2000). These effects on the 

upregulation of (cardioprotective) proteins may contribute to the sustainability of the 

IPC stimulus and vascular adaptation (Thijssen et al., 2016a). Therefore, repetitive 

upregulation of these proteins, usually noted during the delayed/late protective phase, 

may be of relevance in understanding the effects of repeated IPC on sustainable 
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improvement in vascular function. Whether these effects actually translate to the 

peripheral and/or cerebral vascular beds, also taking into consideration the presence 

of potential deleterious remodelling, is currently unknown. 

An alternative explanation for the local effects/adaptations to vascular function 

induced by rIPC may relate to the changes in haemodynamics. The repeated exposure 

to the ischaemia-reperfusion cycle causes elevations in blood flow (shear stress) 

during each reperfusion phase. Repeated episodes of increases in shear stress are 

recognised as an important stimulus in vascular adaptations given that such 

adaptations are not evident when shear stress is attenuated (Green et al., 2010, Tinken 

et al., 2010).  

2.2.2.5 Potential mechanisms of (r)IPC and repeated rIPC 
 

Whilst their remains no definitive mechanism identified for the cardioprotective and 

vascular effects of rIPC, there has been a number of potential mechanisms proposed. 

It is important to acknowledge that there may be differences in the mechanisms 

responsible for benefits of a single bout of rIPC and repeated rIPC interventions 

(Thijssen et al., 2016a). It is also important to acknowledge that identifying the 

mechanisms of rIPC is not the focus of this thesis. In-depth reviews related to potential 

mediating mechanisms have been published (Hausenloy and Yellon, 2008, Heusch et 

al., 2015, Thijssen et al., 2016a). A summary of potential mechanisms is provided 

below.    

The classical view of the protective effects of rIPC relates to the following cascade; a 

trigger is released (in the occluded limb) and acts as a stimulus to activate a mediator, 

which in turn transmits a protective signal onto an effector that attenuates injury in 
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remote location (vascular and cardiac) in to response to ischaemia-reperfusion. The 

activation of these pathways is highly complex and is likely to involve the input of 

multiple signals in order to confer the protection (Hausenloy and Yellon, 2008, Heusch 

et al., 2015, Thijssen et al., 2016a).  

The episodes of rIPC applied to the limb induce subsequent transduction of the local 

signal to the remote tissue (or organ), but is dependent on intact neural and humoral 

pathways (Lim et al., 2010). The autonomic nervous system has been shown to play a 

role in the protective effects of rIPC, given that infusion of Trimethaphan (autonomic 

ganglion blocker) abolished the effects of rIPC on vascular function pre and post IRI 

(Loukogeorgakis et al., 2005). Remarkably, local nerve stimulation appears to have a 

similar effect to rIPC on cardioprotection, whereas a nerve blocker of the peripheral 

nerve abolished that protection (Redington et al., 2012). With regards to cerebral 

protection conferred by rIPC, evidence again suggests a neural component. Several 

studies have demonstrated blockades of sensory inputs attenuate the 

beneficial/protective effects of rIPC in animal models (Malhotra et al., 2011, Wei et 

al., 2012).  

Cardioprotection from rIPC is also mediated through circulating, blood-borne 

hormones that are able to protect remote (cardio)vascular regions against prolonged 

ischaemia (Dickson et al., 1999), with recent evidence supporting a potential role for 

NO, microRNA-144 and stromal-derived factor 1α (SDF-1α) (Heusch et al., 2015). In 

the target organ, signal transduction pathways are activated that ultimately contribute 

to the protection against ischaemic injury. In the heart, signal transduction of RIPC 

‘shares’ that of local IPC, with at least significant involvement of NO (and endothelial 

nitric oxide synthase), protein kinase C and the RISK pathway that ultimately work 

on the mitochondria (Heusch et al., 2015).  
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The production of circulating hormones represents one logical mechanism that might 

contribute to the effects of repeated IPC on both the ability to ameliorate damage after 

prolonged ischaemia and the sustained adaptation in remote vascular function. The 

role of circulating hormones in the protection against myocardial injury was first 

highlighted by (Dickson et al., 1999) who found that coronary effluent from a 

preconditioned heart induced cardioprotection in a naïve acceptor heart.  Subsequently, 

several studies adopting the Langendorff model suggested the presence of a blood-

borne substance that confers protection when infused in an organ exposed to prolonged 

ischaemia. Despite the scientific and clinical importance, identifying the substance or 

substances that explain the effects of rIPC has proved challenging.  

 

2.3 Summary 
 

In summary, tight regulation of CBF and the mechanims controlling CBF (i.e. 

cerebrovascular function) is essential in reducing the risk of cerebrovascular disease. 

rIPC is a technique which has shown potential in improving a number of 

cardiovascular parameters. The majority of the research has focused on 

cardioprotection against IR injuries, whilst only a very small number of studies have 

explored the use of rIPC as intervention to improve parameters within the cerebral 

circulation. Nonetheless, these latter studies report remarkably positive clinical 

outcomes in a cohort of patients with history of cerebrovascular complications (Meng 

et al., 2012, Meng et al., 2015, Mi et al., 2016, Wang et al., 2017). Yet, no study has 

investigated whether and/or how rIPC, applied either acutely or repeatedly, is effective 

in enhancing CBF via improvements in cerebrovascular function in individuals at risk 

of future complications.  
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3.1 Introduction  
 

Remote ischaemic preconditioning (rIPC) is a technique that offers enhanced hypoxic 

tolerance and protection to systemic organs and tissues following repeated brief 

periods of ischaemia and reperfusion to a remote vascular bed (Lim and Hausenloy, 

2012). This phenomenon, mediated via a neural and/or humoral pathway (Shimizu et 

al., 2009, Jensen et al., 2012), was first described in canine hearts (Przyklenk et al., 

1993) with subsequent studies demonstrating its efficacy in humans. More 

specifically, rIPC has been reported to reduce cardiovascular events in patients 

following coronary artery bypass and percutaneous coronary intervention surgeries 

(Thielmann et al., Davies et al., 2013a), and reduce brachial artery endothelial 

ischemia reperfusion damage (Kharbanda et al., 2002). Given these broad potent 

protective effects, it is possible that rIPC may also affect the brain and cerebral 

vasculature. 

 

Animal studies have reported rIPC-mediated neuroprotection in the form of reduced 

infarct size and improved neurological recovery following prolonged cerebral 

ischaemia and hypothermic circulatory arrest (Ren et al., 2008, Jensen et al., 2011). 

Extending these findings to humans, a study in stroke survivors reported increased 

cerebral perfusion and 70% lower stroke recurrence following daily rIPC for 300 days, 

compared to a group of patients receiving standard care (Meng et al., 2012). This 

protective effect was reinforced in a recent study in acute stroke patients where 

repeated application of rIPC significantly improved clinical status and reduced 

National Institutes of Health Stroke Scale scores (England et al., 2017), while rIPC 

was found to significantly reduce white matter hyperintensities volume in small vessel 

disease patients (Wang et al., 2017). Strict regulation of brain blood flow is crucial for 
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the maintenance of cerebrovascular health and is impaired in numerous clinical 

groups, including stroke survivors. Based on previous observations that repeated rIPC 

improves peripheral macro- and microvascular health in humans (Kharbanda et al., 

2002, Jones et al., 2015), the observed benefits of rIPC on cerebrovascular health may 

be related to acute improvements in cerebrovascular function in vivo. Assessing the 

impact of rIPC on cerebrovascular function would i) extend the fundamental 

understanding of the acute effects of RIPC in humans, and ii) may provide insight into 

how rIPC mediates neuroprotection and further establish it as a novel therapeutic 

strategy in clinically vulnerable groups.   

 

The primary aim of this proof of principle study was to assess the impact of bilateral 

arm rIPC on resting CBFv, dCA and CVR to carbon dioxide (CO2) in healthy 

individuals, compared to a sham condition. To examine the effectiveness of rIPC 

across a broader spectrum of vascular health, also included were participants at an 

increased risk for CVD and stroke. Finally, previous studies have reported that 

hypercapnia (induced by inhalation of higher concentrations of CO2) transiently 

disrupts dCA and has been used as a model for impaired cerebral autoregulation 

(Zhang et al., 1998, Panerai et al., 1999, Ainslie et al., 2008a, Jeong et al., 2016). 

Therefore, the secondary aim of this study was to assess the ability of rIPC to attenuate 

hypercapnia-induced impairment of dCA. It was hypothesised that rIPC would 

improve dCA and CVR, while attenuating the hypercapnia-induced impairment in 

dCA, when compared to a sham condition in both young healthy individuals and those 

with increased cardiovascular risk 
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3.2 Methods 
 

3.2.1 Participants  
 

Twenty participants were recruited for the study (Healthy; n=11 [Females n=6] and 

CVD risk; n=9 [Females n=4], Table 3.1).  Healthy young participants (age; 

28.1±3.7yrs) were recreationally active, engaged in low to moderate intensity exercise 

2-3 days per week, and were free from cardiovascular diseases, including diabetes, 

hypertension or hypercholesterolemia. For the second group, older individuals 

(52.5±6.7 yrs) with cardiovascular risk factors were recruited based on having ≥1 of 

the following criteria; body mass index >30kg/m2 or a waist circumference ≥94cm 

(male), ≥80cm (female), blood pressure systolic >130/diastolic >85 mmHg or 

diagnosed with high cholesterol (total >200 mg/dL, triglycerides >150 mg/dL, LDL 

>100 mg/dL).  Smokers, individuals with previous angina or myocardial infarction, 

transient ischaemic attack or stroke and thrombosis were excluded from participation. 

Participants were informed of the study protocol verbally and in writing before 

providing written informed consent. The study was approved by the University 

Research Ethics Committee (16/SPS/019) and adhered to the standards set out in the 

Declaration of Helsinki.  

 

 

 

 

 

 



51 
 

 

 

Table 3.1: Participant characteristics. 
 
Characteristics Healthy individuals CVD risk individuals P Value 

 n=11; Female=6 n=9; Female=4  

Age (years) 28 ± 4 53 ± 7 <0.001 

Height (cm) 173.1 ± 10.1 169.4 ± 10.3 0.44 

Weight (kg) 71.7 ± 13.6 93.6 ± 23.9 0.02 

BMI (kg/m2) 24 ± 3 32 ± 6 <0.001 

MAP (mmHg) 89 ± 4 104 ± 3 <0.001 

PetCO2 (mmHg) 37.8 ± 2.0 40.2 ± 2.9 0.10 

MCAv (cm.s-1) 70 ± 15 54 ± 8 0.02 

 
Values are means ± SD. BMI; body mass index, MAP, mean arterial pressure; PetCO2; 
partial pressure of end tidal carbon dioxide; MCAv, middle cerebral artery velocity. 
 
 
 

3.2.2 Research Design  
 

Participants attended the laboratory on two occasions (separated by a minimum of 3 

days). All tests were performed at the same time of day to control for diurnal variation 

in cerebrovascular function (Ainslie et al., 2007). All participants arrived at the 

laboratory for testing following an overnight fast and had refrained from alcohol, 

exercise and caffeine for 24h prior to each visit. Visits were randomised and 

counterbalanced to receive either the bilateral upper arm rIPC or the sham condition. 

Each visit consisted of the bilateral assessment of MCAv during rIPC or sham.  

Following this cerebral autoregulation was assessed using a 5 min squat-stand protocol 

(0.10 Hz). This was then proceeded by a 5 minute rest period, followed by 4 minutes 

of hypercapnia (5% CO2) and then another 5 minute squat-stand (0.10 Hz) protocol 
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but whilst breathing 5% CO2 (Figure 3.1). The phase of menstrual cycle was not 

controlled for in the female participants. 

 

Figure 3.1: Schematic of the protocol for each testing visit.  

 

 

3.2.3 Measurements  
 

Remote ischaemic preconditioning and sham. The rIPC condition consisted of 8 bouts 

in total involving the inflation of a pneumatic cuff (Hokanson SC10D; USA) on the 

upper arm using a rapid inflator (EC-20; D.E Hokanson) to 220 mmHg for 5 minutes.  

Cuffs were inflated in an alternating fashion allowing for one arm to be occluded while 

the contralateral arm underwent reperfusion. The sham condition consisted of the 

identical protocol with the difference that the cuff pressure was inflated to only 10 

mmHg.  

 

Cerebral blood flow (middle cerebral artery blood velocity). Following 20 minutes 

rest in the supine position, bilateral MCAv’s were continuously measured through the 

temporal window using TCD. Two 2-MHz Doppler probes (Spencer Technologies, 

Seattle, USA) were adjusted until an optimal signal was identified and held in place 

using a Marc 600 head frame (Spencer Technologies, Seattle, USA). Once the optimal 

MCAv signal was attained, the probe location and machine settings (depth, gain and 
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power) were recorded to identify the same imaging site for the second testing session. 

Participants were instrumented with a two-way valve mouthpiece (Hans Rudolph) 

from which end tidal CO2 (PETCO2) was measured using a calibrated gas analyser 

(ML206 ADinstruments, Colorado Springs, USA). Continuous beat-by-beat blood 

pressure was obtained from a digit (Finapres, Amsterdam, Netherlands) and heart rate 

acquired from a 3 lead electrocardiogram. All data was sampled at 50 Hz with the data 

acquisition system PowerLab via the interface LabChart 7 (ADinstruments, Colorado 

Springs, USA). 

 

Cerebral autoregulation. Dynamic cerebral autoregulation (dCA) was assessed using 

a squat-to-stand procedure that induces transient changes in arterial blood pressure 

(Claassen et al., 2009b, Smirl et al., 2015). Participants replicated the experimenter 

whilst performing the manoeuvres, that involved moving from a standing upright 

position to squatting until the legs achieved a 90° angle. Participants performed two 

sets at 0.10 Hz (5 second squat - 5 second stand) while breathing normal atmospheric 

air, and again during hypercapnia (detailed below). The first set of squat-stands was 

preceded by 5 mins of seated rest while the second set immediately followed the 4 

mins of hypercapnia. Squat stand manoeuvres were performed at 0.10 Hz as this falls 

within a frequency range whereby cerebral autoregulation is deemed to be active 

(Zhang et al., 1998, Smirl et al., 2015) and represents a more feasible challenge than 

0.05 Hz manoeuvres, especially for those in the CVD risk factor group. 

Carbon dioxide reactivity. Following a rest period of 5 mins, a baseline measurement 

of cerebral blood velocity, MAP and PETCO2 was performed across 2 mins while 

participants breathed in room air. Following the baseline period, the inhaled air was 
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switched to a Douglas bag (100L) containing 5% CO2, 21% oxygen and balanced 

nitrogen, while participants sat in a rested seated position. 

 

Data analysis: MCAv and MAP during the 40 min rIPC and sham conditions were 

averaged and extracted from LabChart in 5 min intervals (n=20).  MCA 

cerebrovascular conductance (CbVC) was calculated as MCAv/ MAP.  Calculation of 

the CVR slopes were performed via linear regression analysis of the two time-points; 

baseline (MCAv, MAP, PETCO2 averaged across 2 mins) and 5% CO2 (data averaged 

across the last 30 secs of the 4 min hypercapnia). Two participants in the 

cardiovascular risk factor group were unable to complete the hypercapnic protocol, 

therefore data analysis for CO2 reactivity was performed on n=18 (Healthy=11). 

 

Cerebral autoregulation data were extracted from LabChart beat-to-beat (MAP and 

MCAv) before spline interpolation and were assessed via transfer function analysis 

(TFA) based on the Welch algorithm, using a provided script (http://www.car-

net.org/). The 5 min squat-stand recordings were subdivided into five windows 

overlapping by 50% and passed through a Hanning window before fast Fourier 

transform analysis (MathWorks-Inc., Natick, Massachusetts). The cross-spectrum 

between MAP and MCAv was determined and divided by MAP auto-spectrum to 

formulate functions; normalised gain (nGain), absolute gain, phase and coherence 

(MAP-MCAv linearity). Gain represents the difference in amplitudes between the 

CBFv and BP signals, while phase describes the temporal alignment between the input 

(MAP) and output (MCAv). nGain refers to the same output as gain, except blood flow 

velocity values are normalised by dividing beat-to-beat values by the mean value.  

Gain, nGain and phase data were excluded from statistical analysis if coherence was 
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<0.4.  TFA was performed in accordance with standardised guidelines from the 

Cerebral Autoregulation Research Network (Claassen et al., 2016). TFA parameters 

of the driven oscillations were band averaged across the very low (VLF; 0.02-0.07 

Hz), low (LF; 0.07-0.2 Hz) and high (HF; 0.2-0.4 Hz) frequency domains. Induced BP 

oscillations at 0.10 Hz were employed in the current study, this falls within the ranges 

of the LF domain. Therefore, the low frequency (0.07-0.20 Hz) output is the most 

appropriate to be reported as dCA is highly active with this frequency of squats (Zhang 

et al., 1998).  PETCO2 data was averaged across each 5 min squat-stand recording. One 

participant in the cardiovascular risk factor group was unable to complete the cerebral 

autoregulation protocol during normocapnia while three participants from the same 

group were unable to complete the protocol during hypercapnia, therefore data was 

analysed on n=18 for the normocapnic and n=17 for the hypercapnic cerebral 

autoregulation conditions. 

 

3.2.4 Statistical Analysis 
 

A three-factor group*condition*time (group; healthy vs CVD risk factors, condition: 

rIPC vs sham, time: 5 min intervals during intervention) general linear model was 

employed to analyse resting MCAv and MAP during the RIPC and sham intervention. 

A three-factor -capnia*group*condition (capnia; normocapnic or hypercapnic, group; 

healthy vs CVD risk factors, condition: RIPC vs sham) general linear model was 

employed to analyse the cerebral autoregulation. A two way group*condition (group; 

healthy vs CVD risk factors, condition: RIPC vs sham) general linear model was 

employed to analyse the CO2 reactivity. Statistically significant main effects and 

interactions were followed up with the least significant difference (LSD) approach for 

multiple comparisons. Statistical analysis was conducted using Statistical Package for 
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Social Sciences (Version 22; SPSS Inc., Chicago, IL). Statistical significance was 

delimited at P<0.05. Data are presented in the text as mean (95% confidence interval) 

unless otherwise stated. 

3.3 Results 
 

3.3.1 Group characteristics 
 

Resting MCAv was significantly higher in the healthy compared to CVD risk group 

(Table 3.1, P=0.009), while resting MAP was significantly lower in the healthy 

compared to the CVD risk group (Table 3.1, P=0.001). For resting comparisons of 

cerebrovascular function between the groups, responses to the CO2 reactivity and dCA 

tests during the sham condition are reported. No difference was evident in CO2 

reactivity slopes between the healthy and CVD risk groups at rest (2.15 [1.60, 2.70] 

vs 1.68 [1.13, 2.24] cm/s/mmHg, P=0.44), or for any of the dCA variables. 

3.3.2 Impact of rIPC on resting cerebral blood velocity and haemodynamics 
 

There was no impact of rIPC on MCAv across the 40 min (P=0.58, Figure 3.2). There 

was a group*condition interaction, with MAP being higher during rIPC compared to 

sham in the CVD risk group over the 40 min intervention period (P<0.005), whilst 

MAP was similar between conditions in the healthy group. 
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Table 3.2: Dynamic cerebral autoregulation analysis via transfer function using squat-stand 
manoeuvres. Resting comparison of healthy and CVD risk participants. 
 

Sham condition - Normocapnia 

 Healthy  CVD Risk P Value 

PETCO2 (mmHg) 37.46 ± 1.89  40.28 ± 3.19 0.10 

Dynamic Cerebral Autoregulation (0.10 Hz) 

MCAv power (cm.s2) 88.78 ± 39.65  64.89 ± 80.16 0.16 

MAP power 

(mmHg2) 

118.91 ± 50.60  87.01 ± 80.16  0.12 

Normalised gain 

(%.mmHg-1) 

1.25 ± 0.30   1.30 ± 0.20  0.87 

Gain (cm/s/mmHg) 0.84  ± 0.19   0.74 ± 0.12  0.46 

Phase (radians) 0.55 ± 0.37   0.60 ± 0.55 0.89 

Coherence 0.61 ± 0.10   0.67 ± 0.09  0.12 

Values are means ± SD 

 

 

 

3.3.3 Impact of rIPC on normocapnic and hypercapnic cerebral autoregulation 
 

During normocapnia, there were no main effects or interactions in the low frequency (0.10 Hz) 

for normalised gain (Table 3.4, P=0.46), phase (P=0.53) or coherence (P=0.59) between the 

sham and rIPC conditions. PetCO2 values during the squat-stand procedure were not different 

between conditions (P=0.81). Similarly, during hypercapnia, no significant main effects or 

interactions in the low frequency domains for normalised gain (Table 3.4, P=0.11), phase 

(P=0.90) or coherence (P=0.45) were observed. PetCO2 values during hypercapnia did not 

differ between conditions (P=0.90).  
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3.3.4 Effect of hypercapnia on cerebral autoregulation (comparison of sham conditions) 
 

Hypercapnia induced a phase reduction of 0.15 radians (0.08, 0.34) when compared to 

normocapnic cerebral autoregulation (P=0.002) with no effect of the RIPC or Sham condition 

(P>0.05). Additionally, normalised gain decreased during hypercapnic cerebral autoregulation 

by 0.41% (0.21, 0.47) compared to normocapnic (P<0.001).   

 

 

3.3.5 Impact of rIPC on cerebrovascular CO2 reactivity 
 

The inhalation of 5% CO2 significantly increased PetCO2 following the sham and rIPC 

conditions respectively (Table 3.3, both P<0.001). MCAv subsequently increased, with no 

difference between the sham and rIPC conditions (Table 3.3, P=0.43). There was no overall 

effect of RIPC on CO2 reactivity compared to the sham condition (group x treatment x PetCO2, 

P=0.61, Table 3.3). 
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able 3.3: Cardiovascular and respiratory param

eters during the carbon dioxide reactivity test. 
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3.4 Discussion 

 

This is the first study to investigate the acute impact of rIPC on both dynamic cerebral 

autoregulation and cerebrovascular CO2 reactivity in healthy humans and those at 

increased risk of cardiovascular disease and stroke. The principle findings from this 

study are i) resting cerebral blood velocity was significantly higher at baseline in the 

healthy group compared to the cardiovascular risk group and ii) rIPC did not impact 

resting cerebral perfusion, cerebrovascular CO2 reactivity or cerebral autoregulation, 

in either group. These findings extend the fundamental understanding of the acute 

effects of rIPC in humans and reveal that a single episode of rIPC does not 

immediately impact cerebrovascular function in humans. 

Despite the well-documented effects of rIPC on myocardial and peripheral vascular 

function in humans (Bøtker et al., Thielmann et al., Kharbanda et al., 2002, 

Loukogeorgakis et al., 2005, Davies et al., 2013b, Jones et al., 2014), the present study 

is the first to examine the acute impact of rIPC on CBFv, and both dCA and CVR in 

humans. The cerebral tests included in the present study were employed to provoke 

cerebral vasomotion via a number of different regulatory pathways, to better identify 

any specific effect rIPC may have.  In response to 40 mins of upper arm rIPC (4 bouts 

per arm, alternated), no concurrent impact on CBFv was present. Increases in arterial 

diameter and blood flow to limbs and organs (heart) regional to the limb undergoing 

rIPC have been previously reported during the reperfusion phases of rIPC (Zhou et al., 

2007, Enko et al., 2011). The findings in the present study that rIPC did not alter CBFv 

during the bout is an important observation in this context and suggests that rIPC does 

not influence blood vessel function similarly in the brain. Although it is not known 



63 
 

what mechanism/s are responsible for the regional changes in blood flow in the 

previous studies during rIPC, it cannot be discounted the possibility that rIPC did 

induce a change in cerebral perfusion, and that this change was counteracted by one 

of the numerous cerebral blood flow regulatory mechanisms (Willie et al., 2014). 

However, consistent with the above finding of no change in blood flow, no overall 

impact on cerebrovascular function was observed. Resting cerebral autoregulation, a 

regulatory mechanism that maintains a constant delivery of oxygenated blood to the 

brain despite changes in blood pressure (Aaslid et al., 1989), was unchanged by rIPC. 

The second aim of this study was to temporarily disturb dCA via hypercapnia to 

determine whether rIPC could attenuate the impairment. As expected (Birch et al., 

1995, Zhang et al., 1998, Panerai et al., 1999, Ainslie et al., 2008a), hypercapnia 

reduced dCA phase (indicating a delayed CA response time), but did not alter absolute 

gain, an effect consistent with some (Ainslie et al., 2008a), but not all studies (Zhang 

et al., 1998, Panerai et al., 1999, Jeong et al., 2016) and interestingly decreased 

normalised gain, an observation which suggests reduced magnitude of BP on CBF 

oscillations which has also been observed during hypercapnic spontaneous oscillations 

(Ainslie et al., 2008a). Hypercapnia is thought to reduce the efficiency of dCA as a 

result of hypercapnic-induced vasodilation, preventing the ability of the blood vessels 

to alter their vasotone in response to blood pressure changes (Perry et al., 2014). 

Investigations that have examined the precise mechanism responsible for hypercapnic 

impaired dCA are limited. Maggio et al. (2013)  outlined that metabolic pathways are 

likely the primary mechanism attenuating dCA from hypercapnia, as shown with 

significant reductions in critical closing pressure, yet these results are limited to 

spontaneous BP oscillations rather than driven.  
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In contrast to the original hypothesis, rIPC did not attenuate the hypercapnia-induced 

impairment in phase (temporal alignment). rIPC did not impact CVR to inhalation of 

5% CO2 compared to the sham condition. Currently, there is only one directly relevant 

study that assessed rIPC and cerebrovascular function via dCA in humans.  Work by 

Guo et al. (2019) identified that dCA, assessed using spontaneous blood pressure 

oscillations as opposed to driven, is improved 6 hours after a rIPC bout, further 

supporting the idea that rIPC adaptations occur in different phases (Thijssen et al., 

2016a). Additionally, Guo and colleagues identified a number of blood biomarkers 

(vascular endothelial growth factor and glial cell derived neurotrophic factor)  that are 

elevated following rIPC, potentially offering an mechanistic explanation for these 

changes (Guo et al., 2019). An additional study using hypoxia rather than hypercapnia 

as a model to attenuate cerebrovascular function measured cerebral blood flow 

responses to acute and chronic hypoxia, and found no effect of rIPC compared to 

controls, findings consistent with the present study (Rieger et al., 2017). Despite this, 

there is increasing evidence that repeated rIPC is neuroprotective, particularly in 

clinical stroke and small vessels disease patients (Meng et al., 2012, Meng et al., 2015, 

Mi et al., 2016, Wang et al., 2017). Meng et al. previously reported that 300 days of 

repeated rIPC decreased stroke recurrence and interestingly noted that cerebral 

perfusion was higher in the rIPC group compared to the standard care patients, 

potentially remedying the mismatch between perfusion and metabolism. This study 

raises the intriguing notion that repeated bouts of rIPC may be required in order to 

influence cerebral perfusion and function to a physiologically relevant extent. 

Additionally, the phenomenon of rIPC-mediated protection is known to be biphasic in 

nature, with an immediate protective period that subsides within a few hours of 

application, followed by a more prolonged second protective window (1-3 days) 
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(Koch et al., 2014). Due to the difficulties in assessing the time-course of rIPC 

effectiveness in humans, the vast majority of these studies have been performed in 

animals.  Although it is unlikely, one possible explanation for the null findings is that 

the cerebral measures were not performed within the initial protective phase, and that 

the protective windows in humans may differ to that of animals, and may also be 

influenced by the type, number and duration of rIPC bouts.  

 

An important aspect to this study was assessing the impact of rIPC across a spectrum 

of cardiovascular health, to determine if this influenced the efficacy of rIPC. Young 

healthy individuals typically present with unimpaired endothelial-vascular function 

and as the magnitude of the rIPC effect on cerebrovascular function, if any, is 

unknown, it is possible that a rIPC effect would not be observable in this population. 

Accordingly, assessment of the effects of rIPC in healthy individuals and those at 

increased cardio- and cerebrovascular risk. As expected, cardiovascular risk metrics 

were significantly different between the groups, with the young healthy individuals 

displaying lower mean arterial pressure and higher resting cerebral blood flows 

compared to the elevated risk individuals. Nonetheless, no differences in the efficacy 

of rIPC to improve cerebral autoregulation under normo- and hypercapnic conditions 

between the groups was observed. 

 

3.5 Conclusion 

 

The findings of this study extend the fundamental knowledge on the physiological 

effects of rIPC in humans by assessing for the first time the acute impact of rIPC on 

cerebral perfusion, dCA and CVR. Although acute rIPC has been found to increase 

peripheral blood flow, this study reports that this effect of rIPC does not extend to the 
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cerebral circulation, as no change was observed in cerebral perfusion during rIPC.  

Additionally, rIPC did not influence cerebral function, as measured by dCA and CVR. 

Despite these findings related to a single exposure to rIPC, recent clinical trials show 

that repeated rIPC provides neuroprotection in humans. Therefore, future studies are 

required to better understand whether repeated exposure to the rIPC stimulus leads to 

changes in cerebrovascular function and perfusion as a potential explanation for these 

clinical benefits. 
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4.1 Introduction 

 

Cardiovascular and cerebrovascular disease are leading causes of mortality in T2DM 

(Laakso, 2001). Importantly, the pathological consequences of T2DM predominately 

relate to vascular complications, encompassing both the macro- (e.g. cardio- and 

cerebrovascular disease) and microvasculature (e.g. retinopathy and nephropathy) 

(Orasanu and Plutzky, 2009). Clinical studies show that diabetic individuals are more 

susceptible to ischemia-reperfusion injuries (IRI) compared to non-diabetics (Alegria 

et al., 2007, Marso et al., 2007), and reduced tolerance to ischaemia has been 

considered responsible for the increase morbidity of ischaemic heart disease in T2DM 

(Haffner et al., 1998). Conventionally, the main therapeutic target in T2DM has been 

glucose lowering but the importance of targeting cardiovascular risk is increasingly 

recognised (Creager et al., 2003).  Intensive glucose lowering treatment has shown 

limited benefits on all cause morbidity and mortality from cardiovascular causes 

(Boussageon et al., 2011).  Lifestyle changes including improved diet and physical 

activity are the mainstay of management with regular exercise promoted to improve 

metabolic health and lower cardiovascular and cerebrovascular risk in T2DM (Chudyk 

and Petrella, 2011). Since a vast majority of T2DM patients do not engage in regular 

physical activity (Morrato et al., 2007, Hermann et al., 2014), perhaps because of 

disease complications (e.g. foot ulcers), alternative or adjunct interventions are 

required to improve cardiovascular and cerebrovascular disease risk, similar to that of 

exercise, in this highly vulnerable population.      

 

rIPC is a technique whereby short periods of cyclical tissue ischaemia-reperfusion (of 

a limb) has been shown to have protective effects beyond the vascular bed directly 
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exposed to the IPC stimulus (Przyklenk et al., 1993), potentially mediated by neural 

and/or humoral signalling pathways (Heusch et al., 2015, Thijssen et al., 2016a), yet 

precise mechanisms remain elusive. When applied prior to planned ischaemia (e.g. 

coronary artery bypass surgery) or around spontaneous ischaemic events (e.g. 

myocardial infarction), studies have reported the potential beneficial and protective 

effects of rIPC to render remote (vascular) tissues and organs (e.g. heart) resistant to 

ischaemic reperfusion injuries (Heusch et al., 2015). More recently, studies have 

examined the impact of performing multiple rIPC episodes and explored the potential 

of rIPC as an intervention to improve vascular function (Thijssen et al., 2016a). 

Repeated rIPC interventions ranging from 1 to 8 weeks have been shown to improve 

vascular endothelial function before and after ischemia reperfusion injuries (Luca et 

al., 2013, Jones et al., 2014, Jones et al., 2015), increase the levels of endothelial 

progenitor cells (Kimura et al., 2007), and increase coronary flow reserve in heart 

failure patients (Kono et al., 2014). Some studies have also revealed a potential clinical 

benefit of rIPC with a 6-week intervention reducing the size of diabetic foot ulcers 

(Shaked et al., 2015) and lower stroke recurrence following one year of rIPC (Meng 

et al., 2012, Meng et al., 2015). As outlined in chapter 3 of this thesis, a single bout of 

rIPC applied to a limb did not induce any changes in CBFv, CVR or dCA, and these 

results were identified in both young healthy individuals and those deemed at high risk 

of CVD (see Chapter 3). This raises the fundamental question of whether the amount 

of rIPC applied is a major contributor to the effectiveness of the technique or 

intervention and warrants further investigation. Therefore, whether an acute intensive 

rIPC intervention leads to improvements in cerebrovascular function assessed 

measuring dCA, a key mechanism protecting the brain from fluctuations in BP, as well 

as peripheral endothelial function in T2DM patients is currently unknown, whilst such 
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benefits may have important clinical benefits, especially those with functional 

limitations.  

The primary aim of this pilot study was to obtain estimates of the change in conduit 

artery endothelial function before and after endothelial IRI, a model that allows for the 

assessment of the efficacy of an intervention to reduce the damage that is induced by 

reperfusion following a period of ischaemia, succeeding a 7-day rIPC intervention. 

Acute intensive rIPC interventions have improved conduit artery endothelial function 

(Jones et al., 2014) and attenuated the injury induced by an IRI in young healthy 

individuals (Luca et al., 2013), yet it is not known whether rIPC offers similar benefits 

to individuals with T2DM whereby endothelial dysfunction is likely present (Avogaro 

et al., 2011).     

 

The secondary aim was to obtain estimates of the change in cerebrovascular function 

after 7-days of daily limb rIPC. Given the evidence rIPC has systemic beneficial 

effects on vascular regulation and endothelial function (Kimura et al., 2007, Jones et 

al., 2015), improvements to blood vessel function may translate to enhanced 

responsive to blood pressure within cerebral vessels (dynamic cerebral autoregulation). 

Additionally, application of rIPC can regulate several vasoactive biomarkers including, 

nitric oxide, adenosine and bradykinin (Heusch et al., 2015, Randhawa and Jaggi, 2016) 

which may have the potential to enhance dCA (Takada et al., 2001, Guo et al., 2016, 

Guo et al., 2019).   
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4.2 Methods 

 

4.2.1 Participants 

 

Twenty-one participants (13 males, 8 females, Table 4.1) with clinically diagnosed 

T2DM who were managed with diet or metformin only were recruited for this 

randomised controlled pilot study (Figure 4.1). Participants were excluded if they had 

a history of stroke (including TIAs), diagnosis of chronic heart failure, were current 

smokers or were being treated with sulphonylureas, DPPIV, GLP-1, SGLT2 or insulin 

to control T2DM. Participants were informed of the study protocol verbally and in 

writing before providing written informed consent. The study was approved by the 

local NHS ethics committee (14/NW/1208) and adhered to the standards set out in the 

Declaration of Helsinki (2000). All data collection took place at Liverpool John 

Moores University. Registered clinical trial at ClinicalTrials.gov NCT03598855. Trial 

is reported following CONSORT recommendations (Schulz et al., 2010).    
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Figure 4.1: Screening, recruitment and completion of participants in the study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1: Descriptive characteristics of participants in rIPC and control groups (p 
values reported from independent samples t-test). 

 rIPC (n=11, 5 
females) 

Control (n=10, 
3 females) 

P Value 

Age (years) 59±7 60±10 0.72 

Weight (kg) 92.7±18.6 101.5±32.5 0.62 
BMI (kg/m2) 32±7 34±10 0.89 
MAP (mmHg) 101±14 107±11 0.37 
SBP (mmHg) 145±16 151±19 0.57 
DBP (mmHg) 79±9 84±10 0.31 
Metformin  9/11 4/10  
Anti-hypertensive 
medication 

4/11 0/10  

Lipid lowering medication  7/11 3/11  
 

Values are means ± SD. Abbreviations; BMI, Body Mass Index; MAP, mean arterial 
pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure.   
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4.2.2 Research Design 

 

Participants attended the laboratory on three occasions, separated by seven days, 

having fasted overnight (12hrs), refraining from alcohol and exercise for 24hrs and 

caffeine for 12hrs before each visit. Each visit consisted of assessments of brachial 

artery function (before and after ischemia reperfusion injury) and cerebrovascular 

function. Assessments were performed at the same time of day for each visit (Ainslie 

et al., 2007, Jones et al., 2010) and occurred prior to group randomisation (computer-

generated-sequence) (Pre), immediately following the cessation of the intervention 

(Post) and 8 days following cessation of the intervention (Post+8) (Figure 4.2).  

 

 

 

 

 

 

 

Figure 4.2: Schematic of the study design. Each rIPC consisted of 4 cycles of 5-
minute ischaemia (220 mmHg) followed by 5 min reperfusion applied unilaterally. At 
each testing visit brachial artery flow mediated dilation, ischaemic reperfusion injury 
and cerebrovascular function were assessed. Abbreviations: rIPC, remote ischaemic 
preconditioning. 
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4.2.3 Measurements 

 

Brachial artery endothelial function. Brachial artery endothelial function was assessed 

using the flow mediated dilation (FMD) technique following 20 min of supine rest 

(Thijssen et al., 2011). Images of the right brachial artery were acquired using high-

resolution ultrasound (T3300; Terason, Burlington, MA). Diameter, flow and shear 

stress were measured prior to and following 5 minutes of forearm cuff inflation (D.E. 

Hokanson, Bellevue, WA). All FMD measurements were performed by the same 

sonographer with a day-to-day coefficient of variation in FMD% of 11% and a 

coefficient of variation of 3% for baseline artery diameter which is deemed good-

excellent based on previous analysis (van Mil et al., 2016). 

     

Analysis was performed using custom designed edge-detection and wall-tracking 

software, which is largely independent of investigator bias. Previous articles contain 

detailed descriptions of this analytical approach (Woodman et al., 2001, Black et al., 

2008). Reproducibility of diameter measurements using this semi-automated software 

is significantly better than manual methods, significantly reduces observer error, and 

possesses within-day coefficient of variation of 6.7% (Woodman et al., 2001). 

Allometric scaling for baseline diameter was performed (Atkinson and Batterham, 

2013). FMD analysis was performed by a researcher blinded to the group allocation 

using a single blinded coding-randomised procedure.     

 

Ischaemia Reperfusion. Immediately following the baseline FMD, a temporary, 

endothelial IRI was induced by inflating a cuff around the upper arm to 220 mmHg 

for 20 min using a rapid inflation pneumatic device. This was followed by a 20 min 
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reperfusion period before the FMD protocol was repeated. A calculation of the 

relative % reduction in endothelial function following endothelial IRI was performed. 

The immediate decrease in FMD following temporary endothelial dysfunction 

induced by the 20 min cuff inflation is believed to reflect a reperfusion injury and 

reduced nitric oxide (NO) bioavailability (Loukogeorgakis et al., 2005, 

Loukogeorgakis et al., 2010, Aboo Bakkar et al., 2018).  The relative % decrease in 

FMD following IRI was calculated by dividing the absolute change between the two 

FMD’s by the baseline FMD *100.  

 

Cerebrovascular function (baseline velocity & dynamic cerebral autoregulation). 

Measurements of middle cerebral artery velocity (MCAv) and dynamic cerebral 

autoregulation (dCA) were performed as described in chapter 3, section 3.2.3. 

 

4.2.4 Interventions 

 

rIPC: The participants randomised into the rIPC intervention group (n=11) each 

received a hand held BP device (Welch Allyn DuraShockTM  DS45, New York, USA ) 

to self-administer rIPC. The cuff was placed around the upper arm and inflated to 220 

mmHg for five min, followed by five min deflation, and this cycle was repeated a 

further three times. This process was performed daily for seven days. The arm to which 

the participants applied the rIPC was randomised between the same arm the FMD’s 

were performed (IPC arm, n=5) and the contra lateral arm (n=6). Participants were 

supervised for their first rIPC bout to ensure it was correctly performed and were then 

free to perform the rIPC at any time of day and noted this in a diary to monitor 
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compliance.  Participants were instructed to follow their normal routine and to abstain 

from any new physical activity or changes in dietary habits 

 

Control: Each participant (n=10) was instructed to follow their normal routine and to 

abstain from any new physical activity or change in dietary habits.   

 

4.2.5 Statistical analysis 

 

Given that this is a pilot study to obtain estimates of primary and secondary outcome 

variables, no a priori sample size was calculated. The primary outcome in the study is 

FMD and the primary comparison is between pre to post intervention. Using the data 

collected (rIPC group n=11, control group n=10) in the study we calculated post hoc 

power of the present study, but also calculated the sample size for a future, fully 

powered randomised control trial for both primary and secondary outcome variables  

(G*Power 3.1.5).  

For exploratory purposes, we performed statistical analysis on the primary comparison 

(i.e. pre-to-post) to provide an estimate of the change in the primary and secondary 

outcome variables. Delta changes (∆) from pre to post were calculated for each group 

and entered as the dependent variable in a linear mixed model (Statistical Package for 

the Social Sciences, Version 20: SPSS Inc., Chicago, IL) with pre-intervention data 

used as a covariate. Data are presented in the text as mean and 95% confidence 

intervals (95%CI). P-values are presented, but not interpreted. The changes in the data 

are described in relation to a minimally clinical important difference (MCID) of 1% 

for FMD, calculated based upon previous intervention studies (Jones et al., 2014, 

Jones et al., 2015, Schreuder et al., 2015) and from a meta-analysis indicating that 1% 
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improvement in brachial FMD decreases the risk of future cardiovascular events by 

13% (Inaba et al., 2010). The MCID for LF gain was between 0.07 and 0.26%cm s-

1 %.mmHg-1mm Hg/%. This was based on studies showing differences between 

healthy and diseased populations (van Beek et al., 2012, Lewis et al., 2019) due to the 

limited intervention studies to date.  

4.3 Results 

 

Participants allocated to each intervention were similar in terms of age, BMI and BP 

status (Table 4.1). Participants randomised into the rIPC intervention group (N=11) 

demonstrated 96% compliance to the rIPC intervention. Data presented as absolute 

change following either intervention with statistical analysis comparing the 

differences between changes following rIPC or control (no rIPC).   

4.3.1 Cerebrovascular function 

 

Low frequency normalised gain changed by 0.23 %cm s-1 %.mmHg-1mm Hg/%  (-

0.12, 0.59; P=0.18) following rIPC compared to control from pre to post, which was 

greater than the lower level of the MCID of 0.07 and 0.26. The data provided 29% 

power to detect a between-group difference in LF normalised gain from pre-post.  

Using this data a sample size of 50 in each group would provide 90% power to detect 

a statistically significant (P<0.05) between group difference in LF normalised gain in 

a future randomised control trial.  

In the current study, the directional changes in any of the dCA variables were 

negligible between conditions (Table 4.4). The associated changes in MCAv, PetCO2 

or CbVC were negligible between both conditions and over time from pre to post and 

post 8 (Table 4.3). MAP decreased by 4 mmHg (2, 6 mmHg) across both interventions. 
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Similarly, SBP decreased by 5 mmHg (-9, -1 mmHg) and DBP by 3 mmHg (-5, -1 

mmHg). 

4.3.2 Brachial artery endothelial function 

 

Baseline FMD: Brachial artery FMD improved by 1.3% (95%CI: 0.69 to 3.80; P=0.09) 

with rIPC compared to control (no rIPC) from pre to post, with the change following 

the rIPC intervention being greater than the MCID of 1%. The data provided 65% 

power to detect a between-group difference in FMD from pre-post.  Using this data, a 

sample size of 20 in each group would provide 90% power to detect a statistically 

significant (P<0.05) between groups in FMD in a future randomised control trial.  

In the current study, FMD was 0.9 (-3.9, 2.0 %) lower in the rIPC group compared to 

control at pre, but 0.9 (-2.3, 4.0 %) higher than control at post, which remained higher 

at post+8 (0.8 (-2.3, 3.9 %), Figure 4.3). The associated changes in baseline diameter, 

peak diameter, shear rate or time-to-peak diameter between interventions or over time 

were negligible from pre to post and post 8 (Table 4.2). Within the rIPC condition, the 

limb to which the rIPC was administered was compared with the contralateral limb 

(interventions limb vs contralateral limb) and displayed no main effect of limb (P>0.05) 

confirming that the associated changes observed occurred as a result of both remote 

IPC and local IPC.     

Endothelial IRI: When examining the FMD after the endothelial IRI (Table 4.2). FMD 

was 2.3 (-5.4, 0.8%) lower in the rIPC group compared to control at pre, but only 0.1 

(-2.8, 2.6%) lower at post and 0.5 (-2.9, 2.0%;) at post+8. FMD increased over the 

intervention period by 0.7% (-0.1, 1.6). These directional changes were similar when 

the FMD data was expressed as a relative change. Prior to the intervention, the relative % 

decrease in FMD in response to IRI was 24.7% (-10.4, 49.7%) greater in the rIPC 
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group compared to control (Table 4.2). This difference was attenuated to 4.5% (-23.9, 

14.9%) at post and 1.4% (-22.5, 19.6%) at post+8.  
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ic cerebral autoregulation before (Pre), im

m
ediately follow

ing (Post) and 8 days (Post+8) 
after the end of the intervention using squat-stand m

anoeuvres (0.10H
z).  

  
rIP

C
 G

roup (n=10) 
C

ontrol G
roup (n=9) 

 
P

re 
P

ost 
P

ost+
8 

P
re 

P
ost 

P
ost+

8 

P
ET C

O
2 (m

m
H

g) 

 
40.3±3.7 

39.2±48 
38.3±3.4 

38.8±7.5 
38.3±6.6 

39.3±5.6 

C
oherence 

 
0.65±0.10 

0.60±0.12 
0.60±0.21 

0.61±0.17 
0.59±0.18 

0.60±0.22 

P
hase (radians) 

 
0.44±0.12 

0.48±0.28 
0.48±020 

0.61±0.32 
0.52±0.25 

0.52±0.22 

G
ain (cm

.s -1. m
m

H
g
-1) 

 
0.66±0.16 

0.69±0.20 
0.72±0.27 

0.71±0.18 
0.69±0.26 

0.71±0.24 

N
orm

alised G
ain (%

.m
m

H
g
-1)  

 
1.12±0.21 

1.23±0.20 
1.36±0.56 

1.40±0.27 
1.27±0.50 

1.37±0.32 

V
alues are m

eans ± SD
; n = 10 rIPC group and n = 9 control group. A

bbreviations; rIPC, rem
ote ischaem

ic preconditioning; P
et CO

2 , partial 
pressure of end tidal carbon dioxide 
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Figure 4.3: Baseline Brachial artery FMD% (A), Post IR FMD% (B) and the relative % 
decrease (C) before (Pre), immediately after (Post) and eight days following the 
intervention (Post+8) in the rIPC group (closed circles) and control group (open 
circles).* Denotes significant main effect from time (P<0.05). Abbreviations; FMD, 
flow mediated dilation; rIPC, remote ischaemic preconditioning; IR, ischaemia-
reperfusion. 

(A) 

(B) 

(C) 
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4.4 Discussion 
 

The aim of this study was to obtain estimates of changes in peripheral conduit artery 

endothelial and cerebrovascular function and the response to endothelial IRI to 7-days 

of daily limb rIPC in T2DM. Expanding on the study presented in chapter 3, this study 

not only examined the cerebrovascular function response to rIPC but also incorporated 

the peripheral vascular bed into the research design.  This study provides preliminary 

evidence that 7-days of daily rIPC in a representative sample of patients can enhance 

peripheral conduit artery endothelial function measured using FMD, and provide 

protection against a temporary decline in endothelial function following ischaemia 

reperfusion. Although the observations suggest that rIPC had little impact on 

cerebrovascular function, the preliminary directional findings and sample size 

estimations suggest the ability of a rIPC intervention to improve peripheral vasculature 

in T2DM. These effects should be explored further in a larger, fully powered trial.  

 

This present study provides preliminary evidence that daily rIPC can increase conduit 

artery endothelial function. This is clinically important given that individuals with 

T2DM exhibit endothelial dysfunction (Calles-Escandon and Cipolla, 2001, Tabit et 

al., 2010) and are also at high risk of microvascular disease of the small vessels. 

Chronic hyperglycaemia limits the ability of the endothelial cells to produce nitric 

oxide (NO) which has important anti-atherogenic properties, contributing to the 

maintenance of vascular homeostasis (Sena et al., 2013). This is relevant as vascular 

dysfunction plays a major role in the development of cardiovascular complications 

(Luscher et al., 2003). Given that a meta-analysis confirmed that a 1% improvement 

in brachial FMD decreases the risk of future cardiovascular events by 13% (Inaba et 

al., 2010), strategies to improve vascular endothelial function are crucial. Numerous 
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clinical outcome studies have demonstrated that brachial artery FMD is a good 

predictor of cardiovascular risk (Cohn et al., 2004). Improvements in FMD are 

associated with enhanced NO production (Green et al., 2014a) and NO pathways are 

impaired with diabetes (Williams et al., 1996, Avogaro et al., 2011). The data suggests 

that vascular endothelial function can be improved in 7 days and remain elevated 8 

days following the end of the intervention. Given that rIPC was administered in the 

arm that received the preconditioning stimulus as well as in the contralateral arm the 

data supports the notion that rIPC has local and systemic effects on the vascular system 

(Jones et al., 2014). As this present study was not designed as a mechanistic study, it 

is possible to only speculate on potential mechanisms involved in the change in FMD 

observed.  Episodic increases in shear stress is likely to represent a major physiological 

stimulus for the local improvements in FMD (Thijssen et al., 2016a) however is 

unlikely to have effected contralateral arm FMD. The mechanisms mediating the 

systemic effects of rIPC remains elusive.  Systemic stimuli or circulating markers 

activated by rIPC more likely explain the remote improvement in conduit artery FMD. 

For example, rIPC leads to an increase in vascular endothelial growth factor and 

endothelial progenitor cells (Kimura et al., 2007), which may improve endothelial 

function in remote areas (Hill et al., 2003). However, more research studies are 

required to gain insight into exact mediating mechanisms.    

 

The present study provides evidence that daily rIPC can provide protection against 

endothelial IRI in T2DM. The endothelial IRI model performed in this study has been 

used by previous studies (Kharbanda et al., 2001, Luca et al., 2013) and is 

acknowledged as a surrogate model for myocardial reperfusion injuries. A similar 

model using forearm IRI identified that the decrease in FMD occurs as a result of a 
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decrease in plasma nitrite and plasma nitrate concentrations, indicating a reduction in 

NO bioavailability which is still decreased up to 50 min post reperfusion (Aboo 

Bakkar et al., 2018).  The findings in this study agree with previous rIPC studies 

showing (partial) prevention of endothelial dysfunction after IRI when preceded by a 

bout of rIPC (Luca et al., 2013). Reduced endothelial dysfunction against IRI is of 

clinical significance given that patients with T2DM demonstrate more extensive injury 

in response to ischaemia reperfusion (Russo et al., 2017). Interestingly, a previous six-

week rIPC intervention performed on patients with T2DM with foot ulcers identified 

an augmentation in the wound size of the foot ulcers in the patients who received the 

rIPC compared to a control (Shaked et al., 2015), further demonstrating the capability 

of a rIPC intervention to treat ischaemic induced complications in a diabetic patient 

group.  

 

This study identified that a 7-day repeated rIPC intervention had little impact on 

resting MCAv or dCA. Despite the considerable literature on the effects of rIPC on 

cardiac and peripheral vascular function in humans, there are few studies on 

cerebrovascular function, even with stroke and cerebrovascular disease being a 

leading cause of death worldwide (Roger et al., 2012). Post-hoc analysis of power was 

performed which revealed that more participants would have been required for 

adequate statistical power; therefore the data should be interpreted with caution. It is 

likely that control of cerebral autoregulation is multifactorial encompassing 

neurogenic, metabolic, myogenic and endothelial factors (Tzeng and Ainslie, 2014). 

The exact contribution of each, including the endothelium is debated. Evidence 

suggests that the endothelium carries mechanoreceptor properties that allows it to 

actively contribute to cerebral autoregulation following changes in arterial shear stress 
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and transmural pressure (Peterson et al., 2011). Therefore, a healthier and more active 

endothelium may have translated to improved dCA, yet this was not evident in the 

present study. Given that dCA is controlled by highly sensitive and tight regulatory 

factors, it is possible that 7 days of rIPC was not a sufficient enough stimulus to result 

in any change/adaptation. This potential explanation is supported by the fact that the 

only previous studies examining repeated rIPC on human cerebrovascular markers 

employed daily rIPC for 300 days (Meng et al., 2012), 180 days (Meng et al., 2015) 

and 365 days (Wang et al., 2017) identifying increases in cerebral perfusion and 

reductions in stroke reoccurrence but did not assess functional markers of the cerebral 

circulation. Whilst there is also a strong association between T2DM and 

cerebrovascular dysfunction (Zhou et al., 2014), none of the participants in this study 

had any previous documented cerebrovascular complications unlike the 

aforementioned studies and were of shorter duration of T2DM.  

Given the data was collected for the purposed of generating estimates for a larger trial 

it is important to acknowledge the small sample and limited statistical power. It is also 

important to acknowledge a number of other study limitations. Pre-intervention 

characteristics, primarily MAP, metformin and statin use were different between the 

intervention and control group and some evidence now suggests that certain 

medication used to treat risk factors of cardiovascular disease can alter the response to 

cardio protective interventions (Ferdinandy et al., 2014). Additionally, HbA1c data 

was not collected to examine clinical relevance to glucose control nor biomarkers of 

NO bioavailability. Stratification for medication and markers of glucose control and 

NO bioavailability should be incorporated into a larger fully powered future trial.	

Lastly, MCAv was measured using transcranial Doppler, a technique that provides a 

reliable surrogate for absolute cerebral blood flow providing the insonated artery 
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diameter remains constant across and between the study conditions (Ainslie and 

Hoiland, 2014). A future trial may consider assessment of extra cranial vessels (e.g. 

internal carotid artery) with ultrasound to assess changes in artery diameter as an 

indicator of changes in diameter.   

4.5 Conclusion 
 

The present study has provided estimates of sample size for a randomised control trial 

exploring the impact of daily rIPC for 7 days on peripheral endothelial and 

cerebrovascular function. The directional changes outlined from this pilot study 

suggest peripheral endothelial function and responses to endothelial IRI can be 

enhanced by daily rIPC in patients with T2DM and should be investigated in a fully 

powered randomised control trial. In contrast to peripheral arteries, no changes were 

evident in the cerebrovasculature as no change was found in MCAv or in dCA. Taken 

together, our results on the impact of repeated rIPC on cardio- and cerebrovascular 

function warrants further research.  
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training with repeated rIPC on 
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5.1 Introduction  
 

Repeated rIPC interventions can improve cardiovascular parameters and clinical 

endpoints in healthy individuals and those with CVD risk factors respectively. For 

example, repeated rIPC interventions ranging from 1 to 8 weeks have mediated 

improvements in vascular endothelial function in both healthy (Jones et al., 2014, 

Jones et al., 2015) and T2DM (see Chapter 4), increases in coronary flow reserve in 

heart failure patients (Kono et al., 2014), increased presence of endothelial progenitor 

cells (Liang et al., 2015) and reduced diabetic foot ulcer wound size (Shaked et al., 

2015). Collectively, suggesting that repeated rIPC interventions could be useful in 

preventing and reducing cardiovascular events and complications.  

There is emerging evidence that repeated rIPC interventions can also have beneficial 

effects on the cerebrovasculature. A small number of studies have shown repeated 

rIPC can increase CBF in stroke patients and reduce the rate of stroke reoccurrence 

(Meng et al., 2012, Meng et al., 2015, Mi et al., 2016, Wang et al., 2017). Nevertheless, 

Chapter 3 in this thesis attempted to understand how rIPC exerts its effects of the 

cerebrovasculature, demonstrating that a single bout of rIPC has negligible impact on 

CBFv or dCA as a marker of cerebrovascular function. Chapter 4 provided some 

evidence that 7-day daily repeated rIPC intervention in individuals with T2DM did 

not change cerebrovascular function. A number of important methodological 

differences are evident between experimental studies contained in this thesis (see 

Chapters 3 & 4) and the previous studies showing benefits on cerebrovascular health 

(Meng et al., 2012, Meng et al., 2015, Mi et al., 2016, Wang et al., 2017). Key 

differences relate to participant population, length of rIPC intervention and 

measurement techniques. The length of the intervention and the number of rIPC bouts 
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performed over the intervention, which collectively can be termed the dose of rIPC, is 

an important aspect to consider. It is possible that a larger dose (in both duration and 

frequency) of rIPC might have a greater effect on cerebrovascular function. 

An alternative approach to increase the rIPC stimulus is to combine the repeated rIPC 

with exercise training. Regular exercise bouts may potentially provide an additional, 

but not mutually exclusive, preconditioning stimulus for the vascular system thus 

combining rIPC with exercise may increase the beneficial adaptations observed with 

rIPC alone. The mechanisms responsible for the beneficial effects of repeated rIPC 

versus exercise training may differ. Where effects of rIPC may relate to both neural 

and humoral pathways (Anttila et al., 2016), benefits of exercise (preconditioning) 

may relate to repeated systemic elevations in shear stress (Hambrecht et al., 2003, 

Tinken et al., 2010, Thijssen et al., 2016a). It has not yet been investigated whether 

adding exercise to the rIPC stimulus leads to a larger adaptation in peripheral and/or 

any adaptation in the cerebral vasculature at all. 

Therefore, the primary aim of this study was to examine whether exercise training 

could enhance the effects of repeated rIPC on cerebrovascular and peripheral conduit 

artery function more than repeated rIPC alone in individuals with increased risk of 

CVD. It was hypothesised that (i) exercise training would provide additional stimulus 

to elicit greater improvements in both cerebo- and peripheral vascular function 

compared to rIPC alone.  
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5.2 Methods 
 

5.2.1 Participants  
 

Nineteen participants with increased risk of cardiovascular disease were recruited 

(Figure 5.1). Participants were recruited on the criteria of; body mass index (BMI) >30 

kg/m2 or waist circumference ≥94cm (male), ≥80cm (female) as well as either raised 

blood pressure (>130 /85 mmHg) or diagnosed with hypercholesterolemia (Table 5.1). 

Individuals were excluded if they had a history of stroke (including TIAs), myocardial 

infarction, thrombosis, congenital heart disease, type 1 diabetes or currently smoking. 

Participants were informed of the study protocol verbally and in writing before 

providing written informed consent. The study was approved by the local ethics 

committee (approval number 17/SPS/056) and conformed to standards set out by the 

Declaration of Helsinki. Registered clinical trial at ClinicalTrials.gov NCT03624452.        
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Figure 5.1: Screening, recruitment, retention and completion of the study.  

 

5.2.2 Research Design  
 

Participants underwent two initial visits to the laboratory. Following an overnight fast 

and refraining from alcohol and exercise for 24hr and caffeine for 12hr, visit 1 

consisted of anthropometric measurements, fasting blood glucose, assessment of 

cerebrovascular function and assessment of brachial artery endothelium function 

before and after a temporary ischaemia reperfusion injury (IRI). Visit 2 consisted of a 

cardio-respiratory fitness test (VO2peak). Both visits were conducted within four days 

of each other and all completed in a temperature-controlled laboratory (23±1°C). 

Participants were then randomly allocated into the rIPC + Exercise group (3 x rIPC 

and 3 x 50min exercise per week) or rIPC group (3 x rIPC per week). Randomisation 

was performed following the first testing visit using a computer-generated-sequences 
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to avoid bias. All measurements performed in Visit 1 were repeated following the end 

of the 8-week intervention. Measurements from Visit 2 were repeated again following 

the completion of the 8 weeks. All post intervention measurements were performed 

within 7 days of last exercise or rIPC bout.  

5.2.3 Measurements 
 

Cerebrovascular function: Measurement of baseline CBFv, dCA  and CVR were 

completed as per the information in Chapter r3, section 4.2.3. 

Brachial artery endothelium-dependent vasodilation: FMD was performed on the left 

of arm of each participant before and after an IR injury as per the information in 

Chapter 4, section 4.2.3 and performed by the same sonographer throughout the entire 

thesis. 

 

Maximal oxygen uptake: The cardio-respiratory fitness test (VO2peak) was performed 

on a treadmill (H/P Cosmos, Pulsar 4.0, Nussdorf-Traunstein, Germany) in order to 

quantify peak aerobic capacity. A modified version of the Bruce et al. (1973) protocol 

was adopted as this is frequently used protocol in sedentary/high risk populations 

(Pugh et al., 2013, Sprung et al., 2013). Following a 5-minute warm-up period at a 

self-selected speed, the protocol begins with a 2-minute stage at 2.2km/h on a flat 

gradient, followed by 2 minutes at 2.7km/h at a 5% gradient. Subsequently, stepwise 

increments in speed and gradient are applied evert minute until volitional exhaustion. 

Breath-by-breath expired gases were continuously monitored (Oxycon Pro, Jaeger, 

Hochberg Germany) for oxygen consumption (ml/kg/min) and were averaged over 15 

seconds. Peak oxygen uptake was calculated from the highest consecutive 15-second 

period of expired gas fractions. Heart rate was measured continuously using short-
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range telemetry (RS800, Polar, Finland) alongside subjective effort (RPE) using the 

6-20 Borg scale. All participants reached the criteria for volitional exhaustion based 

upon heart rate, Borg scale and respiratory exchange ratio (Edvardsen et al., 2014).     

 

Fasting blood glucose: Blood samples were obtained from the antecubital vein via 

standard venepuncture technique (Vacutainers Systems, Becton-Dickinson). All 

samples were collected into vacutainers containing a polymer gel for serum separation. 

Centrifugation for 10 minutes at 1000g at 4℃ was applied and samples were stored at 

-80℃ for subsequent analysis. Plasma glucose was determined spectrophotometrically 

using commercially available kits (Randox Laboratories, Antrim, UK) with each 

sample analysed in duplicate.    

 

5.2.4 Interventions  
 

Remote Ischaemic Preconditioning           

All participants in both groups performed three bouts of rIPC per week for 8 weeks. 

A single bout of rIPC consisted of a pressure cuff (Welch Allyn DuraShockTM  DS45, 

New York, USA) inflated around the upper arm (220mmHg) for five minutes preceded 

by five minutes of reperfusion, repeated four times (total time 40 minutes). The arm 

in which the rIPC was applied to was randomised and participants were free to perform 

the rIPC bouts freely and not follow a pre-set routine. All participants were provided 

with an intervention diary in order to increase compliance.       

Exercise intervention 

Those randomly assigned to the rIPC+Exercise group performed three 50 minute 

exercise sessions per week for 8 weeks (98% compliance). All sessions were 
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performed on a cycle ergometer (Wattbike Trainer, Wattbike Limited, country) in a 

temperature controlled laboratory (18±2°C). The intensity of the exercise sessions was 

set to 70% maximum heart rate (HRmax) and all sessions were supervised in order to 

ensure target HR was achieved and maintained throughout the session.  

5.2.5 Statistical analysis  
 

Analysis was performed using Statistical Package for Social Sciences (Version 26; 

SPSS Inc., Chicago, IL). Baseline characteristics between conditions (Table 5.1) was 

analysed using an independent samples t-test. All other data were analysed using a 

linear mixed model, with delta changes (∆) from week 0-week 8 calculated and added 

to the model as a dependent variable and pre-intervention data entered as a covariate. 

Linear mixed model (LMM) P values in results represent difference in the absolute 

change following each intervention.  Statistical significance was delimited at P < 0.05 

and exact P values are cited (P values of ‘0.000’ provided by the statistics package are 

reported as <0.001). Significant interactions and main effects were followed up using 

LSD pairwise comparisons. Data are presented as mean and 95% confidence intervals.    

5.3 Results  
  

5.3.1 Resting hemodynamic  
 

The directional changes in MAP (P=0.45), MCAv (P=0.30) and PCAv (P=0.56) were 

negligible between conditions (Table 5.2).    
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Table 5.1: Baseline characterises and medications of both groups.   

Baseline 
characteristics 

rIPC + 
Exercise 

(4 females & 
6 males) 

rIPC only  
(2 females & 7 
males) 

P value 

Age (years) 52 ± 8 51 ± 12 0.87 
Height (m) 1.7 ± 0.1 1.7 ± 0.1 0.26 
Weight (kg) 97.8 ± 21.5 108.2 ± 21.7 0.31 
Body mass index 
(kg/m2) 

34 ± 5 35 ± 5 0.56 

Waist circumference 
(cm)  

107 ± 17 109 ± 13 0.75 

Resting heart rate 
(bpm) 

69 ± 8 69 ± 6 0.96 

Systolic blood 
pressure (mmHg) 

137 ± 15 139 ± 12 0.75 

Diastolic blood 
pressure (mmHg) 

80 ± 13 84 ± 6 0.42 

Mean arterial blood 
pressure (mmHg) 

99 ± 12 102 ± 5 0.50 

Fasting blood glucose 
(mmol/L)  

5.9 ± 0.7 6.0 ± 0.7 0.70 

Medications  
Statins  3 (30%) 3 (33%)  
β-blockers 1 (10%) 1 (11%)  
Calcium channel 
blockers 

1 (10%) 0 (0%)  

alpha-1 adrenergic 
blockers 

1 (10%) 0 (0%)  

Angiotensin-
converting-enzyme 
inhibitors 

3 (30%) 2(22%)  

Biguanides 2 (20%) 2 (22%)  
 

Data presented as mean±SD or as a percentage (medications). 

 

 

 

 

 



98 
 

Table 5.2: Baseline hemodynamic, cardiorespiratory fitness and fasting blood 
glucose data from before (week 0) and after (week 8) each intervention. 

 

 rIPC + Exercise rIPC only LMM 

Week 0 Week 8 Week 0 Week 8 Condition 

MCAv (cm.s-

1) 
56±10 57±9 54±14 53±12 0.30 

PCAv (cm.s-
1) 

37±3 36±4 36±3 36±2 0.83 

PetCO2 
(mmHg) 

38.5±3.1 38.0±3.7 41.6±2.7 39.6±3.5 0.35 

MAP 
(mmHg) 

99±13 95±11 102±7 99±5 0.45 

Resting HR 
(bpm) 

69±9 68±11 69±6 70±8 0.61 

VO2peak 
(ml/kg/min) 

22.9±5.4 25.7±6.2 23.5±2.9 23.6±2.8 0.69 

Fasting 
blood glucose 
(mmol/L) 

5.9±0.7 5.9±0.7 6.4±1.6 6.5±1.4 0.27 

Average 
cycling 
workload 
(watts) 

77±27 89±25 n/a n/a <0.001 

 

Data presented as means ± SD. Abbreviations; MCAv, middle cerebral artery velocity; 
PCAv, posterior cerebral artery velocity; PetCO2, partial pressure of end tidal carbon 
dioxide; MAP, mean arterial pressure; HR, heart rate; rIPC, remote ischaemic 
preconditioning; LMM, linear mixed model.  

 

5.3.2 Cerebrovascular function 
 

Parameters of spontaneous (Table 5.3) and dynamic (Table 5.4) cerebral 

autoregulation changed similarly with both interventions (P>0.05).  Pararmeters of 

cerebral reactivity including CVRCO2, CbVCiCo2 or MAP reactivityCo2 changed 

similarly with both interventions (P>0.05) (Table 5.5).  
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Table 5.3: Power spectral and transfer function analysis of dynamic cerebral 
autoregulation during spontaneous changes in BP and CBFv. 

 

 rIPC + Exercise rIPC only LMM 
 Week 0 Week 8 Week 0 Week 8  
Power Spectrum 
Baseline MCAv power  (cm/s2) 
VLF 2.69±1.17 2.86±1.53 2.41±2.15 2.87±1.37 0.13 
LF 1.69±0.96 1.81±1.30 1.58±0.122 2.61±.1.86 0.84 
HF 0.47±0.24 0.52±0.28 0.81±0.27 0.97±0.21 0.19 
Baseline BP power (mmHg2) 
VLF 4.23±1.47 3.43±1.95 4.52±2.72 4.96±3.62 0.21 
LF 2.26±1.43 2.28±2.00 2.05±1.17 1.77±0.86 0.32 
HF 0.44±0.13 0.40±0.22 0.44±0.31 0.43±0.23 0.69 
Transfer Function  
Spontaneous Oscillations 
VLF gain 
(cm.s.mmHg) 

0.68±0.23 0.73±0.32 0.51±0.08 0.51±0.06 0.72 

VLF Ngain 
(%.mmHg-1) 

1.15±0.22 1.34±0.62 0.98±0.25 1.35±0.75 0.69 

VLF phase 
(radians) 

0.77±0.32 0.87±0.41 1.03±0.48 1.08±0.69 0.98 

VLF 
coherence 

0.54±0.14 0.51±0.01 0.52±0.23 0.50±0.20 0.14 

LF gain 0.74±0.29 0.75±0.29 0.75±0.25 0.88±0.34 0.16 
LF Ngain 1.26±0.41 1.40±0.41 1.35±0.45 1.43±0.59 0.54 
LF phase 0.52±0.38 0.65±0.31 0.89±0.49 0.74±0.41 0.31 
LF coherence 0.56±0.09 0.55±0.12 0.50±0.11 0.51±0.21 0.31 
HF gain 1.00±0.43 0.99±0.50 0.97±0.53 1.00±0.31 0.20 
HF Ngain 1.77±0.42 1.81±0.70 1.47±0.32 1.84±0.45 0.43 
HF phase 0.14±0.66 0.09±0.51 0.33±0.21 0.18±0.08 0.30 
HF coherence 0.61±0.08 0.63±0.08 0.63±0.06 0.63±0.07 0.75 

.  

Data presented as means ± SD. Abbreviations; PS, power spectrum; VLF, very low 
frequency; LF, low frequency; HF, high frequency; MCAv, middle artery cerebral 
velocity; BP, blood pressure; Ngain, normalised gain; LMM, linear mixed model.   
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Table 5.4: Power spectrum densities of forced oscillations in mean arterial pressure 
and cerebral blood flow velocity during squat-stand manoeuvres.   

 rIPC + Exercise rIPC only LMM 
 Week 

0 
Week 

8 
Week 

0 
Week 

8 
Condition 

Power Spectrum 
BP power 
(mmHg2) 

111±80 113±87 116±108 111±99 0.91 

MCAv 
power 
(cm/sec2) 

43.1±36 40.3±33 45.6±29 41.5±32 0.98 

Transfer Function 

Gain 
(cm.s.mmH
g) 

0.66±0.1
5 

0.68±0.13 0.62±0.24 0.63±0.20 0.85 

Ngain 
(%.mmHg-
1) 

1.18±0.3
0 

1.34±0.23 1.25±0.29 1.23±0.17 0.40 

Phase 
(radians) 

0.40±0.1
4 

0.42±0.19 0.49±0.17 0.46±0.18 0.52 

Coherence 0.72±0.0
7 

0.72±0.08 0.72±0.04 0.71±0.08 0.91 

 

Data presented as means ± SD. Abbreviations; rIPC, remote ischaemic 
preconditioning;; BP, blood pressure; MCAv, middle cerebral artery velocity; Ngain, 
normalised gain; LMM, linear mixed model. 
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Table 5.5: Cerebrovascular reactivity to 5% carbon dioxide 

 rIPC + Exercise rIPC only LMM 

Week 0 Week 8 Week 0 Week 8 Condition 

MCAv  reactivity  
(cm.s/mmHg) 

1.85±0.
90 

1.90±0.
59 

1.65±0.
70 

1.58±0.
69 

0.41 

CbVCi reactivity 
(cm.s/mmHg2) 

0.018±0
.011 

0.013±0
.005 

0.009±0
.006 

0.017±0
.011 

0.26 

MAP reactivity 
(mmHg/mmHg) 

0.5±0.4 0.9±0.6 1.1±0.7 1.5±0.7 0.37 

 

Data presented as means ± SD. Abbreviations; MCAv, middle cerebral artery velocity; 
CvVCi, cerebrovascular conductance index; MAP reactivity, mean arterial pressure; 
rIPC, remote ischaemic preconditioning;  LMM, linear mixed model. 

 

 

5.3.3 Brachial artery endothelium-dependent vasodilation 
 

Brachial artery FMD% increased by 1.6% (95%CI;0.4, 2.8) in the rIPC+Ex 

intervention and by 0.3% (-1.1, 1.5) in rIPC only intervention but there was no main 

effect of condition (P=0.65, Figure 5.2). No intervention-mediated differences were 

evident in baseline diameter, peak diameter, SRAUC or time to peak (P>0.05, Table 

5.6).       

 

The directional changes in brachial artery FMD following an IR injury after both 

interventions were similar (P=0.50).  FMD reduced by of 0.5% (-2.2, 1.3) following 

rIPC + Ex and by 0.2% (-1.7, 1.6) following the rIPC only. No intervention-mediated 

differences were evident in baseline diamter, peak diameter, SRAUC or time to peak 

(P>0.05, Table 5.6).   
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5.3.4 Cardiorespiratory fitness 
 

VO2peak increased by 2.8 ml/kg/min (1.7, 3.9) following the rIPC + Ex intervention 

and increased by 0.1 ml/kg/min (-1.0, 1.4) following the rIPC only intervention there 

was no main effect of condition (P=0.69). 

5.3.5 Blood glucose 
 

There was no main effect of condition between rIPC + Ex and rIPC only in changes 

in fasting blood glucose (P=0.27).  
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                 Figure 5.2: Individual data points w

ith m
eans±SD

 for baseline flow
 m

ediated dilation (FM
D

, left panel) and post ischaem
ic reperfusion 

(IR) injury flow
 m

ediated dilation (right panel).
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Table 5.6: Brachial artery characteristics before and after an ischemia reperfusion 
injury    

 

Data presented as means ± SD. Abbreviations; FMD, flow mediated dilation; AUC, 
area under the curve: LMM, linear mixed model   

 

 

 rIPC + Exercise rIPC only LMM 

Week 0 Week 8 Week 0 Week 8 Condition 

Baseline       

Resting diameter 
(mm) 

4.0±0.9 4.1±1.0 4.2±0.7 4.1±0.8 0.40 

FMD% 6.5±3.2 8.1±3.2 6.1±1.2 6.4±1.6 0.65 

Scaled FMD% 6.5±2.6 7.9±1.3 6.1±2.4 6.3±2.3 0.35 

Time to peak (sec) 77±32 67±29 72±24 63±26 0.83 

Shear AUC (103) 28.2±15.
0 

23.3±14.
8 

22.2±14
.9 

22.0±14.2 0.64 

Post Ischemia Reperfusion Injury 

Resting diameter 
(mm) 

4.4±1.0 4.4±1.0 4.3±0.7 4.6±0.9 0.95 

FMD% 1.9±3.3 1.4±4.1 1.0±2.5 0.8±1.2 0.50 

Scaled FMD% 1.9±2.9 1.3±3.7 1.0±3.0 1.0±3.0 0.56 

Time to peak (sec) 79±35 73±32 63±39 62±33 0.87 

Shear AUC (103) 21.2±7.1 19.0±5.7 13.8±10
.4 

12.1±7.1 0.24 
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5.4 Discussion 

 

The present study aimed to examine whether combining aerobic exercise training with 

rIPC resulted in greater improvements in the cerebral and peripheral vasculature 

compared to repeated rIPC alone in individuals with increased risk of CVD. The 

results of this study suggest that increasing the preconditioning stimulus by combining 

rIPC intervention with exercise training does not mediate greater changes in the 

cerebral or peripheral vasculature when compared directly to rIPC alone.  

 

Despite increasing the dose of rIPC (compared to previous 7-day rIPC study, see 

Chapter 4) and increasing the rIPC stimulus (by adding exercise training) negligible 

changes were observed in markers of cerebrovascular function, including CBFv 

following both interventions. Studies that examined repeated rIPC and found increases 

in CBF and CBFv typically adopted longer interventions and in patient groups with 

overt cerebrovascular disease (Meng et al., 2012, Meng et al., 2015, Mi et al., 2016, 

Wang et al., 2017). Nevertheless, the aforementioned studies had not examined 

cerebrovascular function to understand how the positive changes in CBF and risk of 

stroke occurrence. The markers of cerebrovascular function dCA and CVR are 

recognised as independent predictors of ischaemic stroke (Markus and Cullinane, 

2001) and provide in-depth information about mechanoreceptor and chemoreceptor, 

control respectively (Rubanyi et al., 1990, Hoiland et al., 2019). Given the impact of 

repeated rIPC in stroke patients, it was hypothesised that the repeated rIPC 

intervention in the present study would mediate positive effects on the cerebral 

vasculature. Moreover, it was expected the addition of exercise would mediate a 

greater response, given that some previous exercise training studies have shown 

improvement in CVR and CBFv with exercise training interventions in a number of 



106 
 

ages and disease groups (Zhu et al., 2011, Akazawa et al., 2012, Murrell et al., 2013). 

Whilst it cannot be discounted that a longer intervention may have mediated positive 

changes, or that rIPC and exercise might have had an impact on cerebrovascular 

function in individuals with overt disease, the data in the present study suggest that 

repeated rIPC intervention has negligible impact on cerebrovascular function. Within 

this present study, further investigations into dCA were performed through assessing 

cerebral autoregulation during both spontaneous and driven BP oscillations, whereas 

the studies presented in chapter 3 and 4 focus primarily on driven BP oscillations. By 

extending the scope of the investigation into multiple different methods of assessing 

dCA, this allows us to identify if similar response are observed in both spontaneous 

and driven oscillations. Indeed, it is currently debated as to which is the ‘best’ method 

of dCA assessment using TCD and TFA (Simpson and Claassen, 2018, Tzeng and 

Panerai, 2018). In this present study, and in a number of recent studies (Labrecque et 

al., 2017, Labrecque et al., 2019a), a multifactorial approach to the assessment of dCA 

was utilised in order to account for potential mechanistic differences in cerebral 

autoregulation from spontaneous or driven BP oscillations.       

 

The data from this study also shows that combining exercise training with rIPC 

mediates a 1.6% increase in FMD. Given that a 1% increase in FMD is indicative of a 

8-13% reduced risk of cardiovascular events (Thijssen et al., 2019b), the increase 

observed following the rIPC combined with exercise in the current study is of clinical 

importance. Intriguingly, a 0.3% increase in FMD was observed in the rIPC only 

group. This is somewhat smaller than a previous study employing the same repeated 

rIPC intervention in young healthy individuals (Jones et al., 2015). The differences in 

responses to the repeated rIPC intervention between the two studies may be explained 
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by differences in participant groups. Indeed, there is evidence to suggest differences 

in the time course of changes in FMD are apparent depending on health status 

following exercise interventions (Schreuder et al., 2015). Similarly, an acute bout of 

rIPC has attenuated efficacy in older and diseased individuals in response to FMD 

following an endothelial reperfusion injury (van den Munckhof et al., 2013, Seeger et 

al., 2016). Collectively, the data presented in this study suggests that either; (i) rIPC, 

with or without exercise is unable to evoke improvements in cerebral vascular function 

or, (ii) individuals at risk of CVD may require large ‘doses’ of rIPC and exercise in 

order to mediate improvements compared to a healthier population. Additionally, the 

0.3% increase in FMD% following the rIPC only intervention is also surprising given 

the data presented in chapter 4 showed a 1.3% increase in FMD% following 7 days of 

daily rIPC. Collectively, this evidence suggests that the intensity and frequency in 

which the rIPC is applied may alter the effectiveness of the outcome measurements, 

rather than it being attributed to the ‘dose’ of the rIPC. Such differences in results 

outlines the importance of future studies identifying an optimal ‘dose’ of rIPC in order 

to maximise adaptations as to date, no such study has been published. 

 

Interestingly, no protective effect from either intervention on post IR injury FMD was 

observed. Numerous studies have acknowledged that rIPC provides protection against 

the IR injury model adopted in the current study by means of attenuated differences 

between pre and post IR injury FMD’s (Luca et al., 2013, van den Munckhof et al., 

2013) (see Chapter 4). This inconsistent finding may be attributed to rIPC intervention 

intensity, given that those aforementioned studies applied either acute (one bout) or 

daily rIPC in the lead up to the IR injury, building a more substantial preconditioning 

effect. Additionally, and again some-what surprising was the inability of the exercise 
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to elicit any protection, especially given the suggestion that exercise does pose a 

preconditioning-like effect (Thijssen et al., 2018). Both lifelong exercise (Maessen et 

al., 2017) and short-term exercise interventions (Thijssen et al., 2019a) have resulted 

in increased tolerance to endothelial IR injury. Given a clinically important change in 

fitness was observed in the rIPC combined with exercise intervention, it might be more 

plausible that exercise type may represent an explanation for differences in post IR 

injury results. However, Thijssen et al found that the protective effects were present 

and not different following moderate and high intensity exercise (Thijssen et al., 

2019a). Assessing further vascular parameters may provide additional information in 

understanding the effects of an IR injury, with some studies measuring low flow 

mediated constriction in order to explore a different mechanistic view (Rakobowchuk 

et al., 2013, Carter et al., 2014b). Alternatively, methodological differences may 

explain differences in post IR injury FMD results, with the present study adopting a 

15 minute- ischemia-15 minute-reperfusion model whereas Thijssen et al. (2019a) 

used 5 minutes of ischaemic handgrip exercise followed by 15 minutes reperfusion. 

Further research is warranted to understand the potential preconditioning effect of 

exercise across a wide population. 

 

5.5 Conclusion 

 

In conclusion, combining 8 weeks of rIPC with exercise does not result in greater 

changes in cerebrovascular function and peripheral endothelial function compared to 

a rIPC only intervention in individuals at increased risk of CVD. Therefore, based on 

this data, careful consideration and further investigation is recommended exloring 

whether rIPC offers a beneficial short-term intervention for improvement of systemic 

vascular health in at risk individuals.   
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6.1 Introduction 

 

Cardiovascular and cerebrovascular disease is the leading cause of morbidity and 

mortality worldwide (Townsend et al., 2016). The age related decline is CBF is well 

established (Ainslie et al., 2008b, Tarumi and Zhang, 2018), but the age related 

changes in cerebrovascular function and haemodynamic responses contributing to 

CBF regulation are not well described.  The delivery of oxygenated blood to the brain 

over a wide range of systemic BP levels by neurogenic, myogenic and endothelial 

factors is essential in order to maintain normal brain functioning (Tzeng and Ainslie, 

2014). dCA refers to the intrinsic ability of the brain to maintain adequate CBF in the 

presence of transient changes in arterial BP that occur over a number of seconds 

(Aaslid et al., 1989). dCA acts as a defensive mechanism protecting the brain from 

potential damage as a result of high or low BP (van Beek et al., 2008). At the same 

time, BP is controlled neurally by the baroreflex (Monahan, 2007). Both of these 

regulatory systems are essential in maintaining stable CBF. Impairment in either of 

these regulatory mechanisms are early markers of cerebrovascular dysfunction and 

thus associated with increased the risk of cognitive impairment, dementia and stroke 

(Jordan and Powers, 2012, Laosiripisan et al., 2015). 

Over the past few years, it has been established in the literature that currently, the best 

way to assess dCA is to employ forced BP oscillations by performing repeated squat-

stand manoeuvres (Claassen et al., 2009b; Smirl et al., 2015; Simpson & Claassen, 

2018) and analyse the data using transfer function analysis (TFA) thus adhering to 

international recommended guidelines (Claassen et al., 2016). Following the 

guidelines studies found that, despite the age-related decline in CBF and increase in 

BP (Ainslie et al., 2008b), there is little evidence of impairment in dCA between young 
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and old (mean age 23 vs 66 years) healthy individuals (Smirl et al., 2015) or within 

clinical populations (e.g. Alzheimer’s) (Claassen et al., 2009a, Smirl et al., 2014a, 

Lewis et al., 2019) Chapter 3). There is some evidence of sex differences for efficiency 

of dCA but the directions of effect conflict (Xing et al., 2017, Favre and Serrador, 

2019, Labrecque et al., 2019a).  

In the largest such study to date, Xing et al. (2017) conducted a study (n=136) in 

healthy individuals aged 21 to 80 years to characterise the age and sex alterations in 

dCA. They reported dCA was not different across the lifespan but suggested women 

had a better dCA phase compared to men using 0.05Hz squat stand manoeuvres. 

Nevertheless, subsequent studies have suggested that cardiorespiratory fitness is an 

important factor when assessing sex differences in dCA (Labrecque et al., 2017, 

Labrecque et al., 2019a, Labrecque et al., 2019b). Moreover, Xing et al. (2017) also 

explored age and sex differences in cardiac baroreflex sensitivity (BRS) (quantified 

using BP and R-R intervals throughout the same squat-stand protocol). BRS was 

reduced in the older group but no sex differences were observed. BRS was positively 

correlated with dCA in young but not middle aged or older healthy participants. 

However, the fundamental relationship between dCA and cardiac BRS is unclear as 

other evidence suggests an inverse relationship in young healthy individuals 

participants (Tzeng et al., 2010), and no relationship in older endurance trained 

athletes (Aengevaeren et al., 2013) or in heart transplant recipients (Smirl et al., 2014a). 

The aim of the current study was 2 fold in order to build upon previous work (Xing et 

al., 2017); (i) to examine the impact of sex, cardiorespiratory fitness and the presence 

of CVD risk factors on dCA and cardiac BRS over the life span; and (ii) to explore the 

relationships between cardiac BRS and dCA whilst controlling for age and sex. By 

expanding upon the work by Xing et al., (2017) by incorporating individuals with 
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CVD risk factors and quantifying cardio-respiratory fitness, this will allow us to 

present findings from a demographically varied population. 

   

6.2 Methods 

 

6.2.1 Participants  

 

Data from eleven studies collected at Liverpool John Moores University, Research 

Institute for Sport and Exercise Science were examined for eligibility. Data were 

included if: (i) all measurements were performed with strict adherence to cerebral 

autoregulation network (CARNET) guidelines (Claassen et al., 2016), (ii), data for 

individual participants was provided (minimum; age, sex, BMI and resting BP), (iii) 

data was collected in studies that adhered to the Declaration of Helsinki. Of the data 

included, 146  participants are from four previously published studies (Carter et al., 

2018, Maxwell et al., 2019, Brislane et al., 2020, Carter et al., 2020) 

dCA and cardiac BRS recordings were complied with corresponding participant 

characteristics and medical history (where available) from eleven studies. When 

studies adopted a repeated measurements design, only baseline data were included. 

Participant data was excluded if the duration of recordings was < 5 minutes, and if the 

coherence value was < 0.4. Based on these criteria, 206 participants were with 83 

males and 123 females aged between 18-70 years.  All participants were non-smokers, 

with no previous myocardial infarction, stroke or thrombosis. Individuals clinically 

diagnosed with T2DM were treated with Metformin (n=18) or diet (n=8) at the time 

of data collection. Additional medications taken by participants included anti-

hypertensive (n=15) and lipid lowering (n=16) medication. Participants that had a 
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body mass index (BMI) >30kg/m2, diagnosed with hypercholesterolemia or type 2 

diabetes, as well treated or untreated ≥ stage 1 hypertension were stratified to a CVD 

risk group.  In total 45 of the individuals who were included with this study met the 

criteria for increased risk of CVD.  Out of the 123 females included within the study 

58 were post-menopausal. Post-menopausal women were classified based on having 

no menstrual cycle for at least 12 consecutive months and were not previously or 

currently taking any form of hormone therapy (Moreau et al., 2012).  

6.2.2 Measurements 

 

dCA: MCAv was measured using TCD, continuous blood pressure was monitored 

using Finapres and PetCO2 was recorded using a calibrated gas analyser throughout 

0.10 Hz squat stand manoeuvres to quantify dCA, as described in detail in Chapter 3.   

Baroreflex Sensitivity: Using the same 5-minute recording window during the 0.10 Hz 

squats-stand manoeuvres, continuous cardiac BRS was assessed. The cardiac BRS was 

determined by applying TFA to systolic BP (SBP) and R-R interval (pressure-cardiac 

interval) at the point frequency (low frequency) of the squat-stand manoeuvres (0.10 

Hz). Data analysis was performed using a commercially available software Ensemble 

(Version 1.0.0.28, Elucimed, Wellington, New Zealand). Mean gain (magnitude of 

relationship between SBP and R-R intervals changes), phase (temporal displacement 

of R-R intervals and SBP) and coherence (linear correlation between changes in R-R 

interval and SBP changes) along with spectral power of systolic BP and R-R interval 

were calculated in the low frequency range (0.10 Hz). 
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6.3 Statistical Analysis  

 

Statistical analysis was performed using IBM SPSS version 26 (SPSS Inc., Chicago, 

IL). Firstly, participants were divided into three age categories: young (18 – 35 years, 

n= 93), middle age (36 – 55 years, n=62) and old age (56 - 70 years, n=51). Between 

age-category differences in baseline characteristics and power spectrum densities 

during squat stand manoeuvres were explored using one-way ANOVA. To examine 

the influence of age, sex, CVD risk and VO2max linear regression was employed. Cross 

sectional associations between age and measures of dCA and cardiac BRS were 

examined using linear regression adjusting for sex (Model 1). Multivariable linear 

regression was used to further adjust for health status (model 2) as well as VO2max 

(model 3).  

Relationship between cardiac BRS and dCA: The linear relationship between cardiac 

BRS and dCA was determined using R2 . For the models, each parameter of cardiac 

BRS was independently used as a predictor variable and each parameter of dCA an 

outcome variable with adjustments for age and sex. Multicollinearity was investigated 

using variance inflation factor. Statistical significance was set a P<0.05.         
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6.4 Results 

 

Participant characteristics: There was an increase in SBP, DBP and BMI (P <0.001) 

and decrease in MCAv and VO2max (P <0.001) with age (Table 6.1), with a trend 

towards an inverted-U relationship between PETCO2 and age (P=0.08) 

Table 6.1: Participant characteristics when divided into age categories   

Characteristics Age categories ANOVA 

18-35 yrs 
(young) 
N=93 

36-55 yrs 
(middle 

age) 
N=62 

56-70 yrs 
(old age) 

N=51 

P Value 

Age (years)  26±5 47±6 61±4  

Male/Female 45/48 18/44 20/31  

SBP (mmHg) 115±11 120±15 138±18 <0.001 

DBP (mmHg) 67±11 73±10 78±10 <0.001 

VO2max 
(ml.kg.min) 

42.2±10.8 28.6±7.4 23.7±5.2 <0.001 

BMI (kg/m2) 24±3 27±6 29±5 <0.001 

MCAv (cm.s) 67±13 64±13 56±13 <0.001 

PETCO2 (mmHg) 36.8±4.3 37.9±4.8 35.9±4.9 0.08 

 

Data presented as mean±SD. Abbreviations; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; BMI, body mass index; MCAv, middle cerebral artery 
velocity; PETCO2 , partial pressure of end tidal carbon dioxide; ANOVA, analysis of 
variance 

 

dCA: Age, sex, CVD risk factors and VO2max do not impact on the dCA parameters 

normalised gain, phase or coherence with minimal change (β) compared to the young 

aged reference group (18-35 yrs) in all statistical models (P>0.05, Table 6.2). There 

was a significant reduction in dCA gain with age, which was apparent when adjusted 
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for sex and CVD risk factors (young – middle age; β = -0.09, P = 0.02 and young - old 

age; β = -0.18, P <0.001, model 2) but not when adjusted for VO2max (model 3).  

BRS: Cardiac BRS gain was attenuated with age when adjusted for sex and CVD risk 

factors (young – middle age; β = -2.18, P <0.001 and young - old age; β = -2.86 P 

<0.001, model 2) along with cardiac BRS phase (young – middle age; β = -0.31, P 

<0.001 and young - old age; β = -0.44 P <0.001, model 2) but not adjusted for VO2max 

(model 3). 

Power spectral analysis: When divided into age categories, dCA BP power, MCAv 

power and cardiac BRS R-R interval power all decreased with age (P<0.001) with no 

difference in SBP power (P=0.55, Table 6.3).  

Relationship between cardiac BRS and dCA: There was no correlation between dCA 

normalised gain and dCA phase with either parameter of cardiac BRS (P >0.05; Figure 

6.1), but dCA gain shows a significant inverse relationship. dCA gain was correlated 

with cardiac BRS gain (R2 = 0.19, P <0.001) and with cardiac BRS phase (R2 = 0.18, 

P <0.001). However, the total variance explained in these significant outcomes is small, 

meaning that other factors are likely to be important, whether independent or as 

interacting variables.    
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 Table 6.2: Cross sectional associations betw

een age and both dCA
 and cardiac BRS during 0.10 H

z squat stand m
anoeuvres.  

               

The regression coefficient β represents the change in the param
eter from

 either young (15-35  yrs)-m
iddle (36-55 yrs) aged or from

 young-old (56-
70 yrs) aged w

hen accounting for m
odel covariates. M

odel 1: A
djusted for sex. M

odel 2: A
djusted for sex and health status (healthy or CV

D
 risk). 

M
odel 3: A

djusted for sex, health status and V
O
2m
ax. . A

bbreviations; dCA
, dynam

ic cerebral autoregulation; BRS, baroreflex sensitivity. 

 
M

ean±SD
 

M
odel 1 

M
odel 2 

M
odel 3 

β  (95%
 CI) 

P value 
β  (95%

 CI) 
P V

alue 
β  (95%

 CI) 
P V

alue 
dC

A
 N

orm
alised G

ain (%
.m

m
H

g
-1) 

18-35 yrs 
1.34±0.28 

reference 
 

reference 
 

reference 
 

36-55 yrs 
1.31±0.30 

-0.04 (-0.14,0.06) 
0.42 

-0.03 (-0.14,0.07) 
0.55 

0.00 (-0.18,0.18) 
0.96 

56-70 yrs 
1.29±0.34 

-0.06 (-0.16,0.05) 
0.29 

-0.04 (-0.16, 0.08) 
0.55 

0.01 (-0.20,0.21) 
0.96 

dC
A

 G
ain (cm

.s -1. m
m

H
g
-1) 

18-35 yrs 
0.89±0.23 

reference 
 

reference 
 

 
 

36-55 yrs 
0.82±0.22 

-0.09 (-0.16,-0.02) 
0.01 

-0.09 (-0.16,-0.01) 
0.02 

-0.05 (-0.17,0.08) 
0.45 

56-70 yrs 
0.70±0.18 

-0.20 (-0.28,-0.13) 
<0.001 

-0.18 (-0.27,-0.10) 
<0.001 

-0.22 (-0.36,-0.08) 
0.002 

dC
A

 Phase (radians) 
18-35 yrs 

0.39±0.28 
reference 

 
reference 

 
reference 

 
36-55 yrs 

0.35±0.32 
-0.007 (-0.10,0.08) 

0.88 
-0.001 (-0.09,0.09) 

0.98 
-0.004 (-0.18,0.17) 

0.96 
56-70 yrs 

0.39±0.24 
0.01 (-0.08,0.11) 

0.78 
0.02 (-0.09,0.14) 

0.67 
0.10 (-0.09,0.29) 

0.29 
dC

A
 C

oherence 
18-35 yrs 

0.67±0.1 
reference 

 
reference 

 
reference 

 
36-55 yrs 

0.65±0.1 
-0.02 (-0.05,0.02) 

0.34 
-0.02 (-0.06,0.01) 

0.20 
-0.02 (-0.07,0.04)  

0.55 
56-70 yrs 

0.70±0.1 
0.03 (-0.01,0.06) 

0.18 
0.01 (-0.03,0.05) 

0.59 
0.02 (-0.05,0.08) 

0.58 
BR

S G
ain (m

s/m
m

H
g) 

18-35 yrs 
5.99±2.96 

reference 
 

reference 
 

reference 
 

36-55 yrs 
3.57±2.27 

-2.18 (-3.00,-1.36) 
<0.001 

-1.85 (-2.70,-0.99) 
<0.001 

-0.54 (-1.67,0.58) 
0.34 

56-70 yrs 
3.01±2.06 

-2.86 (-3.72,-1.99) 
<0.001 

-2.21 (-3.20,-1.22) 
<0.001 

-0.60 (-1.87,0.67) 
0.35 

BR
S Phase (radians) 
18-35 yrs 

-0.78±0.42 
reference 

 
reference 

 
ref reference 

 
36-55 yrs 

-1.11±0.56 
-0.31 (-0.48,-0.14) 

<0.001 
-0.31 (-0.49,-0.13) 

0.001 
-0.20 (-0.50,0.09) 

0.18 
56-70 yrs 

-1.22±0.61 
-0.44 (-0.60,-0.25) 

<0.001 
-0.43 (-0.63,-0.22) 

<0.001 
-0.28 (-0.61,0.06) 

0.10 
BR

S C
oherence 

18-35 yrs 
0.70±0.13 

reference 
 

reference 
 

reference 
 

36-55 yrs 
0.64±0.11 

-0.06 (-0.09,-0.02) 
0.004 

-0.06 (-0.10,-0.02) 
0.003 

-0.05 (-0.11,0.14) 
0.13 

56-70 yrs 
0.67±0.11 

-0.03 (-0.07,0.01) 
0.13 

-0.04 (-0.09,-0.01) 
0.11 

0.02 (-0.05,0.09) 
0.60 
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Table 6.3: Power spectral analysis of both dynamic cerebral autoregulation and 

baroreflex sensitivity during 0.10 Hz squat stand manoeuvers.  

 

 Age categories ANOVA  
 18-35 yrs 

(young) 
N=93 

36-55 yrs 
(middle age) 

N=62 

56-70 yrs 
(old age) 

N=51 

  

Dynamic cerebral autoregulation 
BP power 
(mmHg2) 

215±128 172±105 140±124 0.001  

MCAv power 
(cm/sec2) 

166±97 132±91 60±41 <0.001  

Baroreflex sensitivity 
R-R interval 
power (ms2) 

8916±6932 4390±5190 3146±3991 <0.001  

SBP power 
(mmHg2) 

474±368 412±299 470±429 0.55  

 

Values are mean±SD. Abbreviations; BP, blood pressure; MCAv, middle cerebral 

artery velocity; SBP, systolic blood pressure. 
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Figure 6.1: Relationship between dynamic cerebral autoregulation and baroreflex 

sensitivity during 0.10 Hz squat stand manoeuvres. Data presented as individual data 

points with R
2 
and P values.     
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6.5 Discussion  
 

The aims of the current study were to (i) examine the impact of sex, cardiorespiratory 

fitness and the presence of CVD risk factors on dCA and cardiac BRS over the life 

span; and (ii) explore the relationships between cardiac BRS and dCA whilst 

controlling for age and sex. The data indicates that dCA, measured using repeated 

squat stand manoeuvres, is not impaired with age, and not impacted by sex, fitness or 

the presence of CVD risk factors. Cardiac BRS was reduced with aging, and displayed 

an inverse relationship with TFA gain, but no relationship with any other parameter 

of dCA. 

Ageing is a well-established principle risk factor for cerebrovascular disease and 

complications. A number of cerebral hemodynamic parameters have been shown to 

change with age, including reductions in CBF volume and CBFv (Krejza et al., 1999, 

Ainslie et al., 2008b), yet the data from the current study suggest that the intrinsic 

ability of cerebral vessels to maintain stable flow despite changes in BP appears to be 

unaffected by ageing. The ability of the cerebrovasculature to buffer these changes in 

BP represents a vital defence mechanism protecting the brain (Claassen and Zhang, 

2011), and data from this present study is in agreement with that of smaller previous 

studies which identified no reduction in dCA with ageing using both squat stand 

manoeuvres (Oudegeest-Sander et al., 2014, Smirl et al., 2014a, Xing et al., 2017) or 

other dCA techniques (Carey et al., 2000, Yam et al., 2005, Dineen et al., 2011). The 

data presented in this study extends these findings of preserved dCA with ageing, 

showing that dCA is not different between sexes when age is considered, and is also 

unaffected by CVD risk factors during low frequency squat stand manoeuvres.  With 

the cohort of participants and based on the risk factors included within this study, no 
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evidence of any decline in dCA with increased risk of CVD was observed. Central 

obesity, hypertension, hypercholesterolemia and T2DM represent major risk factors 

in the development of systemic vascular disease and complications (Seven, 2015) 

including significantly increased risk of cerebrovascular disease (Pinto et al., 2004, 

Kivipelto et al., 2005, Law et al., 2009). Each risk factor, individually or collectively 

is associated with endothelial dysfunction, increased arterial stiffness, alongside a 

range of other vascular abnormalities (Stapleton et al., 2008). Despite these vascular 

changes, no reduction in dCA was identified when using forced BP oscillations 

induced by squat stand manoeuvres. In chapter 3, a small sample of individuals with 

increased CVD risk had a similar dCA to young healthy individuals, with this present 

study confirming the original observation but on a larger scale. To date, no other 

studies have assessed dCA in a population at high risk of CVD. Studies utilising the 

same dCA methods have observed no difference in patients with chronic obstructive 

lung disease (Lewis et al., 2019) or in early stage Alzheimer’s (Claassen et al., 2009a). 

Collectively, the data from this study suggests that despite the vascular 

maladaptation’s that are associated with CVD risk factors, the intrinsic ability of the 

cerebral blood vessels to maintain stable flow is persevered.               

Elevated cardio-respiratory fitness is associated with increased resting CBFv values 

(Ainslie et al., 2008b) and better CVR (Bailey et al., 2013), but its association with 

dCA is less conclusive. We have provided evidence that indicates that those 

individuals with increased cardio-respiratory fitness (VO2max) do not have an 

improved ability to counteract acute, large changes in BP. Interestingly, two previous 

studies concluded higher VO2max was related to attenuated dCA (Lind-Holst et al., 

2011, Labrecque et al., 2017) whereas, Aengevaeren et al. (2013) identified no effect 

of VO2max on dCA. Disparities in results are likely down to differences in dCA 
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assessment methods, further stressing the importance of following previously 

published guidelines (Claassen et al., 2016). This current study has provided evidence 

in a demographically varied cohort, using a single method of dCA assessment with 

TFA, suggesting that better VO2max does not translate to enhanced dCA. The 

physiological connection between VO2max and dCA is unknown but likely to be a 

complex multifactorial relationship. Indeed, increased VO2max is associated with lower 

stroke risk (Lee and Blair, 2002), improved cognition (Brown et al., 2010) and all 

round lower mortality risk from CVD (Kodama et al., 2009), therefore raising the 

concern that either dCA mechanisms are unrelated to such clinical events, or the use 

of TCD and TFA parameters are not sufficient enough to categorically understand 

dCA.  

Data from this study further supports a wealth of research that shows cardiac BRS 

declines with age (Monahan, 2007, Smirl et al., 2014a, Xing et al., 2017). Similarly, 

the data in this present study provides additional evidence that CVD risk factors are 

linked to reduced cardiac BRS (Skrapari et al., 2007, Madden et al., 2010, Sakamoto 

et al., 2019). The relationship between dCA and cardiac BRS however, has proven 

complex. Understanding whether enhanced BP control leads to better control of CBF 

or vice visa is of importance in understanding how these regulatory mechanisms 

operate, and whether they should be the focus of interventions. The maintenance of 

BP and CBF with postural changes, and thus the avoidance of dizziness or syncope, 

depends on the action of baroreflexes to compensate (James and Potter, 1999). 

Additionally, having an efficient and fast acting BP control (cardiac BRS) could 

potentially limit BP fluctuations that are thus transferred into the cerebral vascular 

system.  This present study provides evidence showing that cardiac BRS parameters 

show no relationship with dCA normalised gain and dCA phase during forced BP 
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oscillations, but does appear to have a relationship with dCA (absolute) gain. This 

relationship demonstrates that a reduced cardiac BRS gain and BRS phase is 

associated with a reduced dCA (absolute) gain. This implies that the lower an 

individual’s BRS (i.e. reduced BP control), the more efficient their dCA is at 

counteracting large fluctuations in BP.  As previously mentioned, it is important to 

consider that the parameter of gain reflects the absolute change in CBFv, whereas 

when normalised to account for baseline CBFv and BP (normalised gain) (van Beek 

et al., 2008) no relationship was present. Therefore, the data in this study outlines that 

despite having a significantly greater BP control at a younger age, this does not alter 

how well the cerebral vessels regulate blood flow during BP challenges. Nevertheless, 

an inverse relationship between dCA (absolute) gain and cardiac BRS is not 

completely surprising, given that one previous study using TCD to measure rate of 

regulation and autoregulation index for dCA, and the modified Oxford technique to 

estimate BRS identified an inverse relationship between the two processes (Tzeng et 

al., 2010). On the other hand, previous studies utilising the same methods adopted in 

this present chapter concluded no relationship between dCA and BRS parameters 

(Aengevaeren et al., 2013, Smirl et al., 2014a). Referring back to the original Lassen 

curve of CA, CBF remained largely constant independent of BP changes between 60 

to 150 mmHg (Lassen, 1959), although this is an often challenged observation (Lucas 

et al., 2010, Tan, 2012). To what extent a plateau region of CBF over a given change 

in BP remains elusive. However, if a plateau region does exists or is similar to that 

outlined by Lassen (1959), this indicates that the baroreflex, as an important 

mechanism controlling short-term BP regulation may have negligible input in 

regulation short term CBF (Tzeng et al., 2010).  Identifying the fundamental 

relationship between this functional role of the cardiac baroreceptors and  dCA is of 



124 
 

clinical significance, primarily because baroreflex impairment is an adverse 

prognostic indicator for both cardiac and cerebrovascular disease (Tzeng et al., 2010).    

6.6 Conclusion 
 

In conclusion, this study has provided data from a wide cohort of participants, which 

shows that dCA remains intact during the ageing process of 18-70 years. The data 

presented in this study suggests that common risk factors for CVD are not impairing 

dCA and that having increased cardio-respiratory fitness does not translate to more 

efficient dCA. Finally, this present study shows that there is a relationship between 

cardiac BRS and dCA (absolute) gain, and that this relationship implies that a reduced 

cardiac BRS is associated with an enhanced dCA, but this relationship is not present 

when normalised for baseline values (normalised gain).   
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Chapter 7: Synthesis of Findings 
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7.1 Aims of the thesis  
 

The work described in the present thesis was designed to investigate the impact of 

rIPC, using acute (one bout) of rIPC as well as repeated bouts for 7 days daily and 8-

week (3 x per week), on both peripheral and cerebrovascular function in individuals 

at risk of CVD. Given the lack of change in cerebral autoregulation as an early marker 

of cerebrovascular function with the interventions implemented within this thesis, the 

final study was designed to investigate whether age, sex, cardiorespiratory fitness or 

CVD risk factors affected cerebral autoregulation.   

 

7.2 Summary of Major Findings 
 

The novel work undertaken in this thesis has generated new knowledge for the 

literature and for clinical practice. The main findings of this thesis are: 

1. In chapter 3, a single bout of rIPC did not influence CBFv or cerebrovascular 

function acutely in healthy individuals, or those at increased CVD risk. 

2. Chapter 4 demonstrated that in a randomised pilot study, the directional changes 

suggest peripheral vascular endothelial function can be enhanced with 7-day daily 

rIPC in T2DM. 

3. Chapter 5 identified that combining aerobic exercise with rIPC for 8 weeks does not 

mediate greater changes in cerebral and peripheral vascular function compared to a 

rIPC only intervention.  

4. In chapter 6, dCA measured using squat stand manoeuvres and TFA was unaffected 

by age, CVD risk factors and cardio-respiratory fitness and operates independent of 

the baroreceptors.    

 



127 
 

7.3 General discussion of major findings  
 

7.3.1 The Dose of rIPC 
 

rIPC can be administered as a single dose (i.e. 4 x 5 min bouts of forearm ischemia 

and reperfusion) and has shown cardioprotective benefits in the myocardium and the 

peripheral vasculature (Botker et al., 2010, van den Munckhof et al., 2013). Increasing 

the ‘dose’ of rIPC by simply increasing the amount of times the ischemia-reperfusion 

cycles are applied was investigated throughout the current thesis. The data from this 

thesis suggests that increasing the dose of rIPC by either increasing the number of 

bouts (chapters 4 and 5) and/or or combing with a potentially mutually beneficial 

intervention of exercise training (chapter 5) has little impact on improving peripheral 

vasculature or cerebrovascular outcomes in individuals with CVD risk factors.  

One of the novel aspects of this thesis was to examine the impact of rIPC on the 

cerebrovasculature. Chapter 3 suggested that an acute bout of rIPC had no immediate 

(i.e. during the first window of protection) effect on cerebrovascular function. Whilst 

an acute bout of rIPC has been shown previously to have a positive impact on 

endothelial IR injuries in older individuals and those with congestive heart failure (van 

den Munckhof et al., 2013, Kono et al., 2014, Thijssen et al., 2016a), there is evidence 

to suggest that there is also little impact on vascular function measured using the FMD 

technique (Enko et al., 2011, Moro et al., 2011), so no acute effect may not be 

surprising. Nevertheless, increasing the dose by performing more bouts of rIPC over 

days (chapter 4) or weeks (chapter 5) also had little impact on cerebrovascular function. 

In the present thesis the largest dose was administered in chapter 5, the dose of rIPC 

was 3 x per week, thus 24 bouts in total over an 8 week period. In comparison to the 

previous studies which have observed improvements in cerebrovascular markers and 
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stroke reoccurrence with daily and/or twice daily rIPC bouts over a longer intervention 

period (~ 300 individual bouts) (Meng et al., 2012, Meng et al., 2015, Mi et al., 2016, 

Wang et al., 2017) the dose applied in the current thesis is still a relatively small. 

Therefore, research studies exploring the impact of larger rIPC doses (duration of 

intervention and frequency of bouts) or investigating the optimal dose are required to 

further explore the impact of rIPC of cerebrovascular health.  

Large doses of rIPC have typically been employed to improve parameters of the 

cerebral circulation but smaller doses (duration of intervention and frequency of bouts) 

have been shown to be effective in the peripheral vasculature. Chapter 5 in the present 

thesis supports that of two previous studies which show that FMD can be improved in 

as little as 7 days (7 rIPC bouts) (Luca et al., 2013, Jones et al., 2014) in individuals 

with T2DM that likely have vascular dysfunction. Smaller doses of rIPC have also 

elicited improvements in FMD with in healthy individuals, Jones et al. (2015) 

demonstrating that 6 bouts spread over two weeks as well as 24 bouts (3 x per week 

for 8 weeks) of rIPC also results in enhanced FMD. It is plausible that individuals with 

vascular dysfunction may require a larger dose of rIPC to show changes in vascular 

function and further research studies examining this concept or warranted. 

Interestingly, the ability of rIPC to provide protection against a temporary endothelial 

IR injury was not consistent within this thesis, whereas a small number of studies have 

observed sustained protection from rIPC to the same IR injury model used in this thesis 

(Kharbanda et al., 2001, Kharbanda et al., 2002, Luca et al., 2013). In Chapter 4, 

following 1 week of daily rIPC, the dysfunction following an IR injury was reduced 

compared to that of pre intervention values. However, in study 5, with 3 rIPC bouts 

per week for 8 weeks, post IRI FMD was unchanged following both interventions. 
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Such findings further support the call for future research to target identifying the 

optimal dose of rIPC.   

To what extend the proximity of the stimulus to the target area is unknown. Whether 

rIPC applied to a limb, as was the case throughout this thesis, is too far away from 

target area (cerebral blood vessels) may be a potential explanation to the lack of 

adaptation from rIPC in chapters 3, 4 and 5 of this thesis. On the other hand, given the 

growing body of evidence suggesting that rIPC induces humoral and neural factors 

that translate into systemic changes/adaptations (Heusch et al., 2015, Thijssen et al., 

2016a), the site/location in which the rIPC is applied should not necessarily determine 

the extent of protection or adaption in the target area. Intriguingly, evidence from a 

rodent model showed that direct IPC was less effective and providing protection 

against renal IR compared to rIPC (Oral et al., 2018). Furthermore, human studies, 

including the data from chapter 4 of this thesis, have shown no difference between 

remote and local IPC (Jones et al., 2014) in the peripheral vascular beds but to do what 

extent this also applied to the cerebral vascular bed in unknown, and is likely to be 

limited to animal models. Alternative strategies to induce IPC-like stimulus in terms 

of the fluctuations blood flow and shear stress patterns may be of potential interest 

including; cold exposure  (Brown et al., 2003), hypoxia (Harris et al., 2013) and water 

immersion  (Carter et al., 2014a) certainly warrant further investigation. 

7.3.2  rIPC in clinical populations 
 

An important consideration when executing any intervention is the population who 

are targeted. Numerous rIPC interventions have focused on individuals who are 

deemed fit and healthy with no current health risk (Kimura et al., 2007, Luca et al., 

2013, Jones et al., 2014, Jones et al., 2015, Lindsay et al., 2017) or with various 
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diseases (Meng et al., 2012, Liang et al., 2015, Meng et al., 2015, Pryds et al., 2017, 

Wang et al., 2017) with few studies aimed at those individuals deemed at risk. Whether 

the effectiveness of rIPC is influenced by the health status of an individual, or the 

health of the endothelium is unclear. Therefore, the individuals primarily targeted 

within the current thesis were those who are deemed at risk of CVD, therefore 

examining the impact of rIPC as an early intervention to improve vascular health and 

reduce disease risk was a primary focus. A recent study in hypertensive patients 

suggested that 30 days of daily rIPC (30 bouts) was successful in reducing BP and also 

improved micro-vessel endothelial function, thus reducing their risk of hypertension 

complications (HyTong et al., 2019). Interestingly such reductions in BP were not 

evident in chapters 4 and 5 of this thesis, but in chapters 4 and 5 the total dose and 

rIPC was lower and not all individuals were hypertensive nor had any know 

cardiovascular or cerebrovascular disease. Taken together, it is possible that those 

individuals diagnosed with a CV disease (e.g. hypertension) or post CV event (e.g. 

stroke) may benefit the most from a rIPC intervention (of a big enough dose). Future 

studies examining the effectiveness of rIPC interventions in healthy, at risk of CVD, 

with overt risk factors and with CVD or cerebrovascular disease are required.   

 

7.3.3 Interventions and cerebrovascular function 
 

Interventions that target CBF and cerebrovascular function are of paramount 

importance in preventing and treating cerebrovascular health, cognitive decline, 

vascular dementia and stroke (Kalaria et al., 2016). Interventions, such as exercise but 

also pharmacological and lifestyle interventions have been implemented targeting the 

improvement of cerebrovascular function but findings on the impact of such 

interventions have been inconsistent as to whether they can improve CBF or 
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cerebrovascular function (Akazawa et al., 2012, Murrell et al., 2013, Drapeau et al., 

2019, Lewis et al., 2019). In the present thesis the addition of exercise to the rIPC 

intervention in chapter 5 did not mediate any changes in the cerebrovascular function. 

Exercise improves systemic cardiovascular function, but specific to the brain exercise 

is thought to increase shear stress and signalling cascades as well as enhances neural 

activation and metabolism (Lucas et al., 2015). As outlined in earlier chapters, to the 

best of our knowledge no study to date has reported an improved dCA measured using 

TFA following an exercise training intervention. Cross-sectional studies have 

identified no beneficial adaptations to dCA with habitual exercise training 

(Aengevaeren et al., 2013, Perry et al., 2019). Acute exercise elicits increases in CBF 

up to around 70% VO2max before hyperventilation  induced hypocapnia either plateaus 

or reduces CBF (Lucas et al., 2015, Smith and Ainslie, 2017). These increases in blood 

flow and shear stress patterns may contribute to enhanced cerebrovascular function 

through improved endothelium function (Smith et al., 2019), but the extent to which 

this can contribute to enhanced dCA remains unanswered.   

An additional factor which must be considered when assessing cerebrovascular 

function using dCA is what exactly an improved dCA presents itself as. Classically, 

the consensus has focused on improved dCA would be represented by TFA as reduced 

gain and/or improved phase (van Beek et al., 2008, Claassen et al., 2016), however 

given the lack of  published data that shows any improvements in dCA using similar 

techniques (squat-stand manoeuvres and TFA) adopted throughout this thesis, a lot of 

questions remained unanswered. Theoretically, the argument could be made that for 

dCA to truly be improved both parameters (gain and phase) should display 

improvements and physiologically they may be true. If an individual improves the 

temporal alignment of BP-CBF oscillations (phase) – this could in turn result in a 
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reduced BP-CBF magnitude (gain).  Nevertheless, this all remains speculative and 

future work is required to accurately understand the metrics of dCA with TFA, 

outlining if the metrics are associated with each other, and if one parameter of dCA is 

more physiologically ‘important’ than another.               

Given the lack of consistent changes in exercise and lifestyle interventions on 

cerebrovascular function it might not be surprising that a rIPC intervention did not 

mediate a beneficial effect.   One the other hand, given the previous remarkable finding 

in stroke patients of increased CBF, reduced stroke recurrence and decreased white 

matter hyperintensities (Meng et al., 2012, Meng et al., 2015, Mi et al., 2016, Wang et 

al., 2017), then one might expect some functional cerebrovascular changes. The 

experimental studies in this thesis attempted to extend the understanding of rIPC by 

investigating functional parameters of the cerebral circulation, to try and understand 

how rIPC may elicit such adaptations. The data from these chapters show that rIPC 

did not alter CBFv or any of the aspects of cerebrovascular function. As discussed 

above this could be explained by rIPC dose or evidence of disease but one other 

potential explanation could be related to how cerebrovascular function was assessed 

in the current thesis.    

7.3.4 Measurements of cerebrovascular function 
 

TCD offers a non-invasive and high temporal resolution measurement technique for 

the assessment of CBFv and together with measurements of BP, expired CO2 and 

neural activity can provide information on cerebrovascular function. Throughout this 

thesis, TCD was utilised to assess cerebrovascular function using a number of 

assessment techniques set out by Willie et al. (2011). The measurement of dCA was 

performed throughout all experimental studies in this thesis as well as being the 
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primary focus in chapter 6. dCA represents an essential protective mechanism 

ensuring stable blood flow to the brain (van Beek et al., 2008), therefore maintaining 

good or even improving dCA is likely to be of benefit. Measurement and assessment 

of dCA however is not straightforward and whilst attempts have been made in order 

to standardise measurement techniques when using TCD together with BP to 

understand cerebral autoregulation and to improve repeatability (Claassen et al., 2009b, 

Meel-van den Abeelen et al., 2014, Claassen et al., 2016, Simpson and Claassen, 2018), 

there still appears to be a range of measurement technique in the literature.. It is 

possible that these techniques or protocols are not sensitive enough to assess changes 

in dCA. It is noteworthy that in an attempt to obtain a more rounded dCA profile, in 

chapter 5 assessment of MCAv in response to spontaneous BP fluctuations was also 

included in the testing protocol alongside the forced BP oscillation in the squat stand 

manoeuvres. Nevertheless as seen in chapter 5, neither measurements of 

autoregulation were changed following either intervention.        

In chapters 3, 4 and 5, none of the interventions used mediated any change in dCA. 

Whilst this could be as a direct consequence of the intervention, it is also possible that 

either the physiological variable being targeted is not responsive to the intervention 

and /or the measurement technique is insensitive. As previously mentioned throughout 

the thesis, there is consistent evidence of impairment in peripheral vascular function 

with CVD risk, yet no such evidence is available regarding dCA, a key homeostatic 

mechanism. The results from chapter 6 suggest that CVD risk factors are not 

influencing dCA when assessed using squat stand and TFA and that ageing does not 

alter dCA from 18-70 years. Based on the findings from this chapter, should dCA be 

a target for interventions if it is not impaired with ageing (unlike CBF). There are also 

studies that have utilised the same squat stand protocol with TFA as employed within 
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the current thesis that show no impairment in dCA in heart transplant recipients (Smirl 

et al., 2014a), chronic obstructive lung disease (Lewis et al., 2019) or stage 2 

Alzheimer’s (Heus et al., 2018). Future research studies are required to examine the 

sensitivity of these techniques in assessing dCA or alternative measurement 

techniques or protocols need to be developed to understand changes in cerebral 

autoregulation with age and/or intervention.  

7.4 Methodological Considerations and Limitations  
 

There are a number of strengths in the methodology of this thesis. The participants 

recruited for each of the experimental studies in this study give a good representation 

of the general population in the UK. Chapters 3, 4, 5, and 6 all contain individuals 

with established risk factors for CVD, chapter 4 focuses on individuals diagnosed with 

T2DM and chapters 3 and 6 also included a cohort of both young and old healthy and 

active individuals. Based on this, the findings presented from this thesis are applicable 

to a wide cohort and not limited to one participant group.  

Each study of this thesis ensured strict inclusion and exclusion criteria in addition to 

the control of diet and exercise prior to and during laboratory visits. Importantly, each 

measurement applied within this thesis was performed adhering to the most recent 

published guidelines for that specific measurement. For example, FMD assessments 

were undertaken according to the latest peer-reviewed consensus guidelines (Thijssen 

et al., 2011a), together with the use of custom-designed edge-detection and wall-

tracking analysis software, the accuracy, validity and prognostic value of FMD 

outcomes were maximised. dCA measurements were all performed following cerebral 

autoregulation network recommendations (Claassen et al., 2016). Another major 

strength to the work contained within this thesis was the research design of the 
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experimental studies. Chapters 3 and 5 include intervention trials including an 8 week 

intervention, and chapter 4 included a randomised control trial. Lastly, chapter 6 

included a relatively large sample size, incorporating a demographically varied cohort 

of individuals in an in order to describe changes in dCA and BRS.  

Despite these methodological strengths, there are a number of limitations contained. 

The most notable limitation within this thesis is the use of TCD for the measurement 

of CBF and cerebrovascular function. As is frequently discussed in a number of 

reviews (Willie et al., 2011, Ainslie and Hoiland, 2014), TCD provides measurement 

of CBFv as an index of CBF, as TCD does not provide feedback regarding vessel 

diameter. Changes in vessel diameter can affect measurement accuracy of CBF with 

TCD (Heus et al., 2018). CBFv is an adequate surrogate of absolute flow only if the 

insonated vessel maintains constant vessel diameter across time and experimental 

conditions (Ainslie and Hoiland, 2014), and it is unlikely that acute rIPC induced a 

vessel diameter change, but chronic diameter changes connect be excluded. The use 

of additional imaging techniques such as MR arterial spin labeling, SPECT, and 

Xenon-CT would overcome such limitations, however their temporal resolution is 

currently too low to assess the dynamics of dCA (Heus et al., 2018) and they are either 

expensive or invasive techniques. The MCA diameter is unlikely to change under 

resting conditions or during moderate changes in BP (Serrador et al., 2000), similar to 

that induced during repeated squat stand manoeuvres. MCA diameter alterations in 

responses to changes in blood CO2 content remains a highly controversial topic 

(Brothers and Zhang, 2016, Hoiland and Ainslie, 2016). Previous work utilising MRI 

identified that with increases of PETCO2  of  ≈8 mmHg MCA diameter remains 

unchanged (Serrador et al., 2000), however more recent studies using higher resolution 

MRI ( 3 and 7 Tesla) have shown both dilation and constriction of the MCA during 
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hyper- and hypocapnia (Coverdale et al., 2014, Verbree et al., 2014, Coverdale et al., 

2015). Certain studies have highlighted that MCA diameter may remain constant 

during modest changes in PETCO2 but no definitive threshold has yet been described 

(Verbree et al., 2014). Based on this uncertainty it is important to acknowledge that 

the MCAv data during hypercapnia may have underestimated flow as a result of 

potential MCA diameter changes.    

The model employed to induce a temporary endothelial IR injury in chapters 4 and 5 

is used only as a surrogate index to cardiac tissue. Nonetheless, this is a frequently 

used model to assess endothelial ischemia reperfusion injuries in research studies (van 

den Munckhof et al., 2013, Carter et al., 2014b, Thijssen et al., 2019a). Moreover, 

applying this technique significantly decreases plasma nitrite and plasma nitrate 

concentrations, indicating that any change in endothelial IR injury is due to a reduction 

in NO bioavailability (Aboo Bakkar et al., 2018) and thus provides some mechanistic 

insight.  

In chapter 6, whilst the study sample size was the largest to describe dCA to date, there 

are still some weaknesses/limitations of the study. Cross sectional study designs are 

limited in their ability to confirm causality/mechanisms. Additionally, despite the 

sample size being relatively large, it is still possible that the data lacked the statistical 

power to detect differences due to effect sizes of the measurements included.    

 

7.5 Recommendations for clinical practise and future studies 
 

Whilst the phenomenon of IPC has come a long way since it was first identified by 

Murry et al in 1986, it still has some way before it is implemented clinically. This 

thesis aimed to answer questions regarding the impact of rIPC as an intervention in 
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individuals at risk of CVD and explore its effects on systemic vascular function. rIPC 

has the potential to offer a relatively low cost, non-invasive and easily applicable 

intervention to improve a range of parameters of cardiovascular health. Given the 

improvements in peripheral vascular function in chapter 4 and because endothelial 

dysfunction represents a significant event in the atherosclerotic cascade and predicts 

cardiovascular and cerebrovascular events (Inaba et al., 2010). The findings from 

chapter 4 suggest that rIPC has the potential to improve endothelial function in a 

patient group with likely endothelial dysfunction and at higher risk of vascular 

complications.  

 

It is too soon to recommend rIPC interventions for routine clinical practice based on 

the research evidence form this thesis and literature to date. Numerous, large scale 

phase II, III and IV clinical trials are required in a variety of clinical cohorts to truly 

understand the effects of the interventions and to gain better insight into the 

mechanisms mediating such changes. Nevertheless, based on the evidence presented 

in this thesis, below are the key areas in which future studies can build upon the work 

presented here. 

1. Aim to identify the optimal dose of rIPC in terms of duration (e.g. weeks or 

months) and frequency (e.g. daily or weekly). By designing large scale trials 

with a range of different rIPC intervention protocols, this should in turn 

identify the most effective rIPC protocol which is a crucial step should rIPC 

be implemented clinically.  

2. Establish whether similar to exercise, rIPC exerts it effects differently 

depending on health status. Expanding on the work contained within this thesis, 

future research should open up to exploring the rIPC effects on a broad range 
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of clinical groups, and gain an understanding of how different clinical 

conditions respond differently.     

3. Attempt to further understand the mechanism mediating the rIPC adaptations. 

By designing mechanistic focused studies, future work should aim to identify 

the mechanisms involved in the protective effects of rIPC as well as its 

association with enhanced vascular function.     

4. Building on chapter 4, future trials with adequate statistical power are required 

to identify if rIPC has the ability to improve vascular outcomes in T2DM. 

Chapter 4 has laid the foundations for a large scale clinical trial by 

demonstrating the positive directional changes in vascular function in a pilot 

study. Future randomised control trials, which a sufficiently powered 

statistically should focus on rIPC in T2DM.   

5. Based on the findings in chapter 6, further understanding of factors that can 

influence dCA and identify in what disease states dCA is impaired or 

attenuated. By exploring dCA in a range of clinical groups, not just limited to 

CVD risk as in this thesis, researchers will be able to identify when it is 

impaired, which may then potentially assist in understanding the exact 

mechanisms contributing to dCA,     
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