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Abstract: Time series classification and clustering are important for data mining research, which is 

conducive to recognizing movement patterns, finding customary routes, and detecting abnormal 

trajectories in transport (e.g. road and maritime) traffic. The dynamic time warping (DTW) 

algorithm is a classical distance measurement method for time series analysis. However, the over-

stretching and over-compression problems are typical drawbacks of using DTW to measure 

distances. To address these drawbacks, an adaptive constrained DTW (ACDTW) algorithm is 

developed to calculate the distances between trajectories more accurately by introducing new 

adaptive penalty functions. Two different penalties are proposed to effectively and automatically 

adapt to the situations in which multiple points in one time series correspond to a single point in 

another time series. The novel ACDTW algorithm can adaptively adjust the correspondence between 

two trajectories and obtain greater accuracy between different trajectories. Numerous experiments 

on classification and clustering are undertaken using the UCR time series archive and real vessel 

trajectories. The classification results demonstrate that the ACDTW algorithm performs better than 

four state-of-the-art algorithms on the UCR time series archive. Furthermore, the clustering results 

reveal that the ACDTW algorithm has the best performance among three existing algorithms in 

modeling maritime traffic vessel trajectory. 

Keywords: Dynamic time warping, Distance measure, Time series classification, Vessel trajectory 

clustering. 

1. Introduction 

1.1 Background and related work 

With the explosion of the Internet of Things (IoT), sensor networks and radar systems, a large 

number of time series are continuously produced in various fields, such as intelligent transportation, 

maritime engineering, clinical medicine, biological science, climate research, and social science [20, 

44]. Different types of time series have been created and applied in the studies relating to hurricanes, 

animals, people, vessels, vehicles, and speech signals, etc [37]. Time series data mining can uncover 

hidden patterns and extract behavior characteristics. Time series classification and clustering are 

important for data mining of moving object trajectories [1, 50]. 

As an important kind of complex data, the time series of moving vessels play an indispensable 

role in maritime traffic networks, surveillance, and security research fields [22]. In the maritime 

traffic domain, the results of time series classification and clustering are conducive to investigating 

path planning[25], abnormal detection [7], and movement pattern recognition [38]. The automatic 

identification system (AIS) provides real-time spatiotemporal information of vessels, including time, 

position, speed over ground, course over ground, and rate of turn, etc. AIS is complementary to 

radar systems, and the temporal resolution of the AIS signal is commonly enhanced through marine 

radar by data fusion technology, allowing vessel trajectories to be tagged with useful information 
[45]. AIS systems have been widely used on vessels to identify targets and enhance maritime 

surveillance based on a very high frequency (VHF) data communication scheme, especially for large 



 

cooperating vessels [2]. Trajectory classification aims at identifying features and patterns by 

analyzing the objects’ movement awareness and other spatiotemporal information in a time series 

[31]. AIS-based vessel trajectory clustering is of significance in mining customary routes, 

identifying abnormal patterns, improving navigational safety, and safeguarding maritime 

surveillance and security [21]. The different types of time series are displayed in Fig. 1. Fig. 1 (a) 

shows vessel trajectories based on AIS data. The Gun_Point data, one of the UCR time series 

datasets, are presented in Fig. 1 (b). The green and blue trajectories are randomly selected from the 

Gun_Point data, and their corresponding relationships will be analyzed and compared in subsequent 

experiments. 

 
  

Fig.1. Different types of time series datasets: (a) AIS-based vessel trajectories, (b) one of the UCR time series 

datasets (Gun_Point data). 

Trajectory classification [19] and clustering [13, 14] are systematic processes that include 

trajectory preprocessing, feature extraction, distance measurement, and grouping with and without 

supervision [43]. The goal of trajectory classification is to classify trajectories into predetermined 

classes. The classification criterion is based on the distances between trajectories. Trajectory 

clustering divides the trajectories into different clusters according to the distance criterion so that 

the within-cluster similarity of objects is as large as possible, while the between-cluster similarity is 

as small as possible [23]. The most basic task of trajectory classification and clustering is to measure 

the similarity of different trajectories. Useful distance measurement algorithms are the key to 

subsequent applications. 

Each trajectory is composed of a large number of points. The trajectory similarity measurement 

method can calculate the distances between different trajectories. It is also an important factor in 

determining the accuracy of trajectory classification and clustering. Many advanced methods have 

been proposed to measure the distances between different points [3]. Previous studies have proposed 

popular distance measurement methods [26], such as the Euclidean distance (ED), the Hausdorff 

distance, the hidden Markov model (HMM), dynamic time warping (DTW), and the longest 

common subsequence (LCSS). The length of all trajectories must be equal in ED, which also cannot 

warp the time information. The Hausdorff distance has no requirement for trajectory length. The 

HMM distance assigns each trajectory a statistical model. However, the Hausdorff distance and 

HMM are time-consuming. Another criticism is that both Hausdorff and HMM have poor 

performance [28]. Compared with location similarity, LCSS focuses more on shape similarity and 

has a high time cost. It is easier for DTW to find the shape similarity between trajectories, and it 

also warps the routes from feature to feature. Therefore, DTW is selected as the key similarity 

measurement method to improve and develop in this work. 

DTW was initially introduced by Velichko, Zogaruyko [39] and Itakura [16] based on dynamic 

programming to investigate speech recognition. Berndt and Clifford [6] proposed a detection 

algorithm based on DTW to find patterns in time series regarding knowledge discovery. Herbst and 
Coetzer [15] investigated offline handwritten signatures based on DTW. In [41], Yoshimural and 

Yoshimura combined DTW with the preprocessing method to verify the offline signature and 



 

identify suspect signatures. In [34], Shanker and Rajagopalan proposed the DTW-based method to 

construct an effective offline signature verification system. The code-vectors and DTW are merged 

into the online signature verification strategy in [35] to improve the accuracy of the system. In [25], 

Liu et al. measured the similarity between trajectories and calculated the distance based on DTW to 

cluster the vessel trajectories and mine customary routes. In [21], Li et al. considered the distances 

between trajectories based on DTW and proposed the multistep clustering method to cluster vessel 

trajectories and detect abnormal trajectories. In [48], Zhao et al. combined DTW and the trajectory 

shape to analyze the distances between trajectories and mine trajectory movement patterns. 

These studies have shown that DTW is a kind of nonlinear programming technique based on time 

programming and distance testing [30]. It can be used to calculate the similarity between two time 

series and eventually find the shortest distance [9]. DTW can find the optimal path with a minimum 

cost based on dynamic programming. However, the warped routes will also lead to over-stretching 

and over-compression. For example, Fig. 2 shows the pathological corresponding result obtained by 

DTW, where the red and blue trajectories are selected from electrocardiogram (ECG) data. 

 
Fig.2. The pathological corresponding result obtained by DTW. 

Facilitated by intensive studies of time series processing, classification, and clustering, many 

improved DTW algorithms have been proposed to cope with the disadvantages of off-the-shelf 

applications. In recent years, similarity measurement methods have attracted increasing attention in 

the fields of data mining and pattern recognition [47]. To date, existing DTW algorithms have 

mainly been improved from two perspectives: different global and local warping windows (different 

functions and shapes) and the selection of parameters. The global constraints are the different shapes 

of the warping window, such as diamond-shaped [16] and parallel regions [32]. The local constraints 

present a small part of the global constraints. In [32], Sakoe et al. proposed the slope constraint for 

DTW, which restricted the step size and direction of the optimal warping path. However, the 

continuity of the optimal path may not be guaranteed. Niennattrakul et al. [29] introduced an 

adaptive window restriction method to determine the limited optimum warping path. However, it 

also misses the correct warping distances. The selection of the parameter also presents a difficult 

problem. The derivative dynamic time warping (DDTW) algorithm was introduced in [18] to find a 

new path, which extracted shape information based on the derivative of the original trajectory, but 

the computational complexity also increased accordingly. In [40], Wan et al. proposed an automatic 

cost dynamic time warping (AC-DTW) algorithm to calculate the cost automatically and avoid over-

stretching and over-compression. However, the penalty function needs to be set artificially in 

advance, and it is difficult to define the parameters. The weighted dynamic time warping (WDTW) 

and weighted DDTW (WDDTW) algorithms were developed in [17] to penalize those paths with 

higher phase differences based on the phase difference between test points and reference ones, then 
to avoid distortion of the minimum distance. However, it remains unclear how to determine the 

weight, and a solution needs to be found. In [4], Barbon et al. introduced optimized DTW based on 



 

the discrete wavelet transform (DWT) to handle long single sequences and avoid the high 

computational cost. Fast dynamic time warping (FastDTW), an approximate DTW, was introduced 

in [33], which refined the optimal results based on a multilevel approach with linear time and space 

complexity. A novel time alignment measurement was proposed in [11], which could better 

characterize the signals. The temporal similarity information was extracted by comparing fractions 

of the time distortion. Novel elastic distances were proposed to further measure the amplitude 

difference in [24]. In [27], Morel et al. introduced a new tolerance to the calculation process and 

extended the measurement to an area of more than two time series based on DTW barycenter 

averaging (DBA) and constrained dynamic time warping (CDTW). In [48], Zhao et al. considered 

the combination of shape and character in the local trajectory to calculate the distance based on the 

original DTW and the compensation coefficient. However, the proposed method does not 

fundamentally improve the DTW algorithm, and different vessel trajectory characteristics cannot be 

measured uniformly. In [49], Zhao et al. developed the DTW method based on Douglas-Peucker 

compression and conducted clustering analysis based on the improved density-based spatial 

clustering of applications with noise (DBSCAN). However, this improvement cannot reduce some 

points based on the compression algorithm unless the algorithm is changed or the many-to-one and 

one-to-many problems are solved. 

1.2 Motivation and contribution 

The traditional DTW algorithm [6, 15, 34, 41, 42, 46] usually ignores extreme cases such as many-

to-one and one-to-many when the numbers of points in different time series are extremely different. 

It also ignores the number of times that each point is used in the time series similarity measurement. 

Additionally, it does not take into account the fact that the number of points between two trajectories 

can vary significantly in different application aspects. Many improved DTW algorithms [4, 27, 29, 

32, 40, 48] lack a unified standard and solution for the warping window shape, weight, and step size. 

In addition, some improved DTW algorithms also require manually preselected parameters. 

Extreme cases still exist in many improved DTW algorithms. To facilitate comparison with other 

algorithms, all the improved DTW algorithms are validated on the widely-used UCR time series 

with equal length. However, the pathological matching of time series is generally not considered in 

the mentioned warping algorithms. To address the potential limitations in traditional DTW 

algorithms, this paper proposes an adaptive constrained dynamic time warping (ACDTW) algorithm 

by considering adaptive penalty functions. In particular, ACDTW has the capacity to alleviate 

pathological matching and increase the accuracy of similarity measurement. Furthermore, it is not 

necessary to consider the window size and preselect the manual parameters for ACDTW in practical 

applications. Two kinds of adaptive penalty functions for time series are proposed in ACDTW: one 

for time series with equal length and the other for time series with unequal length. Each kind of 

adaptive penalty function consists of two parts: the length of the trajectory and the number of times 

that each point in the time series is used in each step. The proposed ACDTW can automatically 

adjust the correspondence of the time series, select the optimal matching, and increase the accuracy 

of the similarity measurement between different time series. 

Given the state-of-the-art studies, the major contributions presented in this work are summarized 

as follows: 

• To effectively handle extreme cases, the ACDTW algorithm is proposed to accurately calculate 

the distances between different time series. It can essentially reduce over-stretching and over-

compression while improving the accuracy of distance calculation. 

• The adaptive penalty functions can automatically adjust the correspondence of the time series 

and warp the optimal matching in each step of ACDTW. They can reduce the distance between time 

series with high similarity and increase the accuracy of subsequent experiments. 

• Comprehensive experiments have been implemented on the UCR time series archive with equal 

length and realistic vessel trajectory dataset with unequal length. The results of time series 

classification and clustering have demonstrated the effectiveness of our ACDTW. 

Automatic and valid penalty functions in the warping process can help make adjustments and find 

the optimal path. In this paper, the ACDTW algorithm is proposed to calculate accurate distances 

and reduce over-stretching and over-compression based on the penalty function of each point. The 
greater the similarity between two time series, the smaller the distance. ACDTW can reduce the 

distance between time series with high similarity while increasing the distance between time series 



 

with low similarity. The novel penalty function can set the weight of each step automatically to 

select the optimal warping path. Based on the automatic warping of the novel penalty function, 

ACDTW can avoid many-to-one and one-to-many matching when calculating the distance and 

finding the optimal path between two trajectories. It enables an improvement in the accuracy of 

measuring trajectory distances, which can help preserve effective features, mine trajectory patterns, 

and support decision making effectively through trajectory classification and clustering. 

The remainder of this paper is organized as follows. Section 2 briefly reviews the original DTW 

algorithm. In Section 3, the ACDTW algorithm is proposed and described systematically to analyze 

time series. In Section 4, numerous experiments are conducted based on 22 datasets from the UCR 

time series archive and a vessel trajectory dataset by classification and clustering respectively, to 

demonstrate the effectiveness of our method in practical applications. Finally, Section 5 concludes 

this paper by summarizing its novel contributions and future research directions. 

2. A brief review of DTW 

From a statistical point of view, a spatiotemporal AIS trajectory is essentially a kind of time series. 

Suppose 
1 2={ , , , }mQ q q q  and 

1 2={ , , , }nC c c c  denote two AIS trajectories (i.e., time series), 

iq  represents the value of the ith point in series Q , jc  indicates the value of the jth point in series 

C  , m   and n   represent the length of the two sequences, respectively.  ,i jd q c   denotes the 

distance between iq  and , 2,3, , , 2,3,jc i m j n  . 

DTW is used to calculate the maximum similarity between the two time series [12]. The principle 

of DTW is as follows: 

Allocate all points in sequence according to time and then construct the matrix m nA  , in which 

2( , ) ( )ij i j i j m na d q c q c A      . A set of adjacent matrix elements in m nA    is called the 

warping path, denoted by  1 2, , , , ,t KW w w w w ;  max , 1m n K m n    , and the tht  

point in W is represented by  t ij t
w a . 

The warping path must satisfy the following constraints: 

(1) Boundary condition: 1 11, ;K mnw a w a   

(2) Continuity and monotonicity: if -1 ,t i j t ijw a w a   , then 
' '0 1, 0 1i i j j      ，which 

ensures that every coordinate in the two trajectories can appear in W, and the corresponding of points 

between the trajectories does not intersect. The time at each point is also monotonic in W. 

Specifically, DTW can be calculated as follows: 

1

( , )

( , ) min{ / }

t i j

K

t t

w d q c

DTW Q C w K



 
 (1) 

where tw  is the distance between the corresponding points iq  and jc  in the two series, and K 

is the length of the longer sequence. 

The steps involved in the algorithm are as follows [36]:  

Step 1. Calculate the DTW distance ( , )D i j  between the two sequences from the starting points 

andi j  of the two sequences. 
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11
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(1,1)

( , ) min ( 1, 1), ( , 1), ( 1, )

( , ) ( )

ij

ij i j i j m n

D d

D i j d D i j D i j D i j

d d q c q c D 




     

   

 

(2) 

Step 2. The distance ( , )D i j  of the endpoint in the two sequences is the DTW distance of the 

two sequences. 

The pseudocode of the DTW algorithm is as follows. 

Algorithm 1: DTW algorithm 

Input: 
1 2={ , , , }mQ q q q  and 

1 2={ , , , }nC c c c  // the two time series 

Output: The optimal warping path; 

The distance of Q  and C . 

Initialize: 1,1(1,1)DTW d  

for i=1:n 

for j=1:m 

,1 ( 1, )i jD d DTW i j    

,2 ( 1, 1)i jD d DTW i j     

,3 ( , 1)i jD d DTW i j    

min( 1, 2, 3)DTW D D D ; 

The optimal pathi,j =min_index((i-1, j), (i-1, j-1), (i, j-1)) 

end 

end 

The time complexity of ED and DTW is ( )O n  and ( )O mn , respectively. The optimal paths of 

isometric and nonisometric trajectory-based ED and DTW are shown in Fig. 3. The two green paths 

are the ED between the isometric and nonisometric trajectories, which show that the ED is invalid 

in nonisometric trajectory similarity measurements. The two red paths in Fig. 3 represent the DTW 

distance between the trajectories. DTW does not require that the two sequences are equal, but ED 

does. As shown in Fig. 3, ED cannot measure the distance between unequal trajectories. 

 
Fig.3. The optimal paths of isometric and nonisometric trajectory-based ED and DTW; the green path represents 



 

Euclidean distance, and the red warping path expresses DTW distance. 

3. The Proposed ACDTW algorithm 

Penalty functions and ACDTW are introduced in this paper to reduce many-to-one and one-to-

many matching. ACDTW comprehensively takes into account the use of each point, and the more 

times each point is used, the greater the penalty function value. The optimal warping path is selected 

based on the adaptive penalty functions and the number of times each point is used in each step. 

3.1 The adaptive penalty functions 

3.1.1 The adaptive penalty function for time series with equal length 

The adaptive penalty function for time series with equal length takes into account the number of 

times each point is used in each step as well as the trajectories lengths. It is proposed based on the 

point mean idea, which does not restrict the trajectory length, as described in Eq. (3): 

, , ,( ) [( ) / max( , )] ( ) ( )
2 2max( , )

2, , ; , 2, , .

i j i j i j

m n m n
c x m n N x N x

m n

i m j n

 
 

 

 

(3) 

where ,( )i jN x  denotes how many times each point is used in the matching process. m  and n  

are the length of two trajectories. 
2max( , )

m n

m n

  is constant when m  and n  are defined, and it is 

used to numerically control the tolerance of many-to-one and one-to-many matching. 

It is easy to deduce that min( , )
1( )

max( , ) 2max( , )

m n m n
m n

m n m n


   , so 

2max( , )

m n

m n

  will increase 

when m  and n  become closer. Then, ,( )i jc x  is positively proportional to ,( )i jN x , meaning 

that when ,( )i jN x  increases, ,( )i jc x  increases simultaneously. A higher value of 
2max( , )

m n

m n


 

amplifies the unacceptable degree of many-to-one and one-to-many matching, while a lower value 

diminishes this effect. 

The value of the penalty function increases with the proximity of the two time series. This means 

that the closer the lengths of two time series are, the lower the tolerance of many-to-one and one-

to-many matching. 

3.1.2 The adaptive penalty function for time series with unequal length 

The adaptive penalty function for time series with unequal length takes into account the effects 

of different trajectory lengths. It is enhanced based on the point mean and dual restriction ideas, as 

follows: 

,

,

,

,

,

1 1
[( ) / max( , )] ( ), 0 0

2 2 2
( )

1 1
[max( , ) / ( )] ( ),

2 2 2

1 1
( ), 0 0

2max( , ) 2 2

2max( , ) 1 1
( ),

2 2

i j

i j

i j

i j

i j

m n m n
m n N x or

n m
c x

m n m n
m n N x or

n m

m n m n
N x or

m n n m

m n m n
N x or

m n n m


   

 
  




   

 
  
 

 

(4) 

This penalty function considers the trajectory length and limits cases where the trajectory is closer 



 

or farther. 
2max( , )m n

m n
 and 

2max( , )

m n

m n


 are constant when m  and n  are defined, and they 

are used to numerically control the tolerance of many-to-one and one-to-many as m   and n  

become closer or farther. 

It is easy to show that min( , ) 2max( , )
1( ) 2

max( , ) 2max( , )

m n m n m n
m n

m n m n m n


    


 , so 

2max( , )

m n

m n

   will become larger as m   and n   become closer, and 
2max( , )m n

m n
  will become 

larger as m   and n   move farther apart. A higher value of the penalty function amplifies the 

unacceptable degree of many-to-one and one-to-many matching. 

The value of the penalty function increases with the proximity and the separation of two time 

series, indicating that the closer or farther the two time series are, the lower the tolerance of many-

to-one and one-to-many matching. 

3.2 The ACDTW algorithm 

To avoid the situations of many-to-one and one-to-many matching, an adaptive penalty function 

is introduced into the ACDTW algorithm as the weight of each step. The proposed ACDTW 

algorithm is as follows: 

1,1

1, ,

,

, 1 ,

(1,1)

( ) ( 1, )

( , ) min ( 1, 1)

( ) ( , 1)

i j i j

i j

i j i j

ACDTW d

c x d ACDTW i j

ACDTW i j d ACDTW i j

c x d ACDTW i j







 


   
  

 

(5) 

The two matrixes ,( )Q i j m nT Q   and ,=( )C i j m nT C   can constantly record the number of times 

each point is mapped to other points in the current path. QT  and CT  indicate how many times 

each point in Q and C is used in the matching process, respectively. The optimal warping path 

( , )ACDTW i j  is found based on QT  and CT , where the point iq  is used ,i jQ  times and jc  

is used ,i jC  times. 

From Eq. (5), if the warping path is from ( 1, )i j  to ( , )i j , showing that point jc  is reused, 

then the penalty function is added to the step for ,i jd , , =1i jQ  and , -1,= +1i j i jC C . If the warping 

path is from ( 1, 1)i j   to ( , )i j , showing that there is no reused point, then the penalty function 

will not be used in this step, , =1i jQ  and , =1i jC . If the warping path is from ( , 1)i j   to ( , )i j , 

showing that point iq   is reused, then the penalty function is added to the step for ,i jd  , 

, , 1= +1i j i jQ Q   and , =1i jC . The ACDTW algorithm can avoid the situations of many-to-one and 

one-to-many matching based on the number of times each point is used in the time series. 

The pseudocode of the ACDTW algorithm is summarized as follows: 

Algorithm 2: ACDTW algorithm 

Input: 
1 2={ , , , }mQ q q q  and 

1 2={ , , , }nC c c c  // the two time series 

Output: the optimal warping path; 

the distance of andQ C ; 

The corresponding result. 

Initialize: 1,1 ,=1, =0, 2, , , 2, , .i jQ Q i m j n   

1,1 ,=1, =0, 2, , , 2, , .i jC C i m j n   

1,1(1,1)ACDTW d  

for i=1:n 



 

for j=1:m 

, 1, ,1 ( ) ( 1, )i j i j i jD d c x d ACDTW i j     

,2 ( 1, 1)i jD d ACDTW i j     

, , 1 ,3 ( ) ( , 1)i j i j i jD d c x d ACDTW i j     

( , ) min( 1, 2, 3)ACDTW i j D D D ; 

The optimal pathi,j =min_index((i-1, j), (i-1, j-1), (i, j-1)) 

if ( , ) 1ACDTW i j D   

then , , -1,=1 = +1i j i j i jQ C C， ; 

else if ( , ) 2ACDTW i j D   

then , ,=1 =1i j i jQ C， ; 

else ( , ) 3ACDTW i j D   

then , , 1 ,= +1 =1i j i j i jQ Q C ， . 

Result = D (m, n) 

end 

end 

end 

4. Experimental results and analysis 

DTW and its variants are proposed for matching similar time series and measuring the distances 

between time series. In the first classification experiment, we evaluate the classification 

performance of five state-of-the-art methods and demonstrate the validity of ACDTW as a distance 

measure on 22 benchmark datasets by the nearest neighbor classification. In the second clustering 

experiment, the performance of three distance measurement methods is provided and compared to 

further verify the accuracy and effectiveness of ACDTW on a real vessel trajectory dataset. 

Descriptions of the datasets, experimental setup, and performance analysis for classification and 

clustering are given in the following sections. 

4.1. Datasets 

The classification experiment is conducted on 22 datasets from the UCR time series classification 

archive [8, 10], which are the most widely used benchmark datasets because of their diversity. The 

datasets are collected from various domains and are of different types, including video data, 

electrocardiogram signals, images, sensor data, and synthetic data. The summary of the 22 datasets 

is given in Table 1, including the data type, number of classes, size of the total set, size of the training 

set, size of the testing set, and time series length. The number of classes and the time series length 

range from 1 (Fish) to 37 (Adiac) and from 60 (SyntheticControl) to 637 (Lighting2), respectively. 

Table 1 

Summary of datasets 

Dataset Data type 
Number 

of classes 

Size of 

total set 

Number of 

training 

sets 

Number of 

testing 

sets 

Time series 

length 

Adiac Image 37 781 390 391 176 

Beef Spectro 5 60 30 30 470 

CBF Simulated 3 930 30 900 128 

Coffee Spectro 2 56 28 28 286 

Cricket_X Motion 12 780 390 390 300 

Cricket_Y Motion 12 780 390 390 300 

Cricket_Z Motion 12 780 390 390 300 

ECG200 ECG 2 200 100 100 96 

FaceAll Image 14 2250 560 1690 131 

FaceFour Image 4 112 24 88 350 



 

Fish Image 1 350 175 175 463 

Gun_Point Motion 2 200 50 150 150 

LargeKitchenAppliances Device 3 750 375 375 720 

Lighting2 Sensor 2 121 60 61 637 

OliveOil Spectro 4 60 30 30 570 

OSULeaf Image 6 442 200 242 427 

ShapeletSim Simulated 2 200 20 180 500 

SmallKitchenAppliances Device 3 750 375 375 720 

Symbols Image 6 1000 25 995 398 

SyntheticControl Simulated 6 600 300 300 60 

Trace Sensor 4 200 100 100 275 

TwoLeadECG ECG 2 1162 23 1139 82 

The clustering experiment is implemented on the vessel trajectory dataset in the waterway around 

a bridge. The experimental data are collected from the AIS base station in the Wuhan section of the 

Yangtze River, China. The dataset relating to the bridge waterway includes the vessel trajectory data 

of 377 vessels involving 58,296 points. Fig. 4 shows the visualization of the vessel trajectory dataset 

and the length of each vessel trajectory. The trajectories come from different vessels and have 

different lengths. 

 
 

Fig.4. Visualization of the vessel trajectories and the length of each vessel trajectory. 

4.2. Experimental setup 

All numerical experiments are performed using 64-bit Windows 10 on a 2.60 GHz Intel Core i7-

5600U CPU with 8 GB memory. The proposed ACDTW and classification algorithms are 

programmed in the C language, and the nearest neighbor (1NN) classifier serves as the classification 

standard for easy comparison with other algorithms. It is well known that 1NN has no additional 

parameters, and the accuracy is entirely dependent on distance. 1NN has been widely used to 

evaluate the performance of different similarity measurement methods [5, 10]. It is easy to use the 

1NN classifier to obtain classification results based on the distances calculated by different 

similarity measurement algorithms. We implement a time series clustering experiment based on 

multiple DTW methods using MATLAB R2016a. 

In this paper, the proposed ACDTW algorithm is validated by using both standard UCR time 

series archive and a real vessel trajectory dataset. The 22 standard datasets are chosen based on 

different lengths, classes, and numbers of time series from the UCR time series archive. The AIS 

trajectory dataset contains spatiotemporal trajectories with time, longitude, latitude, speed, etc. The 

22 time series datasets are two-dimensional (2D) time series, and the AIS trajectory dataset is three-

dimensional (3D) time series. The different types of time series are described and analyzed in detail 

in this paper to demonstrate the accuracy and robustness of the proposed ACDTW. 

The experimental flowchart is presented in Fig. 5. 



 

 
Fig.5. The experimental flowchart. 

4.3. Performance analysis for classification in the UCR time series archive 

The classification experiment is used to verify the performance of the first adaptive penalty 

function. The proposed ACDTW algorithm is compared with state-of-the-art methods, which are 

ED, DTW, BDTW(r) (DTW of Best Warping Window), and AC-DTW(0.5). The parameter r in 

BDTW(r) is the percentage of the time series length. The optimal parameter 0.5 in AC-DTW(0.5) 

is set according to [40]. The classifiers of all algorithms are 1NN. 

All the algorithms are evaluated based on the classification accuracy rate (AR) and error rate (ER) 

in 22 datasets, which are defined as: 

1

number of time series correctly classified
AR

total number of time series of test datasets

ER AR



 

 

(6) 

For easy comparison with other methods, the ER is selected as the evaluation criterion of 

classification performance. 

4.3.1 Error rate analysis 

The classification comparison results of different datasets based on different DTW algorithms are 

listed in Table 2. From the comparison results, we find that ED, DTW, BDTW, AC-DTW(0.5) and 

the new ACDTW algorithm have the best performance on 3, 4, 7, 8, and 16 of the 22 classical 

datasets, respectively. ACDTW significantly reduces the relevant ER, especially for Adiac, Beef, 

CBF, Cricket_Z, Fish, Gun_Point, and SyntheticControl. Its ERs in Adiac, Cricket_Y, ECG200, 

Gun_Point, LargeKitchenAppliances, OliveOil, OSULeaf, SmallKitchenAppliances, Symbols, and 

SyntheticControl are significantly lower than those of AC-DTW(0.5), showing a much better 

performance. The time axis distortion is a common situation in the time series, so DTW and its 

variants have better performance than ED. ED still performs better in both the ECG200 and OliveOil 

datasets because they have no apparent time axis distortion. The experiments compare the five 

algorithms, and the results show the superiority and effectiveness of the proposed ACDTW 

algorithm. 

Table 2 

1NN error rate (ER) of different measurement methods on different datasets (the best results are highlighted in 

bold) 

Dataset ED DTW BDTW(r) 
AC-DTW 

(0.5) [40] 
ACDTW 

Adiac 0.3887 0.3964 0.3913(3) 0.3780 0.3606 

Beef 0.3333 0.3667 0.3333(0) 0.3000 0.3000 

CBF 0.1478 0.0033 0.0044(11) 0.0000 0.0000 

Coffee 0.0000 0.0000 0.0000(0) 0.0000 0.0000 

Cricket_X 0.4231 0.2462 0.2282(10) 0.2102 0.2102 

Cricket_Y 0.4333 0.2564 0.2410(17) 0.2461 0.2358 

Cricket_Z 0.4128 0.2462 0.2538(5) 0.2000 0.2000 

ECG200 0.1200 0.2300 0.1200(0) 0.1900 0.1800 

FaceAll 0.2864 0.1923 0.1917(3) 0.1920 0.1920 

FaceFour 0.2159 0.1705 0.1136(2) 0.2150 0.2150 

Fish 0.2171 0.1771 0.1543(4) 0.1540 0.1540 

Gun_Point 0.0867 0.0933 0.0867(0) 0.0800 0.0460 

LargeKitchenAppliances 0.5067 0.2053 0.2053(94) 0.1973 0.1893 

Lighting2 0.2459 0.1311 0.1311(6) 0.1147 0.1147 



 

OliveOil 0.1333 0.1667 0.1333(0) 0.1667 0.1333 

OSULeaf 0.4793 0.4091 0.3884(7) 0.3884 0.3842 

ShapeletSim 0.4611 0.3500 0.3000(3) 0.3278 0.3333 

SmallKitchenAppliances 0.6587 0.3573 0.3280(15) 0.3573 0.3413 

Symbols 0.1005 0.0503 0.0623(8) 0.0430 0.0400 

SyntheticControl 0.1200 0.0067 0.0167(6) 0.0100 0.0067 

Trace 0.2400 0.0000 0.0100(3) 0.0000 0.0000 

TwoLeadECG 0.2529 0.0957 0.1317(4) 0.1281 0.1281 

4.3.2 Comparison of classification accuracy 

The graphical comparison results of the classification AR between ACDTW and the other four 

state-of-the-art algorithms are displayed in Fig. 6, and they clearly show the validity of the proposed 

algorithm. There are 22 points in each graph, representing the classification accuracy of ACDTW 

and the other methods on 22 datasets. The classification accuracy is greater than that of other 

methods when the points are above the line in Fig. 6. Fig. 6 (a) - (b) show that the classification 

accuracy of ACDTW is better than that of ED and DTW on 18 and 16 datasets respectively; Fig. 6 

(c) - (d) also show the higher accuracy of ACDTW compared to that of BDTW(r) and AC-DTW(0.5) 

on 15 and 11 datasets, respectively. 

(d)

(b)

(c)

(a)

Fig.6. Comparison results of the classification accuracy of different algorithms. 
To further visualize the classification AR and ER of the different algorithms, the graphical 

comparison results are shown in Fig. 7. The 3D histograms of AR and ER further clearly show the 

performance of the different algorithms. The overall trend of the proposed method ACDTW is the 
highest, and the ER is the lowest, in Fig. 7. The classification performance of ACDTW is the best 



 

among the five investigated algorithms based on the comparison results and histograms in Fig. 6 

and Fig. 7. 

 

 
Fig.7. Graphical comparison results of the accuracy rate (AR) and error rate (ER) of the different algorithms. 

4.3.3 The Texas sharpshooter fallacy 

In the study of time series classification, many authors assert that their algorithm is better only 

because its classification accuracy is higher. This is not adequate evidence and also involves a 

logical error. We cannot conclude that an algorithm is more accurate on some problems unless we 

know in advance which datasets have higher classification accuracy (this is a subtle version of the 

Texas sharpshooter fallacy) [5, 46]. In further verifying the effectiveness of ACDTW, we must 

emphasize that ACDTW can predict in advance when ACDTW will have a higher classification 

accuracy. The gain is introduced here to demonstrate the performance of ACDTW, and it is given 

by: 

accuracy of ACDTW
gain

accuracy of competitor


 

(7) 

Leaving-one-out (LOO) cross-validation is selected to find the expected accuracy gain on the 
training set. An expected accuracy gain value greater than one indicates that we expect ACDTW to 

perform better than its competitors, and vice versa. The actual accuracy gain is calculated on the 



 

testing set. Comparing the expected accuracy gain with the actual accuracy gain is the most effective 

method to verify the predictive performance of ACDTW. The results of expected accuracy gain 

versus actual accuracy gain between ACDTW and the competitors are shown in Fig. 8. Each point 

represents the result of a dataset. 

 
Fig. 8. Expected accuracy gain versus actual accuracy gain for the five algorithms. 

As illustrated in Fig. 8, there are four cases relating to the comparison results: 

TP (true positive). In this region, we predicted that ACDTW would improve classification 

accuracy, and this is true. Gratifyingly, the vast majority of data points fall into this region, which 

further demonstrates the effectiveness of ACDTW. 

TN (true negative). In this region, we correctly predicted that ACDTW would decrease 

classification accuracy. In this case, other methods can be used to avoid the loss of accuracy. 

FN (false negative). In this region, we predicted that ACDTW would decrease classification 

accuracy, but it improved classification accuracy. 

FP (false positive). In this region, we predicted that ACDTW would improve classification 

accuracy, but it decreased classification accuracy. This case is the only truly bad one for us. The 

good result is that there is only one point falling in this region. 

4.3.4 Correspondence relationship analysis 

To further verify the performance of the proposed ACDTW, the correspondence relationship 

between two time series based on DTW, AC-DTW(0.5) and ACDTW is displayed in Fig. 9. The 

two time series are selected from Gun_Point data to compare and analyze the correspondence 

results, and the visualization of the two time series is displayed in Fig. 9(a). The original time series 

intersect, and the vertical distances between them are increased to display the corresponding results 



 

more clearly. As shown in Fig. 9(b), the matching result is based on DTW, and the numbers of 

many-to-one and one-to-many matching situations in 9(b) are greater than those in Fig. 9(c) - (d). 

In the worst case, 29 points are mapped to one point. The second most extreme case is that 27 points 

are mapped to one point. The extreme cases mean that the two time series are severely compressed, 

and the features of many segments are missed in the process of matching. The matching result of 

AC-DTW(0.5) is shown in Fig. 9(c); the over-compression is improved, and more features are 

preserved. However, the numbers of many-to-one and one-to-many matching situations in Fig. 9(c) 

are still greater than those in Fig. 9(d), which shows the matching result of ACDTW. In Fig. 9(d), 

the over-compression case is significantly reduced, and the shape features are better matched and 

restored when using the new ACDTW algorithm. The correspondence relationship results further 

illustrate the validity of the proposed algorithm. 

(b)(a)

(d)(c)
Fig. 9. The UCR time series correspondence results based on different algorithms: (a) the original trajectory in 

Gun_Point, (b) the result based on DTW, (c) the result based on AC-DTW(0.5), and (d) the result based on 

ACDTW. 

4.4 Performance analysis for clustering in the vessel trajectory dataset 

A clustering experiment is used to validate the performance of the second adaptive penalty 

function. The waterway around bridges is a high-risk area from a navigational perspective. The 

Yangtze River is the busiest inland waterway in the world. The vessel trajectory dataset is 

established based on the data collected from bridge waterways in the Wuhan section of the Yangtze 

River, and the relevant spatiotemporal trajectories include time, longitude, latitude, and speed. 

Data cleaning is the primary step of trajectory visualization. The original trajectories are filtered 

by trajectory acquisition time and time intervals, and then incomplete and invalid trajectories are 

deleted. The original dataset includes 377 trajectories, and 324 trajectories with 51,429 points are 

preserved after data cleaning. 

The similarity measurement of AIS trajectories by the DTW, AC-DTW(0.5) and ACDTW (with 

two adaptive penalty functions) are compared in this paper to further demonstrate the effectiveness 

and superiority of the proposed ACDTW algorithm. The first and second functions represent the 

adaptive penalty functions for time series with equal length and unequal length, respectively. A 
dimension-reduction method and the improved center clustering algorithm are introduced to cluster 



 

the vessel trajectories. The detailed experimental process is described in [21] and is not duplicated 

in this paper. 

4.4.1 Distance visualization based on different DTW algorithms 

The distances between trajectories are calculated by different DTW algorithms. The different 324 

× 324 distance matrixes are obtained by using different similarity measurement algorithms, as 

shown in Fig.10. The 2D image visualizations of the distance matrixes and the statistical histograms 

of distances based on DTW, AC-DTW(0.5), ACDTW (first function), and ACDTW (second 

function) are shown in Fig. 10 (a) and Fig. 10 (i), Fig. 10 (b) and Fig. 10 (j), Fig. 10 (c) and Fig. 10 

(k), and Fig. 10 (d) and Fig. 10 (l). The bar charts of the distance values between the trajectories 

based on DTW, AC-DTW(0.5), ACDTW (first function), and ACDTW (second function) are shown 

in Fig. 10 (e), Fig. 10 (f), Fig. 10 (g), and Fig. 10 (h), respectively. From Fig. 10 (a) - (d), the results 

reveal that the distances are positively proportional to the adaptive penalty functions. The 

dissimilarity of trajectories is increased to facilitate data classification and clustering. 

The bar charts and statistical histograms show the distribution and frequency of all the values, 

which are conducive to deriving features and analyzing trajectories. Trajectory clustering can group 

clusters based on distance. 

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

 
Fig. 10. Visualization of the distance matrixes obtained by different algorithms. (a) 2D image display of DTW; (b) 

2D image display of AC-DTW(0.5); (c) 2D image display of ACDTW (first function); (d) 2D image display of 

ACDTW (second function). (e) The bar chart of all the distance values between the trajectories based on DTW; (f) 

the bar chart of all the distance values between the trajectories based on AC-DTW (0.5); (g) the bar chart of all the 

distance values between the trajectories based on ACDTW (first function); (h) the bar chart of all the distance 

values between the trajectories based on ACDTW (second function). (i) The statistical histogram of all the 

distances based on DTW; (f) the statistical histogram of all the distances based on AC-DTW (0.5); (g) the 

statistical histogram of all the distances based on ACDTW (first function); (h) the statistical histogram of all the 

distances based on ACDTW (second function). 

4.4.2 Visualization of the clustering number with different DTW algorithms 

To facilitate the comparison of different DTW algorithms, the clustering number is obtained by 

principal component analysis (PCA). The cumulative contribution rate is an important index for 
determining the number of cluster centers. The number of clusters k is selected according to the 



 

cumulative contribution rate. If the cumulative contribution rate of the top k principal components 

is greater than 95%, then k is the number of clustering centers. 

The top 10 eigenvalues and the corresponding cumulative contribution rates of the four algorithms 

(i.e., DTW, AC-DTW(0.5), ACDTW with the first adaptive penalty function, and ACDTW with the 

second adaptive penalty function) are listed in Tables 3 - 6, respectively. As shown in Table 3, the 

cumulative contribution rate of the top two eigenvalues is 96.99%, and that of the top three 

eigenvalues is 99.26%. Then, the number of clusters is set as 2. The experiments compare the 

clustering performance when k = 2 and k = 3 to verify the accuracy. In Table 4, the cumulative 

contribution rate of the top two eigenvalues based on AC-DTW(0.5) is 94.39%, and that of the top 

three is 96.96%. Then, we set the number of clusters to 3. The clustering performance when k = 3 

and k = 4 is compared in the subsequent experiments to verify the accuracy. The cumulative 

contribution rates of the top ten eigenvalues based on ACDTW (first function) are shown in Table 

5, and those of the top two and the top three eigenvalues are computed as 94.54% and 96.77%, 

respectively. Then we set the number of clusters as 3. The clustering performance when k = 3 and 

k = 4 is compared in the subsequent experiments to verify the accuracy. Table 6 shows the 

cumulative contribution rate of the top ten eigenvalues based on ACDTW (second function), and 

the rates of the top two and the top three eigenvalues are 94.48% and 96.71%, respectively. The 

number of clusters is set to 3, and the performance analysis of k = 3 and k = 4 is demonstrated in 

the subsequent experiments. 

Table 3 

The top 10 eigenvalues (EV) and the corresponding cumulative contribution rate (CCR) with PCA based on 

DTW. 

EV 
255.44

6 

58.811

1 

7.3549

3 

1.4433

7 

0.46584

5 

0.11690

7 

0.11256

7 

0.07832

2 

0.05240

9 

0.02811

9 

CC

R 

78.84

% 

96.99

% 

99.26

% 

99.70

% 
99.85% 99.89% 99.92% 99.95% 99.96% 99.97% 

Table 4 

The top 10 eigenvalues (EV) and the corresponding cumulative contribution rate (CCR) with PCA based on 

AC-DTW(0.5). 

EV 
189.14

3 

116.67

4 

8.3321

1 

4.4517

7 

1.8239

4 

0.69459

4 

0.60876

4 

0.43234

9 

0.21799

6 

0.17393

2 

CC

R 

58.37

% 

94.39

% 

96.96

% 

98.33

% 

98.90

% 
99.11% 99.30% 99.43% 99.50% 99.55% 

Table 5 

The top 10 eigenvalues (EV) and the corresponding cumulative contribution rate (CCR) with PCA based on 

ACDTW (first penalty function). 

EV 
185.92

1 

120.38

4 

7.2249

3 

4.7706

3 

1.7184 0.71970

3 

0.62467

1 

0.49730

7 

0.23286

9 

0.18704

9 

CC

R 

57.38

% 

94.54

% 

96.77

% 

98.24

% 

98.77

% 
98.99% 99.19% 99.34% 99.41% 99.47% 

Table 6 

The top 10 eigenvalues (EV) and the corresponding cumulative contribution rate (CCR) with PCA based on 

ACDTW (second penalty function). 

EV 
187.22

8 

118.88

9 

7.2150

3 
4.8804 

1.9026

9 

0.69285

4 

0.57512

7 

0.49465

8 

0.2405

4 

0.19189

7 

CC

R 

57.78

% 

94.48

% 

96.71

% 

98.21

% 

98.80

% 
99.01% 99.19% 99.34% 

99.42

% 
99.48% 

4.4.3 Clustering results based on different DTW algorithms 



 

The clustering results based on different DTW algorithms are shown in Fig. 11. The performance 

of the four algorithms, (i.e., DTW, AC-DTW(0.5), ACDTW with the first adaptive penalty function, 

and ACDTW with the second adaptive penalty function) are compared and analyzed in detail. The 

clustering results based on DTW are shown in Fig. 11 (a) - (b), indicating poor performance on k = 

2 and k = 3. Fig. 11 (c) - (d) show that the performance of clustering results based on AC-DTW(0.5) 

is better than that in Fig. 11 (a) - (b), showing that AC-DTW(0.5) is more effective than DTW in 

vessel trajectory clustering. Additionally, the clustering performance when k = 3 is better than that 

when k = 4, as shown in Fig. 11 (c) - (d). The red, blue and green trajectories represent different 

classes in Fig. 11 (c). However, it is noteworthy that 20 trajectories are misclassified. The red 

trajectories among the blue trajectories are misclassified. The red, blue, black, and green trajectories 

represent different classes in Fig. 11 (d). The red trajectories among the blue and black trajectories 

are misclassified. 

There are many differences in the lengths of vessel trajectories, so the clustering performance 

based on ACDTW with two penalty functions is also compared in the experiments. The clustering 

results based on ACDTW with the first penalty function are shown in Fig. 11 (e) - (f), revealing 

better performance than DTW and AC-DTW(0.5). The clustering results show the effectiveness and 

reasonability of using ACDTW with the first function. Additionally, the clustering performance 

when k = 3 is better than that when k = 4, as shown in Fig. 11 (e) - (f). The red, blue and green 

trajectories represent different classes in Fig. 11 (e). The six red trajectories among the blue 

trajectories are misclassified. The red, blue, black, and green trajectories represent different classes 

in Fig. 11 (f), and the six red trajectories among the blue and black trajectories are misclassified. 

From Fig. 11 (g) - (h), the clustering performance based on ACDTW with the second function is 

better than the results of the other three algorithms. This further verifies the effectiveness and 

reasonability of using ACDTW with the second function. Furthermore, the clustering result when k 

= 3 is better than that when k = 4, as shown in Fig. 11 (g) - (h). Four trajectories are misclassified. 

The red, blue and green trajectories represent different classes in Fig. 11 (g). The four red trajectories 

among the blue trajectories are misclassified. The red, blue, black, and green trajectories represent 

different classes in Fig. 11 (h), and the four red trajectories among the blue and black trajectories 

are misclassified. 

Based on the comparison and analysis in Fig. 11, the performance ranking of the four algorithms 

is in declining order of ACDTW with the second penalty function, ACDTW with the first penalty 

function, AC-DTW(0.5), and DTW. 



 

(a) Original DTW (k=2) (b) Original DTW (k=3)

(c) AC-DTW (k=3) (d) AC-DTW (k=4)

(e) ACDTW-first (k=3) (f) ACDTW-first (k=4)

(g) ACDTW-second (k=3) (h) ACDTW-second (k=4)  
Fig. 11. Visual display of the clustering results based on different algorithms. (a) The result based on DTW 

(k = 2); (b) the result based on DTW (k = 3); (c) the result based on AC-DTW (k = 3); (d) the result based on AC-

DTW (k = 4); (e) the result based on ACDTW with the first function (k = 3); (f) the result based on ACDTW with 



 

the first function (k = 4); (g) the result based on ACDTW with the second function (k = 3); (h) the result based on 

ACDTW with the second function (k = 4). 

4.4.4 Correspondence relationship analysis 

The corresponding vessel trajectory results based on the four algorithms are clearly shown in Fig. 

12. The red trajectory contains 121 points, and the blue trajectory contains 147 points. The 

corresponding result based on DTW is shown in Fig. 12 (a), and there are some many-to-one and 

one-to-many cases. Fig. 12 (b) is the corresponding result based on AC-DTW(0.5), and the extreme 

cases are reduced. The result based on ACDTW with the first penalty function is shown in Fig. 12 

(c) and is better than those in Fig. 12 (a) and Fig. 12 (b). Fig. 12 (d), associated with ACDTW with 

the second penalty function, shows the best performance. 

(b)(a)

(d)(c)  
Fig. 12. The vessel trajectory correspondence results based on different algorithms, (a) DTW, (b) AC-DTW(0.5), 

(c) ACDTW with the first penalty function, (d) ACDTW with the second penalty function. 

The corresponding vessel trajectory results with a two-fold difference in the number of points 

based on the four algorithms are clearly shown in Fig. 13. The corresponding result based on DTW 

is shown in Fig. 13 (a), and there are many-to-one cases. Between the two trajectories, each point 

in the red trajectory corresponds to a few points of the blue trajectory. Fig. 13 (b) is the 

corresponding result based on AC-DTW(0.5); the many-to-one cases are reduced and mainly 

allocated in the second half of the two trajectories. The corresponding result based on ACDTW with 

the first penalty function is shown in Fig. 13 (c), showing fewer many-to-one cases, which are 

allocated in the last ten points of the red trajectory. Fig. 13 (d) is the corresponding result based on 

ACDTW with the second penalty function; the many-to-one cases mainly appear in the last few 
points of the red trajectory. The dissimilarity of trajectories is increased based on the ACDTW 

algorithms when the difference between the numbers of points is very large. 



 

(b)

(d)

(a)

(c)  
Fig. 13. The corresponding results of the vessel trajectories with a two-fold difference in the number of points 

based on different algorithms: (a) DTW, (b) AC-DTW(0.5), (c) ACDTW with the first penalty function, (d) 

ACDTW with the second penalty function. 

In conclusion, the performance of the proposed ACDTW algorithm is better than that of other 

algorithms. The experimental results based on different types of datasets validate the effectiveness 

of the proposed ACDTW. 

4.5 Time complexity 

As DTW and ACDTW have to deal with all cells in the warping process, their time complexity 

is ( )O mn , where m  and n  indicate the lengths of the two sequences. In addition, ACDTW 

considers each point in the warping matrix and records the number of times that each point is used 

in each step, so the time complexity of this part is also ( )O mn . Therefore, the overall time 

complexity of the proposed ACDTW algorithm is ( )O mn . 

To further compare the time complexity of different algorithms, the running time (in seconds) of 

LOO cross-validation on the training set is displayed in Fig. 14. It shows the comparison results of 

the five different algorithms on six different datasets. The running time of each algorithm is 

consistent with its time complexity. Although ACDTW is more time-consuming than the other 

algorithms in five out of the six datasets, it has higher accuracy. The problem of high running time 

can be solved by parallel computing and other methods. It is worth noting that the proposed ACDTW 

can adaptively find the optimal warping path without human intervention. 



 

 
Fig.14. Running time (in seconds) of LOO cross-validation of the five different algorithms on six representative 

datasets 

5. Conclusions 

In this paper, a new algorithm, ACDTW, is proposed with the addition of two adaptive penalty 

functions to improve the accuracy and effectiveness of the similarity measurement between two 

time series. Numerous experiments based on both the UCR time series archive and vessel trajectory 

dataset are performed on two different time series to demonstrate the effectiveness of the ACDTW 

algorithm. The proposed ACDTW can provide useful solutions to the over-stretching and over-

compression problems. The two penalty functions can address the long-lasting research problems 

of the lengths of time series, the warping path, and the number of times that each point is used. It 

can also capture necessary features accurately and has the best performance among the five 

algorithms (i.e., ED, DTW, BDTW(r), AC-DTW(0.5), and ACDTW with the two adaptive penalty 

functions) used for similarity measurement in the classification and clustering experiments. Valuable 

results such as the increased similarity between trajectories and enlarged dissimilarity are obtained 

from the proposed ACDTW algorithm. 

To generalize the proposed ACDTW algorithm in future studies, we need to investigate how to 

integrate the optimal warping window and the adaptive penalty functions. In addition, the shape 

characteristics of the time series were introduced in [47], and we can consider the fusion of shape 

characteristics and the adaptive penalty functions. 
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