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Abstract
The quantitative adverse outcome pathway (qAOP) concept is gaining interest due to its potential regulatory applications in 
chemical risk assessment. Even though an increasing number of qAOP models are being proposed as computational predic-
tive tools, there is no framework to guide their development and assessment. As such, the objectives of this review were 
to: (i) analyse the definitions of qAOPs published in the scientific literature, (ii) define a set of common features of existing 
qAOP models derived from the published definitions, and (iii) identify and assess the existing published qAOP models and 
associated software tools. As a result, five probabilistic qAOPs and ten mechanistic qAOPs were evaluated against the com-
mon features. The review offers an overview of how the qAOP concept has advanced and how it can aid toxicity assessment 
in the future. Further efforts are required to achieve validation, harmonisation and regulatory acceptance of qAOP models.

Keywords  Predictive toxicology · Quantitative adverse outcome pathway (qAOP) · Computational approach · Bayesian 
network · Response-response relationship · Key event relationship

Introduction

Since its establishment in 2010 (Ankley et al. 2010), the 
adverse outcome pathway (AOP) framework aimed to 
enhance efficiency and transparency in chemical safety 
assessment (OECD 2018). Recent progress in the develop-
ment of AOPs covers a spectrum of novel endpoints and 
chemicals/categories including nanoparticles and other 
classes of stressors, e.g. microplastics and radiation (Chau-
han et al. 2019; Jeong and Choi 2019; Jeong et al. 2018). 
Furthermore, new ways of deriving AOPs have been pro-
posed such as data mining, deep learning or a combination 
of machine learning techniques (Carvaillo et al. 2019; Jeong 
et al. 2019; Rugard et al. 2020).

In addition to the increasing numbers of linear (quali-
tative) AOPs, AOP networks are being extensively 
applied and have considerable value. An AOP network 
is defined as a set of linear AOPs sharing common events 
and, therefore, representing a better depiction of bio-
logical processes (Knapen et al. 2018; Villeneuve et al. 
2018). Examples of AOP network applications include: 
mapping chemicals to linear AOPs to identify common 
interactions (Aguayo-Orozco et al. 2019); understanding 
the mechanistic pathways leading to mitochondrial dys-
function (Dreier et al. 2019); identification of common 
key events (KEs) for chemical screening and integrated 
testing strategy for developmental neurotoxicity (Li et al. 
2019); chemical assessment using biologically based 
testing batteries (Angrish et al. 2017); and the develop-
ment of an exploratory AOP database to derive “putative” 
AOPs (Pittman et al. 2018). Moreover, progress has been 
made with regard to the use of topological features in the 
network, such as the degree to which the most common/
highly connected paths within an AOP network can be 
identified (Pollesch et al. 2019; Spinu et al. 2019). Addi-
tionally, many molecular initiating events (MIEs) have 
been thoroughly modelled in silico due to their ability to 
describe the interaction between the stressor and the bio-
logical receptor at the molecular level that induces adverse 
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effects (Allen et al. 2016). In silico models of MIEs are 
represented by 2-D and 3-D structural alerts and (Quanti-
tative) Structure–Activity Relationships (Allen et al. 2019; 
Cronin and Richarz 2017; Mellor et al. 2016) and have 
been incorporated in mechanistically based toxicokinetic/
toxicodynamic models that evaluate exposure–response 
relationships (Gao et al. 2019; MacKay et al. 2013).

Formerly, various types of AOPs were distinguished 
from qualitative to semi-quantitative and quantitative AOPs 
(qAOPs) (Perkins et al. 2015; Villeneuve et al. 2014). While 
qualitative AOPs can be used to guide chemical decision-
making during the development of novel compounds includ-
ing integration of diverse lines of evidence, prioritisation 
of testing strategies and screening of chemicals, design and 
development of fit-for-purpose assays, qAOP models can 
be seen as tools for quantitative risk assessment of chemi-
cals (Carusi et al. 2018; Coady et al. 2019; Villeneuve et al. 
2014). Hence, each type of AOP has potential utility in 
chemical risk assessment (Hecker and LaLone 2019). The 
concept of a qAOP as a predictive computational model is 
gaining interest due to its ability to address the question of 
how much perturbation, at any of the upstream KEs, and 
under what conditions, the adverse outcome (AO) is likely to 
occur (Conolly et al. 2017; Patlewicz et al. 2015). A qAOP 
helps to define the biological tipping point(s) along the 
pathway, and the probability or magnitude with which those 
tipping points are exceeded (Conolly et al. 2017; LaLone 
et al. 2017). Importantly, several international workshops 
have identified critical aspects in developing a qAOP model 
including the quantification of key event relationships 
(KERs), data availability, defining the threshold for inducing 
an effect, incorporation of modulating factors (e.g. genetic 
predisposition, previous exposures), establishment of math-
ematical rules for the KERs, parametrisation of non-linear 
models, and model validation and implementation (Klein-
streuer et al. 2016; Leist et al. 2017; Wittwehr et al. 2017). 
The extent to which these challenges are addressed by avail-
able qAOP models is not covered by the scientific literature. 
On the other hand, whilst knowledge is being acquired and 
systematically captured, there is no official guidance pro-
viding a coherent and all-encompassing framework for the 
development and assessment of a qAOP model. The exist-
ing guidance, developed by the Organisation for Economic 
Cooperation and Development (OECD), explains how to 
build evidence for an AOP and this highlights the impor-
tance of the quantitative understanding of the KER as a 
criterion in the assessment of the overall confidence of an 
AOP (OECD 2018). In addition, the OECD guidance on the 
use of AOPs in the development of Integrated Approaches 
to Testing and Assessment (IATA) states that a qAOP can 
help to target a KE and select the appropriate assays for 
test guideline development or refinement to predict the AO 
(OECD 2016).

Focus of this review

The aim of this review was to evaluate the progress made 
in the qAOP concept in chemical safety assessment. The 
specific objectives were: to analyse published definitions 
of qAOPs in the scientific literature and formulate a set 
of common features of a qAOP model; and to assess the 
types of qAOP models based on the identified features 
that utilise probabilistic and mechanistic approaches, as 
well as methods and software tools used for modelling by 
screening relevant scientific literature in the Web of Sci-
ence, Pubmed and Google Scholar databases published 
prior to October 2019.

Computational modelling in the context 
of quantitative adverse outcome pathways

The OECD Guidance document on the use of AOPs in 
IATA (OECD 2016) defines a qAOP as “an assembly of 
KEs supported by descriptions of how the KEs can be 
measured and the accuracy and precision with which the 
measurements are made along with KERs supported by 
quantitative understanding of what magnitude and/or dura-
tion of change in the upstream KE is needed to evoke some 
magnitude of change in the downstream KE”. Despite this 
clear definition, the meaning of qAOPs has often been 
interpreted differently, with various definitions given and, 
as a result, varying expectations of the scientific com-
munity. Screening the scientific literature for the Medi-
cal Subject Headings (MeSH) term “quantitative Adverse 
Outcome Pathways”, 23 publications were found which 
refer to the concept of qAOP (Supplementary Informa-
tion Table S1). The identified definitions were retrieved 
and analysed individually to identify and map a series 
of common features that the authors considered essen-
tial for the development of a qAOP model. Thus, a list of 
five common features for qAOP models was formulated 
encompassing the expectations of the scientific community 
(Table 1). These features help to understand how the mod-
elling of a qAOP has been approached as well as opportu-
nities for improving the modelling process. Related to the 
common features, a set of criteria were identified and used 
to characterise qAOP models published in the scientific 
literature (Tables 2, 3, 4).   

Three conceptual classes of qAOPs have been 
suggested:

1.	 Semi-quantitative/quantitative weight-of-evidence 
(semi-q/qWoE) qAOPs. These utilise quantitative 
weighting and numerical assessments of multiple lines 
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of evidence to rank the confidence in KERs for further 
quantification (Gust et al. 2016; Perkins et al. 2019b). 
For example, to calculate the quantitative confidence 
scoring of KERs of a linear AOP, Bradford Hill con-
siderations (biological plausibility, essentiality, dose–
response concordance, consistency, and analogy) were 

proposed in a conceptual method by Becker et al. (2017), 
while Collier et al. (2016) additionally used metrics 
related to data quality for the KEs.

2.	 Probabilistic qAOPs and qAOP networks. These are 
computational models that incorporate statistical or 
probabilistic approaches such as Bayesian networks 

Table 1   Common features of qAOP models in the scientific literature

a The criteria were used to characterise available qAOP models

Common feature Description Criteriaa

Problem formulation • A qAOP should answer a well-defined question relevant to the 
AO of interest

• The purpose of the model dictates how much mechanistic 
understanding is required, and the way a qAOP should be devel-
oped, validated and used

• Question addressed and/or purpose of model-
ling

• AO studied

Mechanistic knowledge 
and associated data

• The OECD AOP-Wiki can support the development of a qAOP 
model to predict an endpoint of interest. Empirical data for 
model parametrisation, fitting and/or testing can be obtained 
from the description of KERs published in the AOP-Wiki

• Whilst for quantification it is recommended to start with linear 
AOPs, it should not impede quantification of networks or highly 
connected KEs/KERs within an AOP network

• A qAOP model relies heavily on data: not only bioactivity of 
a compound/mixtures but also, measurements of effects at rel-
evant doses/concentrations and appropriate time scales includ-
ing physicochemical properties and molecular descriptors. Data 
may come from a range of in vivo and in vitro studies specifi-
cally designed to test an AOP as a hypothesis and/or retrieved 
from a variety of sources to assist with this process

• Both adjacent and non-adjacent KEs paired as upstream–down-
stream in a KER should be quantified even though each of them 
impacts differently on the modelling process, e.g. in the context 
of Bayesian network modelling. Adjacency refers to whether 
there are other KEs positioned in between of the linear construc-
tion of an AOP or not

• Different biological level of organisations should be quanti-
fied if this is relevant to the AO of interest and available data 
allowed

• Presence of the AOP in the OECD AOP-Wiki
• Type of AOP: linear or network
• Type of chemical model applied to (single 

chemical(s)/mixtures)
• Type of data: in vivo, in vitro, in silico and/or 

other variables
• Dose/concentration–responses
• (D/C–R) and time–responses (T–R)
• Adjacency of KERs: adjacency and non-

adjacency
• Biological levels: cellular, tissue, organ, organ-

ism, population

Quantitative approach • The modelling approaches can vary from being probabilistic to 
deterministic

• The mathematical expression can take various forms including 
linear regressions and ordinary differential equations resulting 
in different graphical shapes, e.g. linear, sigmoidal, Gaussian-
type plots

• Type of quantitative approach

Regulatory applicability • A qAOP model should imply various applications to regulatory 
decision-making and acceptance

• Human health/ecological risk assessment

Additional considerations • These considerations can influence the regulatory approval, 
reduce the uncertainties, and extend the applicability domain of 
the predictions of a qAOP model

• It is not mandatory that the test methods used (models and 
measured endpoints) are adopted/validated following national/
international guidelines. However, they should be performed in 
a quality-controlled environment where relevance of the model 
is proved based on scientific rationale and reproducibility of 
data

• Even though none of the definitions identified referred to uncer-
tainty and sensitivity analysis, this aspect should be considered 
as well for its value in validating the predictions of a qAOP 
model while giving confidence in its further applications

• Cross species extrapolation
• Modulating factors
• Positive/negative feedback loops
• Compensatory mechanisms
• Test method adopted/validated
• Kinetics
• Exposure assessment
• Uncertainty evaluation
• Sensitivity analysis
• Availability: open access or not
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covering few events or an entire AOP to build predic-
tive relationships between MIEs and/or KEs linked to 
apical outcomes (Gust et al. 2016; Perkins et al. 2019b).

3.	 Mechanistic qAOPs and qAOP networks. These are 
computational models defined as deterministic models 
where mathematical functions of the MIE, KE and KER 
can be used to predict the likelihood that a later event 
or AO would occur based on changes in an earlier event 
given specified initial conditions (Gust et al. 2016; Per-
kins et al. 2019b).

The definitions of the qAOP concept as identified in the 
scientific literature support all these types of qAOP models, 
with only a small proportion (fewer than 10%) referring to 
semi-q/qWoE qAOPs, and approximately 25% to probabil-
istic qAOPs while all papers referred to mechanistic qAOPs. 
Therefore, whilst the first type of qAOP can be regarded as 
an extension of a qualitative AOP with empirical data, the 
second and third types of qAOP are mathematical models, 
distinguished according to the type of modelling approach. 

Thus, the first type of qAOP is conceptually different to the 
second and third. An opportunity is to make use of semi-q/
qWoE qAOPs to develop predictive models based on proba-
bilistic or mechanistic approaches as graphically presented 
in Fig. 1.

Overview of probabilistic quantitative linear 
AOPs and AOP networks

Bayesian networks use a directed acyclic graph (DAG) to 
represent conditional probability relationships. Each node 
in the network corresponds to a KE or additional variable, 
e.g. physicochemical properties, while edges show the con-
ditional dependencies between two KEs that form a KER. 
In other words, the Bayesian network uses conditional prob-
ability tables (CPTs) for each KE (node) to determine the 
probability of activity for parent and child nodes, i.e. an 
upstream KE leading to a downstream KE based on the 
Bayes’ rule, which is the unique mathematical equation for 

Fig. 1   Conceptual representation of available types of qAOP models. 
Qualitative AOPs have an informative role for prioritisation and com-
putational modelling of the  AO of interest and can additionally be 
quantified by a weight-of-evidence. A common approach to probabil-

istic modelling relies on the use of Bayes theorem as described below. 
Mechanistic qAOP models utilise mathematical functions including 
linear regressions
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this type of modelling. Whilst the choice of KEs in the DAG 
is informed by the structure of the AOP, a Bayesian network 
can be entirely data-driven and may, or may not, be consist-
ent with the topology of the AOP. Therefore, the Bayesian 
network approach has other applications in predictive toxi-
cology in addition to qAOP development. These include: 
identification of the best biomarkers to characterise chemi-
cal exposure using dose–response analysis to determine the 
points of departure (Hack et al. 2010); development of an 
efficient testing strategy (Jaworska et al. 2015); classifica-
tion of chemicals based on a mode of action (Carriger et al. 
2016); classification of the cellular effects of nanoparticles 
(Furxhi et al. 2019); and prediction of the severity level of 
drug induced liver injury (Williams et al. 2019).

Currently, five qAOP models have been identified that 
follow the Bayesian approach and were assessed in terms 
of the common features including the additional considera-
tions (Tables 2, 4).

Problem formulation

A variety of purposes can be recognised across the avail-
able probabilistic qAOPs models. The AOs covered by these 
models include organ failure or ecotoxicological population 
level endpoints.

Mechanistic knowledge and associated data

Three of the probabilistic qAOPs are available in the AOP-
Wiki (AOPs IDs 207, 245, 284). Two probabilistic qAOPs 
utilised AOP networks. The qAOP of Moe et al. (2018) 
included a linear AOP with KEs represented by multiple 
measurements, e.g. oxidative phosphorylation and forma-
tion of reactive oxygen species to describe the first KE. All 
probabilistic qAOP models incorporated various types of 
data including experimentally derived and/or judgement-
based results. Moe et al. (2018) and Jeong et al. (2018) 
quantified AOPs of interest using experimental data, while 
Chu (2018) conducted specific experiments and Perkins 
et al. (2019a) used a combination of in vitro data and expert 
judgment. Importantly, probabilistic approaches are flex-
ible and can estimate predictions for both single chemicals 
and mixtures more easily than mechanistic approaches, e.g. 
binary assumption of a state of a KE. As a result, Perkins 
et al. (2019a) quantified liver steatosis caused by both indi-
vidual, and a mixture of, chemicals. Likewise, Chu (2018) 
analysed the exposure to single organophosphate pesti-
cides and binary and tertiary mixtures (synergistic effect). 
However, not all of the probabilistic qAOPs assessed this 
aspect, i.e. mixture vs individual chemicals. For example, 
Moe et al. (2018) quantified the linkage between exposure 
to 3,5-dichlorophenol to reduced number of fronds in the 
aquatic plant Lemna minor. Interestingly, nanoparticles were 

assessed in addition to single (small) organic compounds. 
As such, Jeong et al. (2018) quantified the reproductive 
toxicity of silver nanoparticles induced via oxidative stress 
in the nematode Caenorhabditis elegans. All probabilistic 
qAOPs made an attempt to link molecular/cellular effects 
to organ effects through adjacent KERs. However, not all 
probabilistic qAOP models accounted for dose and time 
responses. Whilst all included dose responses, only Chu 
(2018), Jeong et al. (2018) and Perkins et al. (2019a) made 
time predictions.

Quantitative approaches

Moe et al. (2018) formulated CPTs based on the count of 
observations and statistical analysis. Comparing these two 
CPTs, those based on the count of observations gave more 
accurate predictions at high and low stressor concentra-
tions, while CPTs based on statistical models gave better 
predictions at intermediate stressor concentrations. When 
no information is available, the probability of activation can 
be set at 50%, for example, the qAOP model developed by 
Perkins et al. (2019a). Another important aspect is the type 
of variables used to define the nodes, in discrete or continu-
ous forms. Most qAOP models defined the nodes as dis-
crete states: intervals (Moe et al. 2018), yes/no and decrease/
stable/increase (Jeong et al. 2018), active/inactive (Perkins 
et al. 2019a) and categories/groups of intervals or periods 
of time (Chu 2018). Depending on its scope, the Bayesian 
network can have different outputs: the probability of a com-
pound being active at a given concentration (Perkins et al. 
2019a); the prediction of responses of each KE at different 
concentrations (Moe et al. 2018); the calculation of a rela-
tive risk (Chu 2018); or the analysis of causal relationships 
between KEs (Jeong et al. 2018).

Regulatory applicability

Two of the qAOP models are applicable in human health 
risk assessment (Burgoon et al. 2020; Perkins et al. 2019a; 
Zgheib et al. 2019), two qAOP models in ecological risk 
assessment (Chu 2018; Moe et al. 2018) and a single qAOP 
model in nanoparticle risk assessment (Jeong et al. 2018).

Additional considerations

None of the qAOP models included kinetic considerations, 
non-adjacent KERs, details about compensatory mechanisms 
or feedback loops. However, the qAOP model developed by 
Chu (2018) considered modulating factors such as environ-
mental conditions, e.g. temperature and dissolved oxygen. 
Furthermore, the qAOP of Chu (2018) integrated probabil-
ity, risk, and exposure responses to assess the population 
size of Chinook salmon. In addition, for experimentally 
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derived data, none of the tests or assays are formally vali-
dated or nationally/internationally adopted. However, Moe 
et al. (2018) performed tests using the aquatic plant Lemna 
minor, which is widely accepted in guidance for toxicity test-
ing (OECD 2006). Nevertheless, as the authors pointed out, 
Lemna minor is used for the analysis of an endpoint, which 
is the AO in an AOP rather than an entire AOP. Sources of 
uncertainty were listed by Chu (2018), Moe et al. (2018) 
and Zgheib et al. (2019), while sensitivity analysis was con-
ducted for all the qAOPs. These types of qAOPs have been 
modelled using existing software and/or coded in program-
ming languages, i.e. R.

Overview of mechanistic quantitative linear 
AOPs and AOP networks

A mechanistic qAOP model is driven by hypothesis testing 
and utilises a series of deterministic techniques that are dis-
cussed briefly below. Ten qAOP models were identified that 
follow a mechanistic approach, which were assessed in terms 
of the common features (Table 1) including the additional 
considerations (Tables 3, 4).

Problem formulation

The focus of this type of qAOPs relies mainly in under-
standing the mechanism of toxicity and associated relevant 
taxonomic domain. The AOs are represented by effects at 
the ecotoxicological population level, and organ toxicity, e.g. 
chronic kidney disease, neurodegenerative diseases.

Mechanistic knowledge and associated data

Five mechanistic AOPs currently available in the AOP-Wiki 
were quantified, four being endorsed (AOPs IDs 25, 42, 48, 
150, 284). Such models have been developed using a variety 
of types of data including dose- and time-response relation-
ships. For instance, Foran et al. (2019) proposed a modu-
lar approach for qAOPs with limited mechanistic data and 
extensive time required for modelling. The approach focused 
on making use of the existing information while informing 
where further tests are needed to provide data for the quan-
tification of all KERs. Some qAOP models have been based 
on experimental data generated by protocols specifically 
designed for AOP quantification. For example, to quantify 
the AOP for developmental neurotoxicity following the inhi-
bition of acetylcholinesterase, Yozzo et al. (2013) studied 
different levels of biological organisation during zebrafish 
embryogenesis. Furthermore, in vitro data were employed 
by the computational model of Zgheib et al. (2019) that 
quantified the chronic kidney injury in a dose- and time-
response manner. qAOP models derived from a combination 

of both empirical and experimental data will often predict 
the outcome better and increase the overall confidence in 
the applicability of the qAOP model. For instance, Muller 
et al. (2015) described the impact of engineered nanopar-
ticles on hatching of zebrafish eggs using high-throughput 
data at different timepoints. Model performance showing the 
experimental differences between the data sources has also 
been evaluated e.g. Margiotta-Casaluci et al. (2016) inves-
tigated in vivo fish egg production following exposure to a 
chemical class of interest at various concentrations. The final 
model included data from other studies and the results were 
compared with human data. At the same time, empirical 
data are suitable for the optimisation and validation of the 
predicted response-response relationships as illustrated by 
Hassan et al. (2017) who optimised the quantification of a 
classic thyroid hormone (TH) synthesis inhibitor in develop-
mental neurotoxicity in a rodent model using data from the 
literature. Likewise, Doering et al. (2018) investigated the 
activation of the aryl hydrocarbon receptor leading to early 
life stage mortality and validated the resulting qAOP model 
with empirical evidence. An integration of in silico, in vitro 
and in vivo data was employed to model the teratogenicity 
of single and mixture azole fungicides by Battistoni et al. 
(2019). At the same time, not all quantified AOPs accounted 
for both dose- and time-scales. Foran et al. (2019) and Doer-
ing et al. (2018) focused primarily on predictions based on 
the tested concentrations. Importantly, most of the published 
qAOP models utilised linear AOPs, with the exception of 
Margiotta-Casaluci et al. (2016) who described chronic 
exposure to synthetic glucocorticoids leading to perturba-
tion in egg production linking three AOPs in a network: 
disruption of glucose homeostasis, effects on the immune 
system and androgenic. This integration of evidence shows 
the complexity of different pathways and their different sen-
sitivities to chemicals.

Quantitative approaches

Several quantitative approaches were applied for the devel-
opment of the existing qAOP models. The qAOPs of Muller 
et al. (2015), Hassan et al. (2017), and Foran et al. (2019) 
were quantified using purely mathematical equations. Bat-
tistoni et al. (2019) developed a multistage dose–response 
model applying a Bayesian statistical analysis. Besides 
empirical dose–response, systems biology models were used 
as a quantitative approach by Battistoni et al. (2019) and 
Zgheib et al. (2019). Importantly, not all quantified AOPs 
follow every level of biological organisation. For example, 
the qAOP formulated by Zgheib et al. (2019) focused on 
the cellular level due to limited data for the other potential 
downstream KEs. However, full quantification was under-
taken by Muller et al. (2015), Margiotta-Casaluci et al. 
(2016), Doering et al. (2018), Hassan et al. (2017), Battistoni 
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et al. (2019) who conducted experiments to fill the gaps 
beyond the available empirical evidence. The qAOP model 
developed by Conolly et al. (2017) linked multiple models to 
create a mechanistic qAOP model for aromatase inhibition 
leading to reproductive dysfunction: a mechanistic hypothal-
amus–pituitary–gonad model, a vitellogenin liver compart-
ment model, a statistical model relating vitellogenin levels to 
fecundity and a density-dependent population matrix model. 
It was later extended from fathead minnow (Pimephales 
promelas) to two other species [female zebrafish (Danio 
rerio) and female Japanese medaka (Oryzias latipes)] to 
broaden the taxonomic domain of applicability and therefore 
its potential regulatory applications (Doering et al. 2019). 
Therefore, the AOP ID 25 has three associated qAOP models 
(Conolly et al. 2017; Doering et al. 2019; Foran et al. 2019).

Regarding the mathematical expressions, linear regres-
sion was used by Doering et al. (2018) and Foran et al. 
(2019), while exponential equations were used by Foran 
et al. (2019) and by Hassan et al. (2017) for the compu-
tational prediction of thyroid hormone disruption on the 
developing brain in rats. Elsewhere, Battistoni et al. (2019) 
used kinetic equations adapted from a published systems 
biology mathematical model to simulate the kinetics of 
single chemicals and mixtures and the perturbation which 
may lead the co-exposure of chemicals. A systems biology 
model was also employed by Zgheib et al. (2019) that used 
over 50 differential equations and, as a result, showed the 
need of extensive parametrisation (335 parameters). A com-
bination of linear models, kinetic equations and statistical 
analysis was considered by Muller et al. (2015) in a study 
of copper nanoparticles. The qAOP models of Margiotta-
Casaluci et al. (2016) and Yozzo et al. (2013) applied statis-
tical analysis, i.e. one-way analysis of variance (ANOVA) 
to the experiments conducted to evaluate the pathway of 
interest quantitatively.

Regulatory applicability

All qAOPs have applications in ecological risk assessment, 
while the qAOP model developed by Foran et al. (2019) 
is intended for screening and/or prioritisation purposes 
and that developed by Zgheib et al. (2019) is proposed for 
human health risk assessment. The qAOP of Conolly et al. 
(2017) showed additional potential applications: comparing 
the qAOP simulations to empirical data, how a response-
response function can be derived and how to estimate the 
benchmark dose for an untested chemical using toxicity 
equivalent factor.

Additional considerations

The adjacency and non-adjacency of KERs was considered 
by Hassan et al. (2017), Doering et al. (2018) and Foran 

et al. (2019). Hassan et al. (2017) developed the non-adja-
cent KER using literature data to model the gaps. Doering 
et al. (2018) used non-adjacent KERs to check and verify 
the linkage between KEs and the AO. Foran et al. (2019) 
proposed a modular approach as a feasible solution to the 
AOPs lacking empirical dose- and time-response data. 
Zgheib et al. (2019) used a mathematical inversion tech-
nique to derive chemical-independent KERs from a series 
of dose–time–response relationships. Four qAOPs incorpo-
rated kinetics: Battistoni et al. (2019), Hassan et al. (2017), 
Margiotta-Casaluci et al. (2016) and Muller et al. (2015). 
Furthermore, Battistoni et al. (2019) included a modulating 
factor, i.e. identifying that ethanol can also inhibit retinoic 
acid synthesis, and a negative feedback loop, i.e. regula-
tion of retinoic acid resulting from increased synthesis of 
CYP26A1. Doering et al. (2018, 2019) developed a qAOP 
that is applicable across species. The uncertainty of the 
model was considered by Hassan et al. (2017), Doering et al. 
(2018), Battistoni et al. (2019) and Foran et al. (2019). Sen-
sitivity analysis was performed by Margiotta-Casaluci et al. 
(2016) and Zgheib et al. (2019). The mathematical equations 
and/or the code of the qAOP models of Hassan et al. (2017), 
Doering et al. (2018), Zgheib et al. (2019) and Muller et al. 
(2015) are accessible.

Software tools

A variety of software tools used for the development of the 
qAOPs were identified in this study (Supplementary Infor-
mation Table S2). In total, 20 tools were distinguished, with 
11 of them being publicly available. The range of software 
tools can be classified into tools used for (i) data analysis, 
(ii) modelling, simulation and calibration, and (iii) model 
storage. The most commonly used tools were Microsoft 
Excel, the drc R package for writing the mathematical func-
tions of dose responses, MC Sim for statistical analysis, and 
BayesiaLab for probabilistic modelling. A unique tool is the 
Bayesian Inference for Substance and Chemical Toxicity 
(BISCT) software developed specifically to predict quantita-
tive estimates based on the toxicological evidence. Another 
important tool used is Effectopedia, an open platform that 
allows qAOP models to be stored in a central location. This 
compilation of software shows the huge potential in the 
development of appropriate tools to help advance and apply 
the qAOP concept.

Conclusions and future directions

This review has summarised the recent progress made in 
the development of qAOP models. A list of common fea-
tures typically used when developing qAOP models has 
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been identified, namely problem formulation, mechanistic 
knowledge and associated data, quantitative approaches, and 
additional considerations derived from published definitions 
in the scientific literature. Hence, following the conceptual 
classes of qAOP models proposed by Gust et al. (2016) and 
Perkins et al. (2019b), existing qAOPs were identified and 
characterised according to the predefined common features. 
The qAOPs discussed illustrate a range of computational 
techniques and software tools applicable to such modelling. 
Importantly, these examples highlight the powerful capa-
bility of a qAOP model to integrate diverse types of data 
(physico-chemical, in silico, in vitro, in vivo).

There is currently no guidance on how to develop and 
evaluate qAOP models for regulatory applications. As more 
examples of qAOPs become available, there will be an 
increasing need to provide a coherent framework to support 
the evaluation and purpose-specific application of qAOPs 
in a regulatory context. While it is beyond the scope of this 
review to outline such a framework, a number of elements 
(principles) can be identified, some of which may be essen-
tial, and others desirable, depending on the application.

An ideal qAOP should:

•	 Predict a defined AO (defined endpoint);
•	 Address a specified regulatory question and context of 

use (problem formulation);
•	 Be consistent with the qualitative description of the AOP 

of interest;
•	 Have a clear domain of applicability (including species, 

taxa, modulating factors);
•	 Be characterised in terms of its predictive performance 

and robustness (uncertainty and sensitivity analysis);
•	 Be transparent and traceable, to allow independent eval-

uation and verification of the qAOP model (including 
input data, simulated outputs, and correct implementa-
tion of the mathematical equations);

•	 Be understandable and user-friendly, to ease its interpre-
tation and application;

•	 Be flexible, to allow analysis of both existing and new 
molecules;

•	 Be updateable, to refine parameter estimates by incorpo-
rating new data as they become available (in such cases, 
versioning of the qAOP model will be required);

•	 Be reproducible, to enhance the confidence in the consist-
ency and accuracy of the qAOP model output;

•	 Be portable, so that the qAOP model can be integrated 
with other mathematical models, such as kinetic models;

•	 Be publicly available, either in the form of a working 
platform, or availability of code.

Although current efforts in qAOP modelling are limited, 
the field is gaining momentum. This review can therefore 
serve as a starting point to formulate formal guidance on 

the development, assessment and application of probabilistic 
and mechanistic qAOPs in chemical risk assessment. Future 
work should consider best practices and provide examples of 
tackling the challenges in developing qAOP models.
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