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Abstract 

With estimated worldwide cost over $1 trillion just for dementia, diseases of the central nervous 

system pose a major problem to health and healthcare systems, with significant socio-economic 

implications for sufferers and society at large. In the last two decades, numerous strategies and 

technologies have been developed and adapted to achieve drug penetration into the brain, 

evolving alongside our understanding of the physiological barriers between the brain and 

surrounding tissues. The blood brain barrier (BBB) has been known as the major barrier for 

drug delivery to the brain. Both invasive and minimally-invasive approaches have been 

investigated extensively, with the minimally-invasive approaches to drug delivery being more 

suitable. Peptide based brain targeting has been explored extensively in the last two decades. 

In this review paper, we focused on self-assembled peptides, shuttle peptides and nanoparticles 

drug delivery systems decorated/conjugated with peptides for brain penetration. 
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Abbreviations 

α-Syn α-synuclein 

ABCB1 ATP-binding cassette sub-family B member 1 (ABCB1) 

AC Astrocyte 

AChR Acetylcholine receptor 

AD Alzheimer’s disease 

AF6 LL1-fused gene from chromosome 6 protein 

AFM Atomic force microscopy 

AMT Adsorptive-mediated transport 

ANG Angiopep 

ApoB Apolipoprotein B 

ApoE Apolipoprotein E 

AuNP Gold nanoparticle 

ASNP Alginate-stearic acid nanoparticles 

B6 CGHKAKGPRK peptide 

BBB Blood-brain barrier 

BCSFB Blood-cerebrospinal fluid barrier 

BSA Bovine serum albumin 

CNT Carbon nanotubes 

CMC Critical micelle concentration 

CNS Central nervous system 

CSF Cerebrospinal fluid 

DLS Dynamic light scattering 

EAE Experimental autoimmune encephalomyelitis 

ECs Endothelial cells 

FBS foetal bovine serum 

FITC Fluorescein isothiocyanate 

g7 7-amino acid glycoprotein, GFtGPLS (O-β-d-Glucoseglucose)CONH2 

GE11 CYHWYGYTPQNVI peptide 

GSH Glutathione 
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HD Huntington’s disease 

HIFU High-intensity focused ultrasound 

HuHtt Human huntingtin exon 1 

IFN-α Interferon-α 

IFN- Interferon gamma 

i.v.  Intravenous 

Lamp2b Lysosome-associated membrane protein 2b 

LDLR Low-density lipoprotein receptor 

LRP-1 lipoprotein receptor-related protein 1 

MCAO Middle cerebral artery occlusion 

miniAp-4 H-DapKAPETALD-NH2 peptide 

MMP Matrix metalloproteinase 

MND Motor neurone disease 

MOR Opioid receptor mu 

MS Multiple sclerosis 

MSC Mesenchymal stem/stromal cell 

MWCNT Multi wall carbon nanotubes 

nAChR Nicotinic acetylcholine receptor 

ND Neurodegenerative Disease 

NP Nanoparticle 

NIR Near infrared 

NVUs Neurovascular Units 

NW Nanowire 

PAH Poly allylamine hydrochloride 

PD Parkinson’s Disease 

PEG Polyethylene glycol 

PepH3 AGILKRW peptide 

PLA Poly(lactic acid) 

PMNP Polymeric nanoparticles 

pSiNPs Porous silica nanoparticles 

Page 4 of 58AUTHOR SUBMITTED MANUSCRIPT - NANOX-100084.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



5 
 

RES Reticuloendothelial system 

ROS Reactive oxygen species 

RVG Rabies virus glycoprotein 

RVG-29 YTIWMPENPRPGTPCDIFTNSRGKRASNG 

SWCNT Single wall carbon nanotubes 

SE Status epilepticus 

SEM Scanning electron microscopy 

siRNA Small interfering RNA 

SNALP Stable nucleic acid lipid particle 

SPION Superparamagnetic iron oxide nanoparticle 

t-MCAO transient middle cerebral artery occlusion 

TAT Trans-activating transcriptional activator 

TEM Transmission electron microscopy 

Tf Transferrin 

TfR Transferrin receptor 

TJ Tight junction 

TNF-α Tumor necrosis factor-α 

WHO World Health Organisation 

ZO Zonula occludens (a.k.a. tight junction protein) 
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1. Introduction 

The central nervous system (CNS) comprises the brain and the spinal cord. Any injury or 

damage to the CNS affects its normal functioning and may lead to permanent disability in many 

cases, due to a largely limited ability for neural tissue regeneration in humans [1, 2]. The broad 

term “Neurodegenerative Diseases” (NDs) covers a range of pathologies, principally affecting 

neurons in the brain and causing significant neuronal dysfunction, neuronal death and neuronal 

loss. NDs once established are irreversible and sapping conditions resulting in progressive 

degeneration of neuronal cells [3]. The signs and symptoms are diverse in range, depending on 

the affected part of the brain. The cause of an ND is often unknown but can involve a complex 

convergence of multiple molecular mechanisms; and disease progression is usually 

unpredictable. NDs include a number of conditions: Alzheimer’s disease (AD) and other forms 

of primary dementias, Multiple Sclerosis (MS) and other forms of chronic inflammatory 

neurological disease, Parkinson’s disease (PD), Motor Neurone Disease (MND), Huntington’s 

disease (HD) and ataxias [4]. The World Health Organisation (WHO) reported that NDs affect 

around 0.1 billion individuals (24 million individuals suffer from AD and other dementias)[5] 

all over the world, and the incidence is on the rise as average life expectancy is increasing. 

Around 850,000 people in the UK are affected by dementia, costing the healthcare system over 

£26 billion a year [6]. In the US nearly 100 million people are affected by NDs costing around 

$724 billion in 2014 [7]. It is estimated that the cost of AD would be over 1 trillion dollars 

worldwide [8]; and the estimated number of people with dementia will reach 131.5 million by 

2050 [9] in the absence of effective therapies. Just in Europe, the annual cost of neurological 

disease reaches 800 billion Euros per year, with a majority attributed to direct costs [10].  
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The brain is one of the most vital and sensitive organs in the body, which, to perform its 

functions in an appropriate way, needs nutrients and gases [11]. Due to its pivotal role and 

functions, it is protected in a number of ways, including by the skull, the outer skin, three layers 

of meninges and the blood-brain barrier (BBB) [12]. The BBB is a layer of endothelial cells 

(ECs) associated with pericytes (PCs) and astrocytes (ACs) and acts as a separator of the blood 

from parenchymal cells, thus preventing penetration of drugs into the CNS. It therefore protects 

the brain from overexposure to substances such as potassium, glycine and glutamate, which, in 

high levels such as found in pathological conditions, are neurotoxic [13, 14]. 

Despite many advances in drug delivery systems that target the brain, it is still a challenging 

area. The failure of therapies administered via an intravenous (i.v.) or an oral route is often due 

to their inability to cross/penetrate the brain parenchyma. The use of peptides for drug delivery 

to the brain has been extensively explored in the last decade. Self-assembled peptides, shuttle 

peptides and peptide-decorated nanoparticles have been reported to effectively deliver drugs in 

the brain. This review covers peptide based drug delivery systems for the brain and future 

prospects. 

2. Blood-Brain Barrier 

Figure 1 is the schematic representation of healthy and diseased BBB. Numerous gateways 

have been reported to provide access the brain; the most significant are through blood stream 

or by getting access to the cerebrospinal fluid (CSF) circulation. Penetration of any molecules 

administered via the parenteral route is controlled by the BBB, the blood–cerebrospinal fluid 

barrier (BCSFB), arachnoid barrier and circumventricular organ barrier. However, drug 

molecules up taken by the brain are flushed back towards the blood through the return of the 

CSF to the blood or transporters on the BBB [15]. The BBB acts as a guard filter that prevents 

the uptake of large-molecules and more than 98% of pharmaceuticals [12, 16] and small-
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molecule drugs [17]. Small molecules that are lipid soluble, electrically neutral and weak bases 

may be able to diffuse passively across the BBB.  
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Figure 1: BBB composition and pathological conditions. (A) In normal states, the BBB comprises vascular endothelial cells connected with TJs 

and the PCs layer. A basement membrane linked with AC end-feet surrounds the endothelium. (B) Increased permeability of the BBB in pathological 

conditions results from high matrix metalloproteinase (MMP) activity and increased reactive oxygen species (ROS) and nitric oxide (NO) levels. 

Cytokines and chemokines are released and then activate microglia/macrophages, leading to basement membrane degradation, TJs disruption 

and an inflammatory response.
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Thus, the BBB, with its extensive blood capillary network, is considered the most important 

barrier that controls a molecule’s access to the brain parenchyma. Neurovascular units (NVUs) 

comprising endothelial cells, extracellular base membrane, adjoining pericytes, astrocytes, and 

microglia (although not a structural component of the BBB, are often included in the NVU as 

they influence barrier function in response to injury and disease [18] are integral parts of the 

BBB supporting system [19]. NVUs collect signals from the adjacent cells and generate 

functional responses that are crucial for appropriate CNS function [20, 21]. Both tight 

intracellular junctions (i.e. zona occludens, characteristic of the BBB) and the absence of 

fenestrations limit the permeability of drug molecules [22]. 

Various transport routes have been reported by which solutes and drug molecules can cross 

the BBB,[23, 24] as shown in Figure 2. Diffusion of substances across the BBB can be 

generally categorised into paracellular (namely the transfer of nutrients/drugs across an 

epithelium by passing through the intercellular space between the cells) and transcellular 

(namely the movements of solutes through a cell). In order to cross the BBB by passive 

diffusion, various parameters play pivotal roles. Molecular mass is an important factor and the 

ideal molecular weight reported to be suitable for passive diffusion is <400 Da [25]. A value 

of between 5.0 and 6.0 for the log of the octanol-water partition coefficient (logPo/w), a measure 

of lipophilicity, is suitable for passive diffusion [26]. 
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Figure 2. Transport routes across the BBB. Solute molecules follow from “a” to “f” pathways and the route “g” involves monocytes, macrophages 

and NPs (NPs). 
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Compounds that are lipophilic, neutral or uncharged at pH 7.4 and have less than 8 

hydrogen bonding groups are more suitable to cross the BBB [27]. In another study, reported 

by Partridge in 2012, [28] it was found that small drug molecules can cross the BBB if their 

molecular mass is less than 400 and they have the ability to form 8-10 hydrogen bonds. 

Unfortunately, it has been reported that more than 98% of drugs for the CNS are unable to 

cross the BBB adequately to attain the minimum therapeutic concentration [12]. Several 

invasive and non-invasive approaches have been anticipated to evade the BBB and enhance 

drug delivery to the CNS. 

3. Novel Shuttle peptides 

Shuttle peptides facilitate the influx of a diverse range of small molecule cargoes across 

the BBB. The concept of shuttle peptides for BBB was coined by William M Pardridge in the 

mid-1980s [29]. Small synthetic peptide shuttles (comprising natural amino acids) have been 

reported to cross the BBB. For example, the short rabies virus glycoprotein (RVG), RVG-29 

(YTIWMPENPRPGTPCDIFTNSRGKRASNG),  binds exclusively to  the nicotinic 

acetylcholine (nAChR) receptor found on neuronal cells and on the endothelial cell lining of 

the BBB, making it possible for peptide carriers to penetrate [30]. Javed et al. (2016) used C2-

9r (H2N-CDIFTNSRGKRAGGGGrrrrrrrrr, where r is D-arginine) to deliver siRNA for 

suppressing the α-synuclein (α-Syn) gene, implicated in the development of PD. 

CDIFTNSRGKRA is a shorter version of RVG, linked with four extra glycine acting as a 

spacer and positively charged arginine (R), which at the end of the C-terminus bind with 

negatively-charged siRNA. It was reported that this delivery system (peptide-based) not only 

crosses the BBB, but also stabilizes the siRNA that supresses the α-Syn protein, thus mitigating 

PD-like symptoms [31]. Although this delivery system has been derived from the rabies virus, 

it was reported to be non-toxic to neuronal cells.  
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Venom-derived, peptide-based shuttles have been reported to cross the BBB and to be able 

to deliver drugs to the desired site. Oller-Salvia et al. (2016) have demonstrated that miniAp-4 

(H-DapKAPETALD-NH2) derived from Apamin (a neurological toxin from bee venom) is able 

to cross the BBB and can deliver gold nanoparticles (NPs), showing proof of concept for drug 

delivery [32]. PepH3 (AGILKRW) has shown greater penetration upon i.v. administration in 

CD1 mice and bio-distribution was measured in mice sacrificed 5 min and 1 h after 

administration. Furthermore, its clearance and excretion is relatively fast, making it a good 

candidate for a shuttle carrier [33]. Spontaneous internalisation of nanowires (NW), linked with 

a cell penetrating peptide: the trans-activating transcriptional activator (TAT) from human 

immunodeficiency virus 1, has also been reported [34]. Two other shuttle peptides 

PWVPSWMPPRHT and GPWVPSWMPPRHT (composed of D-amino acids) have been 

found to cross the BBB and are able to transport drug molecules or diagnostic substances into 

the CNS. These peptides have been reported to be biocompatible and non-toxic (as they were 

made up of amino acids) [35]. In recent decades, a number of BBB shuttle peptides with 

improved efficiency have been reported (Table 1). Apolipoprotein (Apo) derivative peptides 

have been shown to cross the BBB (in in vitro and in vivo experiments) [36, 37]. Whilst 

numerous studies have demonstrated that Apolipoprotein B 

(ApoB) (SSVIDALQYKLEGTTRLTRKRGLKLATALSLSNKFVEGS) and Apolipoprotein 

E (ApoE) (LRKLRKRLL)2 analogues are able to cross the BBB [38, 39, 40]. Gao et al. (2012) 

reported the use PEG-(poly(ε-caprolactone)) NPs (prepared by emulsion solvent evaporation) 

for brain drug delivery, and contained docetaxel, a widely used drug in the treatment of several 

malignancies including brain tumours. They successfully conjugated a phage displayed TGN 

(Table 1) peptide and an AS1411 aptamer, which specifically targets the ligands on the BBB 

and cancer cells respectively. In vitro experiments showed excellent permeability across the 

BBB along with suitable endothelial monolayer targeting. In vivo imaging showed that 
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unmodified NPs hardly distributed in the brain while AsNPs (AS11411 conjugated NPs) 

accumulated slightly in the brain. However, the accumulation of TGN conjugated NPs in the 

brain significantly increased and the brain distribution achieved the highest intensity at 12 h 

[41]. GRN1005 a peptide-drug conjugate (taxane paclitaxel and angiopep-2 (ANG= 

TFFYGGSRGKRNNFKTEEY)) that interacts with lipoprotein receptor-related protein 1 

(LRP1) has shown excellent permeability across the BBB. Phase I and II clinical trials 

suggested that GRN1005 was able to cross the BBB and limit tumour growth [42, 43]. 

Similarly, Li et al. (2016) used a combination of two peptides (ANG and TAT) conjugated with 

paclitaxel to deliver the drug across the BBB [44]. Zou et al. (2019) used a 16 lysine (K16) 

residue-linked low-density lipoprotein receptor-related protein (LDLR)-binding amino acid 

segment of apolipoprotein E (K16APoE) to deliver a therapeutic peptide (HAYED) into an AD 

mouse model brain leading to reduced the necrosis [45]. Numerous shuttle peptides have been 

investigated for drug delivery to the brain but there is still a need to find magical combination. 

In another study, Sonoda et al. (2018) formulated a BBB penetrant protein conjugate (JR-141), 

comprising an anti-human transferrin receptor (hTfR) antibody and human iduronate-2-

sulfatase (hIDS) to treat mucopolysaccharidosis II (MPS II, caused by accumulation of 

glycosaminoglycans) [46]. Upon i.v. administration, JR-141 was detected in the brain but hIDS 

alone failed to penetrate into the brain. In addition, ostensibly therapeutic outcomes were 

observed, with a lower accumulation of glycosaminoglycans measured in brain and peripheral 

tissues [46]. Self-assembled peptide nanoligand derived from phage display library was used 

to down regulate the BACE1 without toxicity and inflammation [47] .
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Table 1. A list of shuttle peptides that can target the BBB. 

Peptide Typical Sequence Origin Transport Mechanism Ref 

g7 GFtGPLS (O-β-d-glucose)CONH2 Enkephalin analogues/ opioid  RMT 

[48, 49, 

50, 51] 

Apamin H-CNCKAPETALCARRCQQH-NH2 Venom neurotoxin Unknown [32] 

MiniAp-4 [Dap]KAPETALD Venom neurotoxin Unknown [32] 

Regulon 

polypeptides 

PTVIHGKREVTLHL Neurotropic endogenous Protein LDLR [52] 

RAP ELKHFEAKIEKHNHYQKQLE Neurotropic endogenous Protein LDLR [52] 

Angiopep-2 TFFYGGSRGKRNNFKTEEY Neurotropic endogenous Protein LRP1 [53, 54] 

TAT (47-57) GGGGYGRKKRRQRRR HIV Protein CD4 + T lymphocytes [55] 

PhPro [Phenyl-Proline]4 Chiral library design 

Passive transport (paracellular 

and transcellular) 

[56] 

RI-OR2-TAT Ac-rGffvlkGrrrrqrrkkrGy-NH2 HIV Protein and Amyloid beta Aβ peptide binding [57] 

SynB1 RGGRLSYSRRRFSTSTGR Protegrins AMT [58] 

Pep 22 Ac-[cMPRLRGC]c-NH2 Phage display (receptor) LDLR [59] 

Leptin 30 YQQVLTSLPSQNVLQIANDLENLRDLLHLLC Leptin RMT [60] 
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TGN TGNYKALHPHNG Phage display Unknown [61, 62] 

CNG-QSH (d-CGNHPHLAKYNGT) (d-QSHYRHISPAQVC) Phage display Unknown/Aβ peptide binding [63] 

LNP KKRTLRKNDRKKRC 

the nucleolar translocation signal 

sequence of the LIM Kinase 2 

protein 

Caveolae-mediated endocytosis 

and macropinocytosis 

[64] 

ApoE (157-167) (LRKLRKRLLR)2 Apolipoprotein E LRP1 

[38, 39, 

65] 

ApoB SSVIDALQYKLEGTTRLTRKRGLKLATALSLSNKFVEGS Apolipoprotein B LRP2 [40] 

RVG-29 YTIWMPENPRPGTPCDIFTNSRGKRASNG Rabies Virus Glycoprotein nAChR [30] 

G23 HLNILSTLWKYRC Phage display GM1 and GT1b [66, 67] 

T7 HAIYPRH Phage display hTfR 

[68, 69, 

70, 71] 

THR THRPPMWSPVWP Phage display hTfR [35, 72, 

73, 74] THRre pwvpswmpprht (retro-enantio version of THR) Phage display hTfR 

THRre_2f (pwvpswmpprht)2KKGK(CF)G Branched - Phage display hTfR [75] 

DKP Phe(p-NH-Dhp)-L-N-Me[Cha]/ [2Nal] Unknown Passive diffusion [76] 
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GSH-PEG GSH[PEG] Endogenous tripeptide Glutathione 

[77, 78, 

79] 

CDX D-[FKESWREARGTRIERG] Structure-guided design nAchR [80, 81] 

CRT CRTIGPSVC Phage display TfR [82] 

T7 - #2077 RLSSVDSDLSGC Phage display RMT [83] 

CAQK CAQK Phage display Proteoglycan complex [84] 
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Datta et al. (2000) used a receptor binding domain peptide derived from human 

apolipoprotein E (hApoE), LRKLRKRLLR [hApoE (141-150)] as a vehicle to cross the BBB. 

They fused hApoE (141-150) with 18A (DWLKAFYDKVAEKLKEAF) [Ac-He18a-NH2], a 

high affinity lipid-associated peptide to assess the uptake and degradation of low-density 

lipoprotein (LDL) in murine embryonic fibroblast (MEF1). In addition, four analogues were 

prepared, of which, Ac-LRRLRRRLLR-18A-NH2 [Ac-hE(R)18A-NH2] and Ac-

LRKMRKRLMR-18A-NH2 (Ac-mE18A-NH2) have an extended hydrophobic moiety, 

including the receptor binding region. Control peptides were Ac-LRLLRKLKRR-18A-NH2 

[Ac-hE(Sc)18A-NH2], which has amino acid residues of the ApoE to disrupt the hydrophobic 

face, and Ac-RRRRRRRRRR-18A-NH2 (Ac-R1018A-NH2), which has only positively 

charged arginine (R) as the receptor binding domain. Increased internalisation of LDL was 

observed by 3-, 5- and 7-fold by Ac-mE18A-NH2, Ac-hE18A-NH2, and Ac-hE(R)18A-NH2, 

respectively, whereas the control peptides had no significant biological activity as illustrated 

in Figure 3 [38]. Wang et al. (2013) used a receptor binding peptide of ApoE (residues 159-

167 [monomer: LAVYQAGAR], but the peptide had 18 amino acids, 2×monomer) fused to 

IDUA (a lysosomal enzyme, α-L-iduronidase) [IDUAe1] to deliver across the BBB by 

targeting the LRP1, for the treatment of mucopolysaccharidosis (MPS) type I [39]. Zhang et 

al. (2018) used BBB shuttle peptides to enhance the brain transduction of AAV8 after systemic 

administration. THR (THRPPMWSPVWP-NH2), a shuttle peptide that binds specifically to 

TfR1 was used to promote the internalization and transduction of AAV8 in a dose dependent 

manner [85]. 
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Figure 3. Schematic presentation of high affinity lipid peptide linked with poly-arginine and ApoE. Peptide conjugated with poly-arginine served 

as control and no permeation was observed, while conjugated ApoE showed improved internalization into cells. 
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4. Novel Nanotechnology for brain drug delivery 

NPs are carriers composed of natural (e.g. lipidic) or synthetic (e.g. polymeric) materials 

ranging from 1-500 nm in size. NPs are able to encapsulate, adsorb, or conjugate drugs or 

diagnostics and release the payload at a specific rate in the human body [86]. The 

physicochemical properties of NPs such as size, surface charge (zeta potential), morphology 

and composition are important factors deciding the fate of NPs, such as passage across the 

BBB, biological activity, release profile and biocompatibility [87]. A list of NPs used for brain 

drug delivery are summarised in Table 2. 

4.1. Polymeric NPs (PMNPs) 

Polymeric NPs (PMNPs) are most extensively studied for the purpose of drug delivery. 

These NPs can not only deliver small drug molecules but can also be used for the delivery of 

genes and proteins [88]. PMNPs can have good penetration through cell membranes, serum 

stability, and can be easily manufactured. Furthermore, the surface of NPs can be modified for 

various medical applications. For brain drug delivery, PMNPs are made up of proteins, amino 

acids, polysaccharides and polyesters. Different mechanisms can be adapted by the PMNPs to 

cross the BBB. They can cross the BBB either by transcytosis through endothelial cells, 

mucoadhesion, or by disturbing the TJ in the brain capillaries [89]. On the other hand, PMNPs 

can be identified upon i.v. injection by the reticuloendothelial system (RES), leading to wide 

distribution to liver, spleen and bone marrow, resulting in elimination or very short half-lives 

[90]. Tf and poly-L-arginine (cell penetrating peptide) linked with 1, 2-distearoyl-sn-glycero-

3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) liposomes were developed for 

brain delivery of imaging agents and DNA [91]. B6 (CGHKAKGPRK), a TfR-specific peptide, 

and GE11 (CYHWYGYTPQNVI), a peptide specific for endothelial growth factor receptor 
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(EGFR) overexpressed on cancer cells, were linked with poly(amido)amine-PEG (PAMAM-

PEG) based dendriplexes for siRNA delivery [92]. 

PLGA-NPs modified with 7-amino acid glycopeptide (g7) have been shown to deliver 

small drug molecules across the BBB in rodents. Furthermore, g7-NPs successfully crossed the 

BBB with model drug (fluorescein isothiocyanate (FITC)-albumin). Injection in wild-type and 

knockout mice clearly showed penetration into the brain [93]. Luo et al. (2017) developed high-

intensity focused ultrasound (HIFU) responsive angiopep-2-decorated poly(lactic-co-glycolic 

acid) (PLGA) hybrid NPs able to transport doxorubicin/perfluorooctyl bromide (ANP-D/P). 

Decorated-NPs showed 17-fold increased accumulation in glioblastoma and 13.4 fold higher 

than unmodified NPs. Significant amount (47%) of drug released within two minutes after 

HIFU irradiation, causing apoptosis of tumour cells [94]. Methoxypolyethylene glycol 

(MPEG) and methoxypoly(ethylene glycol)-b-polycaprolactone (PCL) NPs, conjugated with 

angiopep-2 (CTFFYGGSRGKRNNFKTKRY) peptide with encapsulation efficiency of more 

than 95% showed higher in vivo accumulation in the brain [95]. 

Di Mauro et al. (2018) developed novel biodegradable block co-polymeric NPs, 

functionalized with two different peptides AGBBB015F 

(CGGKTFFYGGSRGKRNNFKTEEY) and Regulon 

(HKKWQFNSPFVPRADEPARKGKVHIPFPLDNITCRVPMAREPTVIHGKREVTLHLHP

DH). These peptide functionalized NPs showed higher brain permeability than non-

functionalized in U-87 MG cell line [96]. K16ApoE decorated PLGA-NPs have shown better 

accumulation in the cerebral vasculature. These NPs showed higher uptake into brain and 

provided better MRI contrast for diagnostic purpose [97]. 
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4.2. Metallic NPs 

Metallic NPs for brain delivery have been under investigation due to their serum stability 

and long half-life. Ghorbani et al. (2018) reported the use of gold-iron nanocomposites 

encapsulated with curcumin-lipoic acid, a pH-sensitive delivery system for the brain. GSH is 

used as targeting ligand, leading to 2-fold increases in cellular uptake [98]. Nosrati et al. (2019) 

reported the use for glutathione (GSH) decorated iron NPs (GSHIONPs) for brain drug 

delivery. IONPs@Asp-PTX-PEG-GSH are stable, non-toxic and enhance MRI contrast for 

diagnostic purpose [99]. 

In a comparative study conducted by Wang et al. (2019) reported the peptide 

functionalized polyethylene glycol and maleic anhydride‐coated superparamagnetic iron oxide 

nanoparticles (Mal‐SPIONs) showed better diffusion to the thalamus, frontal cortex and 

temporal lobe than bovine serum albumin (BSA) conjugated NPs [100]. In another study, 

Albertini et al. (2019) used AUNPs decorated with RGD like peptides (GRGDG-NH2, 

GRGDS) for drug delivery to brain tumour. Two hours after injection, the concentrations of 

NPs were 1.5 and 5 fold higher than undecorated NPs and PEGylated NPs [101]. TAT-

conjugated gold NPs have been employed for brain drug delivery. The cellular uptake of 

AuNPs-TAT was 7.4% compared to 0.03% of AuNPs-PEG [102]. Chlorotoxin (CTX), a 

glioma specific peptide conjugated with polyethylenimine-entrapped gold nanoparticles (Au 

PENPs) showed excellent penetration into brain [103]. Ivask et al. (2018) evaluated the uptake 

of iron oxide NPs conjugated with biomimetic phosphorylcholine brushes in an in vitro BBB 

model system. They reported that after 24 h, 78% of the formulation crossed the BBB via 

adsorption mediated transport (AMT) [104]. This ability of iron oxide NPs has provided the 

opportunity of delivering therapeutic peptides to the brain by conjugating the peptide to the 

surface of iron-oxide NPs (5 nm diameter) [105]. Tf-conjugated magnetic dextran‐spermine 

NPs (DS‐NPs) have also demonstrated excellent penetration across the BBB [106]. 
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Kang et al. (2016) reported a single-step procedure to simultaneously load porous silicon 

NPs with high concentrations of siRNA and protecting them by formation of Ca2SiO4 at the 

surface of NPs (pSiNPs). These core-shell NPs had the size of 180 ± 20 nm. Then pSiNPs were 

surface functionalised with RVG peptide (cell targeting ligand) and a cell penetrating peptide 

(myr-GWTLNSAGYLLGKINLKALAALAKKIL(GGCC), a myristoylated transportan) to 

deliver the siRNA across the BBB. Addition of these peptides increased the size of pSiNPs to 

220 nm. The pSiNPs were administered intravenously to mice with brain injury, and a 

significant amounts of siRNA were accumulated at the site of injury [107]. Similarly, Lee et 

al. (2017) reported the use of rabies virus‐mimetic silica‐coated gold nanorods to treat brain 

gliomas. The nanorods were prepared by converting spherical gold NPs to gold nanorods. Then 

coating the gold nanorods with SiO2. This was to adjust the size of the nanorods to the size of 

rabies virus as much as possible. This was followed by coating the resulting Au-SiO2 nanorods 

by PEG and RVG-29. The nanorods (RVG-PEG-Au@SiO2) had the length of 117.7 ± 7.3 nm 

and width of 50.3 ± 3.1 nm. The RVG-PEG-Au@SiO2 nanorods were administered 

intravenously to orthotopic glioma-bearing mice, which in vivo fluorescence imaging indicated 

the accumulation of RVG-PEG-Au@SiO2 nanorods in the mouse brains. The mice were 

subjected to photothermal therapy using near infrared (NIR) laser. The temperature changes 

(up to 60ºC) caused by the laser therapy (localized surface plasmon resonance) of gold 

nanorods resulted in irreversible damages to or death of tumor cells. Tumor volumes in mice 

treated with RVG-PEG-AuNRs@SiO2 nanorods and applying NIR laser were considerably 

smaller than those of mice treated with PEG-AuNRs@SiO2 nanorods or control saline (124.8 

± 147.5, 1067.4 ± 295.4, and 2323.2 ± 436.3 mm3 , respectively) at 7 d after the treatment. 

Even, the tumors of two mice treated with RVG-PEG-AuNRs@SiO2 nanorods nearly vanished. 

This therapy caused slight skin damage by 808 nm laser irradiation, which was healed after 13 

days [108]. This study indicates that even the EPR of the brain tumors was not sufficient to 
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allow accumulation of PEG-AuNRs@SiO2 nanorods in the tumors and use of RVG-29 cell 

targeting peptide was necessary to achieve desired therapeutic outcomes. In addition, the size 

of RVG-PEG-AuNRs@SiO2 nanorods could be part of the successful application of these NPs.   

Numerous factors control the systemic circulation, cell penetration and BBB passage of 

NPs. Particle size is one of the important factors controlling the access of NPs across the BBB. 

Studies conducted in animal models of AD, PD and stroke have used NPs of 50-100 nm [109, 

110, 111, 112, 113, 114]. Several techniques, such as dynamic light scattering (DLS), atomic 

force microscopy (AFM), TEM and scanning electron microscopy (SEM) are used to 

characterise NPs [115]. Several factors control the particle size, such as the polymers used, 

drug loading, drug/polymer ratio and hydrophilic/lipophilic ratio. Previous studies have 

reported an increase in particle size after drug loading [116, 117]. On the other hand, Lopalco 

et al. (2015) have reported no changes in the size of NPs made up of PLGA, PLGA-d-α-

tocopheryl polyethylene glycol 1000 succinate (TGPS) and Resomer RGPd5055 pre- and post-

loading of drugs (oxcarbazepine and coumarin-6) [118]. 

4.3. Exosomes 

Exosomes are comprised of natural lipid bilayers with an abundance of adhesive proteins 

that readily interact with cellular membranes. These are small extracellular nanovesicles 

secreted by numerous cell [119, 120]. Naturally-occurring extracellular vesicles such as 

exosomes traffic endogenous small molecules, proteins and nucleic acids between cells,[121, 

122] and they have shown considerable promise for the delivery of exogenous drugs or 

biological therapeutics,[123, 124, 125, 126] including to the brain [127, 128]. Exosomes have 

several advantages over synthetic NPs in that their biocompatibility confers upon them an 

inherent non-immunogenicity and long circulation times, however surface-functionalisation 

(e.g. for targeted delivery) and synthetic analogues of ‘natural’ exosomes have also proven to 
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be successful therapeutic strategies [129, 130, 131]. Drugs delivered by means of an exosomal 

vector often show enhanced efficacy and fewer adverse effects. Enhancing and exploiting the 

innate drug-delivery capabilities of exosomes make for a highly attractive therapeutic 

approach. 

Alvarez-Erviti et al. (2011) used exosomes (obtained from self-derived dendritic cells) 

decorated to express Lysosome-associated membrane protein 2b (Lamp2b) and fused with 

neuron-specific RVG peptide to deliver siRNA into mouse brains [132]. They also compared 

the immune response of siRNA-RVG exosomes and siRNA-RVG-9R in vivo by measuring the 

interleukin (IL)-6, interferon gamma-induced protein (IP)-10, tumor necrosis factor (TNF)-α 

and interferon (IFN)-α serum levels. They found non-substantial changes in all cytokines 

compared to siRNA-RVG-9R [132]. Although, IFN-α and IP-10 increased in average for mice 

injected with siRNA-RVG exosomes compared to control mice [132]. 

Curcumin-loaded exosomes tagged with cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide 

[c(RGDyK)] were used to target the lesion region of the ischemic brain in a transient middle 

cerebral artery occlusion (tMCAO) mouse model [133]. Alvarez-Erviti et al. (2011) used RVG 

decorated exosomes to deliver siRNA to the mouse brain [132]. Long et al. (2017) used A-1 

exosomes (derived from human bone marrow mesenchymal stem/stromal cells (MSCs)) for the 

rectification of pilocarpine-induced status epilepticus (SE) [134]. Exo-JSI124 exosomes 

derived from EL-4 cells (a mouse lymphoma cell line) were used to deliver an encapsulated 

anti-inflammatory drug in experimental autoimmune encephalomyelitis (EAE) mice via an 

intranasal route, modulating inflammation [135]. Exosomes derived from dendritic cell 

cultures treated with interferon-γ were found to increase myelination in rats upon intranasal 

administration, possibly by delivery of miR-219 [136]. Exosomes loaded with 

superparamagnetic iron oxide NPs (SPIONs) and curcumin and conjugated with neuroleptin-

1-targeted peptide (RGERPRR) crossed the BBB and were used for imaging and treatment of 
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glioma [137]. Iraci et al. (2017) revealed the unexpected ability of stem cell exosomes to 

harbour and deliver functional enzymes (e.g. Asparaginase-like 1) extracellularly, thus 

behaving as fully independent small metabolic units with exciting therapeutic implications 

[138]. 

Cooper et al. (2014) described the use of exosomes derived from murine bone marrow 

dendritic cells to block the aggregation of α-Syn, a pathological process implicated in PD 

progression. siRNA-loaded exosomes decorated with RVG (targeting ligand) effectively 

reduced the α-Syn aggregation in normal mice and transgenic mice expressing the human 

phosphorylation-mimic S129D α-Syn [139]. Dopamine-loaded exosomes derived from the 

blood of mice were used to deliver drugs across the BBB with lower systemic toxicity 

compared to i.v. administration of naked dopamine [140]. As an alternative approach, Haney 

et al. (2015) circumvented the BBB, using intranasal delivery to successfully administer the 

catalase-loaded macrophage-derived exosomes to the brain of mice with a model of PD, 

resulting in significant neuroprotective effects [119]. Conversely, a potential role of exosomes 

in diagnosing neurodegenerative conditions was highlighted by Gui et al. (2015) who 

developed a microRNA-profiling strategy for the early detection of PD. They used exosomes 

isolated from the CSF of PD and AD patients, reporting sixteen miRNAs upregulated and 11 

miRNAs under regulated in PD [141]. 

Liu et al. (2015) successfully deployed exosomes expressing RVG on the surface loaded 

with opioid receptor mu (MOR) siRNA into the brain for the treatment of morphine addiction 

[142]. Wu et al. (2018) also used RVG decorated exosomes for brain drug delivery. They 

encapsulated siRNA targeting human huntingtin exon 1 (HuHtt) transcript. HuHtt-siRNA 

loaded RVG-exosomes were then administered intravenously to normal mice and BACHD and 

N171-82Q transgenic (Huntington’s Disease-model) mice at 10 mg/kg every two days for 2 
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weeks. siRNA-loaded RVG exosomes significantly reduced HuHtt mRNA and protein levels 

up to 46% and 54%, respectively, in transgenic animals [143]. 

4.4. Liposomes for brain drug delivery 

Liposomes are self-assembled NPs made up of phospholipid bilayer membrane. 

Phospholipids are heterogeneous molecules containing phosphate residues, polar head groups, 

and non-polar alkyl chains [144] that self-assemble (according to the fluid mosaic model) into 

biological membranes. Liposomes for brain drug delivery have been studied extensively in the 

last two decades. 

Pulford et al. (2010) formulated liposomes (178 ± 20 nm) containing cationic lipid 

octadecenolyoxy[ethyl-2-heptadecenyl-3 hydroxyethyl] imidazolinium chloride to deliver 

siRNA into the brain of mice following i.v. injection. The cationic liposome-siRNA-peptide 

(RVG-9r) penetrates the BBB, with the peptide moiety binding to nAChRs [145]. Bender et al. 

(2016) used two liposomal systems for the delivery of prion protein siRNA to the brain of mice 

following i.v. injection. One of the liposome formulations was cationic liposomes containing 

1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), which formed a complex with siRNA 

and RVG peptide. The other liposomal system contained DOTAP or 1,2-distearoyl-sn-glycero-

3-phosphoethanolamine (DSPE) to encapsulate the siRNA. Both systems decreased the prion 

protein expression of neurons in the CNS [146]. Grinberg et al. (2005) reported novel cationic 

amphiphilic compounds synthesised from vernonia oil. The quaternary methyl ester derivative 

of methyl vernolate self-assembled into vesicles (in the presence of cholesterol 1:1) with the 

size of 50-200 nm in diameter [147]. Vesicles made from the quaternary vernonia oil derivative 

(triple-headed amphiphile) were found to be efficient in transfection of cDNA encoding for 

GFP into cultured COS-7 cells [147]. These vesicles were employed to deliver analgesic 
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peptides (kyotorphin or leu-enkephalin) to the brain of male ICR mice following i.v. injection 

[148]. 

Moreover, Conceicao et al. (2016) reported that the RVG-9r peptide decorated liposomes 

(also referred as stable nucleic acid lipid particles [SNALPs]) were able to cross the BBB and 

deliver siRNA, which can target mutant ataxin-3 in the brain of Machado-Joseph disease mouse 

models. These SNALPs offered high encapsulation of siRNA, optimum particle size and 

almost no toxicity. In vivo experiments showed the ability of SNALPs to accumulate in the 

brain and silence the mutant ataxin-3 upon i.v. injection as shown in Figure 4 [149]. 

 

Figure 4.  In vivo images showing the uptake of the RVG-9r decorated SNALPs in mice (C57 

BL/6 ataxin-3 [Q69]-transgenic) after i.v. injection reproduced from [149] after permission 

(NI: non-injected animal, RV-MAT-9r: non-targeted liposomes, RVG-9r: targeted-liposomes). 
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Table 2. A summary of formulations (NPs) targeting the BBB. 

Formulation/Polymer Drug Disease Method used for 

NP preparation 

Mechanism for 

BBB crossing 

Key Findings Ref 

g7-PLGA-NPs 

(NPs of less than 300 nm) 

 

FITC-albumin MPS I and MPS 

II 

Double emulsion technique RMT The C57BL/6 Idua 

knockout and C57BL/6 

Ids knockout mice were 

used. 

High MW molecule 

delivery across the BBB 

achieved 

[93] 

Functionalized solid lipid 

NPs with apolipoprotein E, 

(SLN-DSPE-ApoE) 

(Average size was less than 200 nm 

with zeta potential of –10-15 mV) 

 

Resveratrol  Neuroprotective High shear homogenization LDLR In vitro cytotoxicity 

evaluation via MTT and 

LDH using hCMEC/D3 

cell line showed that 

SLNs affected neither 

[150] 
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the metabolic activity of 

the cells nor the 

membrane integrity at 

concentrations less than 

1500 µg/mL. 

hCMEC/D3 monolayers 

in transwell devices 

showed SLN-DSPE-

ApoE, permeabilities 

1.5-fold higher than for 

non-functionalized 

SLNs 

Bovine Serum Albumin NPs 

with LMWP cell penetrating 

peptide (LMWP-albumin) 

PTX and 4-HPR Brain cancer Self-assembly Brain penetration 

mainly by EPR, but 

also through 

SPARC and gp60 

FACS showed in vitro 

cellular uptake of the 

NPs. 

[151] 
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[LMWP: 

CVSRRRRRRGGRRRR] 

(Particle size less than 200 nm,) 

albumin binding 

proteins 

overexpressed in 

glioma tissues 

bEnd.3 cell line showed 

BBB penetration of the 

NPs 

U87 cells showed 

cytotoxicity of NPs. The 

NPs were administered 

by i.v. injection to 

orthotopic glioma (Luc-

U87) mouse model 

(bearing intracranial 

tumor). The mice 

received the NPs 

(LMWP-modified 

bovine serum albumin 

(BSA) NPs containing 

PTX and 4-HPR) 
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showed the longest 

survival time 

PEG–PLA-penetratin 

(RQIKIWFQNRRMKWKK) 

(Particle size 100 nm, zeta potential 

-4.42 mV) 

Coumarin-6 CNS disorders Emulsion/solvent 

evaporation technique 

AMT/RMT MDCK-MDR cell model 

showed enhanced 

accumulation via both 

lipid raft-mediated 

endocytosis and direct 

translocation. In vivo 

administration showed 

significant brain uptake 

with less deposition in 

non-target tissues 

[152] 

Angiopep conjugated with 

poly(ethylene glycol)-co-

poly(ε-caprolactone): ANG-

PEG– poly(ε-caprolactone) 

Paclitaxel Glioblastoma 

multiforme 

Sonication LDLR U87 MG glioma cells 

indicated  the ANG-

PEG- poly(ε-

caprolactone) NPs 

[153] 
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(Particle size was less than 100 nm 

with zeta potential of 3.28 ± 0.75 

mV) 

uptake via LDLR 

(Angiopep-2 and 

Aprotinin significantly 

reduced the cellular 

uptake of the NPs). Real 

time fluorescence 

imaging showed 

accumulation of ANG-

NPs in the brain of 

intracranial U87 MG 

glioma tumor-bearing 

nude mice after i.v. 

injection. 

TAT-poly(ethylene glycol) 

(PEG)-b-cholesterol: TAT–

PEG-b-Chol 

Ciprofloxacin Encephalitis Self-assembly AMT Enhanced in vitro 

cellular (ACBRI 376) 

uptake. NPs crossed the 

[154] 
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(Particle size less than 200 nm) BBB and located around 

the cell nucleus of 

neurons (SD adult rats) 

following i.v. injection 

RVG-29-PEG-PLGA/DTX-

NPs 

(Particle size was around 110 nm) 

Docetaxel Gliomas Nanoprecipitation nAchR In vitro bEnd3 cells 

showed ermeability 

across the BBB. RVG-

29-PEG-PLGA/DTX-

NPs had a stronger 

inhibitory effect on C6 

cell proliferation than 

free DTX. In vivo 

experiments confirmed 

selective accumulation 

of NPs in intracranial 

[155] 
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glioma tissues following 

i.v. injection. 

PEG-Poly(ε-caprolactone)-

CH2R4H2C/Stearate- 

CH2R4H2C 

(CH2R4H2C: 

CHHRRRRHHC peptide) 

(Particle size was in the range of 50-

100 nm with zeta potential of 15-20 

mV) 

Dextran (as model 

drug) 

CNS disorders Self-assembly Olfactory nerve 

channels 

Hydrophobic carrier is 

more suitable for the 

delivery of drug in 

forebrain, while 

hydrophilic carrier is 

suitable for hindbrain 

(brainstem). 

[156] 

g7- PLGA-Np 

(Particle size was in the range of 

155±26 nm with zeta potential of -

15±5.6 mV) 

 

Loperamide CNS disorders Nanoprecipitation AMT Long term in vitro 

release over 192 hours 

and 20% in 2 hours. In 

vivo experiments 

showed excellent bio-

distribution in brain.  

[157, 

158] 
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mPEG−PLGA-RVG 

(Particle size was in the range of 

168.8 ± 1.9 nm with zeta potential 

of −27.40 ± 0.71 mV) 

Deferoxamine PD Double emulsion technique nAchR In vivo administration 

reduced the oxidative 

stress and iron contents 

in the substantia nigra 

and striatum of PD mice. 

[159] 

siRNA/TMC–PEG-RVG 

(Particle size was in the range of 

207 ± 2 nm with zeta potential of 9 

± 2.5 mV) 

siRNA AD - nAchR In vitro and in vivo 

experiment showed 

excellent penetration 

into brain with low 

toxicity and higher 

serum stability. 

[160] 

AuNCs-RDP 

(Particle size was in the range of 10 

± 2.85 nm with zeta potential of -

5.92 ± 3.16 mV) 

Carboxyfluorescein Neural cell 

imaging 

Green synthetic route RMT In vitro and in vivo 

results suggested the 

effective internalization 

in the brain cells. 

[161] 

 

Page 36 of 58AUTHOR SUBMITTED MANUSCRIPT - NANOX-100084.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



37 
 

4.5. Dendrimers for brain drug delivery 

Dendrimers are chemically synthesised polymeric particles with defined shapes (due to 

monodispersity). Dendrimers have been investigated for brain drug delivery. It has been 

reported, apolipoprotein A-I (ApoA-I) and NL4-peptide dual modified dendrimer NPs were 

efficient carriers for siRNA delivery to PC12 cells and efficiently penetrate through a bEnd.3 

monolayer via LDLR [162]. KE et al. (2009) used PAMAM–PEG–Angiopep/DNA-NPs to 

deliver plasmid DNA across the BBB. The PAMAM was fifth generation with 128 surface 

primary amino groups. In vitro BBB model showed clathrin and caveolae-mediated 

endocytosis (also partly through marcopinocytosis) of the nanocarriers containing Angiopep 

peptide [TFFYGGSRGKRNNFKTEEYC]. PAMAM–PEG–Angiopep dendrimers were 

loaded with pEGFP plasmid; and the NPs were administered intravenously to mice. Gene 

expression was observed in all four regions of the mouse brain for the PAMAM–PEG–

Angiopep/DNA NPs, which was much higher than those for the PAMAM/DNA NPs [163]. In 

another study, low generation lysine dendrons (G0 and G1) conjugated with ApoE derived 

peptide (LRKLRKRLLR) were reported to cross the BBB efficiently with no cytotoxicity up 

to 400 µM [164]. It should be noted that PAMAM/siRNA complexes appear to show 

significant cell toxicity even at low concentrations such as 20 µg/mL [165]. As it would be 

expected, the cationic dendrimers show haemolytic activity. However, increasing the 

dendrimer generation decreases the haemolytic activity. For example, G2 dendrimers showed 

100% haemolysis at 1 mg/mL concentration after 24 h incubation with RBCs, while G5 

dendrimers showed no haemolysis (comparable to negative control) at the same concentration 

and incubation period [166]. Dynamic light scattering (DLS) studies showed that 

PAMAM/siRNA complexes had sizes in the range of 150-200 nm, while TEM results indicated 

a wider size distribution with majority in the range of 30-45 nm for G7 PAMAM/siRNA with 

N/P ration of 10 [167]. 
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4.6. Carbon Nanotubes  

Carbon nanotubes (CNT) are cylindrical molecules that consist of rolled-up sheets of 

single-layer carbon atoms. Distinctive properties of CNT such as good electronic properties, 

excellent penetration into cell membrane, high loading capacity, pH-dependent unloading, 

greater surface area and ease of modification make them one of the suitable drug delivery 

system for the brain [168, 169]. CNT have been extensively investigated as a drug carrier to 

the brain in past few years. Functionalized CNT can potentially be used as a carrier for drugs 

that have poor permeability across the BBB and also can be used for diagnostic and for the 

treatment of brain disorders [170]. 

CNT can be synthesized electric arc discharge and laser ablation using vaporisation of 

graphite target [171] or by chemical vapour deposition [172]. CNT can be grouped into single 

wall carbon nanotubes (SWCNT) or multi wall carbon nanotubes (MWCNT) depending on the 

number of layers that constitute a CNT. CNT size ranges from 0.4nm to 100nm depending on 

the layers. CNT can be functionalized covalently or non-covalently [173]. 

Ren et al. (2012) developed PEGylated oxidized multi-walled carbon nanotubes (O-

MWNTs) modified with angiopep-2 (O-MWNTs-PEG-ANG) to treat brain glioma. They 

reported the high uptake and accumulation of CNT in the desired area with excellent loading 

capacity. Angiopep-2 specifically binds to LDLR and promotes the internalization. 

Doxorubicin loaded CNT were found to have better anti-glioma effects than naked doxorubicin 

[174]. In another study, ANG functionalized radiolabelled CNT were employed to deliver drug 

across the BBB. In vitro experiments suggested higher penetration of ANG-CNT than 

chemically functionalized CNT. Enhanced localization of ANG-CNT was reported upon in 

vivo injection and 2% of the injected dose was accumulated in the brain within the first hour 
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post-injection [175, 176]. TAT (YGRKKRRQRRR) conjugated CNT were reported to have 

excellent BBB penetration and anticancer activity through increased ROS production [177]. 

4.7. Parameters affecting the BBB transport 

4.7.1. Size, morphology and surface zeta potential  

NPs in the range of 120-180 nm after crossing the BBB may be entrapped in the BL [178]. 

However, NPs with the size in the range of 16-24 nm are able to diffuse in the brain parenchyma 

[178]. These observations indicate that NPs should be less than 120 nm such as exosomes in 

order to diffuse in the brain parenchyma, otherwise they will remain trapped in the BL 

following crossing the BBB. 

The morphology of NPs affects their bio-distribution and cellular uptake. NPs could be 

spherical, cubic, tubular or rod-like in shape [179, 180]. A majority of the particles reported 

for brain delivery are roughly spherical in shape. Zeta potential or surface charge of NPs is 

another factor that controls the diffusion across the BBB. It has been reported that a high 

(positive) zeta potential causes toxicity to the BBB [181, 182]. Rassu et al. (2017) reported that 

a positive surface charge on NPs ensures their mucoadhesion [183]. On the other hand, NP 

formulations have been reported for brain delivery with zeta potentials between -1 and -45 mV 

[184, 185, 186]. Different shapes of NPs are shown in Figure 5. 

 

Page 39 of 58 AUTHOR SUBMITTED MANUSCRIPT - NANOX-100084.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



40 
 

 

Figure 5. Different morphologies and shapes of NPs used for brain drug delivery. 

4.7.2. Critical micelle concentration (CMC) 

CMC is the minimum concentration of a compound at which it forms micelles. CMC 

plays a major role in the stability of micelles/NPs due to excessive dilution in the blood, upon 

i.v. injection. If the concentration in systemic circulation drops below the CMC, then it releases 

the payload in the blood stream before getting to its target. 

CMC can be determined by using set concentrations of a pyrene probe with serial dilution 

of copolymer solution [187, 188]. Ruan et al. (2018) used RAP12 peptide (a part of the receptor 

associated protein that binds to LRP1) and decorated PEG-poly(lactic acid) (PLA) micelles to 

deliver  drug (paclitaxel) across the BBB [189]. Liu et al. (2009) reported CG3R6TAT 

(CGGGRRRRRRYGRKKRRQRRR), a self-assembled cationic antimicrobial peptide able to 

cross the BBB. They measured the CMC by using the pyrene as a probe and found to be 31.6 

mg/L (10.1 µM) in deionized water [187]. Micelles and PMNPs both can target the brain and 

cross the BBB. Efficacy and efficiency of crossing the BBB are dependent on targeting via the 

surface of the nanocarriers. 

4.7.3. Protein corona 
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NPs, upon contact with biological fluids, are surrounded by a protein layer that is called 

protein corona [190, 191, 192, 193]. The first layer of protein corona is bound tightly on the 

surface (primary contact with NPs), which is referred as ‘‘hard’’ corona. Usually, another layer 

is loosely bound on the first layer, which is referred as ‘‘soft’’ corona; and that consists of 

serum proteins, mainly comprising albumin and its derivatives [194, 195, 196]. This surface 

adsorption of protein can alter the physiological response [195]. The adsorption of proteins on 

NPs mostly has undesirable effects such as prompt clearance from blood stream, compromised 

targeting capacity [197] and toxicity [198, 199]. Proteins bound to a NP surface may rearrange 

their structure and shape according to NP surface and environment, this is known as 

‘‘conformational change’’. Conformational change accompanied with the modification of 

secondary or tertiary protein structure. Proteins are supposed to interact with other 

biomolecules to initiate biological responses, hence a small modification in protein structure 

has huge impact on their pharmacological activities [200]. 

Several factors dictate the nature of adsorbed proteins. Particle size plays an important 

role in protein adsorption. As NPs are bigger than proteins, NPs make proteins to adapt the 

NPs’ surface. Smaller NPs has less interaction with proteins [201]. Surface charge of the NPs 

affects the secondary structure of proteins. Huhn et al. (2014) reported that gold NPs with 

different surface charge (positive [+9.7 ± 8.9 mV] or negative [-39.8 ± 10.0 mV]), but similar 

sizes adsorbed comparable amounts of HSA. Whereas, positively charged NPs showed higher 

cellular uptake than negatively charged NPs. This change in the activity can be due to 

conformation changes in protein structure due to surface charge [202]. Fleischer and Payne 

(2014) observed that similar NPs with identical protein corona compositions bind to different 

cellular receptors, suggesting that a difference in the structure of the adsorbed protein may be 

responsible for the differences in cellular binding of the protein–NP complexes. These authors 

also found that cationic polystyrene NPs showed improved cellular binding to monkey kidney 
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epithelial cells compared to negatively charged NPs in the presence of fetal bovine serum 

(FBS). It should be noted that in both cases, the NPs formed protein–NP complexes 

immediately following exposure to FBS [199]. 

Media composition affects the protein corona. Silica NPs in the presence of serum 

proteins showed less uptake compared to serum free media [203]. Gold NPs incubated with 

Dulbecco’s Modified Eagle’s Medium (DMEM) media for 48 h showed higher protein 

adsorption than Roswell Park Memorial Institute media (RPMI), but same amount after 1 hr 

incubation [204]. Protein concentration in media affects the protein corona. Silica NPs 

incubated with 3%, 20% and 80 % plasma exhibited different protein patterns. Changes in 

primary protein band was observed with increasing plasma concentration. Lower amounts of 

proteins were measured on silica NPs compared to sulfonated polystyrene (PSOSO3) NPs with 

increased plasma concentrations [205]. Exposure time affects the protein corona. Protein 

corona forms immediately as soon as the NPs come into contact with human plasma. Tenzer et 

al. (2013) reported complex protein corona (formed of 300 proteins) just after 30 s [206]. In 

addition, temperature plays an important role in protein corona formation. Cu-NPs showed 

higher protein adsorption when incubated by increasing temperature from 15°C, 27°C, and 

37°C to 42°C [207]. 

A decline (from 76% to 26%) in the cellular uptake of cRGD decorated NPs was reported 

by Su et al. (2018) in protein bound NPs compared to non-protein bound NPs. They found that 

even the targeting ability was not affected but cellular uptake was compromised [208]. Tf 

decorated NPs were reported to lose their targeting ability in the biological medium. Proteins 

in the medium are reported to shield the NPs and hence results in disappearance of targeting 

ability. However NPs can enter the cells but the targeting capacity is lost [209]. Aptamer 

functionalized AuNPs lost the targeting ability due to protein corona blocking after serum 
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exposure. Immune related proteins were found on the surface of aptamer that can induce 

immune reaction and clearance eventually [210]. 

4.7.4. Stability of NPs 

The stability of NPs can be categorised into two, shelf stability and serum stability. NPs 

should be stable enough to retain their therapeutic effects for a specific time when stored or 

administered to the body. Oller‐Salvia et al. (2016) tested the serum stability of peptide NPs in 

human serum. They found that switching from linear to monocyclic analogue didn’t affect the 

permeability but showed 30-fold enhanced stability than linear peptide analogue [32]. In 

addition, upon switching disulphide to a lactam bridge in Miniap-4 shuttle peptide, they found 

50% higher permeability with better resistance to proteases [32]. El-Marakby et al. (2017) 

assessed the serum stability of chitosan NPs in rat serum. They reported a sharp reduction in 

particle size (up to 62% of original size) prepared from the native chitosan, whereas modified 

chitosan showed slight increase in the size from 87.39 ± 1.56 nm to 122.33 ± 1.95 nm after 2 

h incubation with the serum. After 24 h incubation no significant changes were noticed [211]. 

Oliveira et al. (2017), tested uncoated and poly allylamine hydrochloride (PAH)-coated PLGA-

NPs in biological environments: BSA solution, mouse and human plasma. Both formulations 

were reported stable in BSA and mouse plasma on incubation, but surprisingly not stable in 

human plasma (formed aggregates greater than 1 µm). They also studied protein corona in all 

solutions. In mouse plasma uncoated NPs showed protein concentration of 4.1 ± 2.6 μg/mL, 

which was much greater than incubating these NPs in BSA solution. Surprisingly, in human 

plasma it was 2.5-fold higher (10.4 ± 3.0 μg/mL) than mouse plasma. Similarly PAH-coated 

PLGA-NPs showed higher protein adsorption after incubation with human plasma than BSA 

solution and mouse plasma [212]. 
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Uncoated chitosan NPs were to increase in size by storage at 25C for 3 months in 10% 

glucose solution [213]. This alteration in size results in modified physicochemical, 

pharmacodynamic and pharmacokinetic properties of the PMNPs. Lyophilisation with 

cryoprotectants is reported to enhance the stability and to stop contents leaking from the NPs 

[214, 215, 216]. Cryoprotectants such as glucose, sucrose, mannitol and trehalose are most 

commonly used because of their low toxicity [214, 217]. 

5. Conclusion 

Peptide based drug delivery systems have been studied extensively in the last two decades 

to overcome the BBB. Peptide based formulations come with its advantages (less toxicity, low 

alteration in the BBB integrity and specific targeting) and disadvantages (serum stability). 

Shuttle peptides, exosomes, liposomes, NPs and dendrimers decorated with peptides have 

shown much improved permeability across the BBB. Targeting and crossing the BBB is an 

ever expanding and challenging yet promising field. To design and develop a CNS drug that 

can target the BBB requires a detailed understanding of both the BBB at a molecular level and 

drug properties (pharmacokinetics and pharmacodynamics). Despite many advances in drug 

delivery systems, there is still an essential need for research aimed at attaining improved 

delivery systems with fewer limitations. Peptide based delivery systems along with pro and 

cons need further optimization and high specificity in brain targeting. 

 

 

6. Future Direction 

Despite extensive research in the use of peptides in nanoparticles for drug delivery to the 

brain, yet there is no clinical trial of them. Then, the next steps would be developing scalable 
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and reproducible brain targeting nanoparticle delivery system using peptides as targeting 

ligands. Peptide based NPs provide the opportunity of formulating enzyme responsive or 

biodegradable delivery systems, which may offer less toxicity and immunogenicity, and 

improved efficacy. Peptide based nanoparticles should be able to deliver/encapsulate suitable 

amounts of drug to the brain; and these should protect the drug from enzymes in the blood.  
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