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ABSTRACT 

 

The present study compared the effects of post exercise carbohydrate plus protein 

(CHO+PROT) and carbohydrate (CHO) only supplementation on muscle glycogen 

metabolism, anabolic cell signalling and subsequent exercise performance. Nine endurance-

trained males cycled twice to exhaustion (muscle glycogen decreased from ~495 to ~125 

mmol·kg dw-1) and received either CHO only (1.2 g·kg-1·h-1) or CHO+PROT (0.8/0.4 g·kg-

1·h-1) during the first 90 min of recovery. Glycogen content was similar before the 

performance test after 5 h of recovery. Glycogen synthase (GS) fractional activity increased 

after exhaustive exercise and remained activated 5 h after despite substantial glycogen 

synthesis (176.1±19.1 and 204.6±27.0 mmol·kg dw-1 in CHO and CHO+PROT, respectively; 

p=0.15). Phosphorylation of GS at site 3 and site 2+2a remained low during recovery. After 

the 5 h recovery, cycling time to exhaustion was improved by CHO+PROT supplementation 

compared to CHO supplementation (54.6±11.0 vs 46.1±9.8 min; p=0.009). After the 

performance test, muscle glycogen was equally reduced in PRO+CHO and CHO. Akt Ser473 

and p70s6k Thr389 phosphorylation was elevated after 5 h of recovery. There were no 

differences in Akt Ser473, p70s6k Thr389 or TSC2 Thr1462 phosphorylation between treatments. 

Nitrogen balance was positive in CHO+PROT (19.6±7.6 mg nitrogen·kg-1, p=0.04) and 

higher than CHO (-10.7±6.3 mg nitrogen·kg-1, p=0.009). Conclusion: CHO+PROT 

supplementation during exercise recovery improved subsequent endurance performance 

relative to consuming CHO only. This improved performance after CHO+PROT 

supplementation could not be accounted for by differences in glycogen metabolism or 

anabolic cell signaling, but may have been related to differences in nitrogen balance.  

 

Keywords: Exercise, glycogen synthase, Akt/PKB, protein synthesis, nitrogen balance  
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New & Noteworthy  

Endurance athletes competing consecutive days need optimal dietary intake during the 

recovery period. We report that co-ingestion of protein and carbohydrate soon after 

exhaustive exercise, compared to carbohydrate only, resulted in better performance the 

following day. The better performance after co-ingestion of protein and carbohydrate was not 

associated with a higher rate of glycogen synthesis or activation of anabolic signalling 

compared to carbohydrate only. Importantly, nitrogen balance was positive after co-ingestion 

of protein and carbohydrate, which was not the case after intake of carbohydrate only, 

suggesting that protein synthesis contributes to the better performance the following day.  
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INTRODUCTION 

 

Many studies have shown that co-ingestion of protein and carbohydrate after exhaustive 

endurance exercise improves recovery of performance better than carbohydrate only (12; 54; 

58; 60; 66), but the reason for improved performance remains unknown. Carbohydrate is the 

major energy substrate during prolonged high intensity endurance exercise (1; 16; 48; 54; 63) 

and fatigue develops when the glycogen stores becomes low (6; 16). Although proteins are 

not considered a major energy substrate during exercise, metabolism of leucine increases 

during exercise (44; 69), and oxidation of BCAA in skeletal is required for satisfactory 

endurance capacity (59). Moreover, utilisation of amino acids increases during exercise when 

glycogen content is low (22; 36). Endurance athletes have a high protein requirement, and as 

much as 1.5-2.0 g per kg body weight seems necessary to avoid negative nitrogen balance 

(29; 54; 60; 61). Therefore, many elite cyclists ingest protein after training to stimulate the 

recovery process (14; 57).  

 

Co-ingestion of protein and carbohydrate has been reported to increase the rate of glycogen 

synthesis compared to carbohydrate only (5; 70). The mechanisms contributing to recovery of 

performance after endurance exercise include glycogen synthesis (23). However, protein 

intake after exercise stimulates protein synthesis (15; 21; 37; 65), limits muscle damage (9), 

modulates transcription (51) and increases activation of anabolic signalling pathways (12; 49). 

Some studies have not found that co-ingestion of protein and carbohydrate recovers 

performance better than carbohydrate only (5; 43; 47; 52; 53). The reasons that protein intake 

in the recovery period did not improve performance in these studies may be due to the type 

and duration of exercise before the dietary interventions, the length of recovery period, 

nitrogen balance and the test used to evaluate performance. Importantly, it is necessary to 

develop protocols where co-ingestion of protein and carbohydrate consistently improves 

recovery of performance better than intake of carbohydrate only. Without such protocols, it is 

impossible to illuminate the mechanisms responsible for the improved performance after 

intake of protein.  

 

Muscle biopsies have been taken in only one study where co-ingestion of protein and 

carbohydrate improved recovery of endurance performance relative to carbohydrate alone 

(12). Ferguson-Stegall et al. showed that glycogen synthesis was similar but activation of 

anabolic signalling was increased with co-ingestion of protein and carbohydrate (12). Many 
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other studies have reported improved activation of anabolic signalling after intake of protein 

(42; 46; 49; 51; 56; 65), but none of these studies investigated the effect of protein intake on 

performance. 

 

In two recent studies, we observed improved exercise performance after co-ingestion of 

protein and carbohydrate when provided during the first 90 min of recovery from exhaustive 

exercise compared to intake of carbohydrate only (54; 60). However, the molecular 

mechanisms responsible for this improved performance were not investigated in these studies. 

Therefore, our goal was to use the same exercise and dietary protocol used successfully in our 

previous studies (54; 60) in combination with muscle biopsies to investigate the possible 

mechanisms contributing to the improved exercise performance associated with post exercise 

supplementation of protein plus carbohydrate (CHO+PROT). The first aim of the present 

study was to compare the effects of a CHO+PROT supplement to an isocaloric CHO 

supplement ingested during the first two hours of a 5-h recovery period on muscle glycogen 

metabolism and activation of anabolic cell signalling. The second aim was to investigate 

glycogen utilisation and the anabolic cell signalling response to an exercise performance test 

to exhaustion after 5 h of recovery, when performance was enhanced by a CHO+PROT 

supplement relative to an isocaloric CHO supplement.  

 

MATERIALS AND METHODS  

 

Nine males training for competition in triathlon (n=2) or cycling (Mountain biking; n=7) 

completed the study. Inclusion criteria were 1) bicycle training more than twice a week for the 

last six months, 2) VO2max ≥ 50 ml·kg-1·min-1, 3) age 18-40 years, and 4) no known diseases.  

Characteristics of the participants were age: 26.7±1.7 years; weight: 76.4±3.2 kg; height: 

182.4±2.2 cm; maximal heart rate: 188.0±2.2 bpm and VO2max: 58.1±1.7 ml·kg-1·min-1. 

The participants were informed individually about the study and biopsy procedures, and each 

participant signed an informed consent. The study was approved by the Regional Ethical 

Committee of Midtjylland, Denmark (J. No 1-10-72-23-13)) and conducted in accordance to 

the principles from the Declaration of Helsinki. The study was a double-blinded, cross-over 

design, with one week between the two interventions. Random assignment into groups was 

done by minimization (55) using publicly available software (Minim: Allocation by 

minimization in clinical trials). 
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Testing of VO2peak and incremental test 

Tests were performed on a SRM cycle ergometer (SRM, Jülich, Germany) adjusted 

individually to the participants specifications. Oxygen uptake and CO2 production were 

measured with an AMIS 2001 analyser (Innovation, Odense, Denmark) (27). The analyser 

was calibrated with a gas mixture containing 16.5 % O2 and 4.0 % CO2 according to company 

instructions. During testing, gas sampling was averages over 10 s periods Mean laboratory 

temperature and humidity during the testing was 21.9±0.2 °C and 41.6±1.2 %, respectively.  

 

Incremental test: On the first test day, participants performed 1) an incremental exercise test 

to establish the relationship between work rate and oxygen uptake, and 2) measure peak 

oxygen consumption (VO2peak). Initially, there was a short (3-5 min) warm-up at 100 Watt 

during which participants selected a cadence between 90 and 100 revolutions per min (RPM). 

This self-selected RPM was used in all testing throughout the study. The incremental test then 

started at 125-175 Watt depending on training condition, and increased 25 Watt every 5th 

min. VO2 was measured during the last 90 s of each load. After 4 min of cycling at each 

exercise work rate, a capillary blood sample (Accu-Check, Safe-T-Pro Plus; Manheim, 

Deutschland) was taken for measurement of blood lactate and glucose. Capillary blood 

glucose was measured with a HemoCue Glucose 201+ analyser (Angelholm, Sweden). For 

lactate analyses, a micro haematocrit tube (55 𝜇l, Radiometer, Copenhagen, Denmark) was 

filled and 23 𝜇l of blood was immediately pipetted into a YSI Analyser (Yellow Spring 

Instruments 1500 SPORT, Ohio, USA). The incremental test terminated when the blood 

lactate concentration was higher than 4 mM. The YSI Analyser was calibrated with a standard 

of 5 mM lactate each day. HR was measured continuously during all testing with a Polar RS 

800-CX (Kempele, Finland).  

 

Testing of peak oxygen consumption (VO2peak): After the incremental test, participants were 

allowed 5-10 min of rest before the VO2peak test. The VO2peak test started at the last workload 

in with blood lactate was below 4 mM during the incremental test. The load was increased by 

25 Watts every 60 s until exhaustion. VO2peak was estimated as the highest 1 min average for 

VO2. Linear regression was used to establish the relationship between aerobic workload and 

VO2 during the incremental test, and the workload corresponding to 70 % of VO2peak was 

calculated for subsequent testing. 

 

Diet and training before baseline biopsy and interventions 



7 
 

Participants were instructed to keep a normal diet, and sustain from any protein 

supplementation the last 24 hours prior to the baseline biopsy. Training was allowed the day 

before, but restricted to easy endurance exercise with the duration no longer than 60 min. 

Both the diet and training were recorded and repeated before all test days. Participants fasted 

overnight (the last meal was consumed at 9.00 PM) before test days. If the participants lived a 

distance further than 2 km away from the laboratory, they were instructed to come by car or 

public transportation.  

 

Baseline muscle and blood sampling: Participants reported to the laboratory at 8.00 AM after 

an overnight fast. The muscle biopsy was taken from the vastus lateralis. After removing hair 

with a razor from the thigh area, the skin was disinfected with Klorhexidine (0.5% SAiD). 

Then 2 ml Lidocaine (10 mg·ml-1) was injected subcutaneously above and beneath the muscle 

fascia. A small incision (5 mm) was made in the skin and muscle fascia with a scalpel. Any 

bleeding was stopped by pressure on the wound for approximately 5 min. Biopsies were taken 

with a Bergström needle modified for suction. The tissue was quickly examined and frozen in 

liquid nitrogen (-196 °C), and stored at -80 °C until further analysis. A venous blood sample 

(8 ml heparinized tube) was taken from the v. basilica in a supine position. Blood samples 

were kept on ice until centrifugation (10 min at 4 °C and 1300 g). After centrifugation, the 

plasma was pipetted in Eppendorf tubes and stored at -80 °C until further analysis. Lastly, a 

capillary blood sample was taken for glucose analysis (Hemocue Glucose 201+, Angelholm, 

Sweden). 

 

Familiarization trial 

A preliminary trial was performed to familiarize the participants with cycling and adjusting 

workload on the SRM ergometer. The trial started with a standardised warm-up consisting of 

three sets of 4 min cycling at workloads corresponding to 50, 55 and 60% of VO2peak. The 

same warm up was used in all subsequent testing throughout the study. After a warm up, the 

workload was set to the estimated workload corresponding to 70% of VO2peak. VO2 was 

measured after 4 min over 90 s. If the VO2 was more than 1 ml·kg-1·min-1 from the calculated 

70% of VO2peak, workload was adjusted accordingly, and VO2 was measured 4 min later. The 

participants were allowed a 15 min break after the workload was adjusted. Afterwards they 

cycled 30 min at the workload corresponding to 70% of VO2peak (W70%) during which time 

VO2, capillary blood samples and rate of perceived exertion (RPE – Borg scale) were 
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recorded every 10 min. The familiarization trial was completed at least three days after the 

resting biopsy. 

 

The dietary intervention days 

On the two experimental test days, participants reported to the laboratory at 7:30 AM. 

Initially, resting VO2, RER and HR were measured for 10 min while the participants were in a 

supine position (results obtained from the last 5 min). After the 10 min rest, venous and 

capillary blood samples were taken (Figure 1). The participants were then asked to empty 

their bladder before the exercise started. 

  

Initial glycogen depleting exercise: On test days the initial exercise session began at 8:00 AM, 

with the aim of depleting muscle glycogen. The exercise started with a standardized warm up, 

and after 5 min of rest the participants started cycling at 70% of VO2peak. The exercise was 

divided into cycling sessions separated by 5 min breaks. The first session lasted 30 min, and 

all subsequent sessions lasted 20 min. The participants were reminded to drink water every 10 

min of cycling. VO2 and RER were measured over 90 s after 3.5 min of the first session, at 

the end of each session and the last 60 s before exhaustion. Following measurement of VO2, 

and before measurement of capillary lactate and glucose, rating of perceived exertion was 

record. HR was measured throughout the performance test. Participants cycled until 

exhaustion at a workload corresponding to 70% of VO2peak. Then after a 5 min rest, a series of 

1 min sprints at a workload corresponding to 90% of VO2peak, interspersed with 1 min breaks, 

were performed until the participants could not maintain their predefined peddling cadence. 

Capillary glucose and lactate were measured at exhaustion as described above. 

 

Tissue sampling during recovery: After the initial glycogen depleting exercise, a Venflon 

catheter (BD VenflonTM Pro, Helsingborg, Sweden) connected to a three-way valve (BD 

ConnenctaTM, Helsingborg, Sweden) was inserted in an antecubital vein for blood sampling. 

A total of nine venous blood samples were collected during recovery: 0, 30, 60, 90, 120, 150, 

180, 240 and 300 min after exercise completion (Figure 1). All venous blood samples were 

taken on lithium heparinised tubes and treated in the same manner as the resting sample. The 

catheter was flushed with saline following each blood collection.  

 

Muscle biopsies: After the first blood sample, m. vastus lateralis was prepared for muscle 

biopsy as described for the resting biopsy. The 5 h recovery period started when the biopsy 
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was taken approximately 15 min after the exhaustive exercise protocol. A second biopsy was 

taken from the opposite leg after the 5-h recovery.  

 

Blood glucose and lactate: Capillary glucose and lactate were measured every 30 min during 

recovery as described above.  

 

Additional measurements during the recovery period: HR was measured during exercise and 

the 5-h recovery period (Polar Pro trainer 5, Kempele, Finland). Data are presented as means 

of the first 2 h and the last 3 h of recovery. Resting metabolism was measured after 4.5 h of 

recovery. VO2, RER and HR were measured in a supine position over 10 min, and data for the 

last 5 min used.  

 

Intervention drinks during recovery: The recovery supplementation during the first 2 h 

following exhaustive exercise and biopsy procedures was either carbohydrate (CHO) or an 

isocaloric protein with carbohydrate (CHO+PROT) drink. These supplements were provided 

in a randomized order. Supplementation was given after the first biopsy, and again after 30, 

60 and 90 min of recovery. Tissue and blood sampling were always completed before the 

participants drank any beverage. CHO: The concentration of carbohydrates in CHO was 170 

g·L-1 (17%). The carbohydrate was a mixture of 85 g·L-1 (50%) glucose and 85 g·L-1 (50%) 

maltodextrin. Glucose was from Merck (Darmstadt, Germany) and the maltodextrin from 

WWR (Herlev, Denmark). Participants were given 0.6 g CHO·kg-1 every 30 min during the 

first 90 min of recovery. Thus, 1.2 g CHO·kg-1 · hr-1 was ingested during the first 90 min of 

recovery. 

CHO+PROT: The CHO+PROT drink was isocaloric with the CHO drink. The concentration 

of carbohydrate and protein was 113.7 and 56.3 g·L-1, respectively (170 g·L-1). Drinks 

consisted of 56.3 g·L-1 glucose, 56.3 g·L-1 maltodextrin and 56.3 g·L-1 whey protein. The 

protein was whey isolate protein (Lacprodan, SP-9225 Instant), provided by Arla Food 

Ingredients P/S (Aarhus, Denmark). Participants were given 0.4 g·kg-1 of carbohydrate and 

0.2 g·kg-1 of whey protein every 30 min during the first 90 min of recovery. Thus, 0.8 g 

carbohydrate·kg-1·hr-1 and 0.4 g protein·kg-1·hr-1 were ingested during the first 90 min of 

recovery. All drinks were served in opaque bottles. To make the drinks comparable in taste, a 

non-caloric fruit flavoured sweetener and 0.7 mg/L sodium chloride were added to the drinks. 
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Additional food and recovery supplementation: After 2 h of recovery a meal containing 

minced meat, pasta and tomato sauce was served according to body weight. The amounts of 

carbohydrate, protein and fat served in the lunch were 1.7, 0.5 and 0.2 g·kg-1, respectively. 

After 4 h of recovery, a carbohydrate drink (1.2 g carbohydrate·kg-1) was provided after both 

CHO and CHO+PROT treatments. 

 

Performance test 

The endurance performance test consisted of cycling until exhaustion at W70% of VO2peak. 

After a standardized warm up and 5 min of rest, participants started the performance test. 

Participants were blinded to time for the duration. VO2 and RER were measured over 90 s 

after 3.5 min every 15th min and during the least 60 s before exhaustion. After each VO2 and 

RER measurement, participants were asked for their rating of perceived exertion (RPE) 

followed by drawing blood samples for determination of lactate and glucose. During exercise 

participants were asked to drink water approximately every 10 min. After the performance 

test, a third biopsy was taken from the same leg as the first biopsy. 

 

 Insulin  

Plasma insulin concentrations were measured with an ELISA kit (Dako, Glostrup, Denmark).  

 

Western blot 

Muscle homogenization: About 30 mg of muscle were freeze-dried with a Christ Alpha 1-2 

Lo Plus freeze dryer (SciSqip, Shropshire, United Kingdom). Moisture was removed by 

suction for 2.5 h at a gas pressure of ≤ 0.04 mbar and air temperature of ≤ -50° C. The 

samples were homogenized 1:100 in an ice-cold homogenizing buffer (pH 7.4) as previously 

described (26) with a Retsch MR400 mixer mill (Haan, Germany). The MR 400 was 

programmed to shake the muscles and buffer with a frequency of 30 Hz for three 30-s periods 

with 5 s between periods. After homogenisation, homogenates were rotated for 60 min, 

centrifuged (11,500 g for 10 min at 4°C), and protein concentration was measured. Samples 

were diluted and prepared for Western blot analysis as previously described (26).  

 

Primary antibodies: The following antibodies were from Cell Signalling Technology 

(Beverly, Ma, USA): GS Ser641 – also called GS site 3a (#3891), AMPK Thr172 (#2531), PKB 

Ser473 (#9271), GSK-3 Ser21 (#9331), p70s6k Thr389 (#9205), AS160 Ser588 (#8930), TSC2 

Thr1462 - Tuberin (#3611), and GAPDH - Clone 14C10 (#21185). Antibodies against AMPK-
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α2 (sc-19131) and p70s6k Thr/Ser421/424 (sc-7984-R) were from Santa Cruz Biotechnology 

(Dallas, TX, USA). Total GS and site 2+2a have been described and validated by Højlund et 

al. (19).  

 

Glycogen synthase activity 

Glycogen synthase (GS) activity was measured as described previously (20). In brief, 

duplicate measurements were performed in the presence of 0.01, 0.17 and 8 mM glucose-6-

phosphate (G6P) in 96-well microtiter assay plates (Unifilter 350 plates; Whatman, 

Cambridge, UK). 

 

Muscle glycogen 

Muscle glycogen was measured in two separate pieces of each biopsy. Muscle biopsies were 

freeze-dried, homogenised and glycogen hydrolysed prior to measurements of glucose units 

fluorometrically as described previously (26).  

 

Nitrogen balance 

Urine was collected in two fractions from the beginning of the initial glycogen depleting 

exercise until 120 min of recovery, and from 120 min of recovery until the performance test 

was completed. Nitrogen balance was calculated based on ingested proteins and nitrogen 

excretion in the urine. Urine nitrogen was analysed with the Kjeldahl method (30). Total 

nitrogen excretion was calculated assuming 77.1% of total nitrogen loss via urine (61). Urea 

was measured with a QuantiChrom Urea Assay Kit (DIUR-500 BioAssaySystem). Urine 

nitrogen concentration measured with the Kjeldahl method correlated with urea nitrogen 

concentration (r=0.996; p<0.001; n=34). 

 

Exclusion  

Ten participants were included in the study. When the last five participants had completed the 

first dietary intervention, the power-control unit on the SRM ergometer failed to work. With 

the replacement power-control unit, heart rate was found to be  ~20 beats lower and VO2 ~0.5 

L·min-1 less of predetermined load compared for the first of the last 5 participants tested. The 

data for this participant was excluded from all analyses. For the last 4 participants, during 

their second dietary intervention exercise test, the load on the new SRM ergometer was 

adjusted to obtain comparable heart rate and VO2 as occurred during their initial test with the 
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original power-control. Therefore, the data on the performance test was excluded for these 

subjects, whereas data from blood and muscle samples were included.  

 

Statistical analysis: Data are presented as mean and SEM. Repeated measurements ANOVA 

was used to compared measurements during exercise and recovery periods, with Least 

Significant Difference (LSD) used for post hoc testing. Student’s paired t-test was used to 

compare time to exhaustion and nitrogen balance after CHO+PROT and CHO. P<0.05 was 

considered significant.  

 

RESULTS 

 

Fasted blood glucose was 4.8±0.1, 5.1±0.2 and 4.7± 0.1 mM before the baseline biopsy, CHO 

and CHO+PROT interventions, respectively. Fasted blood lactate was 0.71±0.08 and 

0.88±0.14 mM before CHO and CHO+PROT, respectively. Resting VO2, measured in a 

supine position, was 228±15 and 241±15 ml O2·min-1 before CHO and CHO+PROT, 

respectively. RER values were 0.96±0.03 and 0.96±0.03 and HR was 49±3 and 51±3 

beats·min-1 before CHO and CHO+PROT, respectively. No differences in these resting 

measures were observed between trials (p>0.05). 

 

Exercise prior to the dietary interventions: Time to exhaustion at W70% was similar prior to 

the CHO and CHO+PROT interventions (107.0±5.6 and 101.7±9.0 min, respectively). During 

the exercise, VO2, heart rate, and RPE increased gradually (Table 1). Blood glucose 

concentration decreased gradually, whereas lactate increased rapidly and remained stable 

during exercise (Table 1). At exhaustion and after the 1-min sprints, blood glucose was ~ 3.5 

mM (Table 1). 

  

Recovery period:  Following exercise, blood glucose concentration increased rapidly after 

intake of CHO and CHO+PROT (Figure 2A). Blood glucose was higher in CHO compared to 

CHO+PROT during the 90 min dietary intervention (treatment effect) and peaked at 9.1±0.4 

mM after 60 min. During the last 3 h of the recovery period, when diet was similar, blood 

glucose decreased (time effect) and there were no differences between conditions. Plasma 

insulin increased rapidly following intake of both CHO and CHO+PROT with no significant 

difference between interventions (Figure 2B). Following exercise, blood lactate fell rapidly 
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(Figure 1C). HR was similar between CHO and CHO+PROT during the recovery period. 

After 4.5 h of recovery, resting VO2 (CHO: 307±19 ml·min-1 and CHO+PROT: 311±18 

ml·min-1), RER (CHO: 0.91±0.03 in CHO+PROT 0.90±0.02) and heart rate (CHO: 65±3 and 

CHO+PROT: 65±2 beats·min-1) were similar between CHO and CHO+PROT. Compared to 

the resting morning values, VO2 and HR were significantly elevated during the recovery 

period (p<0.01). 

  

Muscle samples: Muscle glycogen concentration was 494.6±29.1 mmol·kg dw-1 in the 

baseline biopsy after an overnight fast (Figure 3A). The exhaustive exercise bouts reduced the 

muscle glycogen stores to a similar degree with glycogen content being 141.9±29.9 and 

106.7±30.7 mmol·kg dw-1 prior to CHO and CHO+PROT supplementation, respectively 

(Figure 3A). During recovery, rate of glycogen synthesis was 35.2±3.8 and 40.9±5.4 mmol·kg 

dw-1·h-1 in CHO and CHO+PROT, respectively (Figure 3C; p=0.15 Student’s t.-test). Thus, 

before the performance test, glycogen content was 318.0±32.1 mmol·kg dw-1 for CHO and 

311.3±32.8 mmol·kg dw-1 for CHO+PROT. Glycogen utilization during the exercise before 

dietary supplementation or during the subsequent performance tests did not differ between the 

two treatments (Figure 3B). Rates of glycogen synthesis during the two treatments did not 

differ significantly (Figure 3C). Rates of glycogen synthesis during the two treatments were 

significantly correlated (Figure 3D; r=0.75; p<0.02). Phosphorylation of AMPK at Thr172 

increased after both exercise sessions, with no effect of the dietary treatments found (Figure 

3E). Glycogen synthase activity was investigated and all parameters (GS FV0.1, GS FV1.67 and 

GS %-I-form) were activated after exercise to a similar degree prior to the dietary treatments 

(Figure 4A-C). Interestingly, GS remained activated during the 5 h recovery despite a high 

rate of glycogen synthesis (Figure 4A-C). Phosphorylation of GS at site 3 and site 2+2a was 

reduced after exercise and remained low during the 5 h recovery, and agreed with the GS 

activity data. GS total activity was not influenced by the exercise or dietary treatments as 

expected (Figure 4E-F). GSK-3 phosphorylation was not influenced by exercise or dietary 

intervention (Figure 4G).  

Phosphorylation of Akt at Ser473 increased immediately after exercise and 

phosphorylation was elevated further after 5 h of recovery, but no differences were found 

between CHO and CHO+PROT (Figure 5A). Phosphorylation of p70S6K at Thr389 was not 

increased immediately after exercise, but phosphorylation was elevated similarly in CHO and 

CHO+PROT after 5 h (Figure 5B). Phosphorylation of p70S6K at Thr421/Ser424 did not 

change during the dietary intervention (Figure 5C). Likewise, TSC2 Thr1462 phosphorylation 
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was unchanged at the time points studied (Figure 5D). Phosphorylation of TBC1D4/AS160 

Ser588 increased immediately after exercise and remained elevated to a similar level in CHO 

and CHO+PROT (Figure 5E). 

  

Performance test: Time to exhaustion at W70% lasted on average 8.4±1.8 min longer in 

CHO+PROT than CHO (Figure 6; p<0.009; n=5). Following the performance test protocol, 

muscle glycogen was reduced equally to 152.2±32.0 and 157.1±34.0 mmol·kg·dw-1 in CHO 

and CHO+PROT, respectively (Figure 6).  

 

Data of VO2, RER, HR and RPE from the performance test are summarized in Figure 7. VO2, 

RER, heart rate, and RPE increased during the performance test, but there were no differences 

between the two dietary interventions. Blood glucose declined during the first min of exercise, 

but returned to basal level at exhaustion (Figure 7C). Lactate increased to ~2 mM during 

exercise and there were no differences between CHO and CHO+PROT (Figure 7D). 

 

Nitrogen balance: Net nitrogen balance was positive in CHO+PROT (19.6±7.6 mg·kg-1;  

p=0.04). Nitrogen balance was not significantly different from zero in CHO (-10.7±6.3 

mg·kg-1; p=0.22) but significantly lower than CHO+PROT (p=0.009). Nitrogen excretion was 

higher in CHO+PROT than in CHO (9.9±0.5 vs 7.4±0.6 g; p=0.008) during the recovery 

period. Urea nitrogen accounted for 92.2 ±1.3 and 91.9±0.8% of total urine nitrogen excretion 

in CHO and CHO+PROT, respectively.  

 

DISCUSSION 

 

The present study is one of the first where muscle biopsies have been taken in a setting where 

endurance performance is improved after co-ingestion of protein and carbohydrate compared 

with intake of carbohydrate only during the first two hours of the recovery period. The rate of 

glycogen synthesis and activation of anabolic signalling molecules during the recovery period 

were not noticeably different between CHO and CHO+PROT. Although performance 

improved after co-ingestion of protein and carbohydrate compared with carbohydrate only, 

glycogen degradation and activation of signalling molecules during the performance tests 

were not significantly different between treatments. On the other hand, nitrogen balance was 
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positive only after co-ingestion of protein and carbohydrate and may have contributed to 

optimising recovery of performance after exhaustive exercise. 

 

Several studies have reported improved performance after co-ingestion of protein and 

carbohydrate compared to carbohydrate only (4; 54; 58; 60; 66). However, other studies have 

not found improved performance after co-ingestion of protein and carbohydrate (5; 43; 53), 

and this discrepancy needs to be clarified. In the present study, participants cycled until 

exhaustion prior to the 90 min dietary interventions, which was similar to the protocol used in 

our two previous studies (54, 60). In these studies we demonstrated that providing a protein 

plus carbohydrate supplement during the first 90 min of recovery significantly improved 

exercise performance 18 h later compared to providing carbohydrate only (54; 60). Therefore, 

we have now demonstrated that providing a protein plus carbohydrate supplement in the first 

hours of recovery from exhaustive endurance exercise results in a better exercise performance 

both 5 and 18 h later compared to providing carbohydrate only.  

 

The molecular mechanisms for the beneficial effects of protein intake is unclear. To the best 

of our knowledge, only one previous study has taken muscle biopsies in a setting where co-

ingestion of protein and carbohydrate recovers performance better than carbohydrate only 

(12). Ferguson-Stegall et al. found a similar rate of skeletal muscle glycogen synthesis (25-30 

mmol/kg ww during 4 h) as in the present study, and like the present study, there was no 

difference in rate of glycogen synthesis between treatments.  However, Ferguson-Stegall et al. 

did find phosphorylation of mTOR was higher 45 min after exercise when protein plus 

carbohydrate (chocolate milk) was ingested compared to carbohydrate only (12).  

 

As mentioned previously, we did not find a significant difference in rate of glycogen synthesis 

between the interventions, despite reports that co-ingestion of protein and carbohydrates 

increased the rate of glycogen synthesis more than after intake of carbohydrate only (5; 70). 

Indeed, not all studies report elevated rates of glycogen synthesis after exercise when protein 

and carbohydrates are co-ingested (28; 62). However, the rate of glycogen synthesis is 

difficult to study because of variation in glycogen content in muscle biopsies. In a study by 

Jentjens et al., glycogen content after the exercise before CHO and CHO+PROT interventions 

were 106±19 and 176±31 mmol·kg dw-1, respectively, but rate of glycogen synthesis was 

numerically lower in CHO than CHO+PROT (225±22 vs 252 ±48 mmol·kg dw-1). This is 
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surprising, because low glycogen content activates glycogen synthase and stimulates glycogen 

synthesis (24; 33-35).  

 

In the present study glycogen content was 142±30 mmol·kg dw-1 and 107±31 prior to CHO 

and CHO+PROT, respectively, and rate of glycogen synthesis was numerically higher after 

CHO+PROT compared to CHO (p=0.15; two-tailed t-test). However, this tendency for a 

higher rate of glycogen synthesis in CHO+PROT could have been influenced by the 

numerically lower post-exercise glycogen content in CHO+PROT compared to CHO (25). 

Moreover, rates of glycogen synthesis during the two dietary interventions (CHO+PROT and 

CHO) were significantly correlated (r=0.75; p<0.02; Figure Fig 3D), which suggests that 

inter-individual variation (genetic or training status) determined the rate of glycogen synthesis 

rather than the treatment provided.  

 

It has previously been reported that trained participants have higher rates of glycogen 

synthesis than untrained (13, 17).  However, there was no significant correlation between 

VO2max and rate of glycogen synthesis suggesting that the rate of glycogen synthesis was not 

influenced by differences in training status.  The rate of muscle glycogen synthesis has also 

been found to correlate with GLUT4 expression (13; 17). We did not measure GLUT4 

expression, but instead measured phosphorylation of AS160 (TBC1D1/TBC1D4), because 

increased phosphorylation improves insulin sensitivity and GLUT4 translocation to the 

sarcolemma (32).  AS160 Ser588 phosphorylation did not correlate with rate of glycogen 

synthesis, and AS160 Ser588 phosphorylation was similar after intake of CHO and 

CHO+PROT.  

 

To summarise, CHO+PROT supplementation did not appear to enhance the rate of muscle 

glycogen synthesis during exercise recovery relative to the rate produced by an isocaloric 

CHO supplement. Furthermore, glycogen content was similar prior to the performance test 

after intake of CHO and CHO+PROT. Therefore, these results support the findings of 

Ferguson-Stegall et al. that an improvement in exercise performance following CHO+PROT 

supplementation is not due to a higher muscle glycogen content resulting from a more rapid 

recovery of muscle glycogen post exercise (12). 

 

Hypoglycemia can also result in fatigue during prolonged endurance exercise (10).  However, 

we observed no signs of hypoglycemia during the performance test after the dietary 
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interventions, and the decline in blood glucose was more pronounced during the exhaustive 

exercise prior to the dietary interventions. This supports our previous findings that 

mechanisms other than blood glucose availability limits performance after recovery from 

exhaustive exercise (54). Importantly, the glycogen content at exhaustion was similar in the 

exercise session before and after the dietary interventions and independent of treatment 

indicating that low glycogen content contributed to fatigue in all conditions. The fact that the 

increase in AMPK phosphorylation did not differ between treatments or the two exercise 

sessions is not surprising because the participants cycled until exhaustion and similar 

metabolic stress may have developed and caused fatigue (31; 67).  

 

Anabolic signalling was elevated in the recovery period, but there were no differences in 

activation of anabolic signalling between CHO and CHO+PROT. However, it is important to 

note that we did not take biopsies in the timeframe of protein supplementation and the 

anabolic effect of protein intake lasts less than 5 h (3). The participants were biopsied seven 

times in total, and our priorities were the pre and post samples after the two bouts of 

exhaustive exercise. In the present study, phosphorylation of Akt was elevated immediately 

after exercise agreeing with some (8; 64) but not all studies (38-40; 68). It is, however, 

important to recognise that phosphorylation of Akt after muscle contractions is low compared 

to after insulin stimulation and not accompanied by phosphorylation of p70S6K at Thr389 (64). 

After the 5 h recovery, insulin concentration was elevated and phosphorylation of Akt 

increased further and was paralleled by increased phosphorylation of p70S6K at Thr389. 

However, there were no differences in the phosphorylation of these enzymes between CHO 

and CHO+PROT, which may be due to the similar insulin responses during these two dietary 

interventions. Moreover, TSC phosphorylation at Thr1462 was unchanged at the end of 

recovery in both CHO and CHO+PROT. Although many studies have shown that protein 

intake after exercise elevates phosphorylation of mTOR, p70S6K and other signaling 

molecules that stimulate protein synthesis (42; 46; 49; 51; 56; 65), it is important to have in 

mind that phosphorylation of p70S6K and mTOR are poor predictors of rate of protein 

synthesis (41). In addition, endurance exercise seems to stimulate myofibrillar or 

mitochondrial protein in skeletal muscle independently of mTORC1 activation (45).  

 

In the present study, nitrogen balance was positive in CHO+PROT with intake of 1.3 g 

protein/kg during the recovery period. By contrast, nitrogen balance was negative for CHO, 

during which only 0.5 g protein/kg was ingested during the 5 h recovery. Endurance athletes 
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require 1.6-2.0 g/kg of protein daily to maintain nitrogen balance (29; 61). It is important to 

note, that participants were studied after an overnight fast and the protein intake during the 5 h 

recovery was the only protein intake during 15-18 h. The negative nitrogen balance after CHO 

indicates a catabolic state in the skeletal muscle, and may explain the reduced performance 

following this intervention (50; 54; 60). The protein intake during the first 2 h of recovery for 

CHO+PROT was substantially higher than the dose required to maximally stimulate muscle 

protein synthesis (49), and urinary excretion of nitrogen was higher after co-ingestion of 

CHO+PROT than CHO indicating that part of the ingested protein was metabolized. 

Therefore, the  negative nitrogen balance after intake of CHO alone may be critical to 

detecting improved performance after CHO+PROT (50; 54; 60).  

 

A most important finding in the present study was that glycogen synthase fractional activity 

remained highly activated without any decline during the 5 h recovery. High glycogen content 

normally inhibits GS activity (11; 24), and the finding that ~200 mmol·kg-1 glycogen can be 

synthesised without any reduction in GS activity is remarkable.  In this regard, muscle 

contraction increases GS activity via dephosphorylation of GS 3 sites and site 2+2a (33; 34). 

In the present study, phosphorylation of GS at site 3a and site 2+2a remained low during the 5 

h recovery explaining the high activity. GSK3, which phosphorylates GS at the 3-sites, was 

not regulated by exercise as expected (68). Exercise-induced activation of GS requires the 

protein phosphatase-1 binding subunit RGL (PPP1R3A), suggesting that activation of protein 

phosphatase is required for exercise to activate GS (2). Recently, we showed that glycogen 

synthase activity was higher than expected for the glycogen content established 24 h after 

exercise (18).  We can now expand this finding by showing that GS remains activated despite 

substantial glycogen synthesis during the first 5 h of recovery. Our recent study showed that 

AMPK is required for glycogen supercompensation (18). Although AMPK phosphorylation 

was not elevated after 5 h of recovery, our recent study showed that the α1β2γ1 subunit activity 

remained elevated even after AMPK phosphorylation had returned to basal level (18).  

Viewed comprehensively, these results suggest that GS activity can become decoupled from 

glycogen-mediated inhibition, and may help explain how glycogen content can 

supercompensate after exhaustive exercise (7; 18). 

 

It is a limitation of the present study that no muscle biopsies were taken during the first part of 

the dietary intervention when either protein and carbohydrate or carbohydrate only were 

supplied. This may explain why no significant differences in activation of anabolic signalling 
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were observed between treatments. The small sample size, in particular for performance, but 

our power analysis indicated the participant number was adequate. Finally, the study only 

included well-trained males, which preclude generalisation of the results.  

 

In conclusion, intake of CHO+PROT during the first 90 min after exhaustive exercise 

recovered endurance performance better than intake of carbohydrate only despite similar rates 

of glycogen synthesis during the recovery period. Although performance improved after co-

ingestion of protein and carbohydrate, glycogen degradation and activation of signalling 

molecules during the performance tests were similar for both dietary interventions. Nitrogen 

balance was positive only after co-ingestion of protein and carbohydrate, suggesting that 

differences in protein synthesis during recovery may have contributed to the difference in 

exercise performance between the CHO+PROT and CHO treatments. 
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LEGENDS  

Figure 1. Schematic overview of the test days with dietary interventions. The study was 

randomized, counterbalanced and double-blinded. Abbreviations: CHO: carbohydrate; 

CHO+PROT: carbohydrate and protein; EX1: The exhaustive exercise prior to the dietary 

intervention; EX2: The exercise performance test after the 5 h recovery. 

 

Figure 2. Concentrations of glucose, insulin and lactate in blood during the recovery period 

after intake of carbohydrate or carbohydrate plus protein. Repeated measurements ANOVA 

was used for statistical analyses with time and diet (CHO vs CHO+PROT) as treatment 

effects (Treat). Inter: Abbreviation for Interaction. Analyses were conducted separately during 

the dietary intervention period (0-120 min) and for the rest of the recovery period (150-300 

min) when the diet was similar. 

 

Figure 3. Glycogen metabolism and phosphorylation of AMPK during the interventions. (A) 

Glycogen content in muscles before exercise, after the exercise prior to the dietary 

interventions, after 5 h recovery and after the performance test. (B) Glycogen breakdown 

during the exercise prior to the dietary intervention and during the performance test. (C) 

Glycogen synthesis during the recovery period. (D) Correlation between glycogen synthesis 

during the 5 h recovery period with the two dietary interventions (CHO and CHO+PROT). 

(E) AMPK Thr172 phosphorylation in muscles before exercise, after the exercise prior to the 

dietary interventions, after 5 h recovery and after the performance test. (F) Representative 

blots. Data are mean±SEM. N=8-9. See Methods for description of the antibodies. 

Abbreviation: B: Basal before exercise; EX1: Exercise before dietary intervention; RE: After 

5 h recovery; EX2: Performance test after the dietary intervention;  CHO: Carbohydrate 

intake during the first 2 h recovery; CHO+PROT: Carbohydrate plus protein during the first 2 

h recovery; a: p<0.05 compared to Pre; b: p<0.05 compared to 5 h Recovery; *: p<0.05 

compared to EX1. 

 

Figure 4. Glycogen synthase activity and phosphorylation during the intervention. (A) 

Glycogen synthase fractional activity in the presence of 0.1 mM UDP-glucose (GS FV0.1) in 

muscles before exercise, after the exercise prior to the dietary interventions, after 5 h recovery 

and after the performance test. (B) Glycogen synthase fractional activity in the presence of 

1.67 mM UDP-glucose (GS FV1.67) in muscles before exercise, after the exercise prior to the 

dietary interventions, after 5 h recovery and after the performance test. (C) Glycogen synthase 

I-form in muscles before exercise, after the exercise prior to the dietary interventions, after 5 h 

recovery and after the performance test. (D) Total glycogen synthase activity in muscles 

before exercise, after the exercise prior to the dietary interventions, after 5 h recovery and 

after the performance test. (E) Glycogen synthase phosphorylation at site 2+2a in muscles 

before exercise, after the exercise prior to the dietary interventions, after 5 h recovery and 

after the performance test. (F) Glycogen synthase phosphorylation at site 3 in muscles before 

exercise, after the exercise prior to the dietary interventions, after 5 h recovery and after the 
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performance test. (G) GSK3β Ser21 phosphorylation in muscles before exercise, after the 

exercise prior to the dietary interventions, after 5 h recovery and after the performance test. 

See Fig 3 for blots. Data are mean±SEM. N=8-9 

Abbreviations: GS: Glycogen synthase; GS FV0.1: Fractional activity with 0.1 mM UDP-

glucose in assay buffer; Glycogen synthase; GS FV1.67: Fractional activity with 1.67 mM 

UDP-glucose in assay buffer; GS I-form: Fractional activity with 1.67 mM UDP-glucose and 

0.01 mM glucose 6-phosphate; pGS: glycogen synthase phosphorylation; a: p<0.05 compared 

to Pre; b: p<0.05 compared to 5 h Recovery. 

 

Figure 5. Phosphorylation of signalling molecules during the interventions. Muscle biopsies 

were taken before exercise, after the exercise prior to the dietary interventions, after 5 h 

recovery and after the performance test for measurement of Akt Ser473 (A), p70S6K Thr389 

(B), p70S6K Thr/Ser421/424 (C), TCS2 Thr1462 (D) and AS160 Ser588 (E) phosphorylation. See 

Fig 3 for blots. Data are mean±SEM. N=8-9 

Abbreviation: See Material and methods for full names of proteins. a: p<0.05 compared to 

Pre; b: p<0.05 compared to 5 h recovery; d: p<0.05 compared Post EX2. 

 

Figure 6. Performance time to exhaustion after intake of CHO+PROT or CHO during the first 

2 h of the 5 h recovery period. Data are mean±SEM; N=5. *: p<0.05 compared to CHO. 

 

Figure 7. Oxygen uptake, respiratory exchange ratio, glucose, lactate, heart rate and perceived 

exertion during the endurance performance test after 5 h of recovery. Data are mean±SEM. 

N=9. 
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Figure 4 
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