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ABSTRACT
In this work, we consider the impact of spatially uniform but time-varying dark energy (or ‘dynamical dark energy’, DDE)
on large-scale structure in a spatially flat universe, using large cosmological hydrodynamical simulations that form part of the
BAHAMAS project. As DDE changes the expansion history of the universe, it impacts the growth of structure. We explore
variations in DDE that are constrained to be consistent with the cosmic microwave background. We find that DDE can affect
the clustering of matter and haloes at the ∼ 10 per cent level (suppressing it for so-called freezing models, while enhancing it
for thawing models), which should be distinguishable with upcoming large-scale structure surveys. DDE cosmologies can also
enhance or suppress the halo mass function (with respect to Lambda cold dark matter) over a wide range of halo masses. The
internal properties of haloes are minimally affected by changes in DDE, however. Finally, we show that the impact of baryons
and associated feedback processes is largely independent of the change in cosmology and that these processes can be modelled
separately to typically better than a few per cent accuracy.

Key words: cosmology: cosmological parameters – cosmology: dark energy – cosmology: large-scale structure of Universe.

1 IN T RO D U C T I O N

The direct detection of the accelerated expansion of the Universe
(Riess et al. 1998; Perlmutter et al. 1999) ushered in a new era of
cosmology and brought with it the standard model of cosmology, the
Lambda cold dark matter (�CDM) model, which has been incredibly
successful. However, with recent increases in the quantity and quality
of observational data, a number of tensions have started to appear
that cannot be easily reconciled. In fact, these tensions have tended to
increase in significance with new data and may hint at extra physics
that is not encompassed within the standard model of cosmology.

Perhaps the most well-known tension concerns the expansion rate
of space at the present day, H0. Local measurements of a set of
standard candles imply H0 = 74.03 ± 1.42 km s−1 Mpc−1 (Riess
et al. 2019) and more recently H0 = 73.3 ± 1.8 km s−1 Mpc−1

from the measured time delays of gravitationally lensed quasars
(Wong et al. 2020), while a combined analysis of cosmic microwave
background (CMB) data, baryon acoustic oscillations (BAO), and
supernovae have measured H0 = 67.4 ± 0.5 km s−1 Mpc−1 (Planck
Collaboration et al. 2018), culminating in an ‘early- versus late-
Universe’ tension of 5.3σ (Wong et al. 2020). Another tension comes
from large-scale structure (LSS) joint constraints on �m and σ 8,
the mean matter density of the Universe and the linearly evolved
amplitude of matter fluctuations at present day on 8 h−1 Mpc scales,
respectively. The Planck primary CMB data prefer higher values of
�m and/or σ 8 relative to a range of LSS data sets, typically at the

� E-mail: s.pfeifer@2012.ljmu.ac.uk

1–3σ level (e.g. Planck Collaboration XXIV 2016b; Leauthaud et al.
2017; Hildebrandt et al. 2020; see McCarthy et al. 2018 for a recent
discussion).

One way of addressing these tensions is through extensions to the
�CDM model, which typically add more complex physics and/or
relax key assumptions of the model. A popular target is the cos-
mological constant, �, invoked to explain the observed accelerated
expansion of the Universe. Physically motivated scenarios, such as
those based on the scale of particle interactions, suggest a non-zero
cosmological constant should be over 100 orders of magnitude larger
than its measured value. Together with the ‘coincidence’ problem,
i.e. the fact that the energy density of matter and dark energy are
of the same order at the current epoch, which requires finely tuned
ICs, has led some to argued that the cosmological constant gives a
theoretically unsatisfactory explanation for the accelerated expansion
of the Universe (Weinberg 1989).

The extension focused on in this work is generically termed
‘dynamical dark energy’ (DDE). Instead of modelling dark energy
as a cosmological constant, characterized by a constant equation
of state parameter with w = −1, DDE adds an extra degree of
freedom by allowing the equation of state parameter to evolve with
time; w −→ w(a), where a is the expansion factor. This changes
the expansion history of the Universe and subsequently affects the
growth of structure. Therefore, the growth of LSS should serve as an
excellent probe of dark energy that is complementary to geometric
probes, such as BAO and supernovae, which try to measure the
expansion history directly. In addition, LSS is vital for distinguishing
between DDE and modified gravity explanations for the accelerated
expansion of the Universe (e.g. Li et al. 2012; Mota 2018).
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A few methods exist to model LSS statistics. On very large scales
one can use linear perturbation theory to calculate the distribution
of matter. However, most LSS statistics require accurate modelling
on non-linear scales for which this approach is inadequate. A more
common approach is to use collisionless simulations to calibrate the
so-called halo model (Peacock & Smith 2000; Seljak 2000; Cooray &
Sheth 2002; Mead et al. 2015), or to use these simulations to empiri-
cally correct linear perturbation models (e.g. Takahashi et al. 2012).
These approaches, which can be accurate to ≈ 5 per cent, are likely
to be insufficient for the next generation of observational surveys like
LSST (LSST Dark Energy Science Collaboration 2012) and Euclid
(Amendola et al. 2013), which aim to be able to measure statistics,
such as the non-linear matter power spectrum, to within per cent level
accuracy (Huterer 2002; Huterer & Takada 2005; Hearin, Zentner &
Ma 2012). Additionally, baryons contribute a significant fraction of
the total matter content of the Universe that is not modelled beyond
the expansion history in the methods mentioned above. It has been
shown that baryonic feedback processes not only affect the spatial
distribution of baryons but also induce a back reaction on to the
dark matter distribution that should not be ignored (van Daalen
et al. 2011; Velliscig et al. 2014; Mummery et al. 2017; Chisari
et al. 2018; McCarthy et al. 2018; Springel et al. 2018; van Daalen,
McCarthy & Schaye 2020). Hence, hydrodynamical cosmological
N-body simulations are the only method that can model the matter
distribution accurately and self-consistently down to highly non-
linear scales as well as accurately include the effects of baryons.

Many studies have used collisionless simulations to study the
effects of dark energy that differ from the cosmological constant on
the dark matter distributions. The first studies explored cosmologies
with w �= −1 but still constant with time (Ma et al. 1999; Bode
et al. 2001; Łokas, Bode & Hoffman 2004) and soon after, a
variable equation of state parameter was introduced (Klypin et al.
2003; Linder & Jenkins 2003). For the interested reader, Baldi
(2012) reviews different theoretical dark energy models along with
relevant studies that utilize cosmological simulations. More recently,
dark energy has been studied using collisionless simulations in the
context of the halo mass function (Francis, Lewis & Linder 2009;
Bhattacharya et al. 2011; Courtin et al. 2011; Biswas et al. 2019),
non-linear power spectrum (Casarini, Macciò & Bonometto 2009;
Francis et al. 2009; Alimi et al. 2010; Heitmann et al. 2010), and has
been employed in both semi-analytical (Takahashi et al. 2012; Mead
et al. 2015; Cataneo et al. 2019) and emulation (Kwan et al. 2013;
Heitmann et al. 2014; Harnois-Deraps, Giblin & Joachimi 2019;
Knabenhans et al. 2019) frameworks. Hydrodynamical simulations
have also been used, although to much less extent, specifically to
investigate the impact of dark energy on galaxy evolution (Penzo
et al. 2014) and cosmic reionization (Maio et al. 2006).

The work presented here uses large cosmological hydrodynamical
simulations to study the effects of DDE on LSS for the first time. The
large box size of our simulations allows us to study a wide variety of
LSS statistics and, by including baryonic effects alongside changes
in cosmology, we are able to explore the potential degeneracies that
exist between them and whether we can model their combined effect.
Our chosen cosmologies are consistent with the latest CMB data and
we can therefore ask whether the effect in the LSS statistics between
the different cosmologies are distinguishable with current and future
LSS surveys.

This paper is organized as follows: Section 2 presents an overview
of the simulations, a brief theoretical background to DDE and
explains the parameter selection for our chosen cosmologies. In
Section 3, we examine LSS clustering statistics, the abundance of
haloes and in Section 4 we show statistics of the internal properties of

haloes. We investigate the separability of cosmological and baryonic
effects on these statistics in Section 5; i.e. we determine to what extent
the impact of baryons is dependent upon the choice of cosmology.
Finally, in Section 6 we summarize and discuss our results.

2 SI MULATI ONS

We use a modified version of the BAHAMAS cosmological hy-
drodynamical simulation code that includes a prescription of DDE
and massive neutrinos. Here, we provide a brief overview of the
simulations, but the reader should refer to McCarthy et al. (2017,
2018) for a more detailed discussion of the simulations, calibration
and comparisons to observations. We describe the theoretical back-
ground to the DDE prescription and its implementation in Section 2.2
and the method for choosing suitable cosmological parameters in
Section 2.3.

2.1 BAHAMAS

The simulations were run with the BAHAMAS cosmological hy-
drodynamical simulation code and consist of six simulations with
a periodic box of 400 comoving Mpc h−1 on a side and containing
2 × 10243 particles, equally split between dark matter and baryons.
We have also run corresponding collisionless (‘dark-matter-only’)
simulations, resulting in a total of 12 simulations. Initial conditions
(ICs) were generated using a modified version of N-GenIC1 (Bird
2017) with transfer functions at a starting redshift of z = 127
computed by CAMB2 (Lewis, Challinor & Lasenby 2000). Note
that CAMB was compiled with the parametrized post-Friedmann
description of cosmic acceleration which allows for a dark energy
description that can smoothly cross the phantom divide (Hu &
Sawicki 2007; Fang, Hu & Lewis 2014). The same random phases
were used to generate each set of ICs allowing for comparisons
between the different simulation runs without the complication of
cosmic variance. As in previous BAHAMAS runs, separate transfer
functions are used for each constituent, i.e. CDM, baryons, and
neutrinos, to generate the ICs (Bird et al. 2020).

The simulations use a modified version of the Lagrangian TREEPM-
SPH code GADGET3 (last described in Springel 2005), which was
modified to include new subgrid physics as part of the OWLS project
(Schaye et al. 2010). They include an extension for massive neutrinos
described in Ali-Haı̈moud & Bird (2013) that computes neutrino
perturbations on the fly at every time-step using a linear perturbation
integrator sourced from the non-linear baryons + CDM potential,
adding the result to the total gravitational force. Because the neutrino
power is calculated at every time-step, the dynamical responses of
the neutrinos to the baryons + CDM and vice versa are mutually
and self-consistently included. We adopt the minimal neutrino mass,
�Mν = 0.06 eV, in this work but the reader can refer to Mummery
et al. (2017) and McCarthy et al. (2018) for the effects of more
massive neutrinos.

Additionally, the radiation energy density is included when com-
puting the background expansion rate. This results in a few per cent
reduction in the amplitude of the present-day linear matter power
spectrum relative to simulations that only include the matter and
dark energy components in the background expansion rate. The
background cosmology was also modified to include DDE as in
detail in Section 2.2.

1https://github.com/sbird/S-GenIC
2http://camb.info/
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The simulations include subgrid prescriptions for metal-dependent
radiative cooling (Wiersma, Schaye & Smith 2009a), star formation
(Schaye & Dalla Vecchia 2008), and stellar evolution, mass-loss
and chemical enrichment (Wiersma et al. 2009b) from Type II and
Ia supernovae and Asymptotic Giant Branch stars. The simulations
also incorporate stellar feedback (Dalla Vecchia & Schaye 2008)
and a prescription for supermassive black hole growth and active
galactic nucleus (AGN) feedback (Booth & Schaye 2009) (which is
a modified version of the model originally developed by Springel,
Di Matteo & Hernquist 2005). A discussion of the calibration of the
feedback will be presented in Section 5.

We used a standard friends-of-friends (FoF) algorithm (Davis &
Peebles 1983) with linking length of 0.2 in units of mean inter-
particle separation on the dark matter distribution to identify haloes.
The SUBFIND algorithm (Springel et al. 2001; Dolag et al. 2009)
was used to identify substructures within the FoF groups using a
spherical overdensity method and to calculate properties such as
R200,crit, the radius of a sphere enclosing a mean density of 200 times
the critical density, and M200,crit, the mass enclosed within.

2.2 Dynamical dark energy

The cosmological constant, �, which is uniform in time and space,
gives rise to a repulsive force that counteracts gravity. DDE modifies
this behaviour by positing that dark energy evolves with time
while remaining spatially uniform. Many physical models have been
proposed to accomplish this (e.g. Ratra & Peebles 1988; Wetterich
1988; Brax & Martin 1999; Wetterich 2004). While � is described
by a constant equation of state parameter, w = −1, a common
parametrization of DDE was introduced by Chevallier & Polarski
(2001) and Linder (2003)

w(a) = w0 + wa(1 − a), (1)

where a is the expansion factor and w0 and wa are free parameters.
One can recover � by setting w0 = −1 and wa = 0. The benefits of
this parametrization are that one can generate the expansion histories
very easily (as we will show below) and that it can mimic the
expansion history of many physical DDE models.

Assuming a spatially flat universe, the expansion history is
described by the Friedman equation

H 2 = 8πG

3
ρ, (2)

where H is the Hubble parameter, G the gravitational constant, and ρ

is the sum of the energy densities of the constituents of the universe,
i.e. matter, radiation, and DE. The temporal evolution of the energy
density is described by a perfect fluid in the form of a differential
equation

dρ

ρ
= −3(w + 1)

da

a
. (3)

The solutions to equation (3) are simple for matter and radiation with
w = 0 and w = 1

3 , respectively. The solution is more complicated
for the dark energy equation of state given in equation (1), which has
an explicit dependence on a, and is given by Linder (2003) as

ρDE = ρDE,0a
−3(1+wa+w0)e−3wa (1−a), (4)

where ρde,0 is the dark energy density at the present day. Substituting
equation (4) along with the relation for the dimensionless density
parameter � = 8πG

3H 2
0
ρ0 for each species into equation (2) gives an

expression for the expansion history as a function of present day

energy densities,

H (a)2 = H 2
0

(
�ra

−4 + �ma−3 + �DEa−3(1+wa+w0)e−3wa (1−a)
)
. (5)

Equation (5) was implemented into the BAHAMAS simulations to
include the effects of DDE.

2.3 Cosmological parameter selection

The choice of cosmological parameters is a non-trivial issue and a
few factors must be considered during the selection. Cosmological
simulations are expensive to run and thus only a relatively small
number of different cosmologies can be explored. One option is to
pick a fiducial model and simply vary the dark energy parameters
over a range of values while keeping the rest of the cosmological
parameters fixed. However, this ad hoc approach would result in
cosmologies that are neither physically motivated nor consistent
with observational constraints. Our approach is to use observational
data to constrain the available w0−wa parameter space. The rest of
the cosmological parameters (e.g. H0, �m, etc.) are chosen to be
consistent with observational data by insisting that the cosmological
model reproduces our chosen observational data set(s) to within
some tolerance. In this way we can generate cosmologies that are
consistent with observations and that allow us to explore a range of
DDE behaviours.

The Planck collaboration has done extensive parameter estima-
tions of �CDM and a variety of extensions, including DDE, with
respect to the Planck data and a combination of many other data sets
(Planck Collaboration et al. 2018). This was done using CosmoMC
(Lewis & Bridle 2002) which is a Markov chain Monte Carlo
(MCMC) engine and a large quantity of the MCMC chains have
been made public.3 However, the public library of MCMC chains are
limited to only a few combinations of observational data for DDE
cosmologies. Additionally, it is important to note the possibility of
remaining systematics in the CMB data, one of which is the apparent
enhanced smoothing of peaks and troughs in the temperature power
spectrum. Addison et al. (2016) have shown that this smoothing can
be taken into account by letting the amplitude of the CMB lensing
power spectrum, Alens, vary rather than setting it to unity (see also
also Calabrese et al. 2008; Di Valentino, Melchiorri & Silk 2016;
McCarthy et al. 2018; Renzi, Di Valentino & Melchiorri 2018).
None of the publicly available chains for DDE include Alens as a
free parameter. Therefore we chose to use CosmoMC to generate our
own chains as this gives us complete freedom over which parameters
and observational data sets to include. Table 1 shows the parameters
and their priors used with COSMOMC. All parameters with square
brackets have uniform priors and single valued parameters were set
to that constant. We used the data from the Planck 2015 data release
and the GETDIST package (Lewis 2019) to generate plots from the
MCMC chains (see Figs 1 and 2).

We first explore the w0−wa parameter space using a combination
of the Planck CMB temperature power spectrum (TT) and the
polarization power spectrum at low multipoles (lowTEB) (Planck
Collaboration XI 2016a); a combination of BAO data from the SDSS
Main Galaxy Sample (Ross et al. 2015), the Baryon Oscillation
Spectroscopic Survey (BOSS), BOSS CMASS and BOSS LOWZ
(Anderson et al. 2014), and the six-degree-Field Galaxy survey
(6dFGS) (Beutler et al. 2011); the supernova Ia constraints from
the joint light-curve analysis (JLA) data (Betoule et al. 2014); and

3The public chains are available from the Planck wiki.
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Table 1. The priors of the parameters used in the
analysis withCosmoMC. Parameters with square brackets
have uniform priors while single valued parameters are
constants. From the top, the parameters are baryon energy
density, cold-dark-matter energy density, approximation
to the observed angular size of the sound horizon at
recombination, optical depth of reionization, amplitude
of scalar fluctuations, scalar spectral index, Hubble con-
stant, two parameters defining the equation of state of
dark energy (see Section 2.2), sum of neutrino masses,
effective number of relativistic degrees of freedom, and
the amplitude of the CMB lensing power spectrum.

Parameter Prior

�bh2 [0.005, 0.1]
�ch2 [0.001, 1.0]
100θMC [0.5, 10.0]
τ [0.01, 0.8]
ln(1010As) [2, 4]
ns [0.8, 1.2]
H0 (km s−1 Mpc−1) [60.0, 80.0]
w0 [−3.0, 1.0]
wa [−3.0, 2.0]
∑

mν (eV) 0.06
Nν 3.046
Alens [0, 2]

Figure 1. The constraints in the w0–wa parameter space, in the form of 1σ

and 2σ contours, from different combinations of data. Planck TT + lowTEB
(top left) + BAO (top right) + JLA (bottom left)/ + local H0 constraints
(bottom right). Points are coloured depending on their H0 value, the dashed
lines cross at the cosmological constant and Alens = 1.

the constraints on H0 from measurements of the local Universe (Riess
et al. 2011).

Fig. 1 shows the 1σ and 2σ constraints in the w0–wa parameter
space for different combinations of data sets and for which Alens =
1. The points are coloured by their H0 value and the cosmological
constant, w0 = −1, wa = 0, is indicated by the crossing of the dashed
lines. The Planck TT + lowTEB data (top left) gives a broad contour
with H0 spanning a wide range of values that change in the direction
perpendicular to the gradient of the contour. Adding BAO (top right)
significantly reduces the allowed parameter space and limits the

Figure 2. Top: The 1σ and 2σ constraints in the w0−wa parameter space
using Planck TT + lowTEB data, where Alens has been fixed at unity (left
column) or left to vary (right column). The black points show the locations
of the simulated cosmologies and the error bars on the points show the size
of the region used to generate the rest of the cosmological parameters. The
dashed lines cross at the cosmological constant. Bottom: The same as above
except for �m−σ 8, where the dashed line shows S8 = 0.77.

contour to lower values of H0. Interestingly, neither of these contours
are centred on the values of the cosmological constant, which sits
at the boundary of the 1σ contour. The parameter space is further
reduced along the degeneracy to a narrow region by adding JLA
SNIa (bottom left). However, adding the local H0 constraints instead
of the JLA SNIa (bottom right) a much smaller effect on the allowed
parameter space. These effects can be explained by the fact that the
largest constraining power of the Planck data on DDE comes from
the distance to the surface of last scattering. Therefore, any expansion
history is allowed as long as its integral returns the measured distance
to the surface of last scattering. This geometric degeneracy within
the w0 − wa parameter space explains why the inclusion of BAO or
type Ia supernovae significantly increases the constraining power on
the w0 − wa parameter space as they effectively probe the expansion
history, H(a).

Next, we explore the effect of Alens on the allowed parameter
space in Fig. 2, which shows the w0−wa (top) and �m−σ 8 (bottom)
parameter spaces for the Planck TT + lowTEB data with Alens set to
unity (left), as done in the Planck analysis, and as a free parameter
(right). For reference, the LSS joint constraint S8 = σ8

√
�m/0.3 =

0.77 is shown on the �m−σ 8 plot (dashed line).
Including Alens as a free parameter stretches the contour of the

w0−wa parameter space towards lower (higher) values of w0 (wa).
It is interesting to note that the cosmological constant, w0 = −1
and wa = 0, is in mild tension with Planck if Alens is fixed at unity,
the default value adopted by Planck, but reconciled if it is allowed
to vary. For the bottom of Fig. 2, leaving Alens as a free parameter
systematically shifts the contour to lower values of σ 8, resulting in a
much better agreement with the LSS joint constraint.

In order to generate our cosmologies for the simulations, we
sampled the geometric degeneracy in the w0−wa parameter space

MNRAS 498, 1576–1592 (2020)
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Table 2. The cosmological parameters of our six chosen cosmologies derived from the Planck CMB data (TT + lowTEB)
with marginalization over the lensing amplitude, Alens. From left to right, the parameters are: (1) and (2) the two free parameters
describing DDE (see equation 1), (3) the total matter density at present-day, (4) the baryon density at present-day, (5) Hubble’s
constant, (6) the spectral index of the initial power spectrum, (7) the amplitude of the power spectrum at recombination at a
pivot scale of 0.05 Mpc−1, (8) the optical depth to reionization, (9) the amplitude of the linear matter power spectrum on 8
Mpc h−1 scales at present-day, (10) S8 = σ8

√
�m/0.3, (11) the amplitude of the CMB lensing power spectrum.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
w0 wa �m �b H0 ns As τ σ 8 S8 Alens

(km s−1 Mpc−1) (10−9)

−1.16 0.73 0.309 0.0501 67.25 0.975 2.10 0.058 0.773 0.783 1.298
−1.00 0.00 0.294 0.0476 68.98 0.974 2.11 0.061 0.802 0.795 1.233
−0.84 − 0.73 0.288 0.0465 69.73 0.974 2.11 0.060 0.815 0.798 1.205
−0.67 − 1.45 0.286 0.0462 69.97 0.973 2.10 0.059 0.819 0.801 1.195
−0.51 − 2.18 0.284 0.0459 70.20 0.974 2.10 0.060 0.822 0.800 1.194
−0.35 − 2.89 0.289 0.0465 69.71 0.973 2.10 0.059 0.824 0.806 1.174

Figure 3. Top: The matter power spectrum of the ICs for each cosmology at
z = 127 computed with CAMB. Bottom: The ratios of matter power spectra
relative to �CDM. Colours indicate different cosmologies where bracketed
values refer to the values of (w0, wa).

shown in Fig. 2 that includes Alens as a free parameter. We opted not to
use data sets other than the CMB to further constrain this parameter
space, for three reasons: (i) as discussed in the introduction, there
are known tensions between ‘early’ (CMB + BAO) and ‘late’
(H0) Universe measures4 of the expansion history, making the
combination of these constraints questionable; (ii) the CMB-only
(without BAO) constraints are fully compatible with any of the
possible data set combinations; and (iii) the CMB-only constraints
allow for the largest variation in DDE models, resulting in a wider
range of behaviours to study from a theoretical perspective.

We choose six equally spaced points along the degeneracy to get
six values of w0 and wa, one of which is the cosmological constant
and is referred to as the reference �CDM cosmology throughout. To
specify the other cosmological parameters for each choice of w0 and
wa, we calculate the weighted average of each parameter from every

4Type Ia supernovae constraints can agree with either, depending on how the
distance scale to supernovae is established (i.e. via Cepheids or BAO with a
CMB-based estimate of the physical sound horizon) (Macaulay et al. 2019).

sample of the MCMC chain that contain the values of w0 ± 0.05
and wa ± 0.05. In this way, all of the simulations are guaranteed to
be compatible with the primary CMB angular power spectrum. The
resulting six cosmologies are listed in Table 2. All of our cosmologies
are spatially flat, i.e. �k = 0.

We plot the matter power spectra of the ICs for each cosmology in
Fig. 3 to show that these cosmologies already have different matter
distributions at high redshift. The power spectra were generated using
CAMB at the simulation starting redshift of z = 127. The cosmologies
already have a difference of ≈ 5 per cent in P(k) at large scales
(small k) and ≈ 1 per cent at small scales (large k) before starting
the simulations. Due to slight offsets in the power spectra, the BAO
signal at k ∼ 0.1 becomes apparent in the ratios.

Our DDE terminology is based on quintessence models which can
be classified into two categories: ‘thawing’ models start at w ≈ −1
and have w(a) increase with a (Caldwell & Linder 2005; Scherrer &
Sen 2008; Chiba 2009; Gupta, Rangarajan & Sen 2015), whereas
‘freezing’ models have w(a) decrease with a and approach w ≈ −1
at late times (Caldwell & Linder 2005; Scherrer 2006; Chiba 2006;
Sahlén, Liddle & Parkinson 2007). We will adopt this terminology
throughout, calling models with wa < 0 thawing and wa > 0 freezing,
although we note that our models can cross the w = −1 threshold,
which is not the case for quintessence models. The evolution of w(a)
is shown in the top panel of Fig. 4, where the line above w = −1
is our freezing cosmology and the lines below are our four thawing
cosmologies.

Now that we have selected the cosmologies, it is possible to exam-
ine some useful physical quantities before running any simulations
(these will be useful for interpreting the simulation-based results
later). Fig. 4 also shows the evolution of �m(a) (middle top) and H(a)
(middle bottom) for the different cosmologies, normalized by the
�CDM cosmology. These have been calculated using equation (5).
We also show the linear growth factor, D(a), for each cosmology
normalized by the �CDM cosmology (bottom). The linear growth
factor is defined as the ratio of matter overdensities at a given scale
factor, δ(a), relative to some initial overdensity, D(a) = δ(a)/δ(ai).
The closed form approximation (Peebles 1980; Eisenstein 1997)
typically used to calculate D(a) is valid for �CDM but does not
return the correct results for DDE cosmologies. Instead, equations
such as those presented in Linder & Jenkins (2003) should be solved.

It is clear from Fig. 4 that the thawing dark energy models behave
systematically different to the freezing model. Any general trend
in the former is the inverse in the latter. The largest differences
appear at z < 1, as one might expect since dark energy dominates
the energy density of the Universe at late times. All of our models
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Dark energy, baryons, and LSS 1581

Figure 4. The evolution of w(a) given by equation (1) (top), �m (middle
top), expansion history (middle bottom), and linear growth factor (bottom)
as a function of expansion factor and redshift for the cosmologies shown in
Table 2. Each statistic, apart from w(a), has been normalized by the �CDM
cosmology. Colours indicate different cosmologies where bracketed values
refer to the values of (w0, wa).

cross at the same w(a) and a (top of Fig. 4) because of the way
we choose our cosmological models. To show why this is, one can
equate equation (1) for two different models [e.g. (w0,1, wa,1) and
(w0,2, wa,2)] and solve for expansion factor, a, at which w(a)1 =
w(a)2:

a = 1 + w0,2 − w0,1

wa,2 − wa,1
= 1 + dw0

dwa
. (6)

Equation (6) shows that any DDE models that lie on the same line
in the w0−wa parameter space (which is the case here, as we select
values along the CMB geometric degeneracy) will all cross at the
same value of a, with that value depending only on the slope of the
line. This feature, along with the fact that the line corresponds to a
geometric degeneracy (i.e. the models are all constrained to yield the
same distance to the last-scattering surface), is also likely responsible
for the similar scale factors at which �m(a) and H(a) cross.

3 LA R G E - S C A L E ST RU C T U R E

In this section, we explore the impact of our DDE cosmologies on
a number of common measures of LSS, including the matter power
spectrum (P(k)), the halo two-point autocorrelation function, the
halo mass function and halo number counts. We use the collisionless
(dark-matter-only) versions of the simulations (the impact of baryons
is discussed in Section 5). We discuss how the DDE cosmologies

Figure 5. Top: The total matter power spectrum of the collissionless
simulations for the different cosmologies and redshifts. Bottom: The ratios
of matter power spectra relative to �CDM at each redshift. Colours indicate
different cosmologies where bracketed values refer to the values of (w0, wa)
while line styles show redshift.

affect these LSS statistics and draw comparisons with other cos-
mologies constrained by the CMB which we explored in previous
BAHAMAS papers; the effects of massive neutrinos (Mummery et al.
2017) and running of the spectral index (Stafford et al. 2020).

3.1 Matter power spectrum

We first investigate the effect of our DDE cosmologies on the matter
clustering via the non-linear matter power spectrum of the total matter
in our collisionless simulations. The power spectra are computed
using the GenPK5 code (Bird 2017).

Fig. 5 shows the total matter power spectrum of the collisionless
simulations for the different cosmologies at z = 0, 1, 2, where ratios
have been taken with respect to the �CDM cosmology. Since we
used the same phases to generate the ICs for each cosmology, we do
not need to worry about cosmic variance issues and the ratio of P(k)
between two different simulations should be an accurate and robust
prediction.

The freezing dark energy model shows a suppression in power
of ≈10 per cent, whereas the thawing dark energy models show an
increase in power of ≈5–10 per cent. This effect is slightly scale
dependent with maximum impact at k ≈ 1 h Mpc−1 and the largest
change in P(k) is seen at z = 1. The change in amplitude and the

5https://github.com/sbird/GenPK
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redshift evolution of P(k) on linear scales (i.e. low k values) agrees
with naive expectations based on the behaviour of D(a) in Fig. 4.
Note that the amplitude of P(k) ∝ D2(a) in the linear regime. While
the use of D(a) is only strictly valid on linear scales, it is interesting
to note that the change to P(k) from DDE propagates through to non-
linear scales. This can be explained through ‘mode mixing’, where
k-modes no longer evolve independently from each other, but transfer
power from large to small scales.

One can compare these effects to alternative extensions to the
�CDM cosmology. Mummery et al. (2017) (hereafter M17) exam-
ined massive neutrino extensions and found that neutrinos suppress
the matter power spectrum between ≈5 per cent and ≈30 per cent
for the lowest, �Mν = 0.06 eV, and largest sum of neutrino masses,
�Mν = 0.48 eV, respectively. Interestingly, the suppression in P(k)
from massive neutrinos has a similar shape to the DDE cosmologies
in Fig. 5, which could act to mask a combination of massive neutrinos
and DDE. Another possible extension to �CDM is the inclusion of
a running of the scalar spectral index, ns, which was investigated
recently by Stafford et al. (2020) (hereafter S20). They found that
negative (positive) running results in an amplification (suppression)
of the matter power spectrum of ≈5–10 per cent. These effects had a
scale dependence that caused a decrease in their magnitude towards
smaller scales, especially at higher redshifts.

In addition, it is well known that baryonic effects on the matter
power spectrum are of the order of ∼10–20 per cent and cause a
suppression in the power spectrum at k�0.1 Mpc−1h (van Daalen
et al. 2011; Mummery et al. 2017; Schneider et al. 2019; Debackere,
Schaye & Hoekstra 2020; van Daalen et al. 2020). The DDE
cosmologies considered here produce effects of similar magnitude,
although they extend throughout the linear and non-linear regime
and should therefore be distinguishable from baryonic effects given
a wide enough range of well-sampled k values. We explore this in
Section 5.

3.2 Halo clustering

The clustering of dark matter haloes can be described by the two-
point autocorrelation function, ξ (r), which is the excess probability
of finding two haloes with a given separation, r, relative to a random
distribution of haloes (Davis & Peebles 1983). To compute this,
one calculates the separation, r, between each halo and every other
halo in the sample. The distribution of halo separations in bins
of r can then be defined as DD(r). The separation pair count of a
random distribution, RR(r), can be calculated analytically assuming
the haloes are distributed homogeneously with a density equal to the
total number of haloes in the sample divided by the volume of the
simulation. The two-point autocorrelation function is then

ξ (r) = DD(r)

RR(r)
− 1. (7)

Fig. 6 shows the two-point autocorrelation function for dark matter
haloes in three mass bins of M200,crit. The ratios are shown relative to
the �CDM cosmology. In general, the freezing (thawing) dark energy
cosmology produces haloes with decreased (increased) clustering
relative to �CDM, generally mimicking the behaviour in P(k). The
lowest mass bin shows a ≈10 per cent effect which decreases towards
higher masses. Haloes start to overlap on small scales causing the
two-point autocorrelation function turn over and decrease which is
where we introduce a cut-off. As the size of haloes increases with
increasing mass, this cut-off shifts to larger radii. We show the
statistical errors on the two-point autocorrelation function for the
�CDM cosmology which were taken to be the Poisson uncertainties

Figure 6. Top: The two-point autocorrelation function of dark matter haloes
for the different cosmologies and mass bins at z = 0. Bottom: The ratios
of the two-point correlation functions relative to the �CDM cosmology at
different redshifts Colours indicate different cosmologies where bracketed
values refer to the values of (w0, wa) and line styles show separate mass bins
given in M200,crit. The cut-off at small radii is due to the overlapping of haloes
which forces ξ to turn over. Error bars represent the Poisson uncertainties
determined from the number of haloes in each radial bin for the �CDM
cosmology.

on the number of haloes in each radial bin. The errors for the
other cosmologies are approximately equal to those of the �CDM
cosmology. The uncertainties are slightly larger in bins at lower radii
(as they sample smaller volumes) and for higher masses due to their
lower abundance. Since we use the same phases to generate the
ICs, we can compare the ratios between the different cosmologies
without the complication of cosmic variance. That also means
that measurements between simulations are strongly correlated.
Therefore, we only show the Poisson error on the absolute value
and not in the lower ratio panels.

This change in the clustering of haloes is analogous to the change in
the matter power spectrum, P(k) seen in Fig. 5, which is unsurprising
since the two-point autocorrelation function is the Fourier transfer of
P(k) multiplied by the linear halo bias, b2.

The two-point autocorrelation was also calculated for matched
haloes. Matching haloes is done by identifying the 50 most bound
dark matter particles comprising a halo in the �CDM simulation
using their unique particle IDs and finding the halo in another
simulation that contains the majority of dark matter particles with
the same IDs. By inspecting a set of matched haloes, we remove
any additional effect due to the change in halo mass for different
cosmologies, as seen in Section 3.3. The general trends of the
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two-point autocorrelation function for matched haloes is the same
as for unmatched haloes, although with increased effect due to the
change in halo mass between different cosmologies. This is due to
the fact that more massive haloes are more biased tracers of the
underlying matter clustering and therefore show a higher clustering
signal in the two-point autocorrelation function.

M17 finds that massive neutrinos suppress the two-point auto-
correlation function of haloes with M200,crit = 1012–1013 M	 by
≈5 per cent and ≈20 per cent for the lowest and largest sum of
neutrino masses, respectively. S20 shows that their cosmologies
with running of the spectral index enhances the clustering signal
by ≈5 per cent for negative running and vice versa for positive
running for haloes within the same mass range. This is very similar
to the effects of DDE which, unlike massive neutrinos, cannot only
suppress but also enhance the clustering signal relative to the �CDM
cosmology.

3.3 Halo mass function

The first statistic of halo abundance we examine is the halo mass
function (HMF), �, defined as the number of haloes per comoving
volume per logarithmic unit of mass M200,crit,

� ≡ dn

d log10(M200,crit)
. (8)

In Fig. 7, we show the HMF for the collisionless simulations of the
different cosmologies at different redshifts, where the ratios are with
respect to the �CDM cosmology. At z = 0, the freezing dark energy
model has a higher (lower) number density of low-mass (high-mass)
haloes, while for the thawing models this trend is reversed. These
effects are most apparent at z = 1 where a change in the abundance
of high-mass haloes of ∼20 per cent is seen and a crossover appears
in the ratios at M200,crit ∼ 1013 M	. The behaviour of the HMF is
very different to that of P(k), which shows no crossover and the
opposite behaviour to the effect seen on low masses for the HMF.
We show the statistical errors on the HMF for the �CDM cosmology,
which were taken as the Poisson uncertainties from the number
of haloes in each mass bin. The errors for the other cosmologies
are approximately equal to those of the �CDM cosmology. The
uncertainties are significant at the highest masses due to the rarity of
such haloes in our simulations.

Another way of looking at this effect is to plot the change in halo
mass between matched haloes from different cosmologies rather
than halo abundance. Fig. 8 shows the fractional change in halo
mass relative to matched haloes from the �CDM cosmology at z =
0. This is plotted against the halo mass of the matched halo from
the �CDM cosmology. Here we look at the change in halo mass
at fixed abundance rather than changes in abundance at fixed halo
mass. In this format, a vertical change in the fractional halo mass
is comparable to a horizontal shift in the HMF. The trends in the
HMF are also seen in the fractional change in halo mass with similar
amplitude and mass scale. The freezing DDE cosmology forms more
massive low-mass haloes but the growth of structure is suppressed
and so the most massive haloes are not as massive as their �CDM
equivalent. This trend is reversed for the thawing DDE cosmologies.

We can decompose the difference in the HMF between the different
cosmologies into two effects. First, the almost constant offset in the
ratios of the HMF at the low-mass end (most apparent at z = 0) can
be explained by the difference in �m for the different cosmologies
because dark matter haloes grow more massive in a cosmology with a
higher �m. Secondly, the crossover in the ratios at the high-mass end
is due to the change in the growth of structure that is also seen in P(k)

Figure 7. Top: The HMF of the collisionless (dark-matter-only) simulations
for the different cosmologies and redshifts. Bottom: The ratios of the HMFs
with respect to the �CDM cosmology for each redshift. Colours indicate
different cosmologies where bracketed values refer to the values of (w0, wa)
and line styles indicate different redshifts. Error bars represent the Poisson
uncertainties from the number of haloes in each mass bin for the �CDM
cosmology.

Figure 8. The median fractional change in halo mass relative to matched
haloes from the �CDM cosmology at z = 0. All haloes have been matched
to the �CDM cosmology. Colours indicate different cosmologies where
bracketed values refer to the values of (w0, wa).
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in Fig. 5. The freezing cosmology shows a suppression in the growth
of structure through the suppression in P(k), meaning that high-mass
haloes, which are still collapsing at that time, are less abundant with
respect to the �CDM cosmology. This concept is explored further
using the HMF fitting function of Tinker et al. (2008) in Appendix A.

M17 showed that massive neutrinos suppress the HMF with the
largest effect at the high-mass end. Halo masses are suppressed by
≈10 per cent and ≈50 per cent for the lowest and largest sum of neu-
trino masses, respectively. Interestingly, S20 found that cosmologies
that include running of the spectral index can impact the HMF in a
very similar way to the DDE cosmologies, suppressing/amplifying
the HMF at low/high masses for negative running cosmologies and
vice versa for positive running cosmologies.

The effects of DDE on the HMF are very different to the effects of
baryons on the HMF over the masses sampled here. M17 showed that
baryonic feedback tends to suppress the HMF more strongly towards
the high-mass end. However, at very high masses the gravitational
potential is strong enough to counteract the feedback, thus reducing
its effect on the HMF. As well as this mass dependence, the amplitude
of the baryonic impact is much stronger than that of the DDE
cosmologies when they are constrained to reproduce the primary
CMB (particularly the angular scale of the acoustic peaks).

3.4 Halo number counts

Next, we examine the halo space density at a given redshift computed
by integrating the HMF above a given mass. The halo space density
simply represents the number density of haloes above a given mass.
This is similar to what is more typically measured observationally
since many surveys have too small of a volume to robustly measure
the HMF, especially at high masses.

Fig. 9 show the number counts for haloes with M200,crit ≥ 1012,
1013, and 1014 M	 out to z = 3 for the collisionless simulations for
the different cosmologies. As expected from the HMF in Fig. 7,
the number counts decrease for the freezing dark energy model and
increase for the thawing dark energy models with increasing redshift
relative to the �CDM cosmology. The crossing of the ratios in Fig. 7
can also be seen in the ratios of number counts where haloes with
M200,crit ≥ 1013 M	 cross over at z = 1. Because of the steepness
of the HMF, the cluster count signal is dominated by the lowest
mass haloes, those near the lower mass limits in each mass bin. The
bottom panels show that the signal is strongest for the highest mass
haloes and at higher redshifts. We plot error bars to show the Poisson
uncertainties from the number of haloes in each redshift bin for the
�CDM cosmology only for clarity, but note that the uncertainties
for the other cosmologies are approximately of the same level. The
uncertainties increase with increasing redshift and increasing mass
since there are fewer haloes in those bins.

As discussed in Section 2.3 (see Fig. 2), a tension exists between
the constraints in the σ 8−�m parameter space from CMB data
and various LSS statistics, including number counts. LSS generally
prefers lower values of S8, which results in fewer collapsed structures,
compared to the value obtained from CMB data. As all of our
cosmologies are consistent with CMB data by construction, any
cosmology that suppresses the growth of structure relative to the
�CDM cosmology could help to alleviate this tension. Interestingly,
we find that there is a non-monotonic behaviour in the variation in
S8 of our cosmologies and the impact on number counts relative
to �CDM. For example, the freezing cosmology suppresses the
abundance of the most massive clusters (Fig. 8 displays this most
clearly) at a level that is comparable with that of the most extreme
thawing models and yet the freezing model has a lower value of S8

Figure 9. Top: The number density of dark matter haloes for different
cosmologies and mass cuts. Bottom: The ratios of number density relative
to the �CDM cosmology. Colours indicate different cosmologies where
bracketed values refer to the values of (w0, wa) and the line styles show
different lower mass limits of 1012, 1013, and 1014 M	. The error bars
represent the Poisson uncertainties derived from the number of haloes in
each redshift bin for the �CDM cosmology.

than the reference �CDM model while the most extreme thawing
models have a larger value. The mapping between S8 and cluster
abundance is therefore more complex for (CMB-constrained) DDE
models than for �CDM. Weak lensing, on the other hand, should
provide a more direct constraint on S8 than cluster abundances, as it
measures the (projected) matter power spectrum. Thus, in principle,
the combination of cluster abundances and cosmic shear should be
helpful in constraining the parameters of DDE.

4 H A L O ST RU C T U R E

Having investigated the overall abundance of haloes, we next
examine the effect of DDE on the internal structure of haloes. The
statistics we focus on are the spherically averaged density profiles for
haloes in a given mass range, the halo concentration–mass relation.

4.1 Total mass density profile

We calculate the median radial total mass density profiles in 15
logarithmically spaced radial bins in the range 0.01 < r/R200,crit ≤ 1
and for haloes in mass bins of 0.5 dex width in the range M200,crit

= 1013–1015 M	. The densities are scaled by r2 to reduce the dynamic
range.
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Figure 10. Median radial total mass density profiles of matched haloes for the different DDE cosmologies for collisionless simulations. Haloes have been
matched to the �CDM cosmology. The panels show different mass bins with width 0.5 dex in M200,crit for the �CDM cosmology. Colours indicate different
cosmologies where bracketed values refer to the values of (w0, wa). The dashed vertical lines show the median convergence radius for haloes in that mass bin
within which the density profiles should not be trusted. The error bars show the standard error on the median for the �CDM cosmology.

Since the masses of haloes are affected by the DDE cosmologies,
different populations of haloes are selected in each mass bin for
different cosmologies. This makes any comparison of the direct effect
of different DDE cosmologies on the structure of haloes convoluted.
In order to compare like-for-like haloes, we match haloes across
simulations to the �CDM cosmology (see Section 3.3). Therefore,
the mass bins correspond to M200,crit from the matched haloes in the
dark-matter-only �CDM simulations. Equally, the R200,crit values
used to normalize the radial density profiles are those of the haloes
that have been matched to, i.e. the R200,crit values from the dark-
matter-only reference �CDM simulations.

Fig. 10 shows the median radial total mass density profiles for
the collisionless simulations for the different DDE cosmologies for
different mass bins and the ratios relative to �CDM for each mass
bin. The vertical dashed lines show the median convergence radius for
haloes in that mass bin for the �CDM cosmology. The convergence
radius was calculated using the method described in Power et al.
(2003) (equation 20) but with a convergence criterion of 0.177 as
advocated by Ludlow, Schaye & Bower (2019). The effect of the
freezing DDE cosmology is to increase the density of dark matter
haloes whereas the thawing DDE cosmologies has the opposite effect,
decreasing the density. The DDE cosmologies change the density by
at most ∼10 per cent and the difference decreases in amplitude with
increase in halo mass. There is also a radial dependence that shows
an increase in density with increasing radius. We show the standard
error on the median as error bars for the �CDM cosmology only, but

note that the errors on the other cosmologies are approximately the
same as for the �CDM case.

These general trends in the density profiles can most likely be
attributed to the difference in mass of the matched haloes. For
example, haloes that show a higher density relative to their matched
�CDM counterpart in Fig. 10 also show a relative increase in their
M200,crit in Fig. 8. This is similar with what was found by M17 and
S20. M17 shows that cosmologies with massive neutrinos lower the
masses of dark matter haloes relative to their matched �CDM haloes
and these cosmologies also show an almost radially independent
suppression of the density profiles. In S20, cosmologies with running
of the spectral index suppress (increase) mass growth for low-mass
(high-mass) haloes and this was also reflected in their respective halo
densities.

4.2 Concentration–mass relation

The internal structure of haloes are themselves tracers of the
formation history of haloes. Since the formation history depends
on the evolution of the background density, the internal structure is
also sensitive to the cosmology. CDM models predict that low-mass
haloes collapse earlier while high-mass haloes, such as clusters, are
still collapsing today. As gravitational collapse can only occur when
the local density exceeds the background density, lower mass haloes
are expected to have a more concentrated density profile, which has
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Figure 11. Top: The concentration of dark matter haloes for the different
cosmologies. Points represent the median concentration in 20 equally spaced
bins between 1013 ≤ M200,crit < 1015.5 in bins of M200,crit whereas the lines
represent the LOWESS method applied to the unbinned data. Bottom: The
ratios of concentration of the LOWESS lines with respect to the �CDM
cosmology. Colours indicate different cosmologies where bracketed values
refer to the values of (w0, wa).

been shown to be true in a number of high-resolution simulations
(e.g. Bullock et al. 2001; Eke, Navarro & Steinmetz 2001).

Simulation results have shown that dark matter density profiles can
be approximately described by the NFW profile (Navarro, Frenk &
White 1997)

ρ(r) = ρs
r
rs

[1 + r
rs

]2
, (9)

which only has a scale density, ρs, and a scale radius, rs, as free
parameters. With this, one can define the concentration as c200,crit ≡
R200,crit/rs.

To calculate the scale radius for our halo sample, we first remove
all unrelaxed haloes as unrelaxed haloes are not in virial equilibrium
and have been shown to be poorly described by the NFW profile
(e.g. Macciò et al. 2007; Romano-Dı́az et al. 2007). This is done by
ensuring that all haloes have their centre-of-mass offset by no more
than 0.07 R200,crit from the centre of potential (Neto et al. 2007), which
has been shown to remove the vast majority of unrelaxed haloes
(Duffy et al. 2008). We select haloes with more than 800 particles
and stack them until they have a total of 5000 particles. Lastly, we
fit an NFW profile over the radial range 0.1 ≤ r/R200,crit ≤ 1.0 and
remove any halo for which rs < convergence radius (described in
Section 4.1) to ensure the halo density profiles are converged. We fit
to the quantity ρr2 to give equal weighting to each radial bin (Neto
et al. 2007).

In Fig. 11, we show the logarithm of the concentration for
unmatched dark matter haloes for each cosmology (top). As we
have not matched haloes, we use the M200,crit and R200,crit from
each simulation. The dots represent the median value in each mass
bin for 20 equally spaced bins between 1013 ≤ M200,crit < 1015.5

whereas the lines show the locally weighted scatter plot smoothing
(LOWESS) method (Cleveland 1979) applied to the unbinned data.
The ratios were taken with respect to the �CDM cosmology and
we use the lines from the LOWESS method rather than the binned

median values (bottom). There is no strong trend in the ratios of
the concentrations for the different cosmologies. Small differences
appear at the high-mass end which is also where the scatter in the
concentrations becomes significant.

M17 showed that massive neutrinos systematically lower the
concentration of dark matter haloes at the ≈5–10 per cent level
between the lowest and highest neutrino mass, while S20 showed
that cosmologies with running of the spectral index increase the
concentration towards higher masses for all considered cosmologies.
M17 also showed that the effect of baryonic feedback dominates any
effect on the concentrations that are affected by ≈20 per cent.

5 IM PAC T O F BA RYO N S A N D I T S
D E P E N D E N C E O N C O S M O L O G Y

In this section, we investigate the effects of including baryons on the
statistics we have shown so far and show to what degree these can
be separated from the effects of changing the cosmology. We use the
term ’separability’ to refer to the degree by which cosmological and
baryonic effects are independent of each other, or in other words,
how sensitive one is to the other.

Many studies have shown that the inclusion of baryonic physics in
cosmological simulation can have a significant effect on the overall
matter distribution. This has been shown with respect to the matter
power spectrum (e.g. van Daalen et al. 2011; Schneider et al. 2019;
van Daalen et al. 2020), the halo mass function (e.g. Sawala et al.
2013; Cusworth et al. 2014; Velliscig et al. 2014), clustering (van
Daalen et al. 2014), density profiles (e.g. Duffy et al. 2010; Schaller
et al. 2015), and the binding energy of haloes (Davies et al. 2019),
which are all significantly impacted by baryons and their respective
feedback mechanisms. Of course, changes in cosmology also have
a large effect on some of these statistics. This raises the question of
whether the effects of cosmology and baryons influence each other
or, instead, can be treated independently, as often implicitly assumed
in halo model-based approaches (e.g. Mead et al. 2016).

Such considerations are also important when constructing hydro-
dynamical simulations, since it is often desirable that they reproduce
a particular set of observables. If those observables are sensitive to
cosmological variations, then this would suggest that the simulations
would need to be re-calibrated for each choice of cosmology. The
BAHAMAS suite of simulations are a first attempt at calibrating the
feedback processes to study their impact on LSS for large-volume
cosmological hydrodynamical simulations. It is therefore vital for
the calibration statistics to be mostly unaffected by a change in
cosmology, or to re-calibrate after every change. The calibration
statistics for BAHAMAS are the observed stellar and hot gas mass
of haloes, which were specifically chosen because they are expected
to be relatively insensitive to changes in cosmology (as confirmed
in McCarthy et al. 2018, S20, and later here) and because these
quantities are directly related to impact of baryons on the matter
power spectrum (Debackere et al. 2020; van Daalen et al. 2020).
In the present study, we have used the same feedback parameters
as adopted in McCarthy et al. (2017) and we have verified that the
cosmologies considered in this work all reproduce the calibration
statistics as well as found in that study.

We have also confirmed that the relative impact of feedback (at
fixed cosmology) on various metrics, such as the matter power
spectrum and the halo mass function, are the same (to within a couple
of per cent) as reported previously in M17 and S20 (see also Fig. 14
below). Therefore, rather than re-examine the effects of baryons,
we limit our exploration here to the question of whether the impact
of baryons is separable from the change in cosmology. To do so,
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Dark energy, baryons, and LSS 1587

we follow the approach taken in M17 and S20. Specifically, if the
effects are separable, then multiplying the impact of baryons in the
reference �CDM run (relative to the collisionless version of this
simulation) by the impact of changing the nature of dark energy
relative to �CDM for the collisionless case, should reproduce the
combined impact of baryons and a change in cosmology of a DDE
run with hydrodynamics compared to the collisionless �CDM run.

To express the above mathematically, we test the ansatz that

ψcosmo
H = ψ�CDM

DMO

(
ψcosmo

DMO

ψ�CDM
DMO

) (
ψ�CDM

H

ψ�CDM
DMO

)
. (10)

where ψ is the chosen statistic (such as the matter power spectrum or
the HMF), the subscripts denote whether it is from the collisionless
or hydrodynamical cases, and the superscripts denote the cosmology
where ‘cosmo’ refers to either a DDE or �CDM cosmology. The first
and second bracketed terms are therefore the effect of cosmology and
baryons with respect to a collisionless (dark-matter-only) �CDM
cosmology simulation, respectively.

To test the separability, we have run all of the simulations
including hydrodynamics, using the calibrated feedback model from
the original BAHAMAS runs (McCarthy et al. 2017). We test the
degree of separability by applying equation (10) to three statistics:
the matter power spectrum, the HMF and the density profiles.

5.1 Matter power spectrum

We first examine the total matter power spectrum, which was
described in Section 3.1. Fig. 12 shows the total matter power
spectrum from the hydrodynamical simulations (lines) and from the
collisionless simulations with baryonic effects applied following the
prescription in equation (10) (crosses). To see how well these agree,
we show the ratio for each cosmology and at three different redshifts,
z = 0, 1, and 2. As can be seen, the effects of cosmology and
baryons (feedback) are separable to very high precision (typically
< 0.1 per cent for k < 10 h Mpc−1) for the majority of the k-scales
and across all redshifts shown.

5.2 Halo mass function

Next, we examine the separability of baryonic and cosmological
effects on the HMF, which was described in Section 3.3. Fig. 13
shows the HMF for the hydrodynamical simulation (lines) and the
collisionless simulations including baryonic effects following the
prescription in equation (10) (crosses). As with the matter power
spectrum, we show the ratio of these for each cosmology and for z =
0, 1, 2. They typically agree to better than a few per cent accuracy for
the majority of the mass range sampled at each redshift. The scatter
increases somewhat at the high-mass end at each redshift due to the
relative rarity of such systems.

We also investigate the separability of cosmological and baryonic
effects on the masses of haloes, as we have shown that the halo mass is
affected by DDE (Fig. 8) and previous studies have shown the impact
of baryonic physics on halo mass (Sawala et al. 2013; Cui, Borgani &
Murante 2014; Velliscig et al. 2014; Schaller et al. 2015). The top
panel of Fig. 14 shows the ratio of M200,crit from the hydrodynamical
simulations with those of the collisionless simulations in bins of
M200,crit of the halo from the collisionless simulation, for each
cosmology. It shows that baryonic effects suppress the masses of
haloes by up to ≈ 15 per cent at 1013 M	 but this suppression is
less effective at lower and higher masses, consistent with M17 and
S20. This peak in suppression is due to the mass dependence of
the feedback efficiency of AGNs. The suppression is reduced in

Figure 12. Top: The total matter power spectra for the different cosmologies
from hydrodynamical simulations (lines) and the collisionless simulations
with added baryonic effects (crosses) as described in equation (10). Line
styles indicate different redshifts. Bottom: The ratios at different redshifts
of the matter power spectrum from hydrodynamical simulations and the
collisionless simulation with added baryonic effects for the same cosmology.
Colours indicate different cosmologies where bracketed values refer to the
values of (w0, wa) and linestyles indicate redshifts.

magnitude at higher masses owing to the increased binding energies
of those haloes. In the bottom panel of Fig. 14 we plot the effect
of the DDE cosmologies on the halo mass for the hydrodynamical
simulations normalized by the effect of DDE in the collisionless
simulations (for each cosmology). The impact of baryons on the
halo is independent of the nature of DDE at the level of < 1 per cent
over the entire mass range. Likewise, the effect of DDE cosmologies
on halo mass is independent of baryonic physics.

5.3 Total matter density profiles

Finally, we examine the separability of cosmological and baryonic
effects on the total matter density profiles, described in Section 4.1.
Fig. 15 shows the total matter density profiles in bins of M200,crit

of haloes from the hydrodynamical simulation (lines) and of the
collisionless simulations where the baryonic effects (crosses) are
applied in post-processing according to equation (10). Unlike in
Fig. 10, these haloes have not been matched to the collisionless
simulations.

The effects of feedback and changes in cosmology are separable to
< 1 per cent for haloes within the mass range M200,crit = 1012.5−1014

M	. The errors in the separability are slightly larger for lower
mass haloes (likely because they are sampled by fewer particles),
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Figure 13. Top: The HMF for the hydrodynamical simulations (lines) and the
collisionless simulations with added baryonic effects (crosses) as described
in equation (10). Line styles indicate different redshifts. Bottom: The ratios
at different redshifts of the HMF from hydrodynamical simulations and the
collisionless simulation with added baryonic effects for the same cosmology.
Colours indicate different cosmologies where bracketed values refer to the
values of (w0, wa) and linstyles indicate redshifts.

Figure 14. Top: The fractional change in halo mass, M200,crit, of haloes
from the hydrodynamical simulations relative to their matched dark matter
counterparts at z = 0. Bottom: The ratio of the fractional mass change from
hydrodynamical simulations and the collisionless simulations with added
baryonic effect (see equation 10). Colours indicate different cosmologies
where bracketed values refer to the values of (w0, wa).

and at the highest masses, plausibly as a result of relatively poor
statistics.

6 D I SCUSSI ON AND SUMMARY

We have constructed a new suite of cosmological hydrodynamical
simulations using a modified version of the BAHAMAS code to
investigate the effects of spatially flat DDE cosmologies on LSS.
Six cosmologies were chosen based on the constrained w0−wa

geometric degeneracy from the Planck TT + lowTEB data set. We
included Alens as a free parameter in our analysis to account for
the enhanced smoothing of the CMB temperature power spectrum.
DDE changes the expansion history of the Universe (see Fig. 4)
and therefore affects the growth of structure. However, we choose
the other cosmological parameters so that the integrated expansion
history (i.e. the distance to the surface of last scattering) is the
same and consistent with the Planck primary CMB data. While
this approach generates more ‘realistic’ cosmologies, it makes
disentangling the effects of DDE from those caused by changes in
the other cosmological parameters more challenging. Therefore, we
refer to the DDE cosmologies as a whole, rather than the DDE itself,
and all effects are with respect to our �CDM cosmology. While our
analysis is restricted to a single extension to �CDM, as we want to
see the effects of DDE, we do compare the results to the possible
cosmological extensions of a running of the spectral index as well
as changes to the summed neutrino mass. It would be interesting to
let DDE, running, and massive neutrinos vary simultaneously (e.g.
see Di Valentino et al. 2016; Di Valentino, Melchiorri & Silk 2020)
to examine the degeneracies between their effects, but we leave this
for future studies. To examine the impact of the DDE cosmologies
on the LSS, we have examined a variety of statistics, namely the
matter power spectrum, the two-point autocorrelation function of
dark matter haloes, the halo mass function, and halo number counts.
We also examined the density profiles and the concentration–mass
relation to investigate the impact of DDE on internal properties of
haloes.

Our main findings can be summarized as follows:

(i) The clustering of matter is strongly affected in the DDE
cosmologies. Both the matter power spectrum (Fig. 5) and the two-
point autocorrelation function of haloes (Fig. 6) can show up to an
∼10 per cent change at z = 0, where the thawing (freezing) DDE
cosmologies enhance (suppress) the clustering with respect to the
reference �CDM cosmology. The effect on P(k) shows only a weak
scale dependence, while the amplitude change agrees well with the
expectations based on changes in the linear growth factor for the
different cosmologies. The redshift dependence of these effects is
relatively mild.

(ii) The effect on the abundance of low-mass haloes in the different
DDE cosmologies is of the same order of magnitude as the clustering
and has a strong mass dependence (Fig. 7). The largest effects are
seen at the high-mass end and at higher redshifts, z = 1 and z =
2. The abundances of the lowest mass haloes in our simulations
at any given redshift are modified by ≈5–10 per cent while the
highest mass haloes can have their abundances modified by up to
≈20 per cent. The thawing (freezing) DDE cosmologies decrease
(increase) the abundance of low-mass haloes with respect to �CDM,
whereas for high-mass haloes (M200,crit � 1014 M	) this trend is
reversed. The effect at the low-mass end can be attributed to the
differences in �m between the cosmologies, while the changes at
the high-mass end are due to the change in growth of structure
[i.e. P(k)].
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Figure 15. Median radial total mass density profiles for the different DDE cosmologies from the hydrodynamical simulations (lines) and the collisionless
simulations with added baryonic effects (crosses) as described by equation (10). The ratio is of the hydrodynamical density profiles and the collisionless density
profiles with added baryonic effects. Each panel shows different mass bins with width 0.5 dex in M200,crit. Colours indicate different cosmologies where bracketed
values refer to the values of (w0, wa). The dashed vertical lines show the median convergence radius (see Section 4.1) for haloes in that mass bin within which
the density profiles should not be trusted.

(iii) In terms of the internal structure of haloes, the DDE cosmolo-
gies generally have less of an impact. The density profiles show shifts
in amplitude consistent with the change in halo mass mentioned
above (Fig. 10), while the shapes of the density profiles are only
weakly affected.

(iv) The effects on our chosen statistics have been compared to the
effect of massive neutrinos with a varying sum of neutrino masses
previously investigated in BAHAMAS (Mummery et al. 2017). It is
clear that massive neutrinos can behave similarly to the cosmologies
including DDE presented here. However, massive neutrinos can only
suppress the clustering of matter and haloes and the abundances of
haloes, whereas the freezing and thawing cosmologies can either
suppress or enhance these, respectively. Their scale and redshift
dependence on P(k), as well as their mass and redshift dependence on
the abundance of haloes, are very similar which makes the effect of
massive neutrinos and thawing cosmologies difficult to distinguish
(see also Upadhye 2019).

(v) We have also compared these statistics to the effect of a
running of the scalar spectral index found by Stafford et al. (2020).
The comparison to running of the spectral index shows striking
similarities in both the shape and magnitude of observed trends for
all the considered statistics. The scale and redshift dependencies
in P(k) are very similar for the scales we sample although there
appears to be some deviations in behaviour at the smallest scales,
largest k. The effect on the abundance of dark matter haloes is even

more similar, with both cosmological extensions showing remarkably
similar trends across mass and redshift.

(vi) These effects of changing cosmology were also compared
to the effects of baryons. In general, baryons tend to suppress
the statistics considered here, at levels of up to 10–20 per cent.
Baryons also have a strong scale dependence for P(k) and a more
complicated mass dependence for the HMF compared to that of
DDE cosmologies. We investigated the separability of cosmological
and baryonic effects on our LSS statistics, by assuming that each
effect can be treated as a simple multiplicative factor described by
equation (10). In general, we find that effects due to the different
DDE cosmologies and baryonic physics can be separated to high
accuracy in this way, with errors of at most a few per cent. More
specifically, errors in the separability in P(k) are < 0.1 per cent
(see Fig. 12), the lowest in any of our statistics, while in the
HMF and density profiles the errors are typically ≈1–2 per cent
(see Fig. 13).

We can put our work in the context of the LSS tension that exists
between ‘early-Universe’ CMB data and ‘late-Universe’ LSS data
sets, where the latter prefer lower values of S8 than the former, which
is effectively equivalent to saying that the observed low-redshift
Universe is smoother than it ought to be assuming the �CDM model
with CMB constraints on its parameters. It is clear from Table 2 that
our cosmologies do not significantly lower the S8 parameter relative
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to �CDM and most DDE models we consider actually increase
its value (the thawing models). This simple comparison, though,
relies on the assumption that changes to the value of S8 directly
translate into changes in the formation of structure. However, we
have shown that for (CMB-constrained) DDE models, the mapping
between massive cluster abundances in particular and S8 is more
complex (non-monotonic) than for �CDM, with the freezing model
(with lower S8) yielding a similar suppression in cluster abundances
to some of the extreme thawing models (with higher S8). Cosmic
shear (weak lensing), on the other hand, might be expected to more
directly constrain S8, given that it measures the projected matter
power spectrum. In principle, therefore, the combination of different
LSS tests should be helpful in constraining the nature of DDE. As
for the current claimed tension between the CMB and measures of
LSS, the variations we see in the DDE cosmologies, while certainly
not insignificant, do not appear to be large enough on their own to
reconcile the tension (e.g. the abundance of clusters is suppressed
by ≈ 5 per cent for some of the models, whereas a suppression of
≈ 50 per cent or larger is claimed to be required, depending on how
the mass scale of clusters is calibrated).

In conclusion, the impact of DDE in CMB-constrained cosmolo-
gies results in significant effects on a variety of LSS metrics that
should be testable with upcoming LSS surveys. For example, LSST6

and Euclid7 are anticipated to measure the matter power spectrum
at the per cent level (Huterer 2002; Huterer & Takada 2005; Hearin
et al. 2012), while the differences in the DDE models we consider can
reach up to ten times this level. The prospects for using future LSS
observations together with detailed predictions from cosmological
simulations to place interesting constraints on DDE are therefore
bright.
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APPENDI X A :

In this section, we show how we can use the HMF fitting function
from Tinker et al. (2008) to gain some insight into the trends we
observe in the HMF for our different cosmologies in Fig. 7.

The fitting function provided in Tinker et al. (2008) is an attempt
to describe the abundance of dark matter haloes as a function of the
matter power spectrum. It is given by

dn

dM
= f (σ )

ρ̄m

M

dlnσ−1

dM
, (A1)

where ρ̄m is the mean matter density which depends on �m, and f(σ )
is given as

f (σ ) = A

[(σ

b

)−a

+ 1

]
e−c/σ 2

, (A2)

where A, a, b, and c are constants calibrated to simulations, and σ is
the rms density fluctuation in a sphere of radius R,

σ 2(R) = 1

2π2

∫ ∞

0
k2P (k)|W (kR)|2 dk, (A3)

where W(kR) is the Fourier transform of the real-space top-hat
window function and P(k) is the linear matter power spectrum.

Through equation (A1), we can decompose the abundance of
haloes into three separate terms; f(σ ) that depends on a set of
constants and a cosmology-dependent P(k), ρ̄m

M
that is cosmology

dependent through its �m dependence, and dlnσ−1

dM
that is also

dependent on cosmology through P(k). To investigate the impact that
each of these terms has on the final HMF, we show them as a function
of halo mass in Fig. A1 for our cosmologies at z = 0, normalized by
their respective �CDM cosmology solution. The f(σ ) term changes
the abundance of high-mass haloes that are still forming at z = 0 but
leaves the low-mass end unaffected. The ρ̄m

M
term, which is effectively

just a change in �m, creates a constant offset equal to the fractional
difference between the values of �m for the cosmologies compared
to the value of the �CDM cosmology. The dlnσ−1

dM
term also shows an

almost constant, but negligible, offset. Fig. A1 can then be used to
explain the trends we see in the HMF for the different cosmologies
in Fig. 7. First, the low-mass trend is dominated by changes in �m

between the cosmologies and, secondly, the effect at the high-mass
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Figure A1. The HMF fitting function from Tinker et al. (2008) given in
equation (A1) splits into three separate terms and plotted against halo mass.
Each line represents one of our cosmologies normalized by the �CDM
cosmology at z = 0. Colours indicate different cosmologies (see Table 2)
where bracketed values refer to the values of (w0, wa).

end is a combination of this offset and changes in P(k) that cause a
suppression or enhancement of the HMF at the high-mass end.

For completeness, we also compare the HMF from the simulations
to the results from the fitting function of Tinker et al. (2008) in

Figure A2. Top: The HMF fitting function described in equation (A1) (lines)
and the HMF from the collisionless simulations (crosses) for each of the
cosmologies at z = 0. Bottom: The ratios of the fitting function and the
simulation HMF relative to their respective �CDM cosmology solution.
Colours indicate different cosmologies (see Table 2) where bracketed values
refer to the values of (w0, wa).

Fig. A2. The ratios have been taken with the �CDM cosmology for
the collisionless simulations (crosses) and the HMF fitting function
(lines), respectively. We see that the fitting function reproduces the
relative difference between the cosmologies well and over the entire
mass range probed by the simulations, although there is some scatter
at the high-mass end for the simulation results that make the direct
comparison more challenging.
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