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Investigation Into How the Floor Plan Layout of a
Manufactured PCB Influences Flip-Chip

Susceptibility to Vibration
Kangkana Baishya, David Mark Harvey , Guangming Zhang, and Derek Richard Braden

Abstract— This article investigates how floor plan layout of a
printed circuit board (PCB) influences the reliability of the com-
ponent’s solder joint connections when operated in a vibrating
environment. A random vibration profile as seen in an automotive
environment was used in full lifetime tests. An industry-standard
FR4 PCB with electroless nickel immersion gold (ENIG) surface
finish was manufactured with double-sided component placement
including 14 flip chips, eight on the top side and six on the
bottom side. Ultrasound scans were used as a nondestructive test
to assess the integrity of solder joints from manufacture to failure.
This enabled monitoring of the important interface between
solder joints and flip chip where failure mostly occurs. The
initial failure pattern was found by experiment where 86 cycles
of random vibration caused all flip chips to mechanically fail.
Failure followed a Weibull probability with a value of β = 1.297,
indicating that failure rates increase with time. The results show
that the reliability of a flip chip varies with its position on a PCB
with some marked differences to component lifetimes. The results
also show that for two-sided flip-chip placements on a PCB, back-
to-back, overlapped, and single-sided orientations have subtle
effects on flip-chip lifetimes. Similarly, reliability varied with
solder joint positions since joints on the sides of a flip chip nearest
the PCB edges were less reliable than those on sides on a flip
chip furthest away. Finally, design guidelines are offered to effect
the most reliable flip-chip placement on a two-sided PCB when
operated in a vibrating environment.

Index Terms— Flip chip, floor plan layout, solder joint,
vibration.

I. INTRODUCTION

SOLDER joint fatigue failure under vibration loading has
always been a great concern in the microelectronics

industry. In automotive, aerospace, and military applications,
electronic systems should be able to undergo various dynamic
loads and vibration frequencies during their operation [1]–[4].
Vibration was identified to be one of the most important

Manuscript received February 26, 2020; accepted April 6, 2020. Date
of publication April 13, 2020; date of current version May 11, 2020.
This work was supported in part by Delphi, U.K., and in part by Delphi,
Krackow, Poland. Recommended for publication by Associate Editor T. Chiu
upon evaluation of reviewers’ comments. (Corresponding authors: Kangkana
Baishya; David Mark Harvey.)

Kangkana Baishya, David Mark Harvey, and Guangming Zhang are
with the General Engineering Research Institute, Liverpool John Moores
University, Liverpool L3 3AF, U.K. (e-mail: kbaishya010@gmail.com;
d.m.harvey@ljmu.ac.uk; g.zhang@ljmu.ac.uk).

Derek Richard Braden is with the European Validation and Hardware
Operations Engineering Department, Aptiv PLC, Coventry CV3 1JG, U.K.
(e-mail: derek.braden@aptiv.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCPMT.2020.2987334

causes of electronic failure by the U.S. Air force [5] and
solder interconnects usually are the weakest link in terms
of product reliability [6]. Therefore, solder joint reliability
testing is necessary to understand the effects of high-frequency
vibration, particularly for any manufactured electronics that
are prone to encounter harsh environments in practice [7].
Liu and Meng [8] studied the lead-free solder joint behavior
of ball grid array (BGA) packages under different random
vibration loadings and results showed that the corresponding
failure modes were converted from ductile fracture to brittle
fracture with the increase of vibration intensity. Wong [9]
presented a methodology to characterize and predict fatigue
failure of BGA package solder joints under vibration loading
based on board strain versus number-of-cycles-to-failure (or
S–N) curve. The comparison of SnAgCu and SnPb solders
in fatigue curves clearly indicated the better performance of
SnAgCu solder system under high-cycle fatigue test, while this
trend was reversed in low-cycle fatigue where SnPb solder
has superior fatigue resistance. Che and Pang [10] carried out
some sinusoidal vibration reliability tests for flip-chip solder
joints and applied a linear cumulative damage analysis method
(Miner’s rule) to predict the life of solder joints. However,
none of these studies attempted to conduct real-time vibration
tests or were able to monitor the exact dynamics of manufac-
tured solder joint reliability. Solder joint reliability, which is
greatly affected by the component’s floor plan, the thickness
of the printed circuit board (PCB), and the influence of the
surrounding components [6], has never been fully studied
before. A previous article has investigated the effects of floor
plan layout on through-life PCB reliability when considering
thermal cycling effects [11]. This article investigates the relia-
bility of solder joints in flip chips through real-time vibration
and a nondestructive solder joint health monitoring system
using acoustic microimaging (AMI/C-SAM) that detects the
changes in mechanical integrity in the solder joints in terms
of the mean intensity of reflected ultrasound signals from a
solder joint [12]. Finally, PCB floor plan design guidelines
for the most secure flip-chip placement for systems working
in a vibration environment are proposed, which will ensure
better reliability and improved lifetimes of PCBs in a vibration
environment.

II. EXPERIMENTAL DESIGN

An industry-standard FR4 PCB of 0.8-mm board thickness
(see Fig. 1) and a surface finish of electroless nickel immersion
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Fig. 1. Generic board layout with flip-chip numbers [19].

Fig. 2. Different flip-chip orientations. (a) Flip chip with back-to-back
connection and offset along the breadth. (b) Flip chips with back-to-back
connection with offset along the length. (c) Flip chips with back-to-back con-
nections with no offset [19].

gold (ENIG) with various area array packages was designed
at Delphi, Krakow, for the experiment. The 10-cm square
manufactured PCB has a range of BGA and other area
components populated carefully on both sides. One side of
the PCB has eight flip chips, whereas the other side has six,
making a total of 14 flip chips, numbered as shown in Fig. 1.
Each flip chip has 109 solder joints. Table I shows more
detailed information on the flip chips [13]. All the flip chips are
placed in different positions on the PCB and also have different
orientations relative to each other, as shown in Fig. 2. Flip
chips U23 and U26 are stand-alone flip chips with no back-
to-back connections. U19–U35 and U20–U36 pairs are placed
back-to-back with an offset along the breath [see Fig. 2(a)].
U27–U39 and U28–U40 pairs are placed back-to-back with
an offset along the length [see Fig. 2(b)]. U34–U46 and
U31–U43 pairs are placed back-to-back with no offset [see
Fig. 2(c)]. An aluminum test fixture was also designed at
Delphi, Krakow, for the experiment that can accommodate
four test boards at a time within a 4–5-mm recessed support
for each board, as shown in Fig. 3. Each PCB is secured
to the test fixture by a screw torqued to 1 N · m at its four
corners. A random vibration profile used for the experiment
is shown in Fig. 4. This profile was conceived with the
help of automotive vibration experts in Delphi. The profile
was designed to be a representation of the vibration loading
experienced by many automobiles in real life. The setup is
tabulated in Table II, with a level G rms = 9.5 g. A vibration
shaker in Delphi, Liverpool, was programmed with this profile
and used for the experiments, as shown in Fig. 5. Ultrasound
C-scan images used for solder joint through life monitoring
were obtained using the Sonoscan Gen6 C-Mode Scanning

TABLE I

INFORMATION ABOUT THE FLIP CHIPS [13]

Fig. 3. Aluminum test fixture with one PCB and three empty slots [19].

Acoustic Microscope in the LJMU Laboratory, as shown in
Fig. 6. A schematic of how the 109 solder joints was labeled
to help with analysis along with an ultrasound C-Scan of
the solder joints in a flip chip is shown in Figs. 7 and 8,
respectively. A resolution of 3 μm was found to be optimal
for the acoustic scanning after initial tests.

The PCB was mounted in the vibration shaker and vibrated
according to the random profile obtained from Delphi, Krakow.
As the total time to complete the mechanical failure of all the
flip chips in the PCB was unknown, a pretest was conducted
to help determine the maximum test time. All the flip chips
were found to have reached complete failure after 86 vibration
cycles, where each cycle was 4 min. Based on the pretest data,
nine flip chips were selected according to their positions and
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Fig. 4. Proposed random profile for the experiment (green trace) [19].

TABLE II

RANDOM VIBRATION PROFILE

Fig. 5. Vibration chamber in Delphi, Liverpool, U.K.

relative orientations in the PCB to be monitored by acoustic
scanning at different scan intervals based on their pretest
results, as shown in Table III. This through lifetime data
collected as an acoustic image was then processed and used
for further analysis using MATLAB.

Table IV shows the failure time and pattern of the flip chips.

III. RESULTS AND DISCUSSION

A. Weibull Analysis

The Weibull distribution is one of the most widely used
lifetime distributions in reliability engineering. The equation
for the probability density function (pdf) f (t) of a Weibull
distribution is given by [13]

f (t) = β

η

(
t − γ

η

)β−1

e−
(

t − γ

η

)β

(1)

where f (t) ≥ 0, t ≥ 0 or γ, β > 0, η > 0,−∞ < γ < ∞.

Fig. 6. Sonoscan Gen6 C-Mode Acoustic Microscopy System (image
courtesy of Sonoscan Inc.).

Fig. 7. Labeling scheme for 109 solder joints [16].

Fig. 8. C-scan of a target flip chip scanned at 3-μm resolution.

TABLE III

SCAN INTERVALS FOR DIFFERENT FLIP CHIPS FOR 0.8-MM ENIG

The parameters β, η, and γ control the scale, shape, and
location of the pdf function. The scale parameter η defines
where the bulk of the distribution lies. The shape parameter β
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TABLE IV

FLIP CHIP FAILURE PATTERN FOR 0.8-MM ENIG

TABLE V

RELIABILITY BASED COLOR CODING SCHEME

defines the shape of the distribution, and the location parameter
γ defines the location of the distribution in time.

The Weibull distribution can take on the characteristics of
other types of distribution based on the value of its shape
parameter β. The Weibull shape parameter β, also known
as the slope, is equal to the slope of the regressed line in
a probability plot. The value of β has a marked effect on
the failure rate of the Weibull distribution. Inferences can
be drawn about a population’s failure characteristics just by
considering whether the value of β is less than, equal to,
or greater than one. Populations with β < 1 exhibit a failure
rate that decreases with time, populations with β = 1 have
a constant failure rate that is consistent with an exponential
distribution, and populations with β > 1 have a failure rate
that increases with time. Fig. 9 shows the Weibull probability
plot of the 0.8-mm ENIG-based PCB from the observations
of Table IV.

The shape parameter β [15] has been calculated to be
β = 1.297, which, being greater than 1, indicates that the
ENIG PCB material set has a failure rate that increases with
time. The fact that the data set closely follows the predicted
Weibull distribution indicates the validity of the experimental
data set.

B. Reliability Analysis Based on Flip-Chip Position

Upon close observation of the failure (Table IV), one can
argue that the flip chips in the PCB can be classified into
three categories based on their reliability performance. If we
consider 86 cycles as the total expected lifetime of a flip chip,

Fig. 9. Weibull plot for 0.8-mm ENIG PC.

Fig. 10. 0.8-mm ENIG board layout with color-coded flip-chip positions
based on reliability.

then flip chips with a lifetime of less than 25% of expected
lifetime will be considered as the least reliable, those above
50% will be considered as the most reliable, and those in
between 25% and 50% will have medium reliability. In order
to visualize this classification, color coding was introduced as
detailed in Table V and implemented in Fig. 10. Fig. 1 shows
the nomenclature of the flip chips, whereas Fig. 10 shows their
respective reliability.

Now, from Table IV, it can be seen that the most reli-
able positions are those of flip-chip pairs U31–U43 and
U40–U28. Of these flip chips U31–U43 is a pair with back-
to-back connection and no offset, while U40 is back-to-
back connected with offset along the length. On the other
hand, the least reliable flip chips are U23 and U26. They
were the first two flip chips to fail within the first few
vibration cycles in the test boards. Both these flip chips
are stand-alone and have no back-to-back connections. Con-
sidering then together U23 that is placed near the center
of the PCB has lower reliability than U26. Hence, it can
be safely concluded that in a PCB, flip chips with back-
to-back connections with no offset are the most reliable,
while standalone flip chips with no back-to-back connections,
especially the ones placed near the center of the PCB, are the
least reliable when considering their susceptibility to vibration
cycling.
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Fig. 11. Positions of the flip chips selected for analysis on the PCB.

C. Reliability Analysis Based on Flip-Chip Orientation
and Solder Joint Position on PCB

In order to determine which of the solder joints fail first
depending on the orientations and positions of the flip chip
on the board, an in-depth analysis was done on selected flip
chips U19, U26, U27, and U34, each of which belongs to a
specific orientation.

1) U34: Back-to-back with no offset, near the board edge
at the corner.

2) U19: Back-to-back with breath offset, near the board
edge next to the corner.

3) U27: Back-to-back with length offset, near the board
edge near the corner.

4) U26: Single sided near the board edge next to the corner.

Fig. 11 shows the flip-chip placement positions on the bare
PCB in red circles. For the purpose of brevity and to avoid
repetition, only the detailed analysis results for flip chip
U34 will be discussed. Full details are available in [19].

In order to witness the behavior of the solder joints in each
of the flip chips based on their orientations and positions,
a 3-D plot of the mean intensity of the 51 solder joints in
the inner region of each of the flip chips was generated.
The mean intensity represents the reflected ultrasound wave
strength from the solder bump to the flip-chip interface.
As this connection cracks during vibration testing, the mean
intensity grows in line with the crack size, giving a useful
parameter through which to assess solder joint failure. The
reason for dealing with only the inner 51 joints is to eliminate
an ultrasound imaging edge effects. Yang [16] in his thesis
concluded that because of an acoustic edge effect witnessed
at the imaging of the outer row of solder joints in these
particular flip chips, getting an accurate measure of their
image parameters is very difficult. When an ultrasound signal
strikes the edge of a material, the signal is scattered away
that results in a drop of the required information from the
solder joint [17], [18]. This effect can be reduced by custom
transducer design but cannot be eliminated entirely due to the
intrinsic properties of ultrasound. Hence, in order to get a
more accurate picture of the behavior of the solder joints in a
vibration environment based on the positions and orientations
of the flip chips, only the inner periphery of 51 solder joints
was selected to be analyzed, as shown in Fig. 12.

From the detailed mean intensity analysis of each of the sol-
der joints in flip chips of various reliabilities in the PCB using

Fig. 12. C-scan image of U34 showing the solder joints to be examined
within the red box.

Fig. 13. 3-D plot of the mean intensity of joints 59–109 of U34 at cycle 0.

MATLAB [19], it was found that for all types of joints in a flip
chip, the first trigger point occurs at around 35%–40% cycling
and second change occurs at around 80%–85% cycling [19].
Thus, the failure pattern of any solder joint can be loosely
said to fall into regions. The region between zero cycles and
first trigger point where the crack initiates, the region between
the first and second trigger point where the crack propagates,
and finally the region after the second trigger point where
the crack formed reaches its peak and finally the flip chip
fails. Consequently, for flip chip U34 that has a total vibration
cycling time of 29 cycles, the first trigger point of change or
crack initiation should occur at around ten cycles, whereas the
second trigger point should be at around 25 cycles. Hence, the
solder joints at scan intervals of 0, 10, 20, and 25 cycles will
be analyzed in detail. The reason for analyzing the scan at
20 cycles is because 20 cycles represent a point between the
first and second trigger points and hence will provide valuable
information on the crack propagation. Figs. 13–16 show the
3-D plots of the mean intensity of the solder joints of U34 at
cycles 0, 10, 20, and 25, respectively.
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Fig. 14. 3-D plot of the mean intensity of joints 59–109 of U34 at ten cycles.

Fig. 15. 3-D plot of the mean intensity of joints 59–109 of U34 at 20 cycles.

Fig. 16. 3-D plot of the mean intensity of joints 59–109 of U34 at 25 cycles.

For a clearer visualization, the graphs in Figs. 17–21 show
the intensity change of all the 51 joints at cycle 25. It should
be kept in mind that all the joints had a mean intensity of
around 20–25 at cycle 0, as shown from Fig. 13.

Fig. 17. Intensity of solder joints 59–75 (away from the PCB edge) at
cycle 25.

Fig. 18. Intensity of solder joints 76–92 (near the PCB edge) at cycle 25.

Fig. 19. Intensity of solders joint 93–99 (near the PCB edge) at cycle 25.

From the 3-D plots, it can be clearly seen that at cycle 0,
all the solder joints have a mean intensity of around 20–25.
However, after 25 cycles, joints 76–92 that are located near the
edge of the board start showing more intensity change with
an average intensity value of 45.8 compared with joints 59–75
that are located away from the edge and have an average
intensity value of 41.2. Similarly, joints 93–99 that are located
near the edge of the board start showing more intensity
change with an average intensity value of 47.1 compared with
joints 100–106 that are located away from the edge and have
an average intensity value of 41.0. Joints 107–109 show a
similar intensity change, but the intensity change of joint 109
that is located nearer the board edge is very slightly more
than 107 and 108.
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Fig. 20. Intensity of solders joint 100–106 (away from the PCB edge) at
cycle 25.

Fig. 21. Intensity of solder joints 107–109 at cycle 25 (joint 109 is nearest
the edge).

A similar pattern in the behavior of solder joints was
observed in the case of the rest of the flip chips as well.
In the case of U19, the solder joints near the edge of the
board, namely 59–75, showed more damage compared with
the joints at the side away from the edge, namely 76–92.
The overlapping joints 95–99 and 103–106 show average
damage, but joints 103–106 near the board edge have slightly
more damage compared with joints 95–99. In the case of
U27, the solder joints near the edge of the board, namely,
59–75, show more damage compared to the side away from
the edge, namely 76–92. The overlapping joints 59–67 and
76–84 show average damage, but joints 59–67 near the board
edge have slightly more damage compared with joints 76–84.
Solder joints 68–75 have more damage compared with joints
59–67 and 76–92, whereas joints 85–92 have more damage
than joints 76–84. Finally, in the case of U26, the solder
joints near the edge of the board, namely 59–75 show more
damage compared to the joints at the sides away from the
edge, namely 76–109.

From all the earlier observations, it can be concluded that
in the case of vibration loading, the solder joints near the
board edges start failing first. Thus, the farther away from the
edge a solder joint is, the better the reliability. Solder joints
with back-to-back connections are more reliable than the ones
placed in one-sided orientation. However, solder joints with
back-to-back connections but located near the board edges are

less reliable compared with the ones located away from the
board edges.

D. Design Guidelines for Floor Plan Layout in a PCB

Based on all the observations mentioned in Sections III-B
and III-C, certain design guidelines can be loosely suggested
to ensure better reliability of solder joints and flip chips and
improve their susceptibility to PCBs operated in a vibration
environment.

1) Single-sided flip-chip placements should be avoided.
2) Back-to-back connections should be made where

possible.
3) Placement of flip chips at the center of the PCB should

be avoided.
4) Placement of flip chips very close to the edges of the

PCB should be avoided.
5) Back-to-back connection with no offset is the most

reliable orientation for flip chips in PCBs subjected to
vibration.

6) Back-to-back connection with length offset is the second
most reliable orientation for flip chips in PCBs subjected
to vibration.

7) Finally, back-to-back connection with breath offset is the
least reliable of the three offsets, but it is more reliable
than a stand-alone single-sided connection.

IV. CONCLUSION

In this article, the effects of vibration cycling on the reliabil-
ity of flip chips of different positions and relative orientations
in an industry-grade PCB were evaluated. Nondestructive
testing in the form of AMI was used for data collection and
MATLAB was used for data analysis. It was found that in the
case of vibration cycling in a 10-cm square PCB attached by
screws at each corner, flip chips with back-to-back connections
with no offset are the most reliable, while stand-alone flip
chips with no back-to-back connections, especially the ones
placed near the center of the PCB, are the least reliable.
A detailed 3-D mean intensity analysis of the degradation of
individual solder joints in a flip chip was also done to study
the failure patterns of individual solder joints in a flip chip
based on their location and orientation on a PCB. It was found
that in the case of vibration loading, the solder joints near
the board edges start to fail first. Solder joints with back-to-
back connections were more reliable than the ones placed in
the one-sided orientation. However, solder joints with back-
to-back connections but located near the board edges were
still less reliable compared with the ones located away from
the board edges. Thus, the farther away from the PCB edge a
solder joint was, the better the reliability. Based on all these
observations, a few design guidelines for the floor plan layout
of flip chips in a PCB were proposed from this article.
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