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Personal Informatics and Negative Emotions during Commuter Driving: 

Effects of Data Visualization on Cardiovascular Reactivity & Mood 

 

Abstract 

Mobile technology and wearable sensors can provide objective measures of psychological stress in everyday life.  

Data from sensors can be visualized and viewed by the user to increase self-awareness and promote adaptive 

coping strategies.  A capacity to effectively self-regulate negative emotion can mitigate the biological process of 

inflammation, which has implications for long-term health.  Two studies were undertaken utilizing a mobile 

lifelogging platform to collect cardiovascular data over a week of real-life commuter driving.  The first was 

designed to establish a link between cardiovascular markers of inflammation and the experience of anger during 

commuter driving in the real world.  Results indicated that an ensemble classification model provided an accuracy 

rate of 73.12% for the binary classification of episodes of high vs. low anger based upon a combination of features 

derived from driving (e.g. vehicle speed) and cardiovascular psychophysiology (heart rate, heart rate variability, 

pulse transit time).  During the second study, participants interacted with an interactive, geolocated visualisation 

of vehicle parameters, photographs and cardiovascular psychophysiology collected over two days of commuter 

driving (pre-test).  Data were subsequently collected over two days of driving following their interaction with the 

dynamic, data visualization (post-test).  A comparison of pre- and post-test data revealed that heart rate 

significantly reduced during episodes of journey impedance after interaction with the data visualization.  There 

was also evidence that heart rate variability increased during the post-test phase, suggesting greater vagal 

activation and adaptive coping.  Subjective mood data were collected before and after each journey, but no 

statistically significant differences were observed between pre- and post-test periods.  The implications of both 

studies for ambulatory monitoring, user interaction and the capacity of personal informatics to enhance long-term 

health are discussed. 

 

Keywords: Affective Computing, Biomedical Informatics, Cardiology, Data Visualization, Pervasive 

Computing, Vehicle Driving, Wearable Computers 
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1 Introduction 

Negative emotions, such as anxiety, anger and depression, are associated with inflammatory processes in the 

human body (Camacho, 2013; Steptoe, 2007).  This process of inflammation is directly linked to those biological 

processes that underpin the development of cardiovascular disease, such as atherosclerosis (Hansson, 2005; Suls 

& Bunde, 2005).  The relationship between disease and negative emotions, such as anxiety (Thurston, 2013) and 

anger (Suls, 2013), is moderated by the cumulative influence of inflammation over the life course of the individual 

(Juster, 2010).  According to the model of preservative cognition (Brosschot et al, 2010), this association  is 

pernicious because physiological changes underpinning inflammation, which coincide with the experience of 

negative emotional states, can be sustained and often occur outside the conscious awareness of the individual 

(Lovallo, 2005).  Previous research has associated a link between changes in heart rate variability (HRV) and 

biological markers of inflammation and reduced emotional regulation (Henriques et al., 2011).  Both Low 

Frequency (LF) and High Frequency (HF)  measures of HRV are associated with blood-borne indicators of 

inflammation, such as proinflammatory cytokines (e.g. Interleukin-6) and C-Reactive Protein (CRP) (Cooper et 

al, 2015), i.e. reduced HF activity of HRV is associated with increased activation of the parasympathetic nervous 

system and reduced inflammation. 

Driving represents a common activity undertaken by millions of people each day that is associated with 

negative emotions and inflammation. The average American driver spends 46 minutes driving per journey, with 

UK drivers averaging 22 minutes per car trip (Dunn, 2015; National Travel Survey 2014, 2015).  Over a period 

of weeks and months, the cumulation of these journeys amounts to a significant proportion of time spent by 

individuals on the road.  The average driver can expect to experience negative emotions, such as anger (e.g. actions 

of other drivers) and anxiety (e.g. journey schedules), on a daily basis.  These negative emotions can have a 

cumulative and detrimental influence on long-term cardiovascular health.  For example, there is a positive 

association between traffic congestion and elevated blood pressure due to journey impedance  (Schaeffer et al, 

1988; Stokols et al, 1978).  The development of driving sensors (Welch, 2019) and lifelogging technology with 

wearable physiological sensors represents one way to raise awareness of unconscious physiological changes 

associated with emotion during real-world driving. 

1.1 Wearable Sensors and Lifelogging Technology  

The development of wearable technology that utilises physiological sensors and is capable of delivering 

feedback on the process of inflammation in everyday life could be valuable for long-term health, because: (1) it 

would create explicit awareness of the physiological change associated with an episode of anger or anxiety, and 

(2) increased awareness of these physiological changes in everyday life could act as a driver for the development 

of coping strategies that are adaptive and ameliorate the influence of negative emotions/inflammation on long-

term health (Ganzel, 2010). The Levels of Emotional Awareness (LEA) theory (Lane & Schwartz, 1987) made a 

distinction between implicit/preconscious awareness of an emotion (e.g. bodily sensation) and explicit awareness 

where one is not only aware of a particular emotion but capable of verbally expressing the emotion in question.  

Recent work demonstrated that explicit awareness of negative emotion was a necessary precondition for the 

development of adaptive coping strategies, such as reappraisal (Subic-Wrana et al, 2014).   

It is proposed that mobile lifelogging technology, where data are gathered from multiple sensors during 

everyday life, can promote the requisite self-reflection to promote coping strategies and behaviour change.  The 

effectiveness of lifelogging technology to support the development of adaptive coping strategies depends on the 
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provision of feedback to the individual and the way in which the user interacts with their own data.   

The process of measurement and inference is central to the development of a mobile lifelogging platform and 

provision of feedback during everyday life.  Both miniaturization of sensors and increased computational power 

enables mobile devices to capture a variety of personal data, including physiological signals and environmental 

information.  The availability of this hardware affords an opportunity to collect data “in the wild” within real-life 

situations and present these data to individual users.  For example, Hänsel et al (2016) utilised a smartwatch to 

log current emotional states, via self-reports, and collect sensing data, including location, heart rate, physical 

activity, ambient noise and wrist movements.  A smartphone application was also developed to enable participants 

to review their own data. Singh et al. (2014) collected photoplethysmogram (PPG), galvanic skin response (GSR) 

and respiration data to detect driver stress.  Using a cascade forward neural network (CASFNN), their system 

achieved an overall accuracy of 80% when drivers drove around three pre-planned driving setups.  In other works, 

the GStress model (Vhaduri et al, 2014) used smartphone GPS traces to estimates driver’s stress using a 

generalized linear mixed model (GLMM) and captured a positive correlation coefficient (0.72) between subjective 

stress and GPS.  Muaremi et al (2013) utilised a smartphone to collect audio, physical activity, location and 

communication data during the day and a chest belt to collect heart rate variability data during sleep. Results of 

their multinomial logistic regression model indicated a maximum accuracy of 61% for a multiclass (low, 

moderate, and high stress) model.  Whilst Castaldo et al (2016) attempted to detect changes in mental stress by 

collecting HRV features via a 3-lead electrocardiogram (ECG) from students during an oral exam (stress period) 

and under controlled resting conditions (calm period); they reported that the C4.5 tree algorithm obtained a 

maximum accuracy of 79% classification between exam and rest. 

In other lifelogging works, Affective Diary (Lindstrom et al, 2006) is an affective diary system that records 

pulse, step count and acceleration, as well as mobile phone data, including texts, multimedia messages, 

photographs and Bluetooth.  The data that is collected is subsequently transformed into ambiguous, abstract 

colourful shapes.  The purpose of this system was to allow users to organise, reflect and alter their diaries. 

Similarly, AffectAura (McDuff et al, 2012) is a system that continuously tracks valence, arousal and engagement 

and then transforms these data into the AffectAura lifelog visualisation, enabling users to reflect on their emotional 

experiences over extended periods of time.  The system captured facial expressions, posture, speech, electro-

dermal activity (EDA) via a wearable wrist sensor, location via GPS, file activity of web URLs visited, documents 

opened, applications used and emails sent and received and calendar information.  The interface was structured in 

a timeline, with affective states visualised as coloured bubbles.  Results indicated that participants found the 

interface useful and could “reason forward and backward in time about their emotional experiences” (McDuff et 

al., 2012).  Meanwhile, FEEL (Ayzenberg et al, 2012) is a lifelogging system that measures EDA, via a wrist-

worn commercial sensor, and captures mobile phone data to determine the context of social interactions.  The data 

is analysed in real-time to associate stress (via EDA) with events captured via the mobile phone (e.g. emails, 

phone calls, etc.).  The data is then combined into a digital journal of calendar/list events where the user can 

“reflect on his/her physiological responses” (Ayzenberg et al, 2012).  A limited evaluation of the system was 

undertaken by one user over 200 hours, whereby it was reported that the system enabled him to better recall past 

stressful events. 

While the availability of wearable sensors improves the ease of data collection, this type of ambulatory 

measurement is associated with significant challenges with respect to the collection of high-quality data (Rahman 
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et al, 2014) and the mitigation of confounding factors (Fahrenberg et al, 2007).  Extensive signal processing and 

data analysis is often necessary to remove confounds from these data in order to draw robust inferences about 

behaviour and emotional states in the real-world. 

1.2 Personal Informatics and Data Visualisation  

If a lifelogging system can collect physiological data in a way that is both sensitive and reliable for the 

detection of negative emotions in everyday life, the next challenge for the designer is to deliver effective feedback 

to the user about these data.  Feedback from a mobile lifelogging platform can support a process of introspection 

by transforming implicit emotional experience into explicit self-awareness, and in doing so, creating a 

foundational level of knowledge for the development of reappraisal, acceptance and other adaptive forms of 

coping (Boden & Thompson, 2015). 

Ubiquitous technologies, which are dedicated to personal informatics (Li et al, 2011) and the quantified self 

(Shin & Biocca, 2017) deliver feedback that is based upon objective data in order to enhance self-improvement 

(Gemmell et al, 2006) or support cognitive function (Dobbins et al, 2014) .  It has been argued that personal 

informatics support behavioural change by allowing the user to reflect upon behaviour, integrate personal data 

with a sense of self and finally take action  (Li et al, 2010).  The ability of personal informatic technology to 

support this type of behaviour change is influenced by the fidelity of the user interface (e.g. how personal history 

is represented) and utility of feedback to forecast future actions and feelings (Hollis et al, 2017).  However, naïve 

users often encounter a number of obstacles during interaction with their personal data.  The sheer volume of the 

database combined with abstract visualisations (e.g. bar or line charts) can make it difficult to efficiently extract 

meaning, rendering the process of self-tracking burdensome and unrewarding (Rapp & Cena, 2016).  In addition, 

the absence of context often prevents the identification of triggers in the environment that can promote desirable 

or undesirable behaviours (Choe et al, 2014).  The presentation of data visualisation at the interface is an important 

design issue as real-time feedback of negative emotions can amplify those emotions and be counterproductive.  

The act of emotional regulation in situ can be cognitively demanding (Gross, 2002) hence feedback may be more 

constructive when delivered retrospectively at a time of the user’s choosing when they have sufficient cognitive 

capacity to reflect upon their data. 

Previous research on visualisation of emotions includes StressTree (Yu et al, 2017), which is a heart rate 

variability (HRV) biofeedback system that transforms HRV data into a representation of a tree that metaphorically 

represents the health of the user as the growth pattern is affected by the users’ stress state.  For example, when the 

user experiences high stress for a long period of time, the appearance of the tree grows more fragile.  However, 

during periods of healthy balance the appearance of the tree is healthier.  HRV was measured via a PPG sensor 

attached to the index finger.  Participants reported that the visualisation promoted self-reflection of their 

behaviours but the interface perhaps would have been more suitable for visualisation on a mobile device, like a 

smartphone.  Similarly, Chill-Out (Parnandi et al, 2014) is an adaptive biofeedback game that assists the user in 

developing relaxation skills by monitoring breathing.  HRV and respiration were measured using a Bioharness 

sensor, whilst electrodermal activity (EDA) was measured using FlexComp Infinity encoder.  Results indicated 

that playing Chill-Out led to lower arousal, in contrast to a non-biofeedback game and traditional relaxation 

methods, when participants were exposed to a stressor task.  Affective Health (Sanches et al, 2010) is another 

stress management biofeedback mobile system that utilises a triaxial accelerometer, skin conductance, and three-

lead ECG sensors to capture physiological data.  The system was designed to allow users to see their own bodily 
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reactions in real time and help them to identify stressful patterns in their data.  The interface for this system 

consisted of two designs: layers and spirals, with colour representing arousal.  They argued that feedback to the 

users should be presented using an interface design that encompassed properties, such as: ambiguity, openness to 

interpretation, interactive history, fluency and aliveness.  Cardiomorphologies (Muller et al, 2006) included 

measures of breathing (via a respiratory strain gauge) and heart rate (via electrocardiogram (ECG), which were 

transformed into an interactive abstract visualisation of coloured rings.  Results indicated “that the relationship 

between the visuals and the participants’ mental and physical states leads them to a feeling of engagement” (Muller 

et al., 2006).  A different approach was adopted by StressEraser (Moore, 2007), which is a hardware device that 

measured heart rate via pulse oximetry and visualised the heart rate signal as a simple wave, accompanied by an 

audible tone, which supported the user to develop deep breathing exercises to alleviate stress.  Whilst MoodWings 

(MacLean et al, 2013) is a real-time biofeedback system that captures EDA and ECG data to detect stress during 

simulated driving.  The system utilises a wearable butterfly that depicts the user’s stress state through movement 

of the wings, which acts as an early warning system and physical interface.  Results indicated that MoodWings 

resulted in safer driving but also significantly increased both self-perceived and biophysical stress. 

The primary contribution of the current work was to create an interactive data visualisation in the lifelogging 

mode that provided users with feedback on “hidden” cardiovascular measures of inflammation during everyday 

life.  The primary purpose of the data visualisation was to increase awareness of implications for long-term health 

that are associated with the experience of negative emotions during commuter driving.  The secondary goal of the 

data visualisation was to function as an agent for behavioural change.  Unlike most work in this area that uses 

real-time feedback, this visualisation of personal data delivers feedback retrospectively when participants are able 

to reflect on negative emotions and their precedents.  Therefore, the novelty of the current work is twofold: (1) to 

allow participants to make an association between inflammation, health and emotional responses during commuter 

driving in order to gain insight into their emotional experiences, and (2) to evaluate whether this kind of interaction 

with personal data led to demonstrable change in subjective mood or cardiovascular physiology during subsequent 

episodes of commuter driving. 

The work included in this paper had four main objectives.  The first was to investigate whether there is an 

association between cardiovascular markers and the experience of negative emotion during commuter driving in 

the real-world.  Secondly, we wished to establish whether variables captured during commuter driving, i.e. both 

cardiovascular physiology and vehicle parameters (e.g. speed of car), could successfully classify episodes of high 

and low anger.  Both objectives were addressed through study one that consists of a data collection exercise of 

thirteen participants conducted over five consecutive days of commuter driving.  The third goal of the paper was 

to develop an interactive data visualisation that integrated cardiovascular reactivity, driving parameters via 

geolocation in combination with still images.  The purpose of this interactive visualisation was to provide users 

with sufficient insight to develop adaptive coping strategies with respect to negative emotion and cardiovascular 

reactivity during their daily commute.  The specific parameters and measures that we adopted for the data 

visualisation were directed by the results of the first study, specifically the process of feature selection used for 

classification of low vs. high subjective anger.  Given that the purpose of the interactive data visualisation was to 

promote adaptive coping strategies, the fourth objective was to evaluate the effects of data visualisation on 

subjective mood and cardiovascular psychophysiology.  The second study in the paper describes a study where 

data were collected during two days of commuter driving (as in study one) as a pre-test period, then participants 
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spent a period of time interacting with the data visualisation, before data were collected from two more days of 

commuter driving (post-test period).  It was hypothesised that exposure to the data visualisation would enhance 

self-awareness and promote adaptive coping strategies, hence negative mood and cardiovascular reactivity will 

be reduced during the post-test phase. 

 

2 Study One 

2.1 Design of Study 

Study one consisted of a data collection exercise to collect raw data over a period of five working days using 

the developed lifelogging platform (described below).  This was a longitudinal data collection exercise designed 

to be integrated with participants’ normal working routines. Prior to providing written consent, participants were 

presented with an Information Sheet giving full details of the study.  Participants were instructed that physiology 

and other parameters would be monitored over a five-day period of commuter driving with two journeys per day 

(morning and evening).  Participants were also required to complete a subjective mood questionnaire, STAXI-2 

(see section 2.5) before and after each journey. 

For logistic reasons, each participant was provided with full instructions on how to place and remove the 

disposable electrodes and how to check signal quality.  This information was conveyed during a one-to-one 

training session with the experimenter in order to ensure that the set-up of apparatus was consistent and correct.  

Participants were told how to check that sensors had been activated and were logging data.  The participants were 

also instructed on how to access the subjective mood questionnaire, via the smartphone.  

Participants were required to drive for a minimum of 10 continuous minutes, over the same route to/from 

work.  The time of the journeys varied from 10:44 minutes to 01:17:45 hours (mean = 32:12 minutes, SD = 12:27 

minutes).  Study one resulted in the collection of ~64 hours (408,113,095instances) of raw data over the data 

collection period. 

2.2 Participants 

The participant sample included fourteen individuals – seven females and seven males, with an age range from 

25 to 57 years (mean = 42.64, SD = 11.84).  None of the sample had any history of heart disease or were taking 

medication that would influence cardiovascular activity.  All protocols for recruitment and data collection were 

approved by the institutional Research Ethics Committee prior to commencement of data collection. However, 

two participants data were excluded, as one did not complete the entire study and another participants data was 

unusable. 

2.3 Lifelogging Platform 

The lifelogging platform consisted of a smartphone (Samsung™ Galaxy S5/S6), a Shimmer3™ accelerometer 

and two wearable Shimmer3™ sensor units (see Figure. 1a).  The latter were used to capture raw 

electrocardiography (ECG) and photoplethysmogram (PPG) signals.  ECG was obtained via a 5-lead ECG unit 

attached to the torso of the individual, whilst PPG was obtained via an optical pulse ear-clip (see Figure. 1b).  The 

Shimmer3™ sensors were configured at a sample rate of 512 Hz and data was stored on the internal microSD 

card.  Vehicle speed was calculated from the raw Shimmer3™ acceleration data, which was captured in metres 

per second squared (m/s2).  A full and detailed description of this data collection platform has been published 

elsewhere (Dobbins and Fairclough, 2018). 
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a) 

 

 

b) 

Figure. 1. a) Lifelogging hardware platform that consisted of two Shimmer3™ wearable sensor units (1) 

electrocardiography (ECG) and (2) photoplethysmogram (PPG), (3) a smartphone and (4) Shimmer3™ 

accelerometer. b) Sensor placement of the ECG leads on the torso and PPG optical pulse ear-clip to the ear 

lobe 

2.4 Signal Processing of Physiological Data 

For the purposes of the current paper, signal processing procedures are described briefly, a full and detailed 

description is available (Dobbins and Fairclough, 2018).  Collection of psychophysiological data in the field is 

particularly susceptible to noise.  Therefore, it was important to pre-process data from the wearable Shimmer3™ 

sensors before cardiovascular measures were extracted; these data were analyzed using MATLAB vR2016a. 

Raw ECG signals record the electrical activity of the heart.  The beats of the heart are identified from waves 

known as the QRS complex.  The length of time between consecutive R waves (or beats/peaks) is known as the 

Inter-Beat Interval (IBI) (see Figure 2a).  Once a heartbeat occurs, blood flows to different areas of the body and 

reaches a peak before it progressively decreased.  A raw PPG signal records the rate of blood flow, which occurs 

after a heartbeat, as two types of peaks – systolic and diastolic.  We were interested in the systolic Peak-to-Peak 

Interval (PPI) as these are the maximum peaks within the PPG signal (see Figure 2b).  Artefacts in both signals 

were identified and corrected, including missing peaks and false positives.  

A number of electrocardiography features were extracted from the raw psychophysiological data.  These 

features included: heart rate (beats per minute, bpm) and heart rate variability (HRV), which were measured in 

the time and frequency domain.  HRV measures included the Root Mean Square of the Successive Difference of 

RR intervals (RMSSD), which is a temporal measure of parasympathetic heart rate activity, with low values being 

indicative of reduced parasympathetic activation (Berntson et al., 1997).  Features from the frequency domain to 
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index heart rate variability, were also extracted, including: Low Frequency (LF), power in spectrum between 0.04 

– 0.15 Hz, and High Frequency (HF), power in spectrum between 0.15 – 0.4 Hz, measures of HRV 

(Electrophysiology, 1996). 

 

a) 

 

 

b) 

Figure 2. Example of detected a) R peaks (Inter-Beat Interval) in the ECG signal and b) Systolic Peak-to-

Peak Interval (PPI) in the PPG signal 

A heart-beat can be measured using an ECG or the photoplethysmogram (PPG) sensors, which records 

perfusion of blood to the subcutaneous tissue of the skin.  When the heart beats, blood is pumped to peripheral 

vasculature and a pressure pulse can be detected via PPG.  The time needed by this pulse wave to exit the heart 

and reach the peripheral vasculature is expressed as the Pulse Transit Time (PTT) (Obrist et al., 1979).  Hence, 

PTT is defined as the time delay between the R-peak of the ECG and the arrival of the corresponding pulse wave 

at a peripheral site, which was the ear lobe in the current study.  PTT has been used to estimate blood pressure  

(Peter et al., 2014); it has a negative correlation with systolic blood pressure (He et al., 2013) (i.e. reduced PTT = 

increased blood pressure) and has been found to decrease in the presence of a social stressor (Hey et al., 2009).  

Hence, PTT was used as a proxy measure for blood pressure during the current study.  The ECG/PPG data were 

segmented using 30-second non-overlapping windows to provide a common time basis for analysis. 

2.5 Experimental Measures 

Time and frequency domain features from the physiological data were extracted per 30 sec windows.  These 



 10 

features included Inter-Beat-Intervals (IBI), heart rate (HR), root mean square of differences of successive RR 

intervals (RMSSD), low frequency power between 0.04 and 0.15 Hz (LF_HRV), high frequency power between 

0.15 and 0.4 Hz (HF_HRV) and pulse transit time (PTT).  Descriptive statistics related to speed were also extracted 

from the acceleration data, as well as time spent travelling in various speed bands, starting from 0 – 10 mph and 

calculated in increments of 10 mph blocks. 

Subjective self-reported mood was also assessed via a shortened version of the State–Trait Anger Expression 

Inventory 2 (STAXI 2) subjective questionnaire (Spielberger, 1999).  This questionnaire contained fifteen 

statements that participants scored their current feeling against on a Likert scale (1 = not at all, 2 = somewhat, 3 

= moderately so and 4 = very much so).  Responses were measured in terms of state anger (S-Ang), feeling angry 

(S-Ang/ F), feeling like expressing anger verbally (S-Ang/V) and feeling like expressing anger physically (S-

Ang/P). The questionnaire were administered using a custom-built Android application that was running on the 

administered Samsung™ Galaxy S5/S6 smartphone. 

2.6 Study One Results 

One purpose of the first study was to assess the variables that were predictive of subjective anger experienced 

during each commuter journey.  It was decided to focus only on those instances of journey impedance for the 

purpose of this classification, i.e. when drivers are stuck in stationary or very slow-moving traffic, as a negative 

driving scenario.  All variables were averaged for each 30s epoch and journey impedance was defined by those 

epochs when the vehicle was travelling at an average speed of =< 11 mph. 

The data were labelled using change scores related to feelings of negative emotions, which were derived from 

the category of feeling angry (S-Ang/ F) from the STAXI 2 subjective questionnaire.  Change scores were 

calculated by subtracting the pre-drive responses away from the post-drive responses for each category.  Drives 

that scored positively were deemed to indicate high feelings of anger had occurred, whilst negatively scoring 

drives indicated low levels of anger.  Those that did not exhibit a change were scored as zero and were discounted.   

Figure 3 illustrates the proportion of scores for each category.  As it can be seen, the dataset is quite unbalanced, 

which is an issue for machine learning algorithms, as bias will form towards the majority class.  To correct this 

issue, the minority class (i.e. high anger class) was oversampled using the Synthetic Minority Over-Sampling 

Technique (SMOTE), which is a common and accepted method for solving issues around unbalanced datasets 

(Chawla et al., 2002). 

 

Figure 3. Proportion of STAXI 2 change scores that were used as the basis for labelling the data 
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Using the approach of previous work (Dobbins and Fairclough, 2018), the analysis consisted of independently 

evaluating the driving and physiology features separately and then collectively using an ensemble classifier that 

utilized Linear Discriminant Analysis (LDA), Decision Tree (DT) and k-Nearest Neighbours (kNN) classifiers.  

Features were selected independently from each dataset using the RELIEFF algorithm (Kononenko et al., 1997).  

This method uses a k nearest neighbour approach that averaged the contribution of all k nearest hits and misses 

and weighted this with the prior probability of each class to estimate the quality of the features.  Using the 

RELIEFF algorithm, the following features were selected, per dataset: 

 

 Driving Features dataset – Median Speed, Minimum Speed and 0-10 mph (time spent in this speed band) 

 Physiological Features dataset – Mean HR, Mean HF_HRV, Mean PTT and STD PTT 

 Driving/Physiological Features dataset – AM_PM (morning or evening drive), 0-10 mph (time spent in 

this speed band), Mean HR, Mean HF_HRV, Mean PTT and STD PTT 

 

The results have been validated using repeated k-fold cross-validation, whereby k = 10 and repetitions = 100. 

Performance measures included: 

 

 Area Under the Curve (AUC) – a measure of overall performance that depicts the trade-off between True 

Positive Rate (TPR) and False Positive Rate (FPR) 

 F1 Score – illustrates the harmonic mean between Positive Predictive Value (PPV) and True Positive Rate 

(TPR) 

 Balanced Error Rate (BER) – the average misclassification error rate of each class 

 True Positive Rate (TPR): high anger drive is correctly classified as high anger (sensitivity/recall) 

 True Negative Rate (TNR): a low anger drive is correctly classified as low anger (specificity) 

 False Positive Rate (FPR): false alarm rate that a low anger drive is misclassified as high anger (type I 

error) 

 False Negative Rate (FNR): a high anger drive has been missed and is misclassified as low anger (type II 

error)  

Figure 4 illustrates that the highest AUC was achieved using both driving and physiological features (73.12%).  

Solely using physiological features produced comparable results (70.84%), whilst the driving features produced 

the lowest AUC (67.60%).  This pattern continues within the F1 results as the probability of correctly 

distinguishing a high anger drive when high instances of anger has actually occurred was highest using driving 

and physiological features (64.95%) and physiological features (64.40%).  However, repeated-measures 

ANOVAs to test for differences between the models failed to reveal a statistically significant effect using either 

AUC [F(2,8) = 3.25, p=0.08] or F1 [F(2,8) = 1.31, p=0.36].  These datasets produced comparable results, which 

was in contrast to utilizing only driving features (60.07%).  In terms of the misclassification error rate, the driving 

and physiological features missed the least amount of instance (33.83%), compared to only driving features 

(36.23%). 
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Figure 4. Classifier performance of each dataset of features in terms of Area Under the Curve (AUC), F1 

Score and Balanced Error Rate (BER) 

 

Figure 5 illustrates that the highest TPR of correctly classifying a high anger drive was achieved using both 

driving and physiological features (64.15%), whilst the lowest FNR of 35.85% was also achieved using this 

dataset.  This finding illustrates that using both physiological and driving features returns results that miss fewer 

instances of high anger, compared to the other datasets.  The TNR results illustrate only marginal differences 

between the datasets.  It seems that detecting low anger drives exhibited the highest accuracy using only the 

driving features (69.92%), compared to 68.44% using only physiological features and 68.20% using the combined 

features.  The false alarm rate (FPR) results mirror the TNR rates.  Using only driving features slightly 

outperformed the rest at 30.08%, whilst physiological features resulted in a 31.56% false alarm rate and using 

both driving and physiological features resulted in 31.80%.  A repeated-measures MANOVA was performed on 

True Positive and True Negative rates to test for differences between the three models, this MANOVA revealed 

no significant differences between the three models [F(2,8) = 1.81, p=0.22] for overall rate and there was no 

significant interaction.  The same approach was taken to test for differences between the False Positive and False 

Negative rates, but no significant effects were found [F(2,8) = 1.14, p=0.34]. 

 

 

Figure 5. Classifier performance of each dataset of features in terms of True Positive Rate [TPR], True 

Negative Rate [TNR], False Positive Rate [FPR] and False Negative Rate [FNR] 
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2.7 Study One Conclusions 

The study revealed that: (1) classification via physiology and a combined approach of driving features plus 

physiology achieved an accuracy rate above 70% (Figure 4), and (2) that physiological features selected for the 

classification analyses, which were sensitive to the subjective experience of anger, included mean heart rate, 

power in high frequency component of HRV and PTT.  In addition, a combination of measures derived from 

cardiovascular psychophysiology and driving (e.g. proportion of journey time travelling at less than 10mph) 

produced the highest classification accuracy, but was not significantly higher than the accuracy obtained from 

either vehicle parameter or physiology alone. 

These findings replicate earlier work (Schaeffer et al, 1988; Stokols et al, 1978) and confirm the existence of 

meaningful relationship between cardiovascular reactivity and negative emotions due to journey impedance in 

everyday life.  As well as confirming a link between blood pressure and journey impedance (Stokols et al, 1978), 

study one demonstrated a connection between HF component of HRV and subjective anger, which is particularly 

important for the current work, given the known relationship between HF HRV and blood-borne markers of 

inflammation (Cooper et al, 2015).  Hence, study one provides supporting evidence that a subjective  experience 

of anger during real-world driving is associated with inflammatory processes at a biological level. 

With respect to the logistics of capturing negative emotions during driving, it would be ideal if changes in 

anger could be inferred on the basis of vehicle parameters alone.  An assessment based on implicit changes in 

speed would be unobtrusive and the data would be easy to obtain.  Unfortunately, our classification model based 

on vehicle parameters alone was the least accurate of the three models tested (Figure 4) and exhibited high false 

negative rate ( 

Figure 5), i.e. anger detected when it was not present – although these differences were not statistically 

significant when tested.  Although it should be noted that the driving dataset was limited specifically to only 

features related to speed, as well as only focusing on those times when the vehicle was moving slowly. 

It is suggested that a dataset that combined features derived from psychophysiology with speed profiles can 

provide important contextual information for the interpretation of cardiovascular data.  For example, our measures 

of cardiovascular reactivity enabled us to differentiate between those episodes of journey impedance that elevated 

inflammation and those which did not.  The results from this classification also demonstrated a connection 

between measures of cardiovascular reactivity, which were collected “in the moment”, and subjective ratings of 

anger, which have been captured retrospectively. 

On the basis of study one, we can conclude that cardiovascular reactivity is an important indicator of those 

times and locations when inflammation was elevated during a commuter journey.  This insight is important to 

keep in mind as analyses from study one were used to inform the creation of an interactive data visualization that 

was developed and tested during study two.  Those physiological features that were selected using the RELIEFF 

algorithm in study one capture different physiological mechanisms that appear to be activated during the 

experience of anger.  For instance, increased heart rate is a general measure of activation of the autonomic system, 

whilst increased HF_HRV is associated with reduced parasympathetic activity and inflammation; PTT serves as 

a proxy measure of increased systolic blood pressure, which is also associated with sympathetic activation.  By 

cross-referencing changes in cardiovascular reactivity with vehicle speed, we are able to draw inferences about 

the causes of driver anger.  For example, a sudden reduction of speed and sustained episode of low speed (<10mph) 

combined with increased heart rate/HF_HRV/PTT would characterise increased inflammation due to stationary 
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traffic.  This method of cross-referencing between physiological data and the context of the driving task data was 

used as the basis for the design of the data visualization in study two. 

 

3 Study Two 

3.1 Design of Study 

The second study was designed with three distinct phases (see Figure 6): (1) a pre-test period when data were 

collected during commuter journeys both to and from work on two successive days, (2) a data visualization session 

where participants were invited to the laboratory to interact with a data visualization based on data collected during 

the pre-test period, and (3) a post-test period when data were collected during commuter journeys on two 

successive days following exposure to data visualisation.  Hence, the data visualization session (2) functioned as 

an intervention and short-term changes in cardiovascular activity and subjective mood that emerged during the 

post-test period (3) were used to index the effectiveness of the data visualization. 

 

Figure 6. Design of study 2 that consisted of three distinct phases: 1) pre-test, 2) data visualization 

interaction and 3) post-test 

 

The design of the pre-test period was identical to study one.  Participants were fitted with the lifelogging 

platform described earlier in section 2.3; this hardware was supplemented with additional functionality within the 

smartphone.  A custom-built Android application running on the Samsung™ Galaxy S5/S6 smartphone was 

developed to capture photographs of the forward view of the road, GPS location (latitude/longitude coordinates) 

and vehicle speed (during study 2 the Shimmer3™ accelerometer unit was replaced with an application to capture 

speed from the smartphone).  Photographs of the forward view were captured every 30 seconds.  A mobile phone 

holder was used to place the smartphone with the camera facing through the front windshield. 

After the pre-test period had been completed, apparatus was collected from each participant and data were 

downloaded into the data visualization interface.  Participants were subsequently asked to attend the data 

visualization session.  Instructions on how to interact with the data visualization were provided, the functions of 

the interface were described and demonstrated.  Participants were shown how to use the tabs to investigate 

different types of data and how to access ‘maps’ for their different journeys.  They also received instructions on 

the use of the mouse to highlight icons on the map and still photographs.  In addition to technical instructions, 

Pre-test 

•Data collected 
during commuter 
journeys

Data 
visualization 
session 

•Participants review 
data visualisation

Post test

•Data collected 
during commuter 
journeys after 
reviewing 
visualisation
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participants received additional information that allowed them to understand the meaning of the cardiovascular 

data, i.e. heart rate = level of autonomic activation, HRV = inflammation, PTT = blood pressure.  No time limit 

was placed on their interaction with the data visualization and participants were instructed to interact with their 

data for as long as they wished.  After the participants had consulted the data visualization, derived from each of 

the three variables across four commuter journeys, an interview was performed with participants, which was 

structured around four questions pertaining to: effects of morning vs. evening driving, locations of high 

cardiovascular reactivity, design of the interface and utility of the system (see section 3.4 for specific questions).  

After the data visualization session, data collection commenced on the post-test period.  The design of the post-

test period of data collection were identical to those described for the pre-test phase.  The second study resulted 

in ~43 hours (159,496,783 instances) of data from the lifelogging platform over the four days of the study.  In 

total across both studies, ~106 hours (525, 697,711 instances) of raw data were collected. 

3.2 Participants 

The participant sample included eight individuals – six females and two males, with an age range from 28 to 

57 years (mean = 39.50, SD = 11.10).  None of the sample had any history of heart disease or were taking 

medication that would influence cardiovascular activity.  All protocols for recruitment and data collection were 

approved by the institutional Research Ethics Committee prior to commencement of data collection. 

3.3 Experimental Measures 

The signal processing procedures used to pre-process the physiological data were identical to those utilised 

in study one.  Time and frequency domain features were extracted from the physiological data (HR, HF_HRV, 

PTT) on the basis of 30 sec time windows, which was identical to quantifications used in study one.  Vehicle 

speed was captured in metres per second (m/s) (i.e. velocity) on the basis of location.  Features related to the 

context of the drive were visually scored from the photographs to deliver measures of:  traffic density (number of 

vehicles visible through the forward view), time of day (e.g. earlier than 9am, 9am-12pm, 12pm-5pm, after 5pm), 

road type (number of lanes), presence of traffic lights (yes/no), slow moving traffic travelling at <10mph (yes/no), 

at roundabout (yes/no), road type (e.g. inner city, town/village, rural,  tunnel) and weather (e.g. Clear Day/Sunny, 

Raining Day, Raining Dark (Night), Cloudy/Overcast Day, Night (Dark), Snow/Ice Day, Snow/Ice Dark (Night), 

Fog Day, Fog Dark (Night), Clear Evening, Clear Dawn). 

During the second study, subjective self-reported mood was assessed via the UWIST Mood Adjective 

Checklist (UMACL) (Matthews et al, 1990).  This questionnaire has three major dimensions: energetical arousal 

(alert vs. tired), tense arousal (anxious vs. relaxed) and hedonic tone (happy vs. sad).  Participants were required 

to rate how well each word described their current mood at this moment state on a Likert scale, whereby 1 = 

definitely, 2= slightly, 3 = slightly not and 4 = definitely not.  Participants completed the questionnaires before and 

after each journey and a change score was calculated (after – before) to index changes in mood for all three scales 

due to the journey.  The questionnaire were administered using a custom-built Android application that was 

running on the administered Samsung™ Galaxy S5/S6 smartphone. 

3.4 Data Visualisation Interface 

The interactive data visualization has been developed as an online tool for participants to reflect on their 

cardiovascular and driving data.  It was decided to design the interface upon a geospatial framework as the use of 

location is a common framework for lifelogging systems that seek to associate instances of stress with a specific 

place (Bauer and Lukowicz, 2012; Sano and Picard, 2013; Likamwa et al., 2013; Vhaduri et al., 2014; Bogomolov 
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et al., 2014; Maier et al., 2014; Jaques et al., 2015; Sarker et al., 2016).  It has been demonstrated that human 

activity and mood can be inferred using multimodal smartphone sensor streams, including location, which 

provides an opportunity for the user to discover patterns of stress in everyday life (Bauer & Lukowicz, 2012; 

Bogomolov et al, 2014; Jaques et al, 2015; Sano & Picard, 2013; Sarker et al, 2016).  In addition, to framing the 

data within a geospatial framework, it was important for our system to trigger memory recall in order to provoke 

periods of reflection, i.e. for users to understand which aspect of the traffic environment had prompted a negative 

emotion.  The decision to incorporate ‘snapshots’ based on a camera placed in the forward view of the vehicle 

into the design of the interface was taken to promote recall and inspired by earlier work; for example, the 

lifelogging system developed by Kalnikaite et al (2010) demonstrated that visual images promoted detailed 

recollection and they argued that augmenting lifelogging images with geographic data supported self-referential 

processes that allow participants to reconstruct their own behaviour.  The design for our system was inspired by 

these earlier works, which used a geographical interface metaphor, together with still images and visualisations 

of cardiovascular data. 

On the basis of the analysis of study 1, cardiovascular variables found to be predictive of subjective anger 

triggered by slow traffic were included in the visualization.  The resulting interface design (see illustration in 

Figure 7) contains three data visualizations that pertain to HR, PTT and HRV, which are displayed on separate 

web pages.  Each page is composed of four elements: 

 

1. Tabs at the top of the page move the participant between the three different visualization web pages (HR, 

PTT and HRV) 

2. A Google™ map that displays colour-coded markers of the driver’s route to and from work 

3. When the participant clicks on a marker on the map, an information window opens that contains the 

associated photograph and speed of that time 

4. An interactive bar chart at the bottom of the page plots time against speed of the entire journey. Hovering 

the mouse over bars within the chart displays the traffic density of the associated time 

 

The synchronized data was encoded in JSON (JavaScript Object Notation), whereby each object contained a 

comma-separated list of name/value pairs that were related to the drive.  For each timestamp, the associated 

latitude, longitude, speed, photo, traffic density (car count), HR, PTT and HRV were recorded.  Using the JSON 

data, custom-made colour-coded markers were placed on the map using the latitude and longitude GPS 

coordinates.  For each drive, the 25th, 50th and 75th percentiles of the HR, PTT and HRV data were calculated.  

Each marker on the associated map was colour-coded based on these statistics.  For instance, in relation to the 

heart rate map, instances where the heart rate data was: 

 Below the 25th percentile was coded green 

 Between 25th and 50th percentile was coded yellow 

 Between 50th and 75th percentile was coded pink 

 Above 75th percentile was coded red 

The photographs and speed data were then linked to each marker via the timestamp.  When a marker is clicked, 

an information window opens to display the associated photograph and speed at that time window.  The bar chart 

underneath the map is used to depict the distribution of speed across the entire journey.  When the mouse is placed 
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over a bar in the chart, traffic density of that time is displayed above the bar. 

When a participant moves across to the PTT and HRV pages, they are presented with the same display of the 

map with location markers, photographs, speed and bar chart.  However, as PTT and HRV are the inverse of heart 

rate (i.e. low PTT/HRV is a sign of inflammation) the marker colours within these two pages were coded 

differently than the heart rate page.  As such, the PTT and HRV maps were colour-coded in reverse, whereby 

instances that were: 

 Below the 25th percentile was coded red 

 Between 25th and 50th percentile was coded pink 

 Between 50th and 75th percentile was coded yellow 

 Above 75th percentile was coded green 

The purpose of the interactive visualization was to provide context to cardiovascular activity by enabling 

participants to freely explore their data in a variety of ways.  For instance, the map can be used to explore their 

data in relation to location; e.g. particular coloured markers can be investigated to indicate locations of these 

occurrences, as well as the associated speed and photographs.  Alternatively, the bar chart can be used to explore 

their data in relation to speed; e.g. times where speed was particularly low can be investigated further to illustrate 

traffic density, as well as linking to the map to display location and a photograph. 

The benefit of the visualization is that it is personalized to the individual and the specific drive.  This is because 

each marker’s colour is based on cardiovascular data pertaining to only that drive, which makes each map unique.  

In total, 12 maps were generated per participant (one HR, PTT and HRV per morning and evening drive over 2 

days).  
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Figure 7. Data visualization that links cardiovascular psychophysiology to an interactive map that is linked to location, photos, speed and traffic density 
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Following exposure to the data visualization, participants were asked a number of open questions in an 

interview format.  Immediately after their interaction with the data visualization derived from heart rate, PTT and 

HRV, they were asked the following questions in all three cases: 

(1) Did [cardiovascular parameter] seem higher on journeys in the morning to work or in the evening from 

work? 

(2) Can you see any pattern when your [cardiovascular parameter] is red?  Does it happen in certain places or 

parts of the journey?  If it does, why do you think that is? 

These questions that pertained to each data visualization (e.g. HR, PTT, HRV) were complimented by general 

questions, which were:  

(3) What do you think of this data visualization of heart activity in everyday life? Is it interesting and useful 

or do you find it worrying and intrusive or do you simply think it’s unnecessary and unhelpful? 

(4) If a convenient version of the sensors you used were available in the future, say built into your clothes or 

the seatbelt, and you could easily peruse the data on your phone, is that something that you would use? 

3.5 Study 2 Results 

The purpose of the second study was to assess whether cardiovascular reactivity was attenuated in a negative 

driving scenario due to their exposure to the data visualization.  For consistency, it was decided to focus on journey 

impedance and on the physiological measures that were used in the classification results of study one (section 

2.6).  Three categories of data were collected during study 2: cardiovascular data, self-reported mood and 

subjective comments with respect to the data visualisation (via participant interviews).  Cardiovascular and mood 

data were collected from two journeys per day (morning vs. afternoon) over two days prior to interaction with the 

data visualization; these data are called pre-test.  The same data were subsequently gathered on a post-test basis 

during the four journeys over the two days that followed participants’ interaction with the data visualization. 

3.5.1 Cardiovascular Data Results 

The purpose of the data visualization was to represent changes in cardiovascular activity when drivers 

experienced some degree of journey impedance.  Cardiovascular data were extracted from each journey for epochs 

associated with journey impedance, i.e. speed fell below 10 mph (16 km/h) and mean values for pre-test and post-

test cardiovascular data for those epochs were calculated for HR, HF_HRV and PTT.  These variables were 

subjected to analyses using 2 (pre-, post-test) x 2 (morning, afternoon) ANOVA.  Descriptive statistics are 

represented in Table 1. 

 

Table 1. Means and standard deviations for Cardiovascular Data for Pre- vs. Post-Test Journeys. 

Variable Pre-Test Post-Test Sig. 

Heart Rate 

(bpm) 

82.94 

[2.87] 

77.54 

[3.45] 
.01 

HF_HRV 

(ms2) 

148.64 

[7.84] 

151.10 

[6.85] 
.01 

PTT 

(ms) 

565.87 

[28.78] 

553.43 

[25.64] 
.ns 
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The analysis of heart rate data revealed significant effects for test [F(1,7)=11.75, p=.01, η2=0.63] and time of 

day [F(1,7)=5.05, p=.05, η2=0.42].  Heart rate was significantly reduced during the post-test period (see Table 1); 

in addition, HR was higher during the afternoon (M=82.85, s.d.=3.14) compared to the morning commute 

(M=77.63, s.d.=3.43).  The analysis of power in the high-frequency band (HF_HRV) revealed a significant main 

effect for pre/post-test [F(1,7)=10.43, p=.01, η2=0.60] and the time of the journey [F(1,7)=8.95, p=.02, η2=0.56].  

Power in the high-frequency band was significantly higher during the post-test compared to pre-test period (see 

Table 1); in addition, HF_HRV mean power was significantly lower in the morning (M=346.54, s.d.=22.17) 

compared to the afternoon (M=307.98, s.d.=19.6).  The analysis of PTT revealed no significant differences for 

either pre/post-test [F(1,7)=0.19, p=.68] or time of day [F(1,7)=0.58, p=.47]. 

3.5.2 Self-Reported Mood 

The UMACL questionnaire yielded three measures of mood: Energetical Arousal (EA: active vs. fatigued), 

Tense Arousal (TA: anxious vs. relaxed) and Hedonic Tone (HT: happy vs. sad).  Each measure was captured 

before and after each commuter journey and converted into a change score, i.e. post-drive score minus pre-drive 

score, yielding a single measure for each journey, where a positive number was equated with an increase in that 

component of mood over the course of the journey.  These change scores were subjected to the 2 (pre/post-test) x 

2 (morning, afternoon) ANOVA model used to analyse cardiovascular data. 

The analysis of EA revealed no significant effect between pre- and post-test [F(1,7)=0.01, p=.95], however 

feelings of alertness were significantly increased after the afternoon journey (M=-1.03, s.d.=1.47) compared to 

the morning journey (M=0.00, s.d.=1.13)  [F(1,7)=7.88, p=.03, η2=0.53].  No significant main effects were 

observed with respect to Tense Arousal with respect to either pre/post-test [F(1,7)=0.86, p=.39] or morning vs 

afternoon [F(1,7)=1.94, p=.21].  The analysis of Hedonic Tone also failed to reveal any significant difference 

between pre- and post-test periods [F(1,7)=0.65, p=.45] or morning vs. afternoon [F(1,7)=0.38, p=.55]. 

3.5.3 Interviews 

Once participants had interacted with the data visualization, they were asked a number of open questions in 

an interview format (as described in section 3.4 above).  For example, participants were asked “can you see any 

pattern when your [cardiovascular parameter] is red?  Does it happen in certain places or parts of the journey?  

If it does, why do you think that is?”  This question was presented to participants on three occasions after they 

viewed data visualisation pertaining to HR, PTT and HRV respectively.  All verbal answers were clustered into 

common themes and are reported in Table 2. 

 

Table 2. Participants’ Explanations for High HR, Low PTT and Low HRV After Viewing Data 

Visualization Interface. Note: number in brackets in the Theme column denotes number of comments on 

this Theme. 

Theme Examples 

Journey Impedance (7) 

“traffic was high and slow-moving” 

 

“stuck in traffic” 

 

“restrictive speed limits” 

Mental Workload (8) “complexity of decision-making” 
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“high speed driving” 

 

“high traffic density” 

Errors (3) 

“Thought I jumped a red light” 

 

“Took corner at too high speed” 

Aggression (2) 

“Got cut up by another driver” 

 

“Got angry with another driver” 

Rumination (2) 

“anxious about something that happened earlier” 

 

“a negative situation to think about” 

 

Participants were also asked a number of general questions about the data visualization.  Question 3 (“What 

do you think of this data visualisation of heart activity in everyday life? Is it interesting and useful or do you find 

it worrying and intrusive or do you simply think it’s unnecessary and unhelpful?”) elicited several positive and 

negative responses, a sample of which are reproduced below in Table 3. 

 

Table 3. Participants’ Responses to Question 3 

 

“it was a little too detailed.  Photographs provided good context.  It would be more useful if you could act on 

it, so calibrate for a person then allow real-time feedback in a simple non-intrusive way.” 

 

“It was very interesting to see the patterns and at what point I was angry.  I found it to be very interesting and 

useful. The photos made it easy to see exactly what’s going on...” 

 

“Interesting and useful, it makes you aware of the variability, seeing the physiological impact was useful.” 

 

“Interesting to see variability, it would have been useful to have absolute values to compare between drives.” 

 

“Interesting and worrying.  This is a regular activity and obviously I was not as relaxed as I thought I was.” 

 

“I think the system is more relevant for longer journeys and long-distance driving.  It was interesting because 

it showed scientific data in a personalised way.” 

 

 

The final question of the interview asked participants “if a convenient version of the sensors you used were 

available in the future, say built into your clothes or the seatbelt, and you could easily peruse the data on your 

phone, is that something that you would use?”  A selection of their responses to this question is presented in Table 
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4 below. 

Table 4. Participants’ Responses to Question 4 

 

“Yes, probably, but not sure about long-term use.  Would need a short-term reason to use it, all depends on 

the end-goal, there is the potential for hypochondria.” 

 

“Yes, to review and reflect on the day, but useful outside driving, for anxiety disorders.” 

 

“For driving, no.  would only use for exercise activity.” 

 

“I thought the utility was questionable, seeing feedback would be better when you were driving then you 

could adapt.” 

 

“Would use it because I like gadgets especially for longer journeys, could be useful for people with health 

problems to assess impact of everyday life.” 

 

“…if illness was experienced then it may be useful to monitor your mood to reduce stress.  Another concern 

is that the data itself may be used by insurance companies.”  

 

“Possibly would use it. It would help me to understand any anger issues associated with my driving.” 

 

 

4 Discussion 

The goals of the studies were to: (1) inform the development of the data visualisation by utilising physiological 

variables that were associated with anger during commuter driving, (2) generate an interactive data visualisation 

that represented cardiovascular reactivity in everyday life, which was easy to interpret and raised awareness of 

negative emotions and underlying physiological activity, and (3) investigate the impact of interaction with this 

data visualisation on subsequent emotion and psychophysiological responses.   

The investigation into types of features that contributed to a higher level of anger detection (study one) 

indicated the highest classification rates for multimodal data capture during classification of high vs. low anger.  

However, differences between in classification accuracy between three models (physiology, vehicle parameters, 

combined) failed to reach statistical significance.  In addition, it was noted that physiological features selected for 

classification using the RELIEFF algorithm encompassed a range of physiological changes, including pulse transit 

time (PTT), which is associated with blood pressure (Gesche et al, 2012), and heart rate variability (HRV), which 

is associated with inflammation (Cooper et al, 2015).  

The results of study one analyses were used to inform the design of the interactive data visualisation during 

the second study.  Those physiological features selected for inclusion in the classification model were associated 

with the experience of negative emotion, i.e. anger.  Therefore, the data visualisation encompassed measures of 

mean heart rate (autonomic activation), HF_HRV (inflammation) and PTT (systolic blood pressure).  There was 

some overlap between the patterns of activity observed across all three variables, but we decided to construct an 
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interface with several tabs (Figure 7) that allowed participants to peruse each set of data in turn.  Secondly, because 

these physiological data are quantitative and sampled at relatively high frequency, there was a risk of the user 

being overwhelmed by the quantity and complexity of the data.  Therefore, we designed a simplified 

representation of each data set, splitting the data into four percentile bands that could be colour-coded in an 

intuitive way.  The primary motivation for users of the data visualisation was identical to the experimenters in 

study one, i.e. we wished to identify those instances of increased cardiovascular reactivity and inflammation that 

occurred over the course of the journey.  By labelling those instances clearly (red icons), participants were able to 

identify and interrogate those instances in order to make an inference about why physiological activity increased 

at those points.  Given that superior classification performance was achieved when physiology and driving 

parameters were combined in study one, we adopted an approach to designing the data visualisation (see Figure 

7) where vehicle parameters (i.e. the bar chart at the bottom of the interface) and geolocated data (the position of 

the vehicle during that epoch) provided a navigable context for the journey as a whole.  When users required 

additional detail, i.e. episodes of high heart rate, low HF_HRV and low PTT were identified, the interface 

permitted further investigation of those episodes with reference to vehicle location, a still image of the driving 

scenario and vehicle speed (Figure 7). 

With respect to the results from study two, the absence of any significant effects of data visualisation on 

subjective mood was unexpected, it was hypothesised that subjective anxiety and negative valence would be 

reduced during the post-test period due to higher awareness and adaptive strategies of self-regulation.  However, 

this expectation may have been overly simplistic.  While it is logical to expect interaction with the data 

visualisation to enhance awareness of negative emotional states, it does not necessarily follow that increased 

awareness (of negative emotions) automatically leads to effective strategies for self-regulation.  In addition, 

changes in subjective mood were only captured on a pre- and post-journey basis, as it would have been disruptive 

and possibly dangerous to elicit regular episodes of subjective self-assessment during the driving task.  Hence, 

only one data point (post- minus pre-journey change score) was obtained per drive for subjective mood, which 

was insensitive to transient influences on mood during driving, such as: congestion, complex junctions etc.  The 

measurement of mood in context (as a response to a specific trigger in the driving environment) would have been 

a more sensitive test of our hypotheses, but this level of fidelity was impossible to achieve in real-time. 

By contrast, the analyses of cardiovascular data before and after exposure to the data visualisation revealed a 

number of statistically significant effects between pre- and post-test periods.  Because cardiovascular data were 

available continuously, we cross-referenced these data with vehicle speed and selected only those epochs when 

drivers experienced slow-moving traffic (<10 mph).  This method of filtering the data was far from perfect, i.e. 

participants may be travelling at slow speed because they were approaching a complex junction or a traffic light; 

however, we were confident that episodes of traffic congestion would be captured by using this simple criterion, 

because all the drivers had to enter and leave a busy city location at rush-hour times.  The analyses of 

cardiovascular data revealed that heart rate significantly declined and the high-frequency component of HRV 

significantly increased when participants experienced slow-moving traffic during the post-test compared to pre-

test period (Table 1).  The increase of high-frequency HRV is indicative of elevated vagal tone (Porges, 1995) 

and the observed decrease of heart rate is also consistent with this interpretation.  These changes suggested that 

cardiovascular reactivity to slow-moving traffic was moderated as a result of exposure to the data visualisation.  

However, the actual mechanism underpinning this finding remains open to interpretation.  Participants may have 
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adopted a different psychological coping strategy when they encountered journey impedance, such as acceptance, 

which has been associated with increased vagal tone (Balzarotti et al, 2017).  When participants were asked what 

had been learned from the data visualisation, a number reported psychological insights, such as being “reactive” 

or “not in control”, which may have prompted a change in coping strategy, i.e. several comments in Table 3 

pointed towards concerns over the level of physiological reactivity revealed by the data visualisation.  

Alternatively, participants may have actively practiced a psychophysiological mode of self-regulation, such as 

slow/deep breathing, which would also reduce heart rate and increase vagal tone (Van Diest et al, 2014).  The 

pattern observed in study 2 suggests a change in respiratory patterns because heart rate and high-frequency HRV 

are particularly sensitive to change in respiratory activity; it should also be noted that no equivalent changes were 

observed for PTT (Table 1), which would not be strongly influenced by changes in breathing.  Participants may 

have adopted a pattern of slow/deep breathing when experiencing journey impedance, implicitly or as an active 

attempt to self-regulate cardiovascular reactivity.  

It is difficult to identify which specific facet of the data visualisation interface prompted those alterations in 

cardiovascular psychophysiology observed between the pre- and post-test phases of study two.  It is also possible 

changes in physiological responses represented the participants’ integration of location, still images and 

multimodal data streams from the visualisation.  Feedback from the data visualisation may have been a powerful 

motivation to actively self-regulate the experience of stress during journey impedance; it was obvious from the 

interview data (Table 2) that participants identified congestion as a frequent trigger for episodes of increased 

cardiovascular reactivity.  As an additional source of concern and motivation, a number of interview comments 

focused on the physiological impact of driving on personal health (Table 3) and how an emphasis on high 

reactivity (red icons on the map) prompted a focus on those physiological “costs” of negative emotion during 

driving.  The whole rationale of the data visualisation was intended to bring these “hidden” patterns of 

physiological activity to light that accompany stress in everyday life and occur outside the awareness of the 

individual (Brosschot et al, 2010).  One goal of the data visualisation was to provide an opportunity to directly 

observe these processes, which was unique and informative for our participants.  Alternatively, the interview 

process associated with the data visualisation may have played a direct role in those cardiovascular changes that 

we observed between pre- and post-test periods, as the questions used in the interview process forced each 

participant to reflect upon the data visualisation in order to identify triggers for changes in cardiovascular 

reactivity.  As part of the interview process and to aid interpretation of the data visualisation, participants were 

informed about those physiological inferences that could be drawn from individual cardiovascular markers, e.g. 

HRV is associated with inflammation in the body, PTT is associated with blood pressure; hence, our participants 

were capable of reflecting upon the data visualisation from an informed position.  This type of explicit link 

between physiological markers that were visualised on the map and an awareness of the implications for long-

term health may have constituted a powerful agent for behaviour change. 

There was evidence of increased awareness of emotional triggers from the interview data and altered 

psychophysiological reactivity during journey impedance; however, the absence of any data collection after the 

post-test phase, such as a follow-up questionnaire or interviews, made it difficult to assess whether observed 

changes stemmed from a conscious or unconscious process of self-regulation.  It would be valuable to explore 

this particular issue and identify coping strategies for self-regulation of negative states via further research.  As 

an additional caveat, the post-test phase immediately followed the data visualisation session and only lasted for 
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two days, which prompts the question of whether those observed changes in cardiovascular reactivity would 

persist a week or a month later. 

With respect to the data visualisation interface, participants were able to easily interrogate personal data and 

extract meaningful information.  The inclusion of context-specific photographs was enormously useful for 

participants to identify specific triggers for cardiovascular change.  In general, participants found the combination 

of colour-coded icons placed on the Google map easy to understand.  However, several participants requested a 

dynamic ‘playback’ mode and a colour-coding system that was based upon absolute rather than relative scores, 

which would permit comparisons between different journeys.  The bar chart, which provided an indication of car 

counts/traffic density, was not deemed to be very useful and could have been omitted.  Despite positive responses 

to the data visualisation, it was noted that several participants questioned the utility of this approach in the context 

of everyday driving.  The general feeling (Table 4) was that real-time feedback would have been more useful in 

aiding active self-regulation in situ compared to the retrospective approach that we used in the current study.  In 

addition, a number of participants felt the approach was only really warranted for users with existing medical 

conditions. 

The second study contained a number of shortcomings and weaknesses.  A large volume of data was collected 

over four days of driving but the number of individual participants was low.  This weakness represented the 

practical difficulty of asking individuals to accommodate the data collection and associated inconvenience into 

their daily routines.  While the Shimmer sensors provided excellent data fidelity and it was important for the study 

to obtain an ECG, our participants found the necessary set-up of apparatus to be burdensome.  There are alternative 

methods for monitoring heart rate and HRV non-invasively (Kranjec et al, 2014) and it is possible to capture HRV 

from a PPG signal if the participant remains in a stationary position (Lin et al, 2014).  By reducing the logistic 

burden of data collection on participants, it would be possible to employ a similar protocol with a higher number 

of participants.  The duration of the measurement period was limited by similar factors and it would have been 

preferable to monitor psychophysiology and mood over a longer period of time, simply to assess whether short-

term changes observed in the study persisted over weeks rather than days; this longitudinal methodology would 

also permit repeated interaction with the data visualisation interface and the inclusion of follow-up questionnaires.  

If a larger pool of participants was available, a follow-up study could also include a between-groups experimental 

design, wherein one group received data visualisation and the second (control) group did not.  The current study 

used photographs taken every 30 seconds in order to provide a visual documentation of each journey.  This 

approach ran a risk of missing transient events on the road, e.g. sudden braking of lead vehicle, erratic behaviour 

from another motorist, and it could be argued that film footage would improve the visual documentation because 

it provides a continuous record of events on the road.  One can imagine an alternative data visualisation wherein 

clicking on a red marker within the map prompts a short playback on a second-by-second basis with accompanying 

psychophysiological data record.  However, this approach would be time intensive to review and there is a trade-

off between the fidelity of the data record and the willingness of the user to review frequent daily activities at that 

level of detail. 

With respect to future work, it would be useful to compare and contrast real-time feedback of negative 

emotional states with the retrospective record provided in the current study.  It can be argued that real-time 

feedback would be a superior approach to emotion regulation, because it works in situ and provides timely 

feedback, but introduction of real-time emotional feedback during driving.  A number of researchers have 
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experimented with ambient light as feedback to driver mood and psychological states (Hassib et al, 2019), the use 

of emoticons (Kim & Lee, 2015) and the design of a dashboard dedicated to feedback on driver state (Völkel et 

al, 2018).  Irrespective of the design of the feedback interface, there are the risks of distraction inadvertently 

intensifying negative emotional states when the person is driving.  With respect to retrospective feedback, such 

as the interface designed in the current study, one can imagine a minimalist design where icons or pins are dropped 

into an electronic map of a regular route only to alert individuals of specific ‘hot points’ for negative emotions.  

The current study collected physiological data for individual drivers travelling on different roads at different times 

of day.  Future work could adopt a ‘big data’ approach where physiology is monitored across a large group of 

drivers, travelling on the same road network at the same time. The resulting data could provide valuable insight 

into health epidemiology (i.e. assessing cardiovascular changes during driving as a marker for disease), traffic 

management (i.e. understanding the relationship between traffic flow and driver physiology) and roadway design 

(i.e. identifying junctions or stretches of road that are associated with high levels of cardiovascular reactivity for 

a large group of drivers).  It would also be valuable to use this type of lifelogging platform to assess different 

methods of self-regulation in everyday life with respect to the reduction of inflammation.  Different types of self-

regulatory activity, such as slow breathing or psychological acceptance, could be contrasted and feedback via data 

visualisations, such as the one used in the current study, could play an important role as a training tool.  The type 

of monitoring used in the study could also be used as an input to a passive or ambient intervention, e.g. detection 

of cardiovascular reactivity could prompt the introduction of low activation music, which has been shown to be 

effective in the reduction of systolic blood pressure during journey impedance (Fairclough et al, 2014). 

5 Conclusion 

The paper describes research into the development of a lifelogging system designed to capture negative 

emotions and cardiovascular activity during commuter driving and present interactive feedback to users.  The first 

study demonstrated that features derived from psychophysiology and driving behaviour could be used to classify 

instances of high vs. low anger based upon subjective self-assessment.  This study led to the development of an 

interactive data visualization wherein cardiovascular data and measures of driving were integrated and presented 

in a geo-located format.  Participants found the data visualization easy to understand and were able to draw 

inferences about the links between driving activity and physiological changes.  Participants identified increased 

mental workload and journey impedance as the two most common triggers for increased cardiovascular reactivity.  

There was no evidence for any effect on subjective mood either with respect to increased emotional awareness or 

adaptive coping.  However, heart rate was found to decline and high frequency HRV increased when participants 

encountered slow-moving traffic as a direct result of interacting with the data visualization.  The specificity of the 

effect on cardiovascular parameter suggests that participants either consciously or unconsciously altered breathing 

activity during traffic congestion. 
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