
Operational Research and Machine
Learning Applied to Transport Systems

Igor Deplano

A thesis submitted in partial fulfilment of the requirements of Liverpool John
Moores University for the degree of Doctor of Philosophy

July, 2020

https://www.linkedin.com/in/igor-deplano/

Declaration

The work presented in this thesis was carried out at the Liverpool Logistics Offshore and

Marine Research Institute, Liverpool John Moores University. Unless otherwise stated,

it is the original work of the author.

While registered as a candidate for the degree of Doctor of Philosophy, for which sub-

mission is now made, the author has not been registered as a candidate for any other

award. This thesis has not been submitted in whole, or in part, for any other degree.

Igor Deplano

Liverpool Logistics Offshore and Marine Research Institute

Faculty of Engineering and Technology

Liverpool John Moores University

Byrom Street

Liverpool

L3 3AF

UK

July 1, 2020

ii

Abstract

The New Economy, environmental sustainability and global competitiveness drive inno-

vations in supply chain management and transport systems. The New Economy increases

the amount and types of products that can be delivered directly to homes, challenging

the organisation of last-mile delivery companies. To keep up with the challenges, deliv-

ery companies are continuously seeking new innovations to allow them to pack goods

faster and more efficiently. Thus, the packing problem has become a crucial factor and

solving this problem effectively is essential for the success of good deliveries and logistics.

On land, rail transportation is known to be the most eco-friendly transport system in

terms of emissions, energy consumption, land use, noise levels, and quantities of people

and goods that can be moved. It is difficult to apply innovations to the rail industry

due to a number of reasons: the risk aversion nature, the high level of regulations, the

very high cost of infrastructure upgrades, and the natural monopoly of resources in

many countries. In the UK, however, in 2018 the Department for Transport published

the Joint Rail Data Action Plan, opening some rail industry datasets for researching

purposes.

In line with the above developments, this thesis focuses on the research of machine

learning and operational research techniques in two main areas: improving packing

operations for logistics and improving various operations for passenger rail.

In total, the research in this thesis will make six contributions as detailed below.

The first contribution is a new mathematical model and a new heuristic to solve the

Multiple Heterogeneous Knapsack Problem, giving priority to smaller bins and consid-

ering some important container loading constraints. This problem is interesting because

many companies prefer to deal with smaller bins as they are less expensive. Moreover,

iii

giving priority to filling small bins (rather than large bins) is very important in some

industries, e.g. fast-moving consumer goods.

The second contribution is a novel strategy to hybridize operational research with ma-

chine learning to estimate if a particular packing solution is feasible in a constant O(1)

computational time. Given that traditional feasibility checking for packing solutions is

an NP-Hard problem, it is expected that this strategy will significantly save time and

computational effort.

The third contribution is an extended mathematical model and an algorithm to apply

the packing problem to improving the seat reservation system in passenger rail. The

problem is formulated as the Group Seat Reservation Knapsack Problem with Price on

Seat. It is an extension of the Offline Group Seat Reservation Knapsack Problem. This

extension introduces a profit evaluation dependent on not only the space occupied, but

also on the individual profit brought by each reserved seat.

The fourth contribution is a data-driven method to infer the feasible train routing strate-

gies from open data in the United Kingdom rail network. Briefly, most of the UK network

is divided into sections called berths, and the transition point from one berth to another

is called a berth step. There are sensors at berth steps that can detect the movement

when a train passes by. The result of the method is a directed graph, the berth graph,

where each node represents a berth and each arc represents a berth-step. The arcs rep-

resent the feasible routing strategies, i.e. where a train can move from one berth. A

connected path between two berths represents a connected section of the network.

The fifth contribution is a novel method to estimate the amount of time that a train is

going to spend on a berth. This chapter compares two different approaches, AutoRe-

gressive Moving Average with Recurrent Neural Networks, and analyse the pros and

cons of each choice with statistical analyses. The method is tested on a real-world case

study, one berth that represent a busy junction in the Merseyside region.

The sixth contribution is an adaptive method to forecast the running time of a train

journey using the Gated Recurrent Units method. The method exploits the TD’s berth

information and the berth graph. The case-study adopted in the experimental tests is

the train network in the Merseyside region.

Igor Deplano July 1, 2020

iv

Acknowledgements

There are many people to thank in my long journey:

Firstly I would like to express my sincere gratitude to my Director of studies Dr Trung

Thanh Nguyen, not only for the continuous support of my Ph.D study, his suggestions

and his patience, but also for giving me the opportunity to challenge my skills, alongside

my Ph.D study, in many research projects. He has been an invaluable source of teachings,

knowledge and an example for myself.

I would like to thank my advisor and collegue Dr Charly Lersteau for our discussions and

his useful comments; David Stamper, Chris Ellery, and Sheen Mathew from Merseyrail,

for their useful inputs and Justin Willett from the RSSB for kindly reviewing the chapters

6, 7 and 8; my supervisors Dr Qian Zhang and Prof Abir Hussain for their useful

comments; Dr Danial Yazdany, Yannis Ancele, Dr Ran Wang and Ahmed Makki for

the useful discussions done in the Liverpool Logistics Offshore and Marine Research

Institute. I would like to thank my examiners Dr Ben Matellini and Prof. Juergen

Branke for their useful suggestions. I would like to thanks also Prof Giovanni Squillero

and Dr Alberto Tonda, who initiated me into the research profession and convinced me

to start a Ph.D.

I would like to give a special thanks to my family: firstly, my parents for their almost

infinite patience and support in whatever choice I have made throughout my long path,

secondly to my deceased uncles Antonio and Angelo who motivated and taught me as

if I were their son.

Last but not the least, I would like to thank my friends and my enemies, who taught

me the shades of life and have contributed to make me a better person.

v

The research done in Chapter 3, Chapter 4, Chapter 5 has been supported by an LJMU

PhD scholarship, an NRCP-funded project no NRCP1617-6-125 managed by the Royal

Academy of Engineering. The research done in Chapter 6, Chapter 7, Chapter 8 has been

supported by an LJMU PhD scholarship, and an RSSB-funded project no COF-INP-05.

The data used in Chapter 6, Chapter 7, Chapter 8 were provided by the Merseyrail, the

RSSB and Network Rail. Some of the data contains information of Network Rail In-

frastructure Limited licensed under the following licence: www.networkrail.co.uk/data-

feeds/terms-and-conditions

Igor Deplano July 1, 2020

vi

Declaration of Authorship

I, Igor Deplano, declare that this thesis titled, ‘Operational Research and Machine Learn-

ing Applied to Transport Systems’ and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

vii

“Success is not final, failure is not fatal: it is the courage to continue that counts.”

Winston S. Churchill

Contents

Declaration ii

Abstract iii

Acknowledgements v

Declaration of Authorship vii

List of Figures xii

List of Tables xiv

Abbreviations xvi

1 Introduction 1
1.1 Background . 1
1.2 Packing problems . 2
1.3 Using machine learning to estimate feasibility of packing solutions in con-

stant time - a novel strategy . 3
1.4 The Offline Group Seat Reservation Knapsack Problem with Profit on Seats 4
1.5 Exploiting data-driven methodologies to improve the performance of the

United Kingdom Railway System . 6
1.6 Summary of contributions . 8

2 Literature review 10
2.1 Multiple Heterogeneous Knapsack Problem and Container Loading Prob-

lem constraints . 10
2.2 Using machine learning to estimate feasibility of packing solutions in con-

stant time - a novel strategy . 12
2.3 The Offline Group Seat Reservation Knapsack Problem 13
2.4 United Kingdom railway research . 14

3 A mixed-integer linear model for the Multiple Heterogeneous Knap-
sack Problem with realistic container loading constraints 16
3.1 Problem definition . 17

3.1.1 The model . 20
3.1.2 Model splitting and sizes . 28

ix

Contents x

3.2 Heuristic Weight First Best Fit(WFBF) 29
3.3 Dataset . 32
3.4 Experiments and discussion . 35
3.5 Summary . 47

4 Using machine learning to estimate feasibility of packing solutions in
constant time - a novel strategy 48
4.1 Methodology . 49
4.2 Dataset . 51
4.3 Classification, results and discussion . 53
4.4 Summary . 59

5 The Offline Group Seat Reservation Knapsack Problem with Profit on
Seats 60
5.1 Definitions, terminology and MIP model 61
5.2 Proposed algorithm . 63
5.3 Class instances . 67
5.4 Experimental results . 68
5.5 Summary . 71

6 A data-driven methodology to infer the graph of the feasible train
routing strategies from open data in UK rail network 74
6.1 Overview about the C-class of Train Describer data 75
6.2 Methodology . 76
6.3 Results and discussion . 80
6.4 Summary . 82

7 A comparison between the ARMA, GRU and LSTM: forecast the time
that a train spends to run a track section. 86
7.1 Case study . 87
7.2 Methodology . 90
7.3 Results and discussion . 94
7.4 Summary . 97

8 Train journey running time forecasting using Train Describers and
Gated Recurrent Units 99
8.1 Case study . 100
8.2 Methodology . 104
8.3 Experiments, results and discussion . 105

8.3.1 Training one model . 106
8.3.2 Forecasting a journey and comparison with actual train running

data and industry system (Darwin) 108
8.4 Summary . 117

9 Final conclusions and future work 120

References 125

Contents xi

Appendices 1

A Minimizing the wasted space giving priority to smaller bins is equiva-
lent to maximizing the packing efficiency 1

B Slave Problem 2

C Relation of equivalence with rotation along the vertical axis 5

D Application of the results of this thesis 6

E Publications resulting from this thesis 8

List of Figures

1.1 PPM in the last 8 years, with a trendline highlighted in red. source Office
of Rail and Road on data of Network Rail(Rail, b) 6

3.1 Description of the feasible centre of mass pyramidal space 18
3.2 Description of the feasible position along the x/y plane inside the bin . . 18
3.3 A shows an item and its CoM, B shows the item’s CoM after the reflection

is applied. Note that the operator affects only the CoM position. 18
3.4 Description of the coordinate system . 19
3.5 Parameters and variables representation in two dimensions. The larger

parallelepiped is the bin, the internal one is the item. For the sake of
simplicity, this figure does not present rotations. 20

3.6 Example of randomisedOrderWithPriority outputs. The bins are sorted
by volume ascending, inside each volume class, the order is random. If
the bins’ shapes are exactly the same, there will not be any difference
between every output. 30

3.7 An example that WFBF cannot solve, despite there being a feasible so-
lution. The feasible solution is represented in the figure, with CoMglobal

in the feasible region. 32

4.1 Flow chart of the procedure. The legend for the block components is
shown in Fig 4.2. 53

4.2 Legend of the flow chart in Fig 4.1. 54
4.3 Dataset frequencies for each item class. The dataset is aggregated by item

class and feasibility. The blue area is coloured by the unfeasible solutions,
while the yellow by the feasible solutions. 54

4.4 Imagification outputs. Each example is an 11x11 pixel image. To have
a clear image, and for visualisation purpose only, we rescaled the colours
as follows: a white, 255, if the input feature for the pixel is 0, and a grey
scale, minmax rescaled in the interval [0, 180], if the input value is greater
than 0. 56

5.1 An example of a local search procedure. a) shows the swap sequence be-
tween the feasible and unfeasible region, b) reports the array consequence
of the swapping sequence, the limit of the feasible region is removed be-
cause the new array requires a new evaluation. The reader should note
that since the swapping sequence is random, the combination of multiple
swaps may result in a swap of elements in the feasible region. 67

6.1 The Merseyrail network’s graph of berths, without managing the excep-
tions. The graph is disconnected, there are 9 subgraphs. 81

xii

List of Figures xiii

6.2 Histogram of threshold compared to the number of subgraphs. Note that,
the threshold axis does not follow a linear scale: from 0 to 20, the step
is 1; from 20 to 350, the step is 10; over 350 there is only one value, 900,
equivalent to the infinite threshold . 82

6.3 The number of edges compared to the threshold. Note that, the threshold
axis does not follow a linear scale: from 0 to 20, the step is 1; from 20
to 350, the step is 10; over 350 there is only one value, 900, equivalent to
the infinite threshold . 83

6.4 The Merseyrail network’s graph of berths, after managing the exceptions
with a threshold strictly greater than 0. 84

6.5 The Merseyrail network’s graph of berths: threshold strictly greater than
one. The graph is connected. 85

6.6 The Merseyrail network’s graph of berths, after managing the exceptions
with different thresholds. 85

7.1 Berth SS 0028, distribution of times differentiated by path. 88
7.2 Weekly boxplot, vertical axis is the time delta, horizontal axis is the week

day. 88
7.3 Hourly boxplot. Vertical axis is the time spent in berth, horizontal axis

is the hour of the day. 89
7.4 Comparison between the peak time data, and the non-peak time data.

In the boxplots: the vertical axis is the time spent in the berth, and the
horizontal axis is the day of the week. 90

7.5 The full time series for the path 0030-0024 90
7.6 Berth path 0030-0024, distribution of times differentiated by train class. . 93
7.7 PACF and ACF. 95
7.8 ARMA(3,3) . 96
7.9 Best performing model, GRU, parameterised with: batch size=64, train-

ing epochs=30, input size = 9, number of neurons = 8. 98

8.1 Distribution of times per berth: (8.1a) shows the full dataset, while (8.1b)
only the month of April . 102

8.2 Training results for berth SS0027. The blue plot is the real time series;the
orange plot is the fitted training dataset; and the green plot is the fore-
casted validation dataset. While progressing through the training rounds,
the model learns more details of the underlying distribution. 108

8.3 Training results for berth SS0027. The blue plot is the real time series;the
orange plot is the fitted training dataset; and the green plot is the fore-
casted validation dataset. While progressing through the training rounds,
the model learns more details of the underlying distribution. 109

8.4 Comparison between the residuals of M1, and M2. 111
8.5 Comparison between the error of M1, and M2. 112
8.6 Comparison betweenM1, andM2 : the forecast for the journey 362S48MV01.114
8.7 Comparison of M1, M2, and Darwin forecasting on real data of train

running time. The ID of the journeys presented here is 362S35MP03. . . . 116
8.8 Comparison of M1, M2, and Darwin forecasting on real data of train

running time. The ID of the journeys presented here is 362S101C02. . . . 117
8.9 Comparison of M1, M2, and Darwin forecasting with on real data of train

running time. The ID of the journeys presented here is 362S60MZ01. . . . 118

List of Tables

1.1 Table of dimensions of π-containers (container types marked with * have
ten dimension modifiers: 100% | 90% | ... | 20% | 10%) 3

3.1 Table of orientations . 18
3.2 Model overview . 19
3.3 List of parameters . 21
3.4 List of variables . 21
3.5 Size of models . 29
3.6 10 item 1 bin, average values over 1,000 random instances, time in milli-

seconds . 37
3.7 Experiments using 1 bin, from 18 to 90 items. Time is measured in

seconds (* is when the solver has hit the time limit of 60 minutes). 38
3.8 Experiments using 1 bin, from 100 to 200 items. Time is measured in

seconds(* is when the solver has hit the time limit of 60 minutes). 39
3.9 Experiments using multiple bins. * time limit exceeded. The objective

function is minimising ch1:eq:3.1. We report the value of the objective
and the number of bins that have been opened(in parentheses). In the
last cases (5 bins, from 130 to 200 items), the solver was not able to finish
the pre-solving phase before the time limit. 40

3.10 Heuristic compared to V2. Experiments using 1 bin, from 18 to 90 items.
Time is measured in seconds (* is when the solver has hit the time limit
of 60 minutes). 43

3.11 Heuristic compared to V2. Experiments using 1 bin, from 100 to 200
items. Time is measured in seconds(* is when the solver has hit the time
limit of 60 minutes). The solver reports a gap of 100% because the best
bound found in the time limit is 0.0. 43

3.12 Heuristic compared to V2. Experiments using multiple bins. * time limit
exceeded . 44

3.13 Heuristic. Experiments using multiple bins; the bins for each experiment
have the same volume and different dimensions. * time limit exceeded. . 45

3.14 Heuristic. Experiments using multiple bins; the bins for each experiment
have the same volume and different dimensions. * time limit exceeded. . . 46

4.1 A dataset snapshot, aggregating knapsack solutions by filling rate and
feasibility. The dataset is partitioned in aggregation buckets of 10 on the
filling rate. (A) is the average filling rate in the bucket, (B) is the number
of elements in the bucket. The filling rate is expressed in percentage. . . . 52

4.2 CNN architectures. 55

xiv

List of Tables xv

4.3 CNN architectures building blocks. In I3, the max pooling strides is 1x1.
| is concatenation. 56

4.4 CNN architectures. | is concatenation. 56
4.5 Confusion matrix for the best results. FF means an unfeasible solution is

correctly predicted as unfeasible, FT means an unfeasible solution is mis-
takenly predicted as feasible, TF means a feasible solution is mistakenly
predicted as unfeasible, and TT means a feasible solution is correctly pre-
dicted as feasible. The values reported are the average over 10 buckets,
while in parenthesis we report the standard deviations. 58

4.6 metrics: precision, accuracy, F1 . 58

5.1 Main features of the original instances compared with the proposed one . 68
5.2 Experiment group one, comparison with unitary profit, first part 70
5.3 Experiment group one, comparison with unitary profit, second part 71
5.4 Experiment group two, comparison with random profit, part one 72
5.5 Experiment group two, comparison with random profit, part two 73
5.6 Experiment group two, DEPL, with different time limits 73

6.1 TD-C message types . 75
6.2 TD-C message fields according to message types. 76
6.3 Typical TD-C message sequence (Rail, a) (comments added by the authors) 76
6.4 A TD-C message in a transition between the XL and the SS areas (Rail, a) 77
6.5 The first 10 exceptions sorted by their counter in descending order. 82

7.1 Paths of berth SS 0028. There are three valid paths, the most frequent
goes from berth SS 0030 to berth SS 0024, passing through berth SS 0028. 87

7.2 Stationary tests on the data grouped by: weekly, working days, non work-
ing days, peak time and non-peak time. 89

7.3 Path from 0030 to 0024: hourly statistics. Data from 2018-01-01 08:01:24
to 2018-04-30 22:56:59. 91

7.4 Path from 0030 to 0024: non peak time statistics. Data from 2018-01-01
08:01:24 to 2018-04-30 22:56:59. 91

7.5 Path from 0030 to 0024: peak time statistics. Data from 2018-01-01
08:01:24 to 2018-04-30 22:56:59. 92

7.6 Path from 0030 to 0024: weekly statistics. Data from 2018-01-01 08:01:24
to 2018-04-30 22:56:59. 92

7.7 comparison . 97

8.1 Northern Line case study. Forecasting path from berth SS 0027 to berth
SS 0111. 103

8.2 Training map . 107
8.3 Comparison of M1 and M2 in forecast accuracy against actual running

time (RMSE). The number of tested journeys is 1137. The unit of measure
is second. 113

B.1 Table of orientations . 2
B.2 List of parameters . 3
B.3 List of variables . 3

Abbreviations

1DKP 1 Dimensional Knapsack Problem

2SP 2 Dimensional Strip Packing problem

3DBPP 3 Dimensional Bin Packing Problem

3DKPP 3 Dimensional Knapsack Packing Problem

3D-OBP 3 Dimensional Orthogonal Bin Packing problem

ACF Auto Correlation Function

ARMA Auto Regressive Moving Aerage

BM Boltzman Machine

BPP Bin Packing Problem

CIS Customer Information System

CLP Container Loading Problem

CNN Convolutional Neural Network

CoM Centre of Mass

CSP Constraint Satisfation Problem

DfT Department for Transport

DT Decision Tree

FFNN Feed Forward fully connected Neural Network

GRASP Greedy Randomized Adaptive Search Procedure

GRU Gated Recurrent Unit

GSR-KPPS Group Seat Reservation - Knapsack Problem with Profit on Seat

GSR-KP Group Seat Reservation - Knapsack Problem

GSR Group Seat Reservation

HN Hopfield neural Network

IBPMS Infrastructure-Borne Performance Measurement System

ISO International Organization for Standardization

xvi

Abbreviations xvii

LSTM Long Short-Term Memory

MBSBPP Multiple Bin Size Bin Packing Problem

MHKP Multi Heterogeneous Knapsack Problem

MIP Mixed Integer linear Problem

NN Neural Network

NP-complete Nondeterministic Polynomial time complete

OTDR On Train Data Recorder

PPM Public Performance Measure

RBM Restricted Boltzman Machine

RF Random Forest

RNN Recurrent Neural Network

SPAD Signal Passed At Danger

SVM-P Support Vector Machine with Polinomial kernel

SVM-R Support Vector Machine with Radial kernel

TDS Ttrain Detection System

TD Ttrain Describer

TNV Trein-NummerVolgsystemen

TOC Train Operating Company

TOPS Total Operations Processing System

TRUST Ttrain Running Under System TOPS

TSP Travelling Salesman Problem

UK United Kingdom

WFBF Weight First Best Fit

To my parents . . .

xviii

Chapter 1

Introduction

1.1 Background

The supply chain management and the transport systems are a pivotal point of every
economy. Nowadays, the New Economy has increased the number and types of products
that can be delivered directly to the home, challenging the organisation of the last-
mile delivery companies. Packing problems are crucial for these companies and the
competitiveness in the sector continuously motivates their innovation. In the meantime,
on the mainland rail transport is known to be the most eco-friendly transport system
in terms of emissions, energy consumption, land use and noise levels to move large
quantities of goods and people. The innovation in the rail industry is challenging: it
is a risk averse industry, a highly regulated environment, infrastructure upgrades are
expensive and in most countries a natural monopoly of the resources. However, in 2018,
the Department for Transport of the United Kingdom published the Joint Rail Data
Action Plan, opening some rail industry datasets for researching purposes.

In this thesis we will develop techniques to address four main problems found in the
transport systems and more generally in the supply chain management.

Section 1.2 introduces a packing problem that nowadays is important, e.g, for last-mile
delivery. Section 1.3 introduces the importance of finding a methodology to hybridise
some techniques of the operational research field with machine learning methods to
produce instantly approximated results. Section 1.4 introduces a problem found in the
train seat reservation systems, whilst section 1.5 describes more in detail TD live feed
that is going to be used in this thesis to improve the rail transport system.

1

Chapter 1

1.2 Packing problems

The cutting and packing class of problems (Wäscher et al., 2007) has been studied in the
field of Operational Research since the 1940s because of its wide range of applications
in areas such as logistics, scheduling, and manufacturing.

In chapter 3 we develop a mixed integer linear programming model (MIP) for the Multi-
Heterogeneous Knapsack Problem (MHKP), considering the Container Loading Problem
(CLP) constraints including stability, weight limits, weight distribution and load bearing
constraints (Bortfeldt and Wäscher, 2013) and giving filling priority to smaller bins. We
want to extend the state of the art considering items with an arbitrary centre of mass and
restricting the acceptable bins’ global centre of mass in a pyramidal region. This model
can be used as a base model for further research on heuristics for both the knapsack
packing and bin packing problems. We study the impact of the CLP constraints on the
complexity of the solution space. The pyramidal region of choice is a trade-off between
the need for a packing solution and achieving desirable conditions for safe container
handling operations such as lifting and truck transport.

The MHKP consists of packing a strongly heterogeneous set of box-shaped items into a
weakly heterogeneous set of box-shaped bins such that the wasted space is minimized
or equivalently the bins’ occupied space is maximized (Bortfeldt and Wäscher, 2013).
The item profit is equal to the item volume, which differs from the general Knapsack
problem where items with the same volume may have different profits. Items must be
placed inside the borders of the bin without overlapping each other and without floating
in mid-air. We consider orthogonal rotation of items over the vertical axis.

A key difference between knapsack problems and bin packing problems is that the for-
mer considers profit maximization whereas the latter focuses on the minimization of
the number of bins used (Martello and Toth, 1990; Kellerer et al., 2004). In our case,
we are interested in the minimization of the wasted space and prioritizing smaller bins
over bigger ones. This is because companies often prefer to deal with smaller bins as
they are less expensive. Giving priority to filling small bins (rather than large bins) is
very important in some industries, e.g. fast-moving consumer goods. An example is
food delivery companies like Deliveroo and Uber Eats, where it is necessary to prioritise
smaller boxes that can be carried by bicycles over larger boxes that have to be carried by
cars/vans/trucks. This is so that the food can be delivered to every part of the area in
the shortest time. Similarly, for last-mile delivery companies such as Amazon Logistics,
Amazon Flex, myHermes, DPDLocal and the like, priority will be given to smaller bins
since they can fit into small vans and cars owned by the couriers. Other examples can
be found in last-mile delivery for pharmaceutical, consumer electronic, personal care,

2

Chapter 1

household care products, branded and packaged food, spirits and tobacco. The similar
prioritisation also underlies the principle of the Physical Internet, which is considered
the future of logistics. In the Physical Internet initiative (Montreuil, 2012, 2011), pri-
ority is given to packing goods into small, modular boxes if possible. Then thanks to
modularisation the smaller boxes can be attached together to be carried in bigger con-
tainers if needed. We exploit the work done so far in the Physical Internet by using their
containers’ dimensions as a proxy for dealing with real-world instances. In Sallez et al.
(2016), Physical Internet Containers or π-containers are divided into three main cate-
gories: T-container, H-container, and P-container. Table 1.1 illustrates their planned
dimensions: T-containers aim to replace 20 feet and 40 feet containers, H-containers are
designed to fit in a pallet sized surface, and P-containers have various dimensions aiming
to directly contain goods. Containers inside the same category can be combined into
groups and locked together (composition) while a container of a smaller category can
be encapsulated in a container of a larger category (encapsulation). The locking mech-
anism is still under development but considering the available options (Landschützer
et al., 2015), it is reasonable to assume that items will be placed over a grid (positioning
will be restricted to certain points).

Table 1.1: Table of dimensions of π-containers (container types marked with * have
ten dimension modifiers: 100% | 90% | ... | 20% | 10%)

Type length width height
T-container 1.2m, 2.4m, 3.6m, 4.8m, 6m, 12m 1.2m, 2.4m 2.4m, 1.2m
H-container * 1.2m 1.2m 2.4m
P-container * 1.2m 1.2m 2.4m

It is important to underline that even if the problem instances arise from the Physical
Internet Containers, the problem can be adapted to any common containers or box
types by restricting the bins to standard dimensions, e.g. 20 feet and 40 feet for ISO-
standard containers. From now on, we will adopt the common bin packing vocabulary:
T-containers will be called bins and H-containers will be called items.

1.3 Using machine learning to estimate feasibility of pack-
ing solutions in constant time - a novel strategy

Hybridising operational research with machine learning algorithms has raised interest in
the research communities in the last thirty years. The reason is that exploiting successful
machine learning technologies can help solving large scale optimisation problems that
describe the real world.

3

Chapter 1

One of the aims of this thesis is to develop a novel strategy to use machine learning
to estimate if a particular packing solution is feasible in a constant O(1) computational
time. In chapter 4 we combine one of the oldest decomposition techniques in operational
research literature with some of the latest results in machine learning literature. The
combination will provide an improved feasibility checking in constant time O(1), in
comparison to the computational cost inherent in solving an NP-Hard problem. The
strategy has been tested using the three dimensional bin packing problem, but can be
beneficial also to problems that have the knapsack or bin packing as a subproblem, e.g.
the travelling salesman problem. We highlight hereby that the methodology remains
valid for any number of dimensions.

The strategy consists of two stages. In the first stage, we exploit the Bender’s decompo-
sition to split the problem into a master/slave architecture, where the master allocates
the resources, and the slaves certify in parallel the feasibility of the proposed packing
solutions. Despite being inefficient as a strategy to directly find an optimal solution, it
is efficient to rapidly build a dataset of feasible and unfeasible solutions. In the second
stage we exploit the dataset built so far to train a classifier for checking the feasibility
of a packing solution.

1.4 The Offline Group Seat Reservation Knapsack Prob-
lem with Profit on Seats

In chapter 5 we extend the Offline Group Seat Reservation Knapsack Problem (GSR-
KP) presented in Clausen et al. (2010). In the original formulation, a train withW seats
stops in H stations. It is required to allocate n reservations. Each reservation i occupies
a set of contiguous seats for wi people from one initial station yi to a final one hi. The
profit is identified as to maximise the space occupied during the journey. In our extension
the value of the profit of the reservation is dependent also on the profits assigned to seats
in which the reservation is eventually allocated. Our extension makes the problem more
realistic, allowing the modelling of scenarios that were not possible to model with the
original formulation. The new scenarios cover all the problems where the ideal position of
an item is affected by how long the item must keep the position. We exploit the original
naming style and call the new extension Group Seat Reservation Knapsack Problem with
Profit on Seat (GSR-KPPS). Moreover, solving realistically sized instances is challenging
for a general solver and often having a good solution rapidly may be better than having
an optimal solution later, e.g. when there are fixed time constraints. Thus, we suggest
a new GRASP procedure that solves GSR-KP and GSR-KPPS. Eventually, we adapt

4

Chapter 1

and improve the original instances considered in Clausen et al. (2010) adding a random
profit on seats and proposing five new problems.

The GSR-KP is the problem of maximising the use of seats in a train during its journey.
In the offline version, the passengers reserve a seat from a departing station until their
arrival station. Each reservation is known in advance and before the train departs. A
reservation can occupy one or more seats. Groups of people are considered to be willing
to sit on close seats.

GSR-KP belongs to the family of the packing problems in two dimensions. In the packing
terminology, the reservations are the items, and the train is the bin. The bin and items
are rectangles. Packing rectangles into a rectangle is a strongly NP-Complete class of
problems (Leung et al., 1990). Regarding the bin, the dimension of the side parallel to
the horizontal axis represents the number of seats, while the dimension of the vertical
side represents the journey length of the train. For each item, the dimension of the
horizontal side represents the number of people in the reservation, while the dimension
of the vertical side represents the journey length of the reservation. The dynamic of
a reservation consists of reserving a seat, or a group of seats, from a departing station
to an arrival station. This special behaviour is modelled by a special constraint which
forces the vertical position of the item.

We propose to extend GSR-KP to create a new model that can distribute the allocation
of passengers based on their journey length and the profit of the seats, e.g. allocate
reservations for long journeys or groups in the centre of the carriage, and reservations
for short journeys or unitary groups near doors, reducing the excess friction during the
boarding/alighting phases. Another strategy would be to distribute passengers evenly
across carriages such that the number of passengers exiting/entering in a particular
station is similar over all carriages. This strategy has been adopted considering the
real-time scenario in Yazdani et al. (2019).

Another notable application is in the events industry, e.g different stands may cost dif-
ferently depending on their location and size. Applications as such can also be modelled
using this newly proposed model, considering the lending requests as reservations with
time and size, while the price paid to the lender is dependent on the position in which
the request will be placed. A similar problem exists also in the tourism industry, for
example in the booking system of an hotel, different rooms may have a different profit.

Our work can be especially meaningful for the United Kingdom (UK) rail industry (UK,
2016; Hatano, 2004). The UK rail industry is an open market, Train Operators are
private, or a mix of private and public, companies in competition on the main corridors.
In longer journeys, i.e. from Liverpool to London, booking a seat in advance is the

5

Chapter 1

common rule of thumb to avoid standing up for the whole journey. Train Operators
are interested to reduce delays to improve the Public Performance Measure and gain a
competitive advantage over competitors.

1.5 Exploiting data-driven methodologies to improve the
performance of the United Kingdom Railway System

Nowadays, railway transport is one of the most eco-friendly transport systems for goods
and people. The number of passengers of the UK’s railway industry has been more
than doubled over the last 25 years, and the industry is facing growing operational
performance challenges. The public performance measure (PPM) is one of the industry
standards to monitor Train Operating Companies’ (TOCs) performances. The PPM
index, until April 2019, considered the amount of delays measured at destination. The
delays considered are higher than a threshold and without any distruption on the planned
schedule, i.e. skipping station or cancelling journey. From April 2019, there is a step
change from PPM to a basket of new metrics that will provide greater granularity of
actual performance on route as well as arrival at destinations, rather than referring back
to the recording to the minute. Fig 1.1 shows the PPM values aggregated from all TOCs
in Great Britain. The data is since 2011, and each period is 28 days. We highlighted in
red the PPM trendline, which shows a consistent decline.

Figure 1.1: PPM in the last 8 years, with a trendline highlighted in red. source Office
of Rail and Road on data of Network Rail(Rail, b)

6

Chapter 1

As previously introduced, the Department for Transport (DfT) published the Joint Rail
Data Action Plan, opening some rail industry datasets for researching purposes. The
data sources include the main public and private actors, i.e. Network Rail, National Rail
Enquiries, Transport for London and the Rail Delivery Group. Some of these datasets
are produced by the Infrastructure-Borne Performance Measurement Systems (IBPMS)
that monitor the train movements on physical tracks using Train Detection Systems
(TDS). The work in Palmer (2010) describes the TDS technologies in use nowadays.
For a broader survey of the train’s communication technologies we refer to (Fraga-
Lamas et al., 2017). The lowest level of detail achievable using an IBPMS is through the
Train Describer (TD) system (Toossi et al., 2017). The TD system is also the basis of
the TRUST system, a higher level view of the network traffic that includes information
about the schedule. One key note is that TRUST is less precise than TD. Actually,
TRUST rounds the train delays to the minute, thus the delay evolution during the
journey can become inaccurate considering the new PPM metric.

Most of the railway network is partitioned into geographical areas, each one identified
by 2-byte area code. An area is divided into track sections called berths, each identified
by a 4 byte code. However, some locations may be associated to more than one berth
code. For example, there could be a code for the signal and another for the berth, both
at the same location. Another example is the case of double tracks where the railway
has two tracks running in parallel in two directions. In this case, trains passing the same
location in two directions will trigger two different berth codes.

The transition point between two berths is called berth step. A berth step is usually
located near interlocking parts of the track (sections, switches and signals). The sensors
measure the arrival time at the berth-step and this information, along with the train run-
ning number (also called headcode) is collected in the Train Describers (TD) information
system. In TD, the presence of a train at a specific time is identified by a four-character
code called the headcode.

This thesis will utilise TD data to improve the performance of UK railway systems.
Specifically, Chapter 6 exploits TD data to develop a data-driven method to infer useful
infrastructure and feasible train routing strategies from open data in UK real network.
Chapter 7 exploits the results of Chapter 6 and develops a novel method to estimate the
amount of time that a train is going to spend on a berth, whereas Chapter 8 exploits
the findings to develop a method to successfully forecast the train running time along a
journey.

7

Chapter 1

1.6 Summary of contributions

The contributions of this thesis are summarised as follows:

• In Chapter 3

– A new mixed-integer linear model that solves the Multiple Heterogeneous
Knapsack Problem, for the first time giving priority to smaller bins and
considering the following constraints: non overlapping, boundaries and po-
sitioning (both constrained and free), rotations (around the vertical axis),
orthogonal displacement, weight limit, static stability, weight distribution in
a pyramidal region and load bearing considering items’ arbitrary centre of
mass.

– A study of the trade-off of adding more constraints to make the problem more
realistic and the complexity of finding a solution.

– New metrics that facilitate the comparison of datasets used in experiments.

– A new constructive heuristic named Weight First Best Fit to handle large
scale instances in a reasonable time.

• In Chapter 4

– A novel two-stages strategy to exploit machine learning to estimate if a par-
ticular packing solution is feasible in a constant O(1) computational time:
the first stage exploits the master/slave Bender’s decomposition to build a
dataset of knapsack solutions, whilst the second stage exploits the dataset to
train a classifier for the satisfiability problem.

– A new dataset of packing solutions and a study on benchmarking different
classification algorithms.

– A comparison of the classification performances in the new dataset for the fol-
lowing algorithms: decision trees (DT), random forest (RF), support vector
machine with radial basis function kernel (SVM-R), support vector machine
with polynomial kernel (SVM-P), three different architectures of convolu-
tional neural networks (CNN), feed forward fully connected neural networks
(FFNN) with one, two and three hidden layers.

• In Chapter 5

– A mixed-integer linear model for the Group Seat Reservation Knapsack Prob-
lem with Price on Seat, an extension of the the Offline Group Seat Reservation
Knapsack Problem. We introduce a profit evaluation dependent on not only

8

Chapter 1

the space occupied, but also on the individual profit brought by each reserved
seat.

– A new GRASP based algorithm that solves the original problem and the
newly proposed one.

– New problem instances that represent real world scenarios more realistically.

• In Chapter 6

– A new algorithm to automatically generate the berth graph, a graph that
represents the feasible train routing strategies through the network of berths.

• In Chapter 7

– A new development of two different approaches to estimate the amount of
time that a train is going to spend on a berth. The first approach uses an
AutoRegressive Moving Average model, the second approach uses the Gated
Recursive Unit and the Long short-term memory methods.

– An analysis on these two approaches, which shows that the best results can
be obtained by networks with input sizes that were covering the statistically
significant spikes of the AutoCorrelation Function.

• In Chapter 8

– A new development of two different forecasting systems based on Gated Re-
current Unit models and the berths graph. The first one utilises an input of
the immediate previous n running times. The second one, instead, uses the
previous n running times available 4 hours before the start of the journey.

– A new sequential training procedure that is a trade-off between accuracy, and
training time. Each round improves the model knowledge of the time series.
The motivations for building such a procedure are: the berths have different
distributions, for some berths, there may be lack of samples or a very low
variance distribution, while other berths may have richer variability.

– An analysis on the performance of the proposed methods, in comparison to
the current industry system called Darwin.

– A new procedure that filters the communication of the new forecasting based
on the exceeding of a threshold.

9

Chapter 2

Literature review

The literature review is organised in four sections, one for each main problem.

2.1 Multiple Heterogeneous Knapsack Problem and Con-
tainer Loading Problem constraints

This section focuses on mathematical linear models for the three dimensional bin packing
problem (3DBPP) or three dimensional knapsack packing problem (3DKPP) that tackle
some CLP constraints such as weight distribution, load-bearing, and stability. Readers
interested in approximated methods are referred to Zhao et al. (2016a); Coffman Jr et al.
(2013); Christensen et al. (2017).

The first application-oriented literature review on cutting and packing problems was
published by Sweeney and Paternoster (1992), including papers written since 1940. Coff-
man Jr et al. (2004) published a bibliography on the bin packing problem. Martello and
Toth (1990) and successively Kellerer et al. (2004) made a detailed analysis of the broad
class of knapsack problems. Dyckhoff (1990) made the first categorization of the cutting
and packing problems, further improved by Wäscher et al. (2007).

According to Bortfeldt and Wäscher (2013), the most frequently used constraints in
the CLP can be categorized as follows: weight distribution, loading priorities, orienta-
tion, stacking or load-bearing; cargo-related: complete-shipment, allocation, positioning;
load-related: stability, complexity patterns. For a state-of-the-art review of the CLP al-
gorithms that also considers heuristics and metaheuristics, readers are referred to the
work of Zhao et al. (2016a).

10

Chapter 2

The geometrical constraints are common to any packing problem (Crainic et al., 2012b).
They are about positioning items inside bins ensuring that they will not overlap and that
they will not exceed the bin’s dimensions. Positioning can be modelled in absolute terms
(in a Cartesian system where the origin is in one vertex of the bin) or in relative terms
(the position is relative to other items inside the bin) (Bortfeldt and Wäscher, 2013).
Considering only the underlying geometrical constraints (orthogonal packing inside the
bins), BPP remains an NP-Hard problem in a strong sense. Delorme et al. (2016)
recently published a survey on exact methods focusing on the one-dimensional version of
the problem, while for approximation methods to solve the multiple-dimensional version,
the most recent surveys are by Christensen et al. (2017, 2016).

Regarding the CLP constraints, weight distribution refers to displacing items inside the
bin in order to obtain an overall centre of mass inside a safe region or to minimize the
distance from a reference point, which is usually placed in the centre of the container.
The centre of mass position is considered important (Bortfeldt and Wäscher, 2013)
because it can affect the safety of operations during lifting with cranes, vehicle stability
and asymmetric tyre wear.

Trivella and Pisinger (2016) modelled this problem as an MIP model for the multidi-
mensional case, not considering rotations, nor load-bearing and assuming a homogeneous
density of rectangular shaped boxes. This implies that a bin’s centre of mass falls in the
centre of the box. The model is too hard to solve even for small instances. Thus, the
authors proposed a multi-level local search heuristic that exploits the Fekete-Schepers
interval graphs representation (Fekete et al., 2007; Fekete and Schepers, 2004).

Paquay et al. (2016) tackled a multiple bin size bin packing problem (MBSBPP) con-
sidering the following constraints: geometrical (non overlapping, boundaries, rotations
and positioning), orthogonal displacement, weight limit, orientation, special shapes of
the containers, stability, weight distribution and fragility (this is a special case of load-
bearing, where items cannot bear any load). Even in this paper, the mass of items is
considered homogeneous.

Load-bearing is the limit of weight that can be stacked over a box. Often it is represented
as “do not place more than n boxes” or “do not place box i over box j”. Junqueira et al.
(2012) tackled the loading of a single bin considering vertical stability (the ability of
boxes to not fall/move along the vertical axis) and horizontal stability (the capacity of
boxes to not move along the axes that form the horizontal plane). Their load-bearing is
constrained inside a 100% vertical stability, which implies that no gaps between items
are allowed. Jin et al. (2003) modelled the 3DBPP with stability, heterogeneous bins,
and rotations. The large-scale case is solved with an algorithm based on Tabu-Search for
the assignment phase and a sub-volume heuristic for the packing phase. Hifi et al. (2010)

11

Chapter 2

modelled a 3DBPP for packing identical bins without considering additional constraints.
They proposed a set of lower bound inequalities based on analogies with the parallel-
machine scheduling problems. Ceschia and Schaerf (2013) developed two algorithms, one
based on Tabu-Search and the other on Simulated Annealing. They considered rotations,
load-bearing, multi-drop, weight limits and stability (full-support). De Queiroz and
Miyazawa (2013) tackled the oriented two-dimensional strip packing problem (2SP),
considering load balancing, load-bearing, and a multi-drop constraint.

The above review shows that currently there is no exact method for solving the MHKP
with the following constraints despite these being very common in real scenarios: non
overlapping, boundaries and positioning (both constrained and free), rotations (around
vertical axis), orthogonal displacement, weight limit, static stability, feasible weight dis-
tribution in a pyramidal region and load-bearing considering items’ arbitrary centre of
mass. Chapter 3 aims to fill this gap by proposing a mixed-integer linear model that
solves MHKP giving priority to smaller bins and considering all the aforementioned con-
straints. Having such a model will help further research on heuristics and approximations
models.

2.2 Using machine learning to estimate feasibility of pack-
ing solutions in constant time - a novel strategy

Historically, the first approaches to solving combinatorial optimisation problems with
neural networks (NN) were done with energy based models like Hopfield Networks
(HN) (Hopfield and Tank, 1985), Boltzman machines (BM), and their restricted version
(RBM). Some examples can be found in Looi (1992) for the Travelling Salesman Prob-
lem (TSP), Ohlsson et al. (1993) for the one-dimensional Knapsack Problem (1DKP),
Ramanujam and Sadayappan (1988) for vertex cover and other graph problems. Smith
(1999) reports a review of their applications in different combinatorial optimisation prob-
lems. Other important classes of applications are the optimisation of nonlinear problems
(Kennedy and Chua, 1988), non-convex problems (Zhang et al., 2018) and the solution
of partial differential equations (Kumar and Yadav, 2011; Rudd and Ferrari, 2015; Han
et al., 2018).

More recently, researchers explored solving TSP with FFNN hybridized with nature
inspired algorithms (Masutti and de Castro, 2009), co-adapative NN (Cochrane and
Beasley, 2003) and pointer networks (Vinyals et al., 2015). Dual Hopfield NN has been
used to solve the mixed-binary quadratically constrained quadratic problem (Travacca
and Moura, 2018) and recurrent NN has been applied for the convex optimisation (Qin

12

Chapter 2

et al., 2018). Reiforcement learning algorithms have been exploited in the solution of
combinatorial problems, i.e. 1DKP, TSP (Bello et al., 2016) and 3DBP (Hu et al., 2018,
2017; Jin, 2017; Laterre et al., 2018). Deep Convolutional NN achieved good results with
the Constraint Satisfation Problem (CSP) (Xu et al., 2018), predicting the satisfiability
in a balanced dataset for a small sized problem instance. Lachhwani (2019) surveys the
application of NN to the solution of mathematical programming problems.

Between the oldest techniques for decomposing and solving linear programming problems
there are Dantzig-Wolfe decomposion (Dantzig and Wolfe, 1960) (columns generation)
and Bender’s decomposition (Benders, 1962; Geoffrion, 1972) (rows generation). These
techniques are deeply connected (Dantzig and Thapa, 2006a,b), in fact it is known that
they are the dual of each other.

We exploit Bender’s decomposion, which has been used previously in the strip packing
problem (Côté et al., 2014), the orthogonal cutting stock problem (Delorme et al., 2017,
2015) and constraint programming (Eremin and Wallace, 2001; Cambazard and Jussien,
2005). A recent review of its applications can be found in (Rahmaniani et al., 2017).

The above review shows that currently the Bender’s decomposition has never been ex-
ploited to build a classifier, whilst no classifier has been built to test the feasibility of
packing instances. Chapter 4 aims to fill this gap by proposing a two-stage method that
combines the Bender’s decomposition with machine learning. Having such a method
will help further research on heuristics and approximations models.

2.3 The Offline Group Seat Reservation Knapsack Prob-
lem

To the best of our knowledge, since the original publication of the problem in Clausen
et al. (2010), none of the follow-up studies on the Group Seat Reservation Problem has
shown to be better than the original work. An online version of the seat allocation
problem was first published in Boyar and Larsen (1999), and further analysis was made
in Goyal (2018). A real-time algorithm that aims to reduce the boarding/alighting time
by maintaining a uniform load on carriages through systematic distribution of passengers
with flexible tickets has been recently proposed by the authors in Yazdani et al. (2019).

Many papers have been published in the more general Packing Problems context, some
examples of new approximation approaches are genetic algorithms (Gupta et al., 2017;
Gonçalves and Resende, 2011b; Jegadeshwari and Jaisree, 2014; Wang and Chen, 2010)
and their biased versions (Gonçalves and Resende, 2011a, 2013), divide and conquer algo-
rithms(in which the solution space is partitioned and searched independently) (Wei et al.,

13

Chapter 2

2013), neuro-genetic approaches that mix neural networks and genetic algorithms(Deane
and Agarwal, 2013), GRASP algorithms(Resende and Ribeiro, 2019) and GRASP/Path
relinking (Alvarez-Valdés et al., 2013), Tabu search (Ceschia and Schaerf, 2013; Crainic
et al., 2009) and other greedy randomized heuristics (Perboli et al., 2011; Crainic et al.,
2012a).

The GSR is a specialised version of the bin packing problem in the two dimensional case,
so every algorithm that has been designed for orthogonal two dimensional rectangular
packing will work on a GSR problem. The difference in our contribution is that none of
them can exploit the nature of the problem, which is that in a two dimensional problem
both dimensions are free. In the original GSR, the allocation toward one dimension is
constrained. Chapter 5 aims to fill this gap.

2.4 United Kingdom railway research

Several studies tried to exploit Infrastructure-Borne data to analyse train operations.
There are few research studies published on the UK railway systems: (Toossi et al., 2017)
introduced Train-Borne and Infrastructure-Borne measurements, (Van Gulijk et al.,
2015; Zhao et al., 2016b; Rashidy et al., 2018; Zhao et al., 2018) investigated Signal
Passed At Danger (SPAD) events utilising the TD-S-CLASS messages, (Martin, 2016)
utilised Bayesian reasoning to predict delays in real-time, (Balfe, 2010) studied the effects
of automation in the rail signalling systems.

The low level Infrastructure-Borne measurement system used in the Dutch railway
(TNV-system (TNV) (Kecman et al., 2011)) has a logic that resembles the combination
of the UK’s TD and TRUST. We exploit only TD, but it is useful to make a comparison
between the UK and Dutch system to avoid confusion because, despite having a similar
logic, the systems are quite different from each other.

The Train Describers, in TNV, “are a unique number (per day) identifying the train line
service (characterizing the train type, terminal stations, route, and served stations) and
including a discriminating counter for successive trains” (Goverde and Hansen, 2000).
These informations, on the UK’s system, are available only on TRUST, while in TD
there is no information about the schedule and stations. Regarding the size of the Train
Describer’s data fields TNV uses a field of 9 byte length (Kecman et al., 2011), UK’s
TD headcode length is 4 bytes. The first one are unique per day, the second one may
be unique, but in reality it depends on the frequency of service of the area code.

In the UK system the first byte is devoted to the train class ([0-9]), the second to
the train line, and the last two are incremental numbers. There are also exceptions,

14

Chapter 2

i.e. obfuscation for freight or postal service (it is applied on TOC request) and special
messages (i.e. speed restrictions). The most updated documentation on the UK’s system
is held on Open Rail Data Wiki, n.d..

As a result, existing work for the Netherlands system cannot be used for the UK system.
This prompts the need for studies specifically made for the UK system.

The first research work on TNV is TNV-Prepare (Goverde and Hansen, 2000), it pro-
cessed the TNV’s logs and converted them into a suitable format. TNV data has been
used then in delay extraction and analysis (Goverde and Hansen, 2001; Goverde and
Meng, 2011), validation of simulation models (Tromp, 2004), detection of route conflicts
and reactionary delays (Goverde et al., 2007; Daamen et al., 2008; Goverde and Meng,
2011; Kecman and Goverde, 2013b).

Train event times are predicted in Hansen et al. (2010), using timed event graphs,
and in Kecman and Goverde (2013a) utilising a timed event graph with dynamic arc
weights. Regarding dwell time and prediction of running time, Kecman and Goverde
(2015) utilised least-trimmed squares robust linear regression, regression trees and ran-
dom forests. (Becker and Schreckenberg, 2018) utilised the analytical approach. Dwell
time prediction, for short stop stations, has also been tackled in Li et al. (2014, 2016,
2018).

Train delays have been predicted using Bayesian networks (Corman and Kecman, 2018;
Lessan et al., 2018), a fuzzi Petri net model (Milinković et al., 2013), Berger et al. (2011)
presented a stochastic model for delays propagation and forecasts based on directed
acyclic graphs. Pongnumkul et al. (2014) used data-driven models, in particular using
autoregressive integrated moving average and neighbour models. Oneto et al. (2018)
exploited the technology stack of Apache Spark and shallow and deep extreme learning
machines. Yaghini et al. (2013) used neural networks, whereas Oneto et al. (2018) used
a hybrid decision tree. A different, but related topic, has been shown in Shen et al.
(2019), where they compared multiple linear regression, and random forest regression,
to predict the recovery from the disruption caused by primary delays.

The above review shows that currently there is no published method to infer from the
raw data a graph model that represents the feasible train routing strategies through
the network of berths, Chapter 6 aims to fill this gap. Currently there is no published
research that exploits the UK TD-C data to forecast the time that a train spends in a
berth, nor the forecast of the arrival time at the berth-step of a train journey. Chapter 7
and Chapter 8 aim to fill these gaps.

15

Chapter 3

A mixed-integer linear model for
the Multiple Heterogeneous
Knapsack Problem with realistic
container loading constraints

The chapter proposes a mixed-integer linear model that solves the Multiple Heteroge-
neous Knapsack Problem, giving priority to smaller bins and considering the following
constraints: non overlapping, boundaries and positioning (both constrained and free),
rotations (around the vertical axis), orthogonal displacement, weight limit, static sta-
bility, weight distribution in a pyramidal region and load bearing considering items’
arbitrary centre of mass.

The first contribution is an MIP Model for the MHKP considering some CLP constraints.
The main novelty of the model is the arbitrary items’ centre of mass (CoM) and the
acceptable global bins’ CoM pyramidal shape. This creates a model that, for the first
time, covers both the pallet-loading and the container-loading instances with or without
interlocking mechanisms.

The second contribution is a study of the impact of the CLP constraints on the com-
plexity of the solution space.

The third contribution is the introduction of new metrics to compare the datasets used
for the experimental part. An effort in this direction is important because faster algo-
rithms are often specialised algorithms that efficiently handle only particular cases of
the problem (Wolpert and Macready, 1997). Having such metrics will also improve the
export of theoretical results in the industry.

16

Chapter 3

The last contribution is the introduction of a simple deterministic heuristic named
Weight First Best Fit (WFBF). WFBF is an on-line heuristic that fills the available
bins with one item at a time, sequentially, until the available bins or the available items
are exhausted. The algorithm is capable of handling any problem size in a reasonable
time.

The chapter is organized as follows. Section 3.1 discusses the model in detail. Section 3.2
discusses the heuristic WFBF and its limitations. Section 3.3 describes the dataset used,
and section 3.4 shows and discusses the computational experiments used to validate the
model. The chapter will end summarizing the results and with a discussion of future
research.

3.1 Problem definition

Definition 3.1 (Item). An item i ∈ I is a parallelepiped object with length li, width
wi and height hi. The possible dimensions are combinations of a predefined set of
dimensions (in this chapter, without any loss of generality, we take the dimensions
specified in Table 1.1 as an example for experimental purposes). Each item has its load
bearing limit Λi, which is the maximal weight that the item can bear on its top surface.
Moreover, each item has a centre of mass expressed in coordinates κxi , κ

y
i , κzi .

Definition 3.2 (Bin). A bin j ∈ J is a parallelepiped object with length Lj , width Wj

and height Hj . The possible dimensions are combinations of the ones given in Table 1.1.
Every bin has weight limit Ωj , which represents the maximal weight that can be allocated
inside.

Definition 3.3 (Bin’s Centre of Mass). The feasible global centre of mass of bin j is
described by the coordinates of its vertex, %j , and the ratio of its pyramidal base, ξj .
The pyramid base is proportional to the bin’s size, Fig 3.1 shows an example. The
ideal CoM is placed in the centre of the bin’s bottom face. This position maximises
the safety for crane lifting operations, truck transport and eventually manual handling.
The choice of the pyramidal region is a trade-off between the ideal CoM and the need
to have feasible solutions. Restricting the base of the pyramid and moving the vertex
will result in having a feasible region nearer to the ideal one.

Definition 3.4 (Grid-based positioning). The positions inside the bin along the plane
parallel to the ground are restricted by a grid. Each grid cell is a square with β indicating
the length of the side. β is the greatest common divisor of all items’ sides. This choice
ensures item alignment. Items’ positions are aligned on the grid. Note that this grid-
based positioning can be changed to free positioning by setting β = 1. Fig. 3.2 illustrates
the concept.

17

Chapter 3

Figure 3.1: Description of the feasible centre of mass pyramidal space

Figure 3.2: Description of the feasible position along the x/y plane inside the bin

Definition 3.5 (Rotation of items). Every item can rotate orthogonally around its
vertical axis. The number of feasible rotations is two. Table 3.1 describes possible
orientations.

Table 3.1: Table of orientations

Orientation Type Parallel to x-axis Parallel to y-axis Parallel to z-axis
1 Length Width Height
2 Width Length Height

Definition 3.6 (Reflection). The reflection operator is a π radiant rotation that affects
only the item centre of mass. Fig 3.3 shows an example.

Figure 3.3: A shows an item and its CoM, B shows the item’s CoM after the reflection
is applied. Note that the operator affects only the CoM position.

Definition 3.7 (Coordinate systems). The proposed model uses two coordinate systems.
Fig 3.4 shows the description. The first coordinate system has as its origin the bin’s
front-bottom-left corner, and is used to describe the positions inside the bin. The second

18

Chapter 3

coordinate system has as its origin the item’s front-bottom-left corner and is used for
defining the position of the CoM in an item.

Figure 3.4: Description of the coordinate system

Table 3.2: Model overview

min wasted space giving priority to smaller bins
st:

each item must be assigned to at most one bin
assigned items can rotate orthogonally along the vertical axis
assigned items must be positioned on a grid
assigned items must be placed inside bins limits
assigned items must not overlap
assigned items have to be placed on the ground or one or more items,

they cannot float in mid air
the sum of the items’ weight assigned to a bin must be lower than or

equal to the bin’s supported weight limit
for each assigned item, the stacked weight over it must be lower than

its load bearing limit
the global centre of mass of every bin must fall inside a pyramidal region

One of the aims of this chapter is to give a mathematical model for the problem in
Table 3.2. We developed the model considering items with an arbitrary centre of mass
(CoM) and restricting the acceptable bins’ global CoM in a pyramidal region. Items can
rotate orthogonally around the vertical axis. This implies that there are two feasible
rotations for every item. The overview is shown in Table 3.1. The rotation applied to
an item affects the position of its CoM. Moreover, as we are considering arbitrary CoM,
the model has to recalculate the CoM considering an additional operation, which is a π
radiant rotation that we call reflection, that affects only the CoM of the item. Items are
placed orthogonally, that is, items’ sides are aligned with bin’s sides.

In Table 3.3 we list all the model’s parameters, Fig 3.5 shows a two-dimensional repre-
sentation of the parameters and some variables. The variables of the model are presented
in Table 3.4.

19

Chapter 3

Figure 3.5: Parameters and variables representation in two dimensions. The larger
parallelepiped is the bin, the internal one is the item. For the sake of simplicity, this

figure does not present rotations.

The rotation modelling is inspired by the work of Lin et al. (2014). ϕo,i ∈ {0, 1} is a
binary variable that equals 1 if the orientation of item i ∈ I follows orientation type
o ∈ O = {1, . . . , r}, where r is the number of the feasible rotations for an item (i.e 2).
ϕo,i will be 0 otherwise. The orientation types are defined in Table 3.1. We are consid-
ering only 2 orthogonal rotations in the plane x/y because it is a common practice to
avoid any rotation of the z-axis. For example, in the MODULUSCHA project (MoD-
ULUSHCA, 2012), an H-container has a male/female mechanism on the top/bottom
surface that limits the feasible rotations to only two along the ground plane. Moreover,
items and bins are regular parallelepipeds and since we are aiming for optimal config-
uration, considering non-orthogonal rotations will only increase the complexity of the
problem without improving solutions.

Items are aligned in a grid where each cell is a square with β indicating the length of the
side. Aligned positioning is a common practice, examples being pallet positioning into
ISO-standard containers, boxes inside a pallet or the locking mechanism (Landschützer
et al., 2015) in the Physical Internet containers. Furthermore, this practice reduces
the feasible search space and can be disabled by assigning β = 1. It is preferable that
the solution includes the items’ absolute positioning using one of the bin’s corners as
the origin of the Cartesian system. We define β ∗ xi, β ∗ yi, zi, the coordinates of the
front-bottom-left item’s corner.

3.1.1 The model

The model’s objective is to minimize the wasted space giving filling priority to smaller
bins.

20

Chapter 3

Table 3.3: List of parame-
ters

Name Description
J Set of bins’ indexes
I Set of items indexes
O Set of available rota-

tions
n Cardinality of J
m Cardinality of I
Lj Length of bin j
Wj Width of bin j
Hj Height of bin j
L Max length of bins in J
W Max width of bins in J
H Max height of bins in J
li Length of item i
wi Width of item i
hi Height of item i
ωi Weight of item i
Ωj Weight limit of bin j
Λi Load-bearing limit of

item i
%j Vertex of the pyramid

for bin j, %x,y,zj are the
coordinates using the
origin of the bin j as ref-
erence system.

κi centre of mass vector for
item i

κsi With s ∈ {x, y, z} coor-
dinate s of the centre of
mass for item i

ξj Radius in the base of
the pyramid for bin j

β Dimension of the side of
the square cell grid

Table 3.4: List of variables

Name Description
xi, yi Position of the item i in the grid,

β · xi, β · yi, are the respective coor-
dinates of the front-bottom-left edge

zi Coordinate of the front-bottom-left
edge of the item i

x
′
i, y

′
i, z

′
i Coordinate of the back-top-right

edge of the item i.
ϕo,i 1 if the applied rotation for the item

i is o ∈ O, otherwise 0
Si,k 1 if item i and item k are assigned

to the same bin, otherwise 0
Zj 1 if bin j is considered in the solu-

tion, otherwise 0
Ci,j 1 if item i is assigned to bin j, oth-

erwise 0
xpi,k, y

p
i,k, z

p
i,k 1 if item i is placed after item k

along the coordinate x, y and z,
which means respectively x

′
k ≤ xi,

y
′
k ≤ yi, z

′
k ≤ zi, otherwise 0

πi,k,p p ∈ {0, 1, 2, 3}, 1 if the corner p of
the item k is on the top surface of
the item i, otherwise 0

θi,m 1 if item i is placed on the ground
of the bin, otherwise 0

θi,k 1 if item i is placed on the top of
item k, otherwise 0

Ri 1 if reflection is applied on item i,
otherwise 0

υxi , υ
y
i Coordinate of the centre of mass of

the item i after applying the item
rotation and reflection, the reference
is the origin of item i

τxi,j , τ
y
i,j , τ

z
i,j Coordinate of the centre of mass for

the item i using as reference the ori-
gin of the bin j

λi,k 1 if item k must be considered for
the sum of the weights that are
placed over the item i, otherwise 0

21

Chapter 3

minimize
∑
j∈J

(
Lj ·Wj ·Hj −

∑
i∈I(li · wi · hi · Ci,j)

)
(Lj ·Wj ·Hj)

(3.1)

The objective (3.1) is equivalent to maximizing the packing efficiency. The proof for
equivalence is trivial and is shown in Appendix A. Note that, using rational represen-
tation, the objective satisfies our requirements without having to add other penalties.
There are other ways to model the objective to satisfy this requirement. For exam-
ple, giving unused bins penalty zero would be a good approach if we added a specific
constraint to force all items to be allocated.

The model is subject to the following constraints.

Ci,j ≤ Zj ∀i ∈ I, j ∈ J (3.2a)∑
j∈J

Ci,j ≤ 1 ∀i ∈ I (3.2b)

∑
i∈I

Ci,j ≥ Zj ∀j ∈ J (3.2c)

∑
o∈O

ϕo,i =
∑
j∈J

Ci,j ∀i ∈ I (3.2d)

Our problem considers selecting a subset of items and bins. The total allocation of items
is not mandatory because there may be a set I of items such that, given a set J of bins,
there exists no valid solution with total allocation. Constraint (3.2a) forces to 0 every
Ci,j if the bin j has not been considered in the solution. Constraint (3.2b) ensures that
every item is assigned to at most one bin, while constraint (3.2c) states that at least
one item must be placed in an opened bin. Bins without at least one item inside are
not considered a valid solution. Constraint (3.2d) forces only one rotation if the item is
assigned, O are the available rotations, shown in Table 3.1.

∑
i∈I

Ci,j · ωi ≤ Ωj ∀j ∈ J (3.3)

∑
i∈I

Ci,j · li · wi · hi ≤ Lj ·Wj ·Hj ∀j ∈ J (3.4)

22

Chapter 3

Constraint (3.3) and (3.4) ensure that the contents of each bin do not exceed a weight
limit and a volume limit, respectively.

The positioning and non-overlapping constraints are based on the ones proposed by
Paquay et al. (2016) adapted with the rotation style found in Lin et al. (2014). The
main difference between them is that Paquay et al. (2016) adopted one boolean variable
per side orientation, while Lin et al. (2014) adopted one variable per rotation. In detail,
constraints (3.5a)-(3.5c) define the borders of the items along the axes, taking into
account the possible rotation.

x
′
i − β · xi = li · ϕ0,i + wi · ϕ1,i ∀i ∈ I (3.5a)

y
′
i − β · yi = li · ϕ1,i + wi · ϕ0,i ∀i ∈ I (3.5b)

z
′
i − zi = hi ∀i ∈ I (3.5c)

Constraints (3.6a)-(3.6c) ensure that the shape of each item is contained inside the
borders of the selected bin. We precompute L = maxj∈J Lj , W = maxj∈JWj , H =
maxj∈J Hj as the maximum dimensions available for the considered set of bins. L, W
and H are used as big M constraints.

x
′
i ≤

∑
j∈J

Ci,j ·Wj + (1− Zj) ·W ∀i ∈ I (3.6a)

y
′
i ≤

∑
j∈J

Ci,j · Lj + (1− Zj) · L ∀i ∈ I (3.6b)

z
′
i ≤

∑
j∈J

Ci,j ·Hj + (1− Zj) ·H ∀i ∈ I (3.6c)

Constraints (3.7a)-(3.7d) deal with the case when two items i,k are allocated to the same
bin. The constraints enforce that Si,k is equal to 1 if and only if item i is in the same
container as item k. Si,k is useful in other parts of the model.

23

Chapter 3

Si,k ≤
∑
j∈J

Ci,j ∀j ∈ J, ∀i, k ∈ I|i 6= k (3.7a)

Si,k ≤
∑
j∈J

Ck,j ∀j ∈ J, ∀i, k ∈ I|i 6= k (3.7b)

Si,k ≥ Ck,j + Ci,j − 1 ∀j ∈ J, ∀i, k ∈ I|i 6= k (3.7c)

Si,k + Ci,j + Ck,l ≤ 2 ∀j, l ∈ J |l 6= j,∀i, k ∈ I|i 6= k (3.7d)

The non overlapping constraints are basically the same as in Paquay et al. (2016) with
minor modifications: we utilized Si,k on the right part of constraint (3.8a) and stated
clearly the coordinates considering the position in the grid. Constraint (3.8a) states that
two items do not overlap if the boundaries along at least one dimension do not overlap.
The overlapping boundaries are characterized by the constraints (3.8b)-(3.8d).

xpi,k + ypi,k + zpi,k + xpk,i + ypk,i + zpk,i ≥ Si,k ∀i, k ∈ I|i 6= k (3.8a)

x
′
k ≤ β · xi + (1− xpi,k) ·W

β · xi + 1 ≤ x′
k + xpi,k ·W ∀i, k ∈ I|i 6= k (3.8b)

y
′
k ≤ β · yi + (1− ypi,k) · L

β · yi + 1 ≤ y′
k + ypi,k · L ∀i, k ∈ I|i 6= k (3.8c)

z
′
k ≤ zi + (1− zpi,k) ·H ∀i, k ∈ I|i 6= k (3.8d)

zpi,k = 0, xpi,k = 0, ypi,k = 0 ∀i, k ∈ I|i = k (3.8e)

The stability is defined by constraining every item to lie on the bin’s floor (3.9a) or
on at least one other item (3.9b)-(3.9p). Constraint (3.9q) excludes the possibility of
having one item both simultaneously lying over another one θi,k = 1 and on the ground
(θi,m = 1). πi,k,l, l ∈ {0, 1, 2, 3} represents which corner of item k is under item i.

Constraints (3.9b) and (3.9c) define one of the conditions for item i to be stable over
an item k is zi = z

′
k, i.e. the top surface of item k is at the same height as the bottom

surface of item i. The criteria for defining whether an item is on top of another in
the x/y plane are defined respectively in (3.9d) - (3.9g) for the x axis and in (3.9h) -
(3.9k) for the y axis. The constraints (3.9l) - (3.9o) enforce that if item k is on top of
item i, at least two bottom corners of k should be on the top surface of i to maintain

24

Chapter 3

stability. (3.9p) states that two items can be considered stable only if they are in the
same container.

zi ≤ H · (1− θi,m) ∀i ∈ I (3.9a)

zi ≤ H · (1− θi,k) + z
′
k ∀i, k ∈ I|i 6= k (3.9b)

zi ≥ H · (θi,k − 1) + z
′
k ∀i, k ∈ I|i 6= k (3.9c)

β · xi +W · (θi,k − 1) ≤ β · xk + (1− πi,k,0) ·W ∀i, k ∈ I|i 6= k (3.9d)

β · xk +W · (πi,k,0 − 1) ≤ x′
i + (1− θi,k) ·W ∀i, k ∈ I|i 6= k (3.9e)

β · xi +W · (θi,k − 1) ≤ x′
k + (1− πi,k,1) ·W ∀i, k ∈ I|i 6= k (3.9f)

x
′
k +W · (πi,k,1 − 1) ≤ x′

i + (1− θi,k) ·W ∀i, k ∈ I|i 6= k (3.9g)

β · yi + L · (θi,k − 1) ≤ β · yk + (1− πi,k,2) · L ∀i, k ∈ I|i 6= k (3.9h)

β · yk + L · (πi,k,2 − 1) ≤ y′
i + (1− θi,k) · L ∀i, k ∈ I|i 6= k (3.9i)

β · yi + L · (θi,k − 1) ≤ y′
k + (1− πi,k,3) · L ∀i, k ∈ I|i 6= k (3.9j)

y
′
k + L · (πi,k,3 − 1) ≤ y′

i + (1− θi,k) · L ∀i, k ∈ I|i 6= k (3.9k)

πi,k,0 + πi,k,1 ≥ θi,k ∀i, k ∈ I|i 6= k (3.9l)

πi,k,2 + πi,k,3 ≥ θi,k ∀i, k ∈ I|i 6= k (3.9m)

πi,k,0 + πi,k,1 ≤ θi,k · 2 ∀i, k ∈ I|i 6= k (3.9n)

πi,k,2 + πi,k,3 ≤ θi,k · 2 ∀i, k ∈ I|i 6= k (3.9o)

θi,k ≤ Si,k ∀i, k ∈ I|i 6= k (3.9p)∑
k∈I+

θi,k ≥
∑
j∈J

Ci,j ∀i ∈ I (3.9q)

θi,k = 0, πi,k,l = 0 ∀i, k ∈ I|i = k, ∀l ∈ 0, 1, 2, 3 (3.9r)

We are dealing with items with an arbitrary centre of mass and this condition affects
both load-bearing and the bins’ global CoM. Before proceeding further, we have to model
how the centre of mass is affected by the item rotations and reflection. κi = (κxi , κ

y
i , κ

z
i)

represents the actual centre of mass for the item i ∈ I, where the dimensions are relative
to the front-bottom-left corner. We use υxi , υ

y
i to represent the CoM point after applying

rotations and reflection. Note that CoM along the z-axis is not affected by rotation or
reflection. However, if z-axis rotations (i.e. 6-way rotations) are considered, it is trivial
to extend the model here to cover such a case.

In the group of constraints (3.10) we state the centre of mass considering reflection
and rotation. (3.10a)-(3.10d) define the x coordinate, Ri is a decision variable that

25

Chapter 3

determines which group of equations must be satisfied. Ri is equal to 1 if there is
reflection, 0 otherwise. The first group, (3.10a)-(3.10b) represent the case of no reflection,
while (3.10c)-(3.10d) represent the case with reflection. The rotations follow the same
schema adopted before in the constraints group (3.5).

υxi ≤ κxi · ϕ0,i + κyi · ϕ1,i +Ri ·W ∀i ∈ I (3.10a)

υxi ≥ κxi · ϕ0,i + κyi · ϕ1,i −Ri ·W ∀i ∈ I (3.10b)

υxi ≤ x
′
i − (κxi · ϕ0,i + κyi · ϕ1,i) + (1−Ri) ·W ∀i ∈ I (3.10c)

υxi ≥ x
′
i − (κxi · ϕ0,i + κyi · ϕ1,i)− (1−Ri) ·W ∀i ∈ I (3.10d)

υyi ≤ κ
y
i · ϕ0,i + κxi · ϕ1,i +Ri · L ∀i ∈ I (3.10e)

υyi ≥ κ
y
i · ϕ0,i + κxi · ϕ1,i −Ri · L ∀i ∈ I (3.10f)

υyi ≤ y
′
i − (κyi · ϕ0,i + κxi · ϕ1,i) + (1−Ri) · L ∀i ∈ I (3.10g)

υyi ≥ y
′
i − (κyi · ϕ0,i + κxi · ϕ1,i)− (1−Ri) · L ∀i ∈ I (3.10h)

Now we are ready to introduce the constraints that restrict the bins’ CoM. We define a
pyramidal safe region in which the centre of mass has to lie. This region is defined by
the vertex %j , and has a base radius ξj . A possible solution could be given by setting
the vertex coordinates in the bin’s centre, respectively %zj = 1

2 · Hj , %xj = 1
2 · Lj and

%yj = 1
2 ·Wj .

τxi,j , τ
y
i,j , τ zi,j represent the coordinates of the CoM of item i considering as coordinate

reference system the origin of the bin j. Constraints (3.11a)-(3.11c) represent the refer-
ence coordinate for υxi , (3.11d)-(3.11f) for υ

y
i and (3.11g)-(3.11i) remap κzi , because we

do not have rotations over the z axis.

The next group of constraints defines the pyramidal region. The linearization exploits
the style in Paquay et al. (2016), defining the feasible region for each bin. The principal
differences are the region shape and the introduction of the asymmetry in the items’
CoM. (3.11j) and (3.11k) define the pyramid limits along the x axis, (3.11l) and (3.11m)
for the y axis, while (3.11n) defines the constraint on the actual height of the CoM that
must fall under the region previously defined. ξj represents the radius in the base of the
pyramid for bin j. We pre-compute ξj = α · Lj if Wj > Lj or ξj = α ·Wj otherwise.
α is a parameter to define the base of the pyramid, α ∈ (0, 1]. By default, we suggest

26

Chapter 3

α = 0.8 which means 80% of the lower dimension.

τxi,j ≤Wj · Ci,j ∀i ∈ I, j ∈ J (3.11a)

τxi,j ≤ υxi + β · xi ∀i ∈ I, j ∈ J (3.11b)

τxi,j ≥ υxi + β · xi −Wj · (1− Ci,j) ∀i ∈ I, j ∈ J (3.11c)

τyi,j ≤ Lj · Ci,j ∀i ∈ I, j ∈ J (3.11d)

τyi,j ≤ υ
y
i + β · yi ∀i ∈ I, j ∈ J (3.11e)

τyi,j ≥ υ
y
i + β · yi − Lj · (1− Ci,j) ∀i ∈ I, j ∈ J (3.11f)

τ zi,j ≤ Hj · Ci,j ∀i ∈ I, j ∈ J (3.11g)

τ zi,j ≤ κzi + zi ∀i ∈ I, j ∈ J (3.11h)

τ zi,j ≥ κzi + zi −Hj · (1− Ci,j) ∀i ∈ I, j ∈ J (3.11i)

∑
i∈I

τxi,j · ωi ≤ %xj · (
∑
p∈I

ωp · Cp,j) +
%zj · (

∑
p∈I ωp · Cp,j)−

∑
i∈I τ

z
i,j · ωi

%zj
· ξj ∀j ∈ J

(3.11j)∑
i∈I

τxi,j · ωi ≥ %xj · (
∑
p∈I

ωp · Cp,j)−
%zj · (

∑
p∈I ωp · Cp,j)−

∑
i∈I τ

z
i,j · ωi

%zj
· ξj ∀j ∈ J

(3.11k)∑
i∈I

τyi,j · ωi ≤ %
y
j · (

∑
p∈I

ωp · Cp,j) +
%zj · (

∑
p∈I ωp · Cp,j)−

∑
i∈I τ

z
i,j · ωi

%zj
· ξj ∀j ∈ J

(3.11l)∑
i∈I

τyi,j · ωi ≥ %
y
j · (

∑
p∈I

ωp · Cp,j)−
%zj · (

∑
p∈I ωp · Cp,j)−

∑
i∈I τ

z
i,j · ωi

%zj
· ξj ∀j ∈ J

(3.11m)∑
i∈I

τ zi,j · ωi ≤ %zj ·
∑
p∈I

ωp · Cp,j ∀j ∈ J

(3.11n)

The last part of the model concerns load-bearing. We assume that every item i is not
perfectly rigid, thus, can resist the pressure of no more than a specific load, Λi. We
know the centre of mass, κi, but how the mass is distributed inside i remains unknown.
The weight that an item is bearing is the sum of the items’ weights inside the cuboid
space over it. Constraints (3.12a) and (3.12b) restrict the z coordinate of items placed

27

Chapter 3

over item i. Constraints (3.12c)-(3.12f) limit the items having their centre of mass over
item i, note that those equations follow the same style used for stability, exploiting the
previously defined centre of mass. Constraint (3.12g) ensures that the total weight of
items placed over item i does not exceed Λi.

z
′
i ≤ zk + (1− λi,k) ·H ∀i, k ∈ I|i 6= k (3.12a)

λi,k ·H + z
′
i ≥ zk + 1 ∀i, k ∈ I|i 6= k (3.12b)

(λi,k − 1) ·W + β · xi ≤
∑
j∈J

τxk,j ∀i, k ∈ I|i 6= k (3.12c)

∑
j∈J

τxk,j ≤ x
′
i + (1− λi,k) ·W ∀i, k ∈ I|i 6= k (3.12d)

(λi,k − 1) · L+ β · yi ≤
∑
j∈J

τyk,j ∀i, k ∈ I|i 6= k (3.12e)

∑
j∈J

τyk,j ≤ y
′
i + (1− λi,k) · L ∀i, k ∈ I|i 6= k (3.12f)

∑
k∈I

λi,k · ωk ≤ Λi ∀i ∈ I (3.12g)

xi, yi, zi, x
′
i, y

′
i, z

′
i, τ

x
i,j , τ

y
i,j , τ

z
i,j , υ

x
i , υ

y
i ∈ N, ∀i ∈ I, j ∈ J

(3.13a)

Si,k, Zj , Ci,j , x
p
i,k, y

p
i,k, z

p
i,k, θi,m, Ri, λi,k ∈ {0, 1}, ∀i, k ∈ I, j ∈ J,m ∈ I

⋃
{m+ 1}

(3.13b)

πi,k,p, ϕo,i ∈ {0, 1}, ∀i, k ∈ I, p ∈ {0, 1, 2, 3}, o ∈ O
(3.13c)

3.1.2 Model splitting and sizes

From the previous model we extract three submodels called V0, V1, V2, with each
including a subset of the constraints. Let n be the number of items and m be the
number of bins.

The submodel V0 contains constraints (3.1) - (3.9r) and considers only stability. The size
of the model is 9n2+nm+m+9n variables and n2m2−nm2−n2m+2nm+25n2+3m−15n
constraints.

28

Chapter 3

Table 3.5: Size of models

constraints variables
V0 n2m2 − nm2 − n2m+ 2nm+ 25n2 + 3m− 15n 9n2 + nm+m+ 9n

V1-V0 9nm+ 5m+ 8n 3nm+ 3n
V2-V0 6n2 + 9nm+ 5m+ 3n n2 + 3n+ 3nm
V2-V1 6n2 − 6n+ n n2

The submodel V1 includes constraints (3.1) - (3.11n) and considers stability and the
distribution of the CoM. The size of the model is 9n2 + 4nm + m + 12n variables and
n2m2 − nm2 − n2m+ 11nm+ 25n2 + 8m− 7n constraints.

The submodel V2 includes constraints (3.1) - (3.12g) and considers stability, distribution
of the CoM and load bearing. The size of the model is 10n2 + 4nm+m+ 12n variables
and n2m2 − nm2 − n2m+ 11nm+ 31n2 + 8m− 12n constraints.

3.2 Heuristic Weight First Best Fit(WFBF)

In this section we show a simple deterministic heuristic that we name Weight First Best
Fit (WFBF). WFBF is an on-line heuristic that fills the available bins with one item at
a time, sequentially, until the available bins or the available items are exhausted. WFBF
includes a multi-start procedure in case the available bins have the same volume but
different dimensions. The procedure randomises the order of the bins in each unique
volume set and tests if there are better solutions. WFBF belongs to the category of
constructive methods (Zhu et al., 2012) and it is detailed in Algorithms 1 and 2.

WFBF assumes, without any loss of generality, that it is given as an input the list of
bins (bins), the list of items (items) and the maximum repetitions (maxLimit). The
list of items is sorted by weight in descending order, discarding the items that do not
fit in any available bin. The sorting of the list of items may even be internalised in the
algorithm as can be easily calculated by a few lines of code.

The list of bins is sorted with the function randomisedOrderWithPriority(bins).
randomisedOrderWithPriority takes as input the list of bins, and returns the list of
bins sorted by “randomised volume ascending”.
The steps of randomisedOrderWithPriority are the following: 1) partition the list of
bins in classes of bins with the same volume 2) for each class, shuffle the list of bins in
the class 3) flatten the classes in volume ascending order. 4) return the flattened array.

randomisedOrderWithPriority is necessary for the multi-starting procedure to explore
different combinations when there are bins in the same class that have the same volume

29

Chapter 3

Figure 3.6: Example of randomisedOrderWithPriority outputs. The bins are sorted
by volume ascending, inside each volume class, the order is random. If the bins’ shapes

are exactly the same, there will not be any difference between every output.

but respectively different shapes. If a class is composed by bins with the same shapes
then there is no benefit in shuffling. An example of possible
randomisedOrderWithPriority outputs is shown in Fig 3.6, given as input any array
a,b or c, the output can be any array between a,b and c.

isRandomizable(bins) evaluates if the solution may benefit from
randomisedOrderWithPriority. The procedure is simple, it returns true if for at least
one class (in the list of classes of bins with the same volume) there are at least two
elements and their shapes are different, false otherwise. This function is used to avoid
unnecessary repetitions in the case where the list of bins has every volume class with
one element only.

isBetterSolution(solution1, solution2) returns true if solution1 opens fewer bins then
a solution2. If solution2 is empty or not set, then it returns true. The function returns
false otherwise.

Let solution be the set of final solutions. For each non-empty bin j, let solutionj be the
set of items assigned to the bin j with their configuration. The configuration for each
item is its position p, its rotation o and a flag r to determine if the reflection is applied.

If the bin list isRandomizable then repeat for the maxLimit the following filling pro-
cedure.

The algorithm fills the next empty bin j if there are still available items. A procedure
enumerates all the possible positions in the space of the bin j. This procedure is trivial,
and the cardinality of positionj is Hj ·Wj ·Lj

β . For each available item i, in every com-
bination of possible positions p, rotations o and reflection r, the algorithm computes a
ranking function (Eq: 3.14).

The ranking function ranks the quality of the item configuration, the smaller the rank,
the better the configuration. The function promotes configurations that are near the
floor of the bin and near the vertical axis placed in the vertex of the bin’s feasible
centre of mass space. The variables zi and τx,yi are explained in Table 3.4, respectively.
They are the coordinate z of item i and the position of the CoM of item i in the plane

30

Chapter 3

orthogonal to the bin’s floor. %x,yj is listed in Table 3.3 and is the position of the vertex
of the feasible CoM region of the bin j.

rank ⇐ (zi +
∥∥∥τx,yi − %x,yj

∥∥∥
2
)2 (3.14)

WFBF makes use of three functions, named isNotOverlapping(solutionj ,itemi,p,o,r),
isLoadBearingV alid(solutionj ,itemi,p,o,r) and isCDMV alid(solutionj ,itemi,p,o,r).
Their names describe their function, and can be implemented in a straightforward way
from the model’s constraints.

isNotOverlapping(solutionj ,itemi,p,o,r) tests if the configuration of item i does not over-
lap any other item already placed inside the bin j

isLoadBearingV alid(solutionj ,itemi,p,o,r) tests if adding the item i with the config-
uration p, o, r breaks some already placed items inside bin j under the CoM of item
i.

isCDMV alid(solutionj ,itemi,p,o,r) tests if the global CoM in bin j is inside the admis-
sible region.

The best rank is initialized to infinite. If the rank of a new item is strictly better than
the rank of the current best (first best fit) and the placement of this new item does not
violate the filling constraints, update the best item with the new item.

After all configurations have been tested, if there is no best (i.e. there is no feasible
configuration), the item i is placed in a list of discarded items, discarded. Items in this
list will be considered for the next bin. If a best configuration is found, the itemi,p,o,r

is appended into solutionj , and the variable feasiblePositions is updated by removing
the ones that now are overlapping with the itemi,p,o,r. The last procedure helps to speed
up the algorithm.

Since the items are initially sorted by weight in descending order, WFBF may not
guarantee a global optimal solution. WFBF computational complexity in the worst case
is O(m · n · q) where m is the number of bins, n is the number of items and q is the
number of possible positions. The worst case scenario belongs to the class of cases that
WFBF cannot handle: consider one bin j with dimensions Wj ,Lj ,Hj , and at least two
items i,k with dimensions wk = wi = Wj ,lk = li = Lj ,hk, hi. If the CoM of the items
i,k are outside the feasible CoM region of the bin j, WFBF will not be able to find
any feasible packing solution, while, in fact there exists one. The example is shown in

31

Chapter 3

Figure 3.7: An example that WFBF cannot solve, despite there being a feasible
solution. The feasible solution is represented in the figure, with CoMglobal in the

feasible region.

Fig 3.7, the feasible solution is represented in the figure, with CoMglobal in the feasible
region.

3.3 Dataset

In most studies in the literature, given a fixed dimension for the bin, items dimensions are
generated randomly. For example, Junqueira et al. (2012) considered a random dataset
made from cubic bins of different sizes and items that were ranging from 10% to 50% or
25% to 75% of the bin size. This procedure, although widely used, could lead to results
that do not entirely match with the characteristics of real-world scenarios. A dataset
would be ideal if it is useful for both academic and industrial fields. Thus, we decided to
exploit the work done by Landschützer et al. (2015) for the Physical Internet challenge
(Montreuil, 2012). We built our test instances by randomly picking containers and items
from the types defined in the full theoretical set of Physical Internet containers. The
set consists of 24 types of bins and 440 types of items. Note that since the PI modular
containers are designed to be compatible with existing ISO units, the tested instances
should be applicable for current scenarios where ISO loading units (e.g. 40, 20, 10 ft
ISO containers) are also used.

The other features, such as load-bearing for items and weight limits for the bins, have
been selected to be as realistic as possible. The bin’s weight limit is proportional to its
volume and the weight limits for actual 40’ inter-modal containers (Eq: 3.15), with the
exception of the 20’ container which follows the actual standard. The same philosophy
has been adopted for defining the maximal weight for the items (Eq: 3.16).

Ωj = Wj · Lj ·Hj

40′volume · 40′weightLimit (3.15)

32

Chapter 3

Algorithm 1 Heuristic WFBF, part 1
Require: bins
Require: maxLimit
Require: items sorted by weight in descending order, removing the items that do not

fit in any available bin
1: bestSolution⇐ ∅
2: repeatLimit⇐ 1
3: repeat⇐ 0
4: if isRandomizable(bins) then
5: repeatLimit⇐ maxLimit
6: end if
7: for repeat < repeatLimit do
8: solution⇐ ∅
9: itemsleft⇐ items

10: bins⇐ randomisedOrderWithPriority(bins)
11: while j ∈ bins do
12: discarded⇐ ∅
13: if itemsleft 6= ∅ then
14: solutionj ⇐ ∅
15: positionsj ⇐ enumerate all the possible positions available inside the bin j
16: for i ∈ itemsleft do
17: best⇐∞
18: winning ⇐ ∅
19: for all itemi,p,o,r, p ∈ positionsj , o ∈ O, r ∈ {0, 1} reflection do
20: rank ⇐ (zi +

∥∥∥τx,yi − θx,yj
∥∥∥

2
)2

21: if rank < best AND
isNotOverlapping(solutionj ,itemi,p,o,r) AND
isLoadBearingValid(solutionj ,itemi,p,o,r) AND
isCDMValid(solutionj ,itemi,p,o,r) then

22: best⇐ rank
23: winning ⇐ itemi,p,o,r

24: end if
25: end for

Ωi = wi · li · hi
maxitemvolume

· 20′weightLimit ·maxitemvolume
20′volume (3.16)

The items’ centre of mass has been generated in a random point under 3
5 of the height

and between 20% and 80% of the other dimensions.

The items’ load-bearing in real-world boxes varies considerably depending on the ma-
terial used and construction geometries. Thus, we opt for simplicity and set the load
bearing to be 3 times the maximal weight of the item. This is a parameter that can be
changed by users if necessary.

33

Chapter 3

Algorithm 2 Heuristic WFBF, part 2
26: if winning 6= ∅ then
27: feasiblePositions ⇐ remove the overlapping winning positions from

feasiblePositions
28: solutionj ⇐ solutionj

⋃
{itemi,p,o,r}

29: else
30: discarded⇐ discarded

⋃
{i}

31: end if
32: end for
33: itemsleft⇐ discarded
34: end if
35: end while
36: repeat⇐ repeat+ 1
37: if isBetterSolution(solution, bestSolution) then
38: bestSolution⇐ solution
39: end if
40: end for
41: return bestSolution

Λi = 3 · Ωi (3.17)

The item weight has been generated randomly with a uniform distribution between 30%
and 100% of the items’ maximal weight.

Every experiment is composed of n bins and m items. The procedure for generating a
test instance is to firstly randomly pick n bins and then randomly pickm items such that,
for every item there exists at least one bin that can fit it. There is no loss of generality
because this procedure is equivalent to filtering unfitting items before the optimization
task. All the instances follow the same item distribution. The set of available types of
items is ordered by increasing volume in such a way that every instance is made of 70%
of items after the median (higher volume), and 30% before (lower volume).

Moreover, we introduce some new metrics to better evaluate the results of the exper-
iments. The first one is inspired by the eccentricity of conics, which will measure the
distance of an item/bin from being a cube. Thus, given li, wi, hi as the dimensions of
the item/bin i, the eccentricity of i is defined by Eq: 3.18.

εi = max{
∣∣∣∣ li − wili + wi

∣∣∣∣, ∣∣∣∣hi − wihi + wi

∣∣∣∣, ∣∣∣∣ li − hili + hi

∣∣∣∣} (3.18)

34

Chapter 3

The second one, αi in Eq:3.19, measures the asymmetry of the centre of mass. αi

is defined as the Euclidean distance from the actual centre of mass to the centroid
(geometric centre) Ci of the item.

αi = ‖Ci, CAi‖2 (3.19)

The third one is the relative volume, Eq: 3.20. This metric is calculated as the volume
of item i divided by the volume of the bin j.

V olReli,j = hi · wi · li
Hj ·Wj · Lj

(3.20)

3.4 Experiments and discussion

The first aim of the experiments is to test the model behaviour by varying the number
of items and bins. We also investigate the impact of the constraints on the difficulty
of finding a solution. Each experiment terminates with a final script that validates the
solution found. We tested the three models listed in Section 3.1.2. Briefly, V0 considers
only stability, V1 considers stability and CoM distribution and V2 considers stability,
CoM distribution, and load-bearing. The second aim is to have a comparison metric to
test the goodness of the proposed heuristic. Having the results from the model we can
know how far the heuristic is from finding the optimal solution.

All versions have been implemented in OPL and solved using IBM CPLEX R© 12.7.
The heuristic has been implemented in Python 3.6. The machine used to perform the
experiments was an Intel R© CoreTM i7-4790 CPU @ 3.60GHz, 16GB RAM, with Windows
7 Enterprise 64-bit.

As reported by many authors, the complexity of the problem depends obviously on
the number of items, the number of bins and their dimensions. The first two can be
explained by looking at how the number of variables and the number of constraints
grows according to the number of items and bins, as shown in Table 3.5. The item/bin
dimensions involved affect the number of feasible positions in the solution space. Thus,
considering large spaces increases the difficulty.

In each experiment we reported the gap calculated by the solver, the formula is reported
in Eq: 3.21. We applied the same formula to calculate the gap in the heuristic results.

35

Chapter 3

gap = |bestbound− bestinteger|1
1010 + |bestinteger|

(3.21)

In the first group of experiments, we focus on packing 10 random items in the smallest
bin, with dimensions 120× 120× 120. In Table 3.6 we report the average feature values
of the solutions found for all the 1,000 instances solved with V0, V1. and V2. The
dataset column represents the features of the dataset. µ• indicates average while σ2

•

is the variance. ω indicates the weights, LB is the load bearing limit, V olRel is the
relative volume (volumeitemvolumebin), ε is the previously defined eccentricity, α is the asymmetry,
objective value is the result of minimizing the wasted space (Eq. 3.1), elapsedtime is
the time elapsed from the starting point before the pre-solving phase to the solution
or the time limit. V0 is not affected by the weight but it packs fewer items than V1
because it chooses items with bigger volume than V1 (µV olRel). The degradation of
the objective between V0 and V1 is 0.12% and the time to achieve a solution increases
by about 30%. V2, instead, is about 15 times more complex to solve than V1. V2
chooses items with higher load-bearing limit (µLB) which will also have higher volume
(µV olRel) and be slightly less eccentric than V1 but with higher µα. We hypothesize
that the complexity is due to the combination of the following factors: higher volume
items imply a higher centre of mass along the H axis and this brings a lower feasible
solution space1. Similarly, the higher the eccentricity, the higher the α. Those factors
combined with the restricted base will force the solver to explore more nodes before
finding a solution.

1The higher the height in the pyramid, the less space available.

36

Chapter 3

Table 3.6: 10 item 1 bin, average values over 1,000 random instances, time in milli-
seconds

feature V0 V1 V2 dataset
available items 10 10 10 10
packed items 9.813 9.817 9.386 -

µω 23.312 23.010 24.500 22.657
σ2
ω 1167.43 1170.52 1265.41 1111.56

µLB 107.38 105.69 112.78 103.97
σ2
LB 21698.31 21797.74 23466.60 20633.55

µV olRel 0.05005 0.04926 0.05259 0.04843
σ2
V olRel 0.00479 0.00481 0.00519 0.00455
µε 0.5587 0.5589 0.5557 0.5604
σ2
ε 0.0357 0.0358 0.0355 0.0359
µα 11.884 11.877 12.120 11.882
σ2
α 81.871 81.919 82.789 82.305

µobjective 0.5316 0.5328 0.5407 -
µelapsedtime 330.16 432.86 7019.56 -

37

Chapter 3

T
ab

le
3.

7:
Ex

pe
rim

en
ts

us
in
g
1
bi
n,

fr
om

18
to

90
ite

m
s.

T
im

e
is
m
ea
su
re
d
in

se
co
nd

s
(*

is
w
he
n
th
e
so
lv
er

ha
s
hi
t
th
e
tim

e
lim

it
of

60
m
in
ut
es
).

in
st
an

ce
V

0
V

1
V

2

ite
m

bi
n

tim
e

ob
je
ct
iv
e

ga
p%

tim
e

ob
je
ct
iv
e

ga
p%

tim
e

ob
je
ct
iv
e

ga
p%

18
1

9.
84

0.
30

90
0

14
.3
8

0.
30

90
0

36
00

*
0.
44

07
29

.8
7

19
1

2.
72

0.
50

98
0

15
.8
9

0.
50

98
0

36
00

*
0.
54

09
0.
62

20
1

1.
34

0.
69

12
0

1.
40

4
0.
69

12
0

3.
68

1
0.
69

12
0

21
1

9.
06

0.
29

35
0

22
.6
2

0.
29

35
0

36
00

*
0.
37

54
21

.8
0

22
1

4.
74

0.
82

11
0

5.
61

0.
82

11
0

15
.9
65

0.
82

11
0

23
1

9.
12

0.
33

25
0

27
.2
2

0.
33

25
0

36
00

*
0.
54

52
39

.0
2

24
1

5.
66

2
0.
89

65
0

0.
93

6
0.
89

65
0

65
.5
42

0.
89

65
0

25
1

36
00

*
0.
03

94
10

0
36

00
*

0.
03

94
10

0
36

00
*

0.
06

68
10

0
26

1
2.
57

4
0.
86

64
0

6.
16

0.
86

64
0

42
.9
33

0.
86

64
0

27
1

36
00

*
0.
11

72
10

0
36

00
*

0.
15

38
10

0
36

00
*

0.
35

13
99

.9
2

28
1

9.
37

5
0.
69

17
0

34
.4
2

0.
69

17
0

36
00

*
0.
72

18
4.
17

29
1

9.
47

5
0.
71

64
0

16
.0
3

0.
71

64
0

25
6

0.
71

64
0

30
1

10
.2
02

0.
78

42
0

11
.3
1

0.
78

42
0

84
.6
8

0.
78

42
0

35
1

45
.8
31

0.
54

76
0

87
.4
2

0.
54

76
0

36
00

*
0.
61

94
11

.5
9

40
1

59
.9

0.
71

9
0

11
1.
8

0.
71

9
0

36
00

*
0.
75

45
4.
70

45
1

36
00

*
0.
22

71
1.
96

36
00

*
0.
29

37
24

.2
0

36
00

*
0.
34

12
34

.7
4

50
1

18
13

.2
7

0.
47

71
0

12
34

.4
9

0.
47

71
0

36
00

*
0.
54

62
12

.6
5

55
1

36
00

*
0.
03

12
10

0
36

00
*

0.
04

30
10

0
36

00
*

0.
30

27
10

0
60

1
36

00
*

0.
56

33
29

.7
5

36
00

*
0.
56

82
30

.3
6

36
00

*
0.
61

17
35

.3
1

65
1

11
42

.8
6

0.
54

14
0

32
36

.7
0.
54

14
0

36
00

*
0.
66

15
22

.1
6

70
1

36
00

*
0.
23

94
10

0
36

00
*

0.
23

10
10

0
36

00
*

0.
38

41
10

0
80

1
36

00
*

0.
06

22
10

0
36

00
*

0.
09

02
10

0
36

00
*

0.
36

36
10

0
90

1
36

00
*

0.
32

5
10

0
36

00
*

0.
33

64
10

0
36

00
*

0.
48

47
10

0

38

Chapter 3

T
ab

le
3.

8:
Ex

pe
rim

en
ts

us
in
g
1
bi
n,

fr
om

10
0
to

20
0
ite

m
s.

T
im

e
is
m
ea
su
re
d
in

se
co
nd

s(
*
is
w
he
n
th
e
so
lv
er

ha
s
hi
tt

he
tim

e
lim

it
of

60
m
in
ut
es
).

in
st
an

ce
V

0
V

1
V

2

ite
m

bi
n

tim
e

ob
je
ct
iv
e

ga
p%

tim
e

ob
je
ct
iv
e

ga
p%

tim
e

ob
je
ct
iv
e

ga
p%

10
0

1
36

00
*

0.
18

33
10

0
36

00
*

0.
6

10
0

36
00

*
0.
56

66
10

0
11

0
1

36
00

*
0.
72

91
10

0
36

00
*

0.
42

65
10

0
36

00
*

0.
57

59
10

0
12

0
1

36
00

*
0.
09

62
10

0
36

00
*

0.
35

55
10

0
36

00
*

0.
33

33
10

0
13

0
1

36
00

*
0.
30

83
10

0
36

00
*

0.
34

12
10

0
36

00
*

0.
44

58
10

0
14

0
1

36
00

*
0.
91

11
10

0
36

00
*

0.
64

95
10

0
36

00
*

0.
59

37
10

0
15

0
1

21
.4
5

0
0

36
00

*
0.
23

05
10

0
36

00
*

0.
27

77
10

0
16

0
1

36
00

*
0.
84

11
10

0
36

00
*

0.
55

33
10

0
36

00
*

0.
56

50
10

0
17

0
1

28
.0
6

0
0

36
00

*
0.
04

44
10

0
36

00
*

0.
16

66
10

0
18

0
1

36
00

*
0.
36

11
10

0
36

00
*

0.
77

77
10

0
36

00
*

0.
40

49
10

0
19

0
1

36
00

*
0.
83

33
10

0
36

00
*

0.
82

66
10

0
36

00
*

0.
93

33
10

0
20

0
1

36
00

*
0.
88

19
10

0
36

00
*

0.
59

44
10

0
36

00
*

0.
62

08
10

0

39

Chapter 3

T
ab

le
3.

9:
Ex

pe
rim

en
ts

us
in
g
m
ul
tip

le
bi
ns
.
*
tim

e
lim

it
ex
ce
ed
ed
.
T
he

ob
je
ct
iv
e
fu
nc
tio

n
is

m
in
im

isi
ng

ch
1:
eq
:3
.1
.
W
e
re
po

rt
th
e
va
lu
e
of

th
e

ob
je
ct
iv
e
an

d
th
e
nu

m
be

r
of

bi
ns

th
at

ha
ve

be
en

op
en
ed
(in

pa
re
nt
he
se
s)
.
In

th
e
la
st

ca
se
s
(5

bi
ns
,f
ro
m

13
0
to

20
0
ite

m
s)
,t

he
so
lv
er

w
as

no
t
ab

le
to

fin
ish

th
e
pr
e-
so
lv
in
g
ph

as
e
be

fo
re

th
e
tim

e
lim

it.

in
st
an

ce
V

0
V

1
V

2

ite
m

bi
n

tim
e

ob
je
ct
iv
e

(u
se
d

bi
ns
)

ga
p%

tim
e

ob
je
ct
iv
e

(u
se
d

bi
ns
)

ga
p%

tim
e

ob
je
ct
iv
e

(u
se
d

bi
ns
)

ga
p%

70
2

36
00

*
1.
10

22
(2
)

18
.2
3

36
00

*
1.
36

34
(1
)

30
.2
4

36
00

*
1.
40

66
(1
)

32
.3
9

10
0

2
36

00
*

1.
87

05
(2
)

31
.2
4

36
00

*
1.
54

91
(2
)

16
.9
7

36
00

*
1.
56

96
(2
)

18
.0
6

13
0

2
36

00
*

1.
80

06
(2
)

72
.3
3

36
00

*
1.
97

91
(1
)

74
.8
3

36
00

*
1.
97

91
(1
)

74
.8
1

16
0

2
36

00
*

1.
88

88
(1
)

55
.4
8

36
00

*
1.
93

05
(1
)

56
.4
4

36
00

*
1.
74

89
(1
)

51
.9
1

20
0

2
36

00
*

1.
5(
2)

25
4.
30

36
00

*
1.
22

22
(2
)

28
9.
36

36
00

*
1.
33

33
(2
)

27
3.
58

70
3

36
00

*
2.
23

36
(3
)

9.
84

36
00

*
2.
42

69
(1
)

15
.1
9

36
00

*
2.
44

86
(1
)

15
.9
4

10
0

3
36

00
*

2.
30

31
(1
)

49
.4
5

36
00

*
2.
23

76
(1
)

47
.9
7

36
00

*
2.
23

02
(1
)

47
.7
9

13
0

3
36

00
*

2.
59

99
(3
)

76
.9
5

36
00

*
2.
63

11
(2
)

70
.9
8

36
00

*
2.
69

30
(1
)

71
.6
4

16
0

3
36

00
*

2.
66

66
(1
)

97
.5
0

36
00

*
2.
47

63
(3
)

97
.3
1

36
00

*
2.
69

69
(1
)

97
.5
3

20
0

3
36

00
*

2.
83

33
(2
)

61
.0
9

36
00

*
2.
83

53
(2
)

61
.1
2

36
00

*
3(
0)

91
.6
9

70
5

36
00

*
3.
83

09
(5
)

39
.0
9

36
00

*
4.
41

04
(2
)

47
.0
9

36
00

*
4.
31

52
(3
)

45
.9
2

10
0

5
36

00
*

4.
58

70
(2
)

28
.4
7

36
00

*
4.
22

20
(2
)

22
.2
8

36
00

*
4.
27

13
(2
)

23
.1
8

13
0

5
36

00
*

5(
0)

63
.4
5

36
00

*
4.
56

5(
3)

60
.0
6

36
00

*
4.
60

55
(2
)

60
.4
1

16
0

5
36

00
*

5(
0)

86
.9
8

36
00

*
5(
0)

85
.6
7

36
00

*
5(
0)

85
.6
7

20
0

5
36

00
*

5(
0)

81
.3
6

36
00

*
5(
0)

77
.4
8

36
00

*
4.
68

11
(2
)

75
.8
4

40

Chapter 3

The second group of experiments has been made to test the behaviour of the model
using only one bin. We ran experiments with instances having 18 to 200 items, each
experiment had a time limit of 60 minutes. In Table 3.7 and Table 3.8 we report the
results, with time and objective value, for V0, V1 and V2. Trying to solve more than
350 items made our computer run out of memory. With 130 items or more, the solver
spent most of the time in the pre-solving phase and very few iterations in the solving
one. In almost every case, V2 final objective is about 100% worse than V1. In some
instances, for example, with 100 items, we can see that V2 obtains a better objective
than V1 within the time limit. This may be due to a different choice in the nodes to
explore.

The third group of experiments aims to show the behaviour of the model with multiple
bins. We tested with 2, 3 and 5 bins and number of items ranging from 70 to 200.
Table 3.9 shows the computational time and the objective value for V0, V1, and V2
according to the number of items and the number of bins. Compared to the results for
one bin, the overall performance degraded dramatically when the number of bins is two
or more. Due to the increased number of bins, for instances with more than 70 items,
the solver spent most of its time on the pre-solving phase and very few iterations on the
solving phase.

The fourth group of experiments compare the heuristic WFBF with the results of V2.
The comparison has been made using the three groups of problem instances used pre-
viously. Table 3.10 shows the experiments using 1 bin, from 18 to 90 items. WFBF is
capable of finding in some instances the optimal solution, while in general it achieved
better results using much less time.

Table 3.11 shows experiments using 1 bin, from 100 to 200 items. As expected, WFBF
significantly outperformed the solver, the filling rates are on average greater than 90%,
in some cases achieve 100%. This is reasonable since having more items also improves
the probability of having items that fit together.

Table 3.12 shows the experiments with multiple bins. The results show that the heuristic
clearly outperforms the exact model both in terms of objective value and computational
time. An increase in the number of items and bins does increase the computational time
and the gap% of the heuristic in certain cases, but this increase appears to be linear.
This demonstrates the capability of the heuristic in dealing with larger instances.

The advantage of the heuristic, as demonstrated above, is the fast computational time
and better quality than what the exact model can offer within the given time limit. The
heuristic does however have its limitations due to its sequential filling procedure (one
bin at a time and giving priority to smaller volume bins). According to this procedure,

41

Chapter 3

the first bin will be the one with lowest volume. It is filled having all the items available.
The next bin, will have at least the same volume, however can only be filled using the
discarded items from the previous bins. These choices have the drawback that every
discarded item is going to be placed in a bin which will have at least the same volume
as the previous one. Since we are assuming to allocate every item, it may lead to under-
filling the last bin, since it is more likely to be also the one with the biggest volume.
As an example, considering the experiment with 5 bins and 160 items, the first bin is
filled with 4 items and has a 100% filling rate, the second bin is filled with 66 items at a
filling rate of 92.44%, the third bin is filled with 66 items at a filling rate of 17% and the
fourth one is filled with 24 items at a filling rate of 15%. The volume of the fourth bin
is double the volume of the third bin. Other examples of this behaviour are reported in
the next group of experiments.

The last group of experiments is to measure the costs/benefits of using a randomised
order to discover new configurations. The instances in these experiments consider mul-
tiple bins such that for each distinct volume there are at least two bins with different
dimensions. We compared the contribution of randomisedOrderWithPriority to a
simple sorting by volume ascending. The repeatLimit is set at 10 iterations for each
experiment, in both configurations.

Table 3.13 and Table 3.14 compare the behaviour of the heuristic using simple sorting
to that of the heuristic using randomisedOrderWithPriority.

In these tables we show also the details for each bin filled. The opening sequence is
the progression number of the container that has been filled. It is useful to highlight
cases where a container has been skipped because there were no fitting items. items
packed is the number of items that have been allocated inside the bin. filling rate is
the percentage of the bin’s total volume filled by the items. For the majority of the
instances CPLEX did not report a lower bound in the time limit of one hour, thus we
could not report the gap. In some instances, i.e. Table 3.14 5 bins with 160 to 400
items, WFBF skips a bin because there is no remaining fitting item: the height of the
bin is lower than the height of the remaining items. For each instance the objective is
highlighted in bold if there is a clear winner between randomisedOrderWithPriority

and simple sorting, while the cases where the objectives are equal or worse are not
highlighted. randomisedOrderWithPriority was able to improve the solutions in two
cases. Since the simple ordering case is included in the possibles output, we can state
that randomisedOrderWithPriority is better than having a simple ordering, and the
benefit is dependent on the execution of a sufficient number of repetitions.

42

Chapter 3

Table 3.10: Heuristic compared to V2. Experiments using 1 bin, from 18 to 90 items.
Time is measured in seconds (* is when the solver has hit the time limit of 60 minutes).

instance Heuristic V 2

item bin time objective gap% time objective gap%
18 1 4.1864 0.3090 0.02 3600* 0.4407 29.87
19 1 8.0681 0.7015 23.37 3600* 0.5409 0.62
20 1 13.3015 0.6912 0 3.681 0.6912 0
21 1 4.5546 0.3269 10.20 3600* 0.3754 21.80
22 1 27.0961 0.8211 0 15.965 0.8211 0
23 1 6.2495 0.4075 18.41 3600* 0.5452 39.02
24 1 31.3101 0.8965 0 65.542 0.8965 0
25 1 1.3735 0.0622 100 3600* 0.0668 100
26 1 30.9466 0.8664 0 42.933 0.8664 0
27 1 2.5830 0.235 99.88 3600* 0.3513 99.92
28 1 19.0795 0.69173 0 3600* 0.7218 4.17
29 1 19.7695 0.7164 0 256 0.7164 0
30 1 36.5915 0.7842 0 84.68 0.7842 0
35 1 31.4864 0.54769 0.01 3600* 0.6194 11.59
40 1 43.3107 0.7190 0.01 3600* 0.7545 4.70
45 1 19.7262 0.2226 0.03 3600* 0.3412 34.74
50 1 35.9081 0.4825 1.12 3600* 0.5462 12.65
55 1 7.0416 0.1032 100 3600* 0.3027 100
60 1 45.3121 0.3957 0 3600* 0.6117 35.31
65 1 54.0963 0.5414 4.89 3600* 0.6615 22.16
70 1 10.9763 0.14807 100 3600* 0.3841 100
80 1 2.3786 0.0094 100 3600* 0.3636 100
90 1 15.6290 0.0474 100 3600* 0.4847 100

Table 3.11: Heuristic compared to V2. Experiments using 1 bin, from 100 to 200
items. Time is measured in seconds(* is when the solver has hit the time limit of 60
minutes). The solver reports a gap of 100% because the best bound found in the time

limit is 0.0.

instance Heuristic V 2

item bin time objective gap% time objective gap%
100 1 8.8989 0.0707 100 3600* 0.5666 100
110 1 70.1088 0.1455 100 3600* 0.5759 100
120 1 3.3416 0.0681 100 3600* 0.3333 100
130 1 10.8469 0.0263 100 3600* 0.4458 100
140 1 38.3794 0.0916 100 3600* 0.5937 100
150 1 1.3438 0.0 100 3600* 0.2777 100
160 1 46.1770 0.1043 100 3600* 0.5650 100
170 1 0.3227 0.0 100 3600* 0.1666 100
180 1 2.7800 0.0 100 3600* 0.4049 100
190 1 12.4953 0.0619 100 3600* 0.9333 100
200 1 24.0775 0.0428 100 3600* 0.6208 100

43

Chapter 3

Table 3.12: Heuristic compared to V2. Experiments using multiple bins. * time limit
exceeded

instance Heuristic V 2

item bin time objective
(used bins) gap% time objective

(used bins) gap%

70 2 103.2236 1.0228(2) 7.02 3600* 1.4066(1) 32.39
100 2 197.5630 1.2862(2) 0.01 3600* 1.5696(2) 18.06
130 2 111.9377 0.6241(2) 20.12 3600* 1.9791(1) 74.81
160 2 181.0182 0.9430(2) 10.81 3600* 1.7489(1) 51.91
200 2 68.4242 0.0751(2) 96.76 3600* 1.3333(2) 273.58
70 3 210.6892 2.1218(3) 2.99 3600* 2.4486(1) 15.94
100 3 374.9229 1.9325(3) 39.75 3600* 2.2302(1) 47.79
130 3 262.8290 1.6446(3) 53.56 3600* 2.6930(1) 71.64
160 3 195.6397 1.0881(3) 93.88 3600* 2.6969(1) 97.53
200 3 455.4567 1.6725(2) 85.09 3600* 3(0) 91.69
70 5 25.8132 3.4386(2) 32.13 3600* 4.3152(3) 45.92
100 5 47.9942 3.3819(2) 2.98 3600* 4.2713(2) 23.18
130 5 212.4729 3.0586(3) 40.39 3600* 4.6055(2) 60.41
160 5 327.8276 2.7441(4) 73.89 3600* 5(0) 85.67
200 5 433.9891 2.7896(3) 59.46 3600* 4.6811(2) 75.84

44

Chapter 3

T
ab

le
3.

13
:
H
eu
ris

tic
.
Ex

pe
rim

en
ts

us
in
g
m
ul
tip

le
bi
ns
;t
he

bi
ns

fo
r
ea
ch

ex
pe

rim
en
t
ha

ve
th
e
sa
m
e
vo
lu
m
e
an

d
di
ffe

re
nt

di
m
en
sio

ns
.
*
tim

e
lim

it
ex
ce
ed
ed
.

in
st
an

ce
H
eu

ris
tic

w
ith

ou
t

ra
n
d
om

is
ed
O
rd
er
W
it
h
P
ri
or
it
y

H
eu

ris
tic

w
ith

ra
n
d
om

is
ed
O
rd
er
W
it
h
P
ri
or
it
y

ite
m

bi
n

tim
e

ob
je
ct
iv
e

(u
se
d
bi
ns
)
ga

p%
op

en
in
g

se
qu

en
ce

ite
m
s

pa
ck
ed

fil
lin

g
ra
te
%

tim
e

ob
je
ct
iv
e

(u
se
d
bi
ns
)
ga

p%
op

en
in
g

se
qu

en
ce

ite
m
s

pa
ck
ed

fil
lin

g
ra
te
%

70
2

48
.5
6

1.
35

79
(2
)

34
,7
8

75
.1
3

1.
30

97
(2
)

13
.2
9

1
68

64
.2
0

1
60

52
.4
4

2
0

0.
0

2
10

16
.5
7

10
0

2
20

4.
68

1.
34

53
(2
)

3.
29

20
7.
41

1.
34

53
(2
)

3.
29

1
86

30
.7
9

1
86

30
.7
9

2
13

34
.6
6

2
13

34
.6
6

13
0

2
10

8.
71

1.
04

97
(2
)

76
,5
0

14
0.
88

0.
97

92
(2
)

0.
0

1
10

7
88

.0
4

1
10

7
76

.1
4

2
17

6.
98

2
23

25
.9
3

16
0

3
43

6.
29

1.
61

69
(2
)

-
49

6.
74

7
1.
61

69
(2
)

-
1

18
99

.5
4

1
18

99
.5
4

2
14

2
38

.7
5

2
14

2
38

.7
5

20
0

3
46

3.
34

0.
38

24
(1
)

-
52

8.
69

1.
38

24
(2
)

-
1

20
0

61
.7
5

1
19

6
60

.0
3

2
4

1.
72

45

Chapter 3

T
ab

le
3.

14
:
H
eu
ris

tic
.
Ex

pe
rim

en
ts

us
in
g
m
ul
tip

le
bi
ns
;t
he

bi
ns

fo
r
ea
ch

ex
pe

rim
en
t
ha

ve
th
e
sa
m
e
vo
lu
m
e
an

d
di
ffe

re
nt

di
m
en
sio

ns
.
*
tim

e
lim

it
ex
ce
ed
ed
.

in
st
an

ce
H
eu

ris
tic

w
ith

ou
t

ra
n
d
om

is
ed
O
rd
er
W
it
h
P
ri
or
it
y

H
eu

ris
tic

w
ith

ra
n
d
om

is
ed
O
rd
er
W
it
h
P
ri
or
it
y

ite
m

bi
n

tim
e

ob
je
ct
iv
e

(u
se
d
bi
ns
)
ga

p%
op

en
in
g

se
qu

en
ce

ite
m
s

pa
ck
ed

fil
lin

g
ra
te
%

tim
e

ob
je
ct
iv
e

(u
se
d
bi
ns
)
ga

p%
op

en
in
g

se
qu

en
ce

ite
m
s

pa
ck
ed

fil
lin

g
ra
te
%

16
0

5
42

1.
56

2.
46

95
(3
)

-
85

9.
03

2.
46

95
(3
)

-
1

15
8

52
.3
8

1
13

5
33

.7
3

3
2

0.
66

3
25

19
.3
1

20
0

5
50

6.
95

2.
40

33
(3
)

-
88

5.
82

2.
40

33
(3
)

-
1

19
9

59
.3
3

1
17

7
39

.7
7

3
1

0.
33

3
23

19
.8
8

40
0

5
14

75
.5
9
1.
80

67
(3
)

-
13

77
.5
7

2.
80

67
(4
)

-
1

23
7

90
.5
5

1
32

3
75

.4
1

2
13

4
14

.4
6

2
76

40
.5
8

3
29

14
.3
0

4
1

3.
33

80
0

5
27

21
.4
3

0.
61

34
5(
3)

-
27

56
.1
2

0.
61

34
5(
3)

-
1

14
2

97
.6
0

1
81

98
.2
4

2
42

4
83

.5
0

2
40

3
87

.5
3

3
23

4
57

.5
4

3
31

6
52

.8
7

46

Chapter 3

3.5 Summary

This chapter proposes a mixed-integer linear model that solves the Multiple Hetero-
geneous Knapsack Problem while giving priority to smaller bins and considering the
following constraints: non overlapping, boundaries and positioning (both constrained
and free), rotations (around z-axis), orthogonal displacement, weight limit, static sta-
bility, weight distribution in a pyramidal region and load bearing considering items’
arbitrary centre of mass. This model can obtain routinely mathematically proved opti-
mal solutions in small sized problems. For medium sized instances it can only achieve
sub-optimal solutions. Despite that, it remains a useful tool for studying the problem.
It provides a benchmark to compare the quality of the solutions found by heuristics and
approximations models.

We studied the trade-off of adding more constraints to make the problem more realistic
and the complexity of finding a solution. The model has been derived in submodels
V0 (only stability), V1 (stability and centre of mass distribution), V2 (stability, centre
of mass distribution and load-bearing). The experiments showed that, even with very
small instances, the computational time for finding the optimal solution considering the
load bearing constraint was 16.2 times longer than without considering it.

We introduced new metrics that aim to facilitate the comparison and analysis of different
knapsack instances. An effort in this direction is important because faster algorithms are
often specialized algorithms that only efficiently handle particular cases of the problem.
Often decision-makers are not operational research specialists, so having such metrics
improves the export of theoretical results to the industry.

We designed a simple deterministic heuristic to deal with large-scale instances in reason-
able computational time and memory. Weight First Best Fit is an on-line heuristic that
fills the available bins one at a time, sequentially, until the available bins or the avail-
able items are exhausted. WFBF significantly outperforms the exact model in almost
all instances. We also highlighted some limits of the algorithm.

We have also added a top level search that tests different orderings of the bins. The
search is useful when there are bins with the same volume and different dimensions.

Further research is necessary to design new algorithms to overcome the limits of the
proposed heuristic.

47

Chapter 4

Using machine learning to
estimate feasibility of packing
solutions in constant time - a
novel strategy

This chapter shows a novel strategy to use machine learning to estimate if, for a given
a set of items, a feasible packing configuration exists in a constant O(1) computational
time. The problem is an NP-Hard Knapsack problem, where the objective is to minimise
the wasted space and one of the constraints is to allocate all the items. It is expected that
this strategy will significantly save time and computational effort. Although the strategy
is applied to the knapsack and bin packing problems in this chapter, it can be generalized
to deal with a wider range of problems. The strategy consists of two stages. In the first
stage, we exploit the master/slave Bender’s decomposition to build a dataset of knapsack
solutions. In the second stage we exploit the dataset to train a classifier for checking
the feasibility of a packing solution. The chapter also proposes a new dataset of packing
solutions and benchmarks different classification algorithms. We compared the following
algorithms: decision trees (DT), random forest (RF), support vector machine with radial
basis function kernel (SVM-R), support vector machine with polynomial kernel (SVM-
P), three different architectures of convolutional neural networks (CNN), feed forward
fully connected neural networks (FFNN) with one, two and three hidden layers. The
best classifier identified the feasibility of the tested instances with an accuracy of 90%.

The first novelty of this chapter is the methodology, we have not found any similar
procedure in the literature.

48

Chapter 4

The second novelty is the dataset of knapsack solutions, despite being a famous problem
we could not find any comprehensive dataset and we believe that it can be useful to
have a new dataset that can be further extended.

The third novelty is the idea of setting up a packing problem as a classification problem,
and we benchmark different classification algorithms.

This chapter is organised as follows: Section 4.1 discusses the overall strategy in detail.
Section 4.2 describes the dataset used. Section 4.3 presents the classification algorithms
used in the comparison and shows and discusses the computational experiments used to
validate the methodology. The chapter will end with a summary.

4.1 Methodology

We will proceed with defining the three-dimensional orthogonal bin packing problem
(3D-OBP), exploiting a Bender’s decomposition schema. Let I = {1, · · · , n} be a set
that indexes n rectangular cuboids (items) and let J = {1, · · · ,m} be a set that indexes
m rectangular cuboids (bins). For every item i ∈ I and bin j ∈ J let us define their
dimensions as width wi (Wj), height hi (Hj) and length li (Lj). 3D-OBP consists in
assigning (packing) every item i ∈ I to a bin j ∈ J such that the number of bins utilised
is minimised. The problem is constrained to avoid any two items i, k assigned to the
same bin j to overlap; items must be allocated inside the bins; every item must be
assigned to only one bin. The problem can be enriched with various constraints; there
is an overview in Bortfeldt and Wäscher (2013).

Two items i, k ∈ I are equivalent for the relation of equivalence ∼= (i, k) defined in (4.1),
if and only if their dimensions are equal. Reflexivity, symmetry and transitiveness of
(4.1) are easy to prove. (4.1) can be enhanced by preprocessing the items’ dimensions
with dual-feasible functions (Clautiaux et al., 2010) and conservative scales (Belov et al.,
2013). Another enhancement is to modify (4.1) to consider i and k equivalent if there
exists a rotation r that overlaps i with k. All the enhancements are out of the scope of
this proof of concept, thus we will keep the simple (4.1).

i ∼= k ⇔ li = lk ∧ wi = wk ∧ hi = hk (4.1)

Let us define I = I
∼= as the quotient set of I on ∼=. It partitions the set of items into

disjoint classes of items. Let π be the number of classes. Let τt,∀t ∈ I be the maximal
number of items available in the class t. Let lt be the length, wt be the width, and ht

49

Chapter 4

be the height of an arbitrary element in the class t. It is useful to compute the volume
vt = lt · wt · ht of a class element in t, and the volume Vj = Lj ·Wj · Hj of the bin j.
Moreover, let qt,j be the quantity of items of class t that are assigned to the bin j. Let
Zj ∈ {0, 1} be 1 if the bin j is opened (has at least one item inside), 0 otherwise. βt,c is
the quantity of the class t in the infeasible partition c.

Now we describe the 3D-OBP, exploiting a Bender’s decomposition schema. The master
problem (4.2)-(4.6) selects how to partition the items in the available bins.

minimise
∑
j∈J

Zj (4.2)

subject to
∑
j∈J

qt,j ≤ τt, ∀t ∈ I (4.3)

∑
t∈I

∑
j∈J

qt,j ≥
∑
t∈I

τt, (4.4)

∑
t∈I

qt,j ∗ vt ≤ Vj ∗ Zj , ∀j ∈ J (4.5)

∑
t∈I

(βt,c − qt,j)2 ≥ Zj , ∀j ∈ J, c ∈ C (4.6)

Briefly, the objective is to minimise the opened bins (4.2), subject to: for each class
t, the overall quantity of items allocated must not exceed the items’ class maximum
number τt (4.3); all the items must be allocated (4.4); the total volume of the items in
bin j must be lower than the volume capacity of bin j, if it has been opened, otherwise
must be lower or equal to 0, i.e. the bin must contain items only if the bin is opened,
and the overall items’ volume is lower than the bin’s limit (4.5); all the previously tested
unfeasible partitions are excluded (4.6).

For every bin j, the slave problem checks if the partition Pj = {qt,j , t ∈ I} satisfies the
constraints for the orthogonal packing. We will now skip further description of the slave
problem, which can be found in Appendix B. Let Cj be the set of partitions that have
been proved unfeasible, and Fj the set of feasible partitions.

Constraint (4.6) binds the master problem with the slave problem. It avoids any partition
c ∈ Cj being evaluated again. βt,c is the quantity of the class t ∈ I in the unfeasible
partition c.

This master/slave approach is not effective for finding optimal solutions, because it finds
an optimal solution by exclusion, but the oscillations between master and slave produce
rapidly a dataset Dj = Cj

⋃
Fj of unfeasible and feasible packings. Suppose that we

have enough points in the dataset, the Pareto dominating partitions Pdj ⊂ Fj will be
the facets of the integer polytope that separate the feasible solutions from the unfeasible
ones. It should be noted that Cj is a set of covers for Fj : for every p ∈ Fj there

50

Chapter 4

exists d ∈ Cj such that d dominates p. Note that, in the slave problem, Pdj ⊂ Fj is
a 0/1 knapsack polytope. The relations between these polytopes can be found e.g. in
Atamtürk (2005) and Pochet and Wolsey (1995); Pochet and Weismantel (1998).

Let us suppose now that we have a function θ(Pj) := Dj 7→ {0, 1} that maps a partition
Pj to the solution of the feasibility of the slave problem. The problem will become:

minimise
∑
j∈J

Zj (4.7)

subject to
∑
j∈J

qt,j ≤ τt, ∀t ∈ I (4.8)

∑
t∈I

∑
j∈J

qt,j ≥
∑
t∈I

τt, (4.9)

θ(q0,j , . . . , qπ,j) ≤ Zj , ∀j ∈ J (4.10)

We will show now that the supposition is correct, and θ(Pj) is a classifier. Moreover, if
we extend eq. (4.1) to the set of bins, the number of needed classifiers is equal to the
number of bins’ classes. Eventually, a θ(Pj) that classifies correctly all the partitions
can represent Pdj and can be linearly approximated, but this is out of the scope of this
chapter.

We would like to emphasize a core difference between the two formulations. θ solves the
following decision problem: given a set S of items and a bin j, does a configuration exist
of all the items in S such that they completely fit inside the bin j? The aim of θ is to
give an answer without defining the positions of the items inside j. It is hard because
giving an answer implies knowing that a solution to the knapsack packing problem exists
just by looking at the problem instance.

4.2 Dataset

Without any loss of generality, we consider the task of classification for only one bin
class k. The dataset Dk has been built considering that in the slave problem, items can
rotate orthogonally along the vertical axis (the updated relation of equivalence is trivial
and can be found in Appendix C). We collected a total of 9,826 partitions where 5,809
are unfeasible and 4,017 are feasible. The number π of items’ classes I is 112.

51

Chapter 4

Table 4.1: A dataset snapshot, aggregating knapsack solutions by filling rate and
feasibility. The dataset is partitioned in aggregation buckets of 10 on the filling rate.
(A) is the average filling rate in the bucket, (B) is the number of elements in the bucket.

The filling rate is expressed in percentage.

filling rate feasible unfeasible

bucket A B A B
(0, 10] 5.80 114 - 0
(10, 20] 14.86 126 - 0
(20, 30] 24.64 92 - 0
(30, 40] 34.64 54 - 0
(40, 50] 46.07 87 - 0
(50, 60] 56.00 208 56.39 2
(60, 70] 65.50 494 67.30 16
(70, 80] 75.14 771 77.09 84
(80, 90] 85.03 1533 87.74 1531
(90, 100] 93.31 538 94.81 4176

Fig 4.1 shows the procedure, whilst Fig 4.2 shows the legend: the dashed block repre-
sents the process that is done in parallel, one process for each slave; squared blocks are
processes; the dataset is represented as the block of data that contains the feasible and
the unfeasible solutions.

The procedure in Fig 4.1 has two nested loops. The outer loop creates random problems,
whilst the inner loop solves a problem. The condition to solve the master problem is
that for every slave problem, the solution is feasible. In the process of finding the
correct feasible partioning, the dataset of solutions is updated with non dominated
solutions. The Pareto dominance of the feasible solutions is the standard one: let
x

′
, x ∈ X ⊆ Rn be two points, x′ dominates x if and only if ∃j ∈ {1 · · ·n}, such that
∀i ∈ {1 · · ·n} \ {j}, x′

i ≥ xi ∧ x
′
j > xj . The definition of the Pareto dominance of the

unfeasible solutions is adapted by substituting > with < and ≥ with ≤. In the Fig 4.1
we show a parallelisation of a part of the inner loop, it is easy to parallelise the outer
loop too.

Table 4.1 shows a summary of the dataset aggregating the knapsack solutions by their
filling rates and feasibility. The dataset has been partitioned in intervals of 10% filling
rate. The table is built as follows. A partition c, column bucket, is delimited by a
minimal value a, and a maximal value b. A knapsack solution d is aggregated in c if
its filling rate f(d) is a < f(d) ≤ b. It is reasonable to assume unfeasible partitions are
mostly concentrated in higher filling rates and absent in the lowest.

Fig 4.3 shows the frequency of the features, of which each feature is an item class. The
dataset is unbalanced: some features are more frequent than others. This imbalance is
caused by the aggregation preferences of the solver. Testing techniques to re-balance,

52

Chapter 4

Figure 4.1: Flow chart of the procedure. The legend for the block components is
shown in Fig 4.2.

or sampling the polytope evenly, is not within the scope of this chapter. However some
strategies will be outlined in the conclusions section.

4.3 Classification, results and discussion

The nature of the dataset prevents its dimensionality from being reduced: every feature
is meaningful. In fact, if the dataset contains all the possible points, and there exists
an algorithm θ(Pj) that is able to successfully classify as feasible all the feasible points,
then, θ(Pj) would represent the facial structure of the convex hull of the integer knapsack
set.

53

Chapter 4

Figure 4.2: Legend of the flow chart in Fig 4.1.

Figure 4.3: Dataset frequencies for each item class. The dataset is aggregated by
item class and feasibility. The blue area is coloured by the unfeasible solutions, while

the yellow by the feasible solutions.

The classification task is as follows. Given a partition p ∈ Dj , p is made of π ordered
features, of which each feature qt,p is the quantity of elements of the class t ∈ I in the
partition p. The classification task is to find θ̃(Pj) such that θ̃(Pj) ≈ θ(Pj).

The programming language adopted in the experimental part is Python 3.6 and Ubuntu
18.04 as operating system. The models for the optimisation task have been implemented

54

Chapter 4

Table 4.2: CNN architectures.

CNN-1 CNN-2 CNN-3 CNN-4
11X11 11X11 11X11 11X11

20@5x5/relu 20@5x5/relu 30@3x3/relu 30@4x4/selu
max(2x2) max(2x2) max(2x2) 60@5x5/selu

50@5x5/relu 50@5x5/relu 60@5x5/relu max(2x2)
max(2x2) max(2x2) max(2x2) flatten
flatten 50@5x5/relu flatten dense(150)/selu

dense(500)/relu max(2x2) dense(150)/relu dense(150)/selu
dense(2)/softmax flatten dense(2)/softmax dense(2)/softmax

dense(200)/relu
dense(2)/softmax

using OPL and solved with IBM CPLEX 12.6.

In our experiments, the algorithms DT, RF, SVM-R and SVM-P exploit the implemen-
tations of scikit-learn (Pedregosa et al., 2011) in their standard configuration. DT uses
CART for extracting the decision rules, RF in the standard configuration uses 30 de-
cision trees, SVM-R and SVM-P have a kernel cache size of 200MB, the class weight
is balanced, the decision function shape is set as one-vs-rest, and the max iteration is
unbounded. SVM-P uses a polynome of 6th grade.

All the neural network architectures have been implemented using Keras (Chollet et al.,
2015) with Tensorflow (Abadi et al., 2015).

Inspired by the promising performances reported in (Xu et al., 2018), we adapted to
our problem the following CNN architectures: LeNet-5 (Lecun et al., 1998), AlexNet
(Krizhevsky et al., 2012), and GoogleNet (Szegedy et al., 2015). We chose these ar-
chitectures because LeNet-5 has historical importance, AlexNet suggested the use of
parallel convolutions, and GoogleNet showed impressive performances with its inception
modules. In all the configurations, unless specified differently, the pooling method is
maxpooling with 2x2 strides and channel first data format, and convolutions have same
padding.

The architectures layers are reported in Table 4.2 and Table 4.4. Table 4.3 shows the
building blocks. The convolution layer uses the format
filterNumber@kernelSize/activationFunction, the pooling layer uses
poolingFunction(size), the flatten layer flattens the input in one dimension, and dense(number
of neurons)/activationFunction is a layer densely connected with an activation function
activationFunction. The first layer is the input layer.

Because these architectures are created for image classification, we thought that the
most natural way to exploit them was to transform the input vector into an image. We

55

Chapter 4

Table 4.3: CNN architectures building blocks. In I3, the max pooling strides is 1x1.
| is concatenation.

symbol Layer 0 Layer 1
T1 30@2x2/selu max(2x2)
T2 30@3x3/selu max(2x2)
T3 30@4x4/selu max(2x2)
T4 30@5x5/selu max(2x2)
I0 64@1x1/relu
I1 64@1x1/relu 64@3x3/relu
I2 64@1x1/relu 64@5x5/relu
I3 max(3x3) 64@1x1/relu
INC I0 | I1 | I2 | I3

Table 4.4: CNN architectures. | is concatenation.

CNN-5 CNN-6 CNN-7
11X11 11X11 11X11

T1 | T2 | T3 | T4 T1 | T2 | T3 | T4 INC | INC | INC
30@4x4/selu flatten INC | INC | INC
60@5x5/selu dense(500)/selu flatten
max(2x2) dense(250)/selu dense(500)/selu
flatten dense(2)/softmax dense(250)/selu

dense(150)/selu dense(2)/softmax
dense(150)/selu
dense(2)/softmax

(a) (b) (c) (d)

Figure 4.4: Imagification outputs. Each example is an 11x11 pixel image. To have
a clear image, and for visualisation purpose only, we rescaled the colours as follows: a
white, 255, if the input feature for the pixel is 0, and a grey scale, minmax rescaled in

the interval [0, 180], if the input value is greater than 0.

named the preprocessing procedure imagification: 1) given an input of n elements, find
h ∈ N such that

√
n+ h = c ∈ N , 2) let m be the concatenation of the input n with an

array of h zeros, 3) reshape m in a squared matrix, 4) rescale the input with a minmax
scaler. The result is a single channel image. We show some examples of such outputs in
Fig. 4.4.

Our classification problem has fixed input dimension and fixed output dimension. An-
other natural way to address the problem is using the universal approximation of FFNNs

56

Chapter 4

(Trenn, 2008). All the FFNN configurations explored have an input layer of 112 nodes
and an output layer with a 2 nodes soft-max (one-hot). The hidden layers are densely
connected and the activation functions are Leaky ReLu (Maas et al., 2013) with the
parameter α = 0.3. We tested the architectures with one, two, and three hidden layers,
with the number of nodes for each layer ranging from 10 to 100. The bias and initial
weights for each layer have been initialised with the Xavier’s method (Glorot and Ben-
gio, 2010). The FFNN with three hidden layers have a dropout filter (Srivastava et al.,
2014) with probability of 0.1.

The trainings in the CNN and FFNN experiments used a Stochastic Gradient Descendent
optimiser with Nesterov momentum (Nesterov, 1983) and Learning rate decay of 1e-6.
The loss function is a categorical cross entropy and the metric is accuracy.

The classification methods have been cross-validated by splitting the dataset in 10 folds,
each one built with stratified sampling with shuffling before splitting into batches.

Due to our hardware limited capacity, we firstly made an exploratory training to find
which architecture was most promising, then we tuned the most promising. The CNN
experiments have been trained for 80 epochs, with a training batch size of 64, testing
batch size of 8, and learning rate of 0.01. The FFNN have been trained for 30 epochs,
with a training batch size of 32, testing batch size of 8, and learning rate of 0.01.
Table 4.5 and Table 4.6 report some of the best results of the exploratory phase.

Table 4.5 shows the confusion matrix. FF represents the number of unfeasible instances
that have been classified as unfeasible, FT is the number of unfeasible instances that have
been classified as feasible, TF is the number of feasible instances classified as unfeasible,
TT is the number of feasible instances classified as feasible. The columns report the
average and the standard deviation (in parenthesis) among the 10 folds.

Table 4.6 shows precision, accuracy and F1 index calculated from the confusion matrix.

The metric that we are most interested in is the accuracy, since we need to maximise
the sum of FF and TT. CNN and SVC-RBF are quite close to the best, but FFNN
outperforms all other methods. In addition, FFNNs are faster to train and have fewer
parameters than CNN.

We chose to further tune the configuration with one hidden layer with 100 neurons,
because it has the best combination of accuracy and precision. Learning rates (LR)
ranged from 0.0001 to 0.001, momentum from 0.6 to 0.9, the training and testing batch
size from 256 to 4, the training epochs from 20 to 250.

The best configuration after tuning (Leaky-ReLu α = 0.3, LR=0.001, decay=1E-06,
training batch size=16, training epochs=120, test batch size=16, momentum=0.9) achieved

57

Chapter 4

Table 4.5: Confusion matrix for the best results. FF means an unfeasible solution
is correctly predicted as unfeasible, FT means an unfeasible solution is mistakenly
predicted as feasible, TF means a feasible solution is mistakenly predicted as unfeasible,
and TT means a feasible solution is correctly predicted as feasible. The values reported
are the average over 10 buckets, while in parenthesis we report the standard deviations.

name FF FT TF TT
FFNN-90 539.7(10.8) 41.2(10.6) 59.4(10.5) 342.3(10.5)
FFNN-100 536.2(9.7) 44.7(9.5) 56.3(10.5) 345.4(10.6)
FFNN-60 534.6(9.8) 46.3(9.7) 58.2(6.9) 343.5(7.2)
FFNN-50 534.1(8.7) 46.8(8.7) 58.2(9.3) 343.5(9.3)

FFNN-50-30-40 526.7(8.0) 54.2(8.0) 51.3(8.9) 350.4(8.9)
FFNN-30-30-60 530.8(9.6) 50.1(9.7) 56.3(17.1) 345.4(17.0)
FFNN-30-30 526.8(13.6) 54.1(13.5) 56.4(12.1) 345.3(11.9)
FFNN-80 521.8(19.4) 59.1(19.3) 51.8(12.4) 349.9(12.2)
CNN-1 527.5(13.3) 53.4(13.2) 69.1(15.1) 332.6(15.1)
CNN-7 511.7(28.8) 69.2(28.8) 54.2(14.3) 347.5(14.2)
CNN-6 523.4(13.9) 57.5(13.7) 68.5(13.3) 333.2(13.2)
CNN-4 527.9(13.7) 53.0(13.7) 73.3(15.9) 328.4(16.1)

SVC-RBF 487.0(0) 93.0(0) 34.0(0) 367.0(0)
CNN-2 515.8(24.2) 65.1(24.2) 66.7(20.1) 335.0(20.1)
CNN-3 518.1(20.3) 62.8(20.3) 71.7(20.0) 330.0(20.0)
CNN-5 514.3(13.1) 66.6(13.0) 70.7(15.6) 331.0(15.6)
RF-30 498.0(0) 82.0(0) 69.0(0) 332.0(0)
DT 475.0(0) 105.0(0) 92.0(0) 309.0(0)

SVC-POLI 565.0(0) 15.0(0) 362.0(0) 39.0(0)

Table 4.6: metrics: precision, accuracy, F1

name precision accuracy F1
FFNN-90 0.8521 0.8976 0.8719
FFNN-100 0.8598 0.8972 0.8724
FFNN-60 0.8551 0.8936 0.8680
FFNN-50 0.8551 0.8931 0.8674

FFNN-50-30-40 0.8723 0.8926 0.8692
FFNN-30-30-60 0.8598 0.8917 0.8665
FFNN-30-30 0.8596 0.8875 0.8621
FFNN-80 0.8710 0.8871 0.8632
CNN-1 0.8280 0.8753 0.8445
CNN-7 0.8651 0.8744 0.8492
CNN-6 0.8295 0.8718 0.8410
CNN-4 0.8175 0.8715 0.8387

SVC-RBF 0.9152 0.8705 0.8525
CNN-2 0.8340 0.8659 0.8356
CNN-3 0.8215 0.8631 0.8307
CNN-5 0.8240 0.8603 0.8282
RF-30 0.8279 0.8461 0.8147
DT 0.7706 0.7992 0.7583

SVC-POLI 0.0973 0.6157 0.1714

58

Chapter 4

an accuracy of 0.9033 with standard deviation of 1.35. The second best (Leaky-ReLu
α = 0, 2, LR=0.001, decay=1E-06, training batch size=16, training epochs=100, test
batch size=16, momentum=0.7) achieved 0.9006 with standard deviation of 1.46.

4.4 Summary

This chapter shows the effectiveness of a novel strategy to determine if a particular
packing solution is feasible in a constant O(1) computational time. We show a concrete
application using a bin packing problem. The strategy consists of two stages. In the
first stage, we exploit the master/slave Bender’s decomposition to build a dataset of
knapsack solutions. In the second stage we exploit the dataset to train a classifier to
test the feasibility of a packing solution. The second novelty is a new dataset of packing
solutions, which is exploited to benchmark different classification algorithms: decision
trees, random forest, support vector machine with radial basis function and polynomial
kernel, three architectures of convolutional neural networks, and feed forward fully con-
nected neural networks with one, two and three hidden layers. The most promising
classifier that has been tuned reports an accuracy of about 90%. The setup of a packing
problem as a classification problem is the third novelty.

59

Chapter 5

The Offline Group Seat
Reservation Knapsack Problem
with Profit on Seats

In this chapter we present the Group Seat Reservation Knapsack Problem with Profit on
Seats. This is an extension of the Offline Group Seat Reservation Knapsack Problem.
In this extension we introduce a profit evaluation dependent on not only the space
occupied, but also on the individual profit brought by each reserved seat. An application
of the new features introduced in the proposed extension is to influence the distribution
of passengers, such as assigning seats near the carriage centre for long journeys, and
close to the door for short journeys. Such distribution helps to reduce the excess of
dwelling time on platform. We introduce a new GRASP based algorithm that solves
the original problem and the newly proposed one. In the experimental section we show
that such algorithm can be useful to provide a good feasible solution very rapidly, a
desiderable condition in many of the real world booking systems, such as the online
booking. Another application could be to use the algorithm solution as a startup for
a successive branch and bound procedure, when optimality is a must. We also add a
new class of problem with five test instances that represent the worse case real world
scenarios more realistically and we evaluate both the existing model, the newly proposed
model, and the limitations of the proposed algorithm facing more realistic scenarios.

The first novelty of this chapter is the introduction of a new problem extension, the
GSR-KPPS, that binds seat-based profit with the length of the journey reservation in a
mixed integer programming (MIP) model.

The second novelty is a GRASP based algorithm that is suitable for both GSR-KP and
GSR-KPPS. Such an algorithm is useful when the time to achieve a solution is fixed.

60

Chapter 5

The third novelty is the adaptation and extension of the instances used in Clausen et al.
(2010). We introduced a new group of problems that better represents worst case real
world scenarios than those previously suggested in the original paper.

The chapter is organised as follow. Definitions and terminology follows in Section 5.1
along with the MIP model in detail, Section 5.2 outlines the proposed algorithm. The
new instances are explained in Section 5.3, Section 5.4 shows computational results and
the chapter ends with a summary in Section 5.5.

5.1 Definitions, terminology and MIP model

Using the usual terminology of the Packing Problems and utilising as much as possible
the terminology used in Clausen et al. (2010), a train contains W seats and stops at H
stations. Let N = {1, . . . , n} be the set of reservations. Each reservation asks to reserve
wi seats from station yi to station yi+hi. Without any loss of generality we can assume
that wi ≤W .

First we briefly describe the original GSR-KP as shown in Clausen et al. (2010). The
active stations are represented as Y := {yi, |i ∈ N}

⋃
{yi + hi, i ∈ N},

and Ny is the set of requests using a seat at station y ∈ Y

Ny := {i ∈ N}|yi ≤ y < yi + hi

Associated with each station y ∈ Y there is a "height" Hy that represents the distance
from station y to the next active station in Y . Let δi = 1 if request i is selected. Let xi
be the first seat (left coordinate) of request i. Let E = {(i, j)} be the set of rectangle
pairs which in some way share a station (y-coordinate). Finally, let lij = 1 if and only
if request i is located left of request j. The original model is shown in Eq: 5.1-5.8, the
item profit is identified with the item area (wi · hi). We refer the reader to the original
paper for a complete explanation.

61

Chapter 5

maximize
∑
i∈N

hi · wi · δi (5.1)

s.t.
∑
i∈Ny

wi · δi ≤W, y ∈ Y, (5.2)

δi + δj − li,j − lj,i ≤ 1, (i, j) ∈ E, (5.3)

xi − xj +W · li,j ≤W − wi, (i, j) ∈ E, (5.4)

0 ≤ xi ≤W − wi, i ∈ N, (5.5)

li,j ∈ {0, 1}, (i, j) ∈ E, (5.6)

δi ∈ {0, 1}, i ∈ N (5.7)

xi ≥ 0, i ∈ N. (5.8)

Our model extends the original one by considering also a profit value associated to the
seat. From the modelling perspective, it translates in a two-dimensional knapsack prob-
lem where the item profit is dependent on a combination of its area and its position
inside the bin. The distribution of the passengers among and along the carriages can
be modelled by assigning profits on the seats, i.e. considering the seats of each carriage,
the central seats have higher profit than the seats near to the doors (this profits assign-
ment will allocate reservations with longer journeys or more people in the centre of the
carriage).

Let Q := {1, . . . ,W} be the set of seats, and pk, k ∈ Q be the profit pk associated to the
seat k. Let γi,k, i ∈ N, k ∈ Q be 1 if and only if reservation i occupies seat k.

The new formulation is shown in Eq: 5.9-5.19.

62

Chapter 5

maximize
∑
i∈N

∑
k∈Q

hi · γi,k · pk (5.9)

s.t.
∑
i∈Ny

wi · δi ≤W, y ∈ Y, (5.10)

δi + δj − li,j − lj,i ≤ 1, (i, j) ∈ E, (5.11)

xi − xj +W · li,j ≤W − wi, (i, j) ∈ E, (5.12)

wi · δi ≤
∑
k∈Q

γi,k ≤ wi · δi,∀i ∈ N (5.13)

−(1− γi,k) · 2W + xi ≤ γi,k · k ≤ xi + wi · δi, ∀i ∈ N, k ∈ Q (5.14)

γi,k ∈ {0, 1}, i ∈ N, k ∈ Q (5.15)

0 ≤ xi ≤W − wi, i ∈ N, (5.16)

li,j ∈ {0, 1}, (i, j) ∈ E, (5.17)

δi ∈ {0, 1}, i ∈ N (5.18)

xi ≥ 0, i ∈ N. (5.19)

The differences between the models are on the objective 5.9 which now includes the
profit associated on the seat, and in three additional constraints 5.13-5.15. Considering
a unitary profit, we will produce the same results of the original model, thus, the pro-
posed model can be considered as an extension of the original problem. Constraint 5.13
represents the total allocation of a reservation. If the reservation i is booked, then wi
seats must be allocated, otherwise none has to be assigned. Constraint 5.14 enforces
the contiguity of the allocated seats k, for the reservation i. Constraint 5.10 represents
the knapsack constraint, which enforces allocation inside the train. Constraint 5.11-5.12
represents the fact that two items i,j cannot overlap.

One limitation of the objective function of the model is that it does not distinguish
between one reservation for n stations and n reservations of one station. For example, a
long-distance traveller travelling from station A to H will have the same profit of other
travellers travelling from A to C, C to D, D to H.

5.2 Proposed algorithm

In this section we describe the proposed algorithm. The algorithm is a GRASP proce-
dure (Feo and Resende, 1989, 1995; Resende and Ribeiro, 2016, 2019) that exploits a

63

Chapter 5

percentage of the best bound found by the continuous relaxation of the problem (relax-
ing integer and boolean variables to real variables) for enforcing a stopping condition.
The rationale to use a GRASP based method is to produce a simple algorithm that pro-
duces good solutions in a very limited time. Such algorithm can be used as a start-up
for a successive branch and bound procedure, or can be used directly when achieving a
solution in the timelimit is more important than the optimality of the solution.

The main procedure, Algorithm 3 (Algorithm will be abbreviated as Alg from now
on), is composed of the following steps: create a random candidate solution, evaluate
the candidate and update the best solution if the candidate improves the current best
solution. If the solution is not improved then pick a uniformly random number c ∈ [0, 1]
and if c ≤ 0.5 try to improve the current candidate, otherwise try to improve the best
solution found so far.

The stopping criteria of the main procedure are met when at least one of the following
conditions is met. First, the maximal number of iterations max_iterations has been
achieved. Second, a time threshold timelimit has been reached. Third, a threshold has
been reached on the best candidate evaluation cbest. The last threshold is calculated as
the fraction bratio of the objective value relaxed_bound of the continuous relaxation of
the problem. The combination of these three stopping criteria has been chosen to keep
the running time of the algorithm balanced in borderline conditions.

The return values of the main procedure are best, limit and cbest. best is the sequence
of indexes that represents the best solution, limit is the position of the last fitting
reservation index in best, cbest is the evaluation of the profit totalised in the feasible part
of the best solution.

The evaluation procedure, Alg 4, requires as input the candidate list. We remind the
reader that a candidate solution is a permutation of the n indices that represent the
reservations, the evaluation procedure “cuts” the candidate up to the last feasible el-
ement limit. There are two ideas behind the evaluation: firstly to exploit the corner
point concept presented in (Martello and Toth, 1990) and secondly to exploit the prob-
lem structure, and reduce the positions to evaluate along the horizontal axis only. The
evaluation procedure keeps a list of candidate positions in corner. The algorithm tries
to place the items in the first feasible candidate position. corner is firstly initialised with
the position 0. After an item i fits in a position x ∈ corner, the candidate positions list
is updated with the corner of the item i, corner := corner

⋃
{wi + x}. The evaluation

procedure is a constructive first fit heuristic (Zhu et al., 2012).

64

Chapter 5

Algorithm 3 main_procedure(relaxed_bound, bratio, timelimit,max_iterations)
cbest ⇐ epoch⇐ 0, start⇐ current_time

()
, best⇐ ∅

while current_time() − start ≤ timelimit andrelaxed_bound · bratio > cbest
andepoch < max_iterations do
candidate, limit, bound⇐ generate_candidate()
if bound > cbest then
cbest, limitbest, best⇐ bound, limit, candidate

else
if uniform(0, 1) ≤ 0.5 then
candidate, limit, bound⇐ local_search(candidate, limit)
if bound > cbest then
cbest, limitbest, best⇐ bound, limit, candidate

end if
else
candidate, limit, bound⇐ local_search(best, limitbest)
if bound > cbest then
cbest, limitbest, best⇐ bound, limit, candidate

end if
end if

end if
epoch⇐ epoch+ 1

end while
return best, limit, cbest

The candidate generation, Alg 5, makes use of a shuffle(x) function, where x is the set
to shuffle. shuffle(x) returns a random permutation of x. After that, the candidate is
evaluated with the procedure in Alg 4.

The local search procedure, Alg 6, swaps half of the positions of the feasible region
with positions picked randomly. The method exploits the solution structure: items
that belong to feasible regions are located in the initial part of the solution array. So
swapping half of the items forces the method to evaluate new solutions while keeping
parts of the solution. An example is shown in Fig 5.1. The local search procedure is in
fact reducible to the 2-opt local search (Croes, 1958), with the identification of the sets
of the candidates to swap with the feasible and unfeasible region.

The Alg 3-6 are designed to be a very fast procedure that can be used to determine lower
bounds for a branch and bound framework. The component with varying computational
cost is the evaluation procedure Alg 4, since Alg 5 and Alg 6 have a constant number
of operations.

Let n be the number of items and W be the maximal number of seats. The worst
case scenario for Alg 4 is having groups of one element, the procedure will make n·(n+1)

2

isNotOverlapping(x, i, positioned) operations. isNotOverlapping(x, i, positioned) can
be implemented as a loop with a check if the new item overlaps with the others already

65

Chapter 5

Algorithm 4 evaluate_candidate(candidate)
Require: candidate ordered list of indexes
Require: n number of items
Require: N ⇐ set of items
corner ⇐ {0}
positioned⇐ ∅
end = n
bound⇐ 0
for i ∈ candidate do
test⇐ False
if hi + yi ≤ H then
for x ∈ corner do
if x+ wi ≤W then
if isNotOverlapping(x, i, positioned) then
positioned⇐ positioned

⋃
{(x, i)}

corner ⇐ corner
⋃
{x+ wi}

test⇐ True
end if

end if
end for

end if
if test = True then
bound⇐ bound+

∑
j∈Q pj ∗ hi

else
end⇐ position of i in candidate

returncandidate, end, bound
end if

end for
returncandidate, end, bound

Algorithm 5 generate_candidate()
Require: n number of items
candidate⇐ shuffle([1, . . . , n])
returnevaluate_candidate(candidate)

placed. In the worst case it has to compare N items. Summarising, the evaluation
procedure Alg 4 has a worst case scenario with a time complexity of O(N3).

This complexity can be reduced to O(log2(n) · N2) by using a balanced binary tree to
represent the already placed objects, and a dichotomy search for the
isNotOverlapping(x, i, positioned) procedure.

66

Chapter 5

Figure 5.1: An example of a local search procedure. a) shows the swap sequence
between the feasible and unfeasible region, b) reports the array consequence of the
swapping sequence, the limit of the feasible region is removed because the new array
requires a new evaluation. The reader should note that since the swapping sequence
is random, the combination of multiple swaps may result in a swap of elements in the

feasible region.

Algorithm 6 local_search(candidate, limit)
Require: n, numberofavailableitems
Require: candidate ordered list of indexes from 1 to n
Require: limit index of the candidate list that indicate the first element that does not
fit in the bin
s⇐ round(limit/2)
if s = 0 then
s⇐ 1

end if
counter ⇐ 0
while counter ≤ s do
source⇐ uniform(1, limit)
target⇐ uniform(1, n)
if source 6= target then
swap(candidatesource, candidatetarget)

end if
end while
returnevaluate_candidate(candidate)

5.3 Class instances

The original paper (Clausen et al., 2010) considers problem instances used in the lit-
erature of the two-dimensional packing, in a total of 190 experiments in five main
classes, namely CGCUT (Christofides and Whitlock, 1977), WANG (Wang, 1983),
GCUT (Beasley, 1985), OKP (Fekete et al., 2007), GXON and GXOU (Clausen et al.,
2010). The instances can be downloaded from the author’s repository 1.

1http://hjemmesider.diku.dk/~pisinger/codes.html

67

http://hjemmesider.diku.dk/~pisinger/codes.html

Chapter 5

Table 5.1: Main features of the original instances compared with the proposed one

stations seats journey reservations groups
class experiments
name number min max min max min max min max min max

CGCUT 15 15 40 10 70 2 33 16 62 1 43
GXON 60 100 100 100 100 1 45 20 50 1 45
GXOU 20 100 100 100 100 1 35 20 50 6 37
GCUT 65 250 3000 250 3000 62 970 10 50 63 1890
OKP 25 100 100 100 100 1 100 30 97 1 99
WANG 5 70 70 40 40 11 43 42 42 9 33
DEPL 5 6 50 400 750 1 48 2000 2500 1 9

Table 5.1 shows a comparison between the main features. For each feature we report
the minimum and maximum values for each parameter to show a broad picture of the
problem class.

Experiments number shows the number of instances available in the class, stations re-
ports the journey length measured as number of stations, seats is the number of seats
available in the train, journey represents the journey length for the reservations, reser-
vation stands for the number of reservations for each instance and groups are the group
dimension in the reservations.

DEPL is the new class of instances that we propose, considering also the recent work
of (Smith-Miles and Lopes, 2012). The idea behind this is to provide a worst case
class inspired by a real-world scenario that can be hard to solve. DEPL has a high
number of reservations to represent a busy connection between cities, and a range of
limits for the other features compatible with a broad range of railway journeys. The
reason for DEPL to consider up to 50 stations only is that a journey lasting 50 stations
is unlikely to happen bar exceptional cases. An example of an exceptional case could
be the Trans-Siberian Railway (the longest in the world), which stops in 157 stations
during the journey from Moscow to Vladivostok.

5.4 Experimental results

The experiments are divided into two main groups, group one considers unitary profits
while group two considers random profit. For each group we evaluated all the instances
of the classes in Table 5.1: a total of 195 problem instances per group.

In each experiment we reported the gap, defined as the best bound of the continuous
relaxation of the model. The formula is reported in Eq: 5.20. We applied the same
formula to calculate the gap in the heuristic results as well.

68

Chapter 5

gap = |bestbound− bestinteger|1
1010 + |bestinteger|

(5.20)

The model in Eq:5.9-5.19 has been implemented in OPL and solved using IBM CPLEX R©

12.7. The proposed Algorithms 3-6 have been implemented in Python 3.6.7. The ma-
chine used for running the experiments is an Intel R© CoreTM i7-7700HQ @ 2.80GHz, 16GB
DDR4 RAM. The operating system is UbuntuTM 18.04. The time limit for solving each
instance is 20 minutes: this choice is reasonable if we consider 1) a booking system that
accepts prenotations up to one hour before the train departure and 2) the seats must be
communicated before people arrive at the platform, e.g. by email, by printing the seat
number at the station gate, or by a smartphone application. The proposed algorithm
has been run three times for each instance to avoid eventual bias due to a lucky initialisa-
tion. The stopping criteria for Algorithm 3-6 are: bratio = 0.95 (95% of the result of the
continuous relaxation), max_iterations = 15000, and timelimit = 1200 seconds. For
most of the experiments the max_iterations and the bratio are the triggering stopping
criteria, while in the DEPL class, because of the massive number of items, the evaluation
procedure is considerably slower and the timelimit becomes the only stopping criterion.

Table 5.2 and Table 5.3 report the experiments of group one. Table 5.4 and Table 5.5
report the experiments of group two. For CPLEX, the tables report average and standard
deviation of the gap, calculated using as the baseline the continuous relaxation, and time
(reported in seconds). For the algorithm, the tables report the average and standard
deviation of computational time (seconds), and average, standard deviation, minimum
and maximum. The last column is the difference between the mean gap achieved by
CPLEX and the mean gap achieved by the algorithm. This column highlights the
degradation of the objective. We highlight any gap degradation lower than 10% in bold
font.

In all the instances solved in Table 5.2-5.3-5.4-5.5, our algorithm achieved a maximum
running time of 6.35 seconds and a minimum of 5.67E-05 seconds. The average running
time in the first group is 1.95 seconds, while in the second group it is 2.32 seconds.

The experiments of group one, apart from G40U20, G50U20 and GCUT13, are relatively
easy to solve for CPLEX: 50% of the experiment classes in the first group have an average
gap difference lower than 10%.

The second group is more difficult to solve for CPLEX: 57.89% of the classes ran an
average of more than 16 minutes, while the objective degradation was averagely less
than 10% in 26.31% of the experiment classes.

69

Chapter 5

Table 5.2: Experiment group one, comparison with unitary profit, first part

instance CPLEX algorithm
gap time gap time

name mean std mean std mean std min max mean std difference
CGCUT01 1.38 3.08 0.04 0.01 28.52 11.61 18.18 42.11 1.92 0.09 27.14
CGCUT02 1.52 1.77 0.73 0.27 9.06 6.83 1.23 22.22 1.69 1.34 7.54
CGCUT03 4.66 4.49 1.09 0.3 20.38 16.02 1.83 47.87 1.92 0.83 15.72
G20N10 1.42 1.28 2.73 2.33 6.43 3.17 2.85 11.90 1.64 1.21 5.01
G20N20 0.18 0.24 1.54 1.41 4.88 3.39 0.43 12.37 1.26 1.52 4.70
G20N30 0 0 0.54 0.05 6.25 5.77 0.90 16.51 0.86 1.86 6.25
G20U20 1.73 2.63 3.14 2.85 34.61 18.87 10.39 62.57 2.27 0.48 32.88
G30N10 4.32 2.96 7.81 3.94 11.41 2.19 6.68 17.57 3.15 0.16 7.09
G30N20 0.79 0.71 5.52 2.91 11.23 4.19 2.40 18.37 3.05 0.63 10.44
G30N30 0 0 1.97 1.3 3.69 0.89 0.78 5.17 0.32 0.36 3.69
G30U20 0.9 0.83 40.3 43.59 42.21 5.52 33.67 55.40 2.55 0.38 41.31
G40N10 4.59 4.18 9.36 7.9 23.94 3.41 13.81 36.68 3.21 0.12 19.35
G40N20 0 0 13.9 10 10.03 5.26 3.09 23.81 2.90 1.11 10.03
G40N30 0 0 5.26 2.37 8.99 6.21 2.99 20.00 2.55 2.22 8.99
G40U20 2.01 0.95 70.19 71.48 53.11 11.08 28.18 73.76 2.72 0.15 51.10
G50N10 3.36 1.87 22.96 27.98 29.19 3.74 21.77 35.92 3.48 0.29 25.83
G50N20 1.69 2.36 12.1 3.96 19.45 10.18 8.46 38.86 3.49 0.11 17.76
G50N30 0 0 6.03 3.55 8.95 4.96 4.40 22.22 5.28 0.83 8.95
G50U20 0.99 1.11 195.36 303.41 64.08 12.06 43.03 84.65 2.66 0.20 63.09

DEPL experiments with random profit are reported in Table 5.6. CPLEX ran out of
memory in all the experiments carried out. We were not able to provide the solution
of the continuous relaxation, thus we were not able to calculate the gap between the
relaxation and the best solution found. Consequently, we decided to run the instances
with the proposed algorithm only at different time limits, one minute, three minutes
and one hour. Table 5.6 reports the average number of iterations made, maximum,
minimum and average objective with standard deviation value found with three different
time limits for the heuristic. The result shows that considering a much larger number of
items, the algorithm’s chances to improve an already good solution by remixing part of
the best solution or part of the actual solution are less. The evaluation process becomes
much slower. For example, with the instance DEPL_0, tripling the time from 60 to 180
seconds only produced a gain in the average objective of 1.64%, and when we increase
the time limit from 1 minute to 60 minutes, the gain in the objective was only 5.07%.
A similar pattern can be seen in the other cases, where the best gain after an hour of
computation was 12.17% in the objective value. To sum it up, the experimental results
have shown that the proposed heuristic is a useful tool to provide good, feasible and
quick solutions for the challenging instances in which CPLEX fails. However, letting the
heuristic run for an extended period will not improve performance significantly.

70

Chapter 5

Table 5.3: Experiment group one, comparison with unitary profit, second part

instance CPLEX algorithm
gap time gap time

name mean std mean std mean std min max mean std difference
GCUT01 27.62 5.23 0.19 0.02 76.96 75.95 23.32 257.14 0.87 0.79 49.34
GCUT02 11.45 8.7 0.84 0.1 74.73 42.07 17.65 185.71 0.34 0.75 63.28
GCUT03 13.17 11.46 1.78 0.96 69.64 77.38 1.42 259.12 0.84 0.90 65.47
GCUT04 1.71 1.59 4.75 2.76 12.78 7.60 2.64 31.25 1.54 0.90 11.07
GCUT05 5.16 7.77 1.11 0.5 5.29 7.67 0.45 18.46 0.69 0.93 0.13
GCUT06 10.37 12.67 2.3 1.27 11.49 11.67 1.27 24.53 0.70 0.90 1.12
GCUT07 8.49 5.63 3.94 1.45 8.84 5.26 4.60 18.06 1.43 0.71 0.35
GCUT08 1.06 1.09 14.05 3.46 4.82 1.53 0.20 9.41 1.02 0.84 3.76
GCUT09 10.62 10.64 1.82 0.8 11.10 10.11 0.35 24.53 0.97 0.88 0.48
GCUT10 1.99 1.6 3.63 0.78 2.62 1.21 0.81 4.44 0.06 0.08 0.63
GCUT11 7.31 7.75 14.04 10.55 11.56 6.29 0.60 17.79 1.46 0.68 4.25
GCUT12 1.36 0.7 18.67 6.94 5.77 3.31 0.70 18.98 0.86 0.65 4.41
GCUT13 21.3 22.02 864.27 0.16 14.98 2.59 9.64 21.63 3.60 0.11 -6.32
OKP01 6.13 2.48 1.13 0.41 38.46 9.86 17.33 68.38 2.07 0.03 32.33
OKP02 12.55 1.51 0.67 0.16 19.27 7.95 12.52 35.08 1.86 0.06 6.72
OKP03 6.26 1.3 0.39 0.06 7.95 2.26 5.41 22.64 1.83 0.05 1.69
OKP04 8.7 2.73 1.83 0.35 44.10 9.66 25.51 74.96 2.26 0.04 35.40
OKP05 17.57 2.95 6.99 2.13 75.39 18.04 36.19 123.60 2.90 0.03 57.82
WANG20 11.22 5.75 0.43 0.11 34.56 9.42 13.93 56.44 1.91 0.03 23.34

5.5 Summary

In this chapter we have developed a mixed integer programming model for the Group
Seat Reservation Knapsack Problem with Profit on Seat. It is an extension of the
Offline Group Seat Reservation Knapsack Problem that introduces a profit evaluation
dependent on the reservation profit, proportional to the journey length and group size,
and on the seat profit in which the reservation is allocated. The proposed extension
covers situations where the ideal position of an item is affected by how long the item
must keep that position.

We have developed a new GRASP based algorithm that solves the original problem
version and the newly proposed one.

We have improved the instances considered in the original paper with five new problems
that better represent worst cases of real world scenarios and we have evaluated the
limitations of the proposed algorithm.

In the experimental section we have shown that the proposed algorithm can be useful to
provide a first lower bound very rapidly, which can be used as a startup for a successive

71

Chapter 5

Table 5.4: Experiment group two, comparison with random profit, part one

instance CPLEX algorithm
gap time gap time

name mean std mean std mean std min max mean std difference
CGCUT01 46.80 13.36 0.47 0.25 118.66 17.27 117.93 120.10 1.70 0.09 71.86
CGCUT02 58.84 12.23 1200.39 0.84 82.06 15.02 80.62 84.49 2.47 0.27 23.22
CGCUT03 64.91 14.20 580.02 409.21 106.61 27.69 101.06 114.82 1.98 0.08 41.70
G20N10 60.69 9.27 827.67 477.01 78.81 7.14 77.53 80.71 2.70 0.24 18.11
G20N20 60.46 9.04 946.67 347.33 88.37 12.94 86.22 90.43 2.65 0.30 27.91
G20N30 53.84 13.73 1141.04 131.85 91.99 11.63 91.68 92.19 4.57 0.78 38.15
G20U20 67.83 11.86 1042.28 216.89 133.10 28.98 127.70 139.59 1.97 0.45 65.28
G30N10 70.59 10.41 1029.90 252.47 93.82 6.27 87.39 99.70 2.80 0.16 23.23
G30N20 64.13 7.36 1008.56 337.22 95.74 12.98 90.78 100.44 2.82 0.17 31.61
G30N30 54.73 14.48 1200.01 0.00 82.83 9.72 81.74 83.61 4.87 1.16 28.10
G30U20 81.32 3.34 665.11 312.73 151.91 11.82 144.30 160.55 2.25 0.37 70.59
G40N10 68.56 8.22 1177.32 52.17 110.12 14.65 104.02 115.68 2.85 0.17 41.56
G40N20 75.04 10.48 1099.03 226.54 101.28 7.28 96.85 105.63 3.01 0.19 26.25
G40N30 57.90 13.72 1200.26 0.54 97.77 21.76 93.40 101.14 4.88 0.78 39.88
G40U20 157.29 97.61 924.14 275.48 182.74 25.11 168.71 193.63 2.32 0.15 25.45
G50N10 78.02 8.25 1121.18 177.59 128.50 18.86 119.13 140.83 3.03 0.31 50.48
G50N20 75.50 7.91 1149.88 112.31 120.58 17.31 113.41 128.85 3.11 0.10 45.08
G50N30 57.06 8.72 1092.70 239.96 99.18 11.33 95.14 103.16 4.81 0.55 42.12
G50U20 172.74 79.85 937.84 263.62 199.80 12.50 190.17 209.26 2.34 0.16 27.05

branch and bound procedure. However, it may be used in the cases where achieving a
solution in the timelimit is more important than the optimality of the solution.

72

Chapter 5

Table 5.5: Experiment group two, comparison with random profit, part two

instance CPLEX algorithm
gap time gap time

name mean std mean std mean std min max mean std difference
GCUT01 98.60 19.95 18.74 7.33 223.77 186.94 201.86 252.10 0.76 0.69 125.17
GCUT02 76.81 7.21 318.76 460.77 105.62 31.45 97.83 112.42 0.59 0.80 28.81
GCUT03 80.59 11.51 684.56 547.00 162.21 96.29 145.38 176.55 0.94 0.85 81.62
GCUT04 74.59 7.79 1200.02 0.00 99.73 9.33 85.59 109.15 1.86 0.09 25.13
GCUT05 75.91 8.78 1077.14 121.75 80.96 7.82 80.96 80.96 1.45 0.07 5.05
GCUT06 75.38 3.87 934.90 429.82 78.44 5.58 78.44 78.44 1.46 0.01 3.06
GCUT07 88.10 4.04 1200.01 0.00 92.48 8.26 92.27 92.59 1.53 0.02 4.38
GCUT08 81.50 6.64 1168.73 70.00 83.73 6.66 80.18 85.66 1.85 0.03 2.23
GCUT09 76.22 11.59 1200.02 0.01 80.34 11.83 80.34 80.34 1.37 0.04 4.12
GCUT10 67.50 7.57 1001.04 273.37 69.89 9.37 69.89 69.89 1.43 0.02 2.39
GCUT11 83.63 11.37 1200.08 0.05 89.59 7.40 86.36 94.30 1.63 0.03 5.96
GCUT12 77.25 6.42 1200.13 0.16 82.05 6.29 78.14 89.62 1.81 0.02 4.80
GCUT13 111.15 19.27 1200.21 0.21 103.62 6.89 98.23 110.13 3.15 0.07 -7.53
OKP01 41.72 8.33 53.60 25.01 89.48 6.21 80.30 99.89 1.79 0.02 47.77
OKP02 56.61 11.81 17.76 4.98 74.03 15.99 70.20 79.53 1.62 0.08 17.42
OKP03 49.32 12.73 6.15 2.92 57.78 7.12 52.34 63.65 1.60 0.03 8.46
OKP04 46.60 7.83 51.68 70.13 100.59 24.30 82.61 119.71 1.94 0.04 53.99
OKP05 69.01 8.52 1135.56 144.74 153.13 10.19 144.65 162.06 2.52 0.06 84.13
WANG20 61.46 14.80 6.54 4.80 119.14 25.29 109.05 130.81 1.71 0.07 57.67

Table 5.6: Experiment group two, DEPL, with different time limits

instance CPLEX algorithm
iterations obj time gain

name # mean std min max limit %
DEPL_0 oom 7 10289 242.396 10055 10539 60 0
DEPL_0 oom 16 10458.33 160.051 10331 10638 180 1.64
DEPL_0 oom 284 10810.66 127.021 10685 10939 3600 5.07
DEPL_1 oom 20 9706.33 105.547 9599 9810 60 0
DEPL_1 oom 55 9895 152.302 9771 10065 180 1.94
DEPL_1 oom 1020 10654.66 219.62 10449 10886 3600 9.77
DEPL_2 oom 8 18436.67 303.216 18173 18768 60 0
DEPL_2 oom 19 19467 502.012 18967 19971 180 5.58
DEPL_2 oom 334 20342 172.6 20233 20541 3600 10.33
DEPL_3 oom 35 13006.67 114.988 12913 13135 60 0
DEPL_3 oom 103 13342 137.328 13195 13467 180 2.57
DEPL_3 oom 1858 14589.66 465.6 14271 15124 3600 12.17
DEPL_4 oom 64 20474.67 380.245 20060 20807 60 0
DEPL_4 oom 179 20837.67 447.474 20321 21101 180 1.77
DEPL_4 oom 3930 22723.66 582.85 22189 23345 3600 10.98

73

Chapter 6

A data-driven methodology to
infer the graph of the feasible
train routing strategies from open
data in UK rail network

In this chapter we present a data-driven method to infer useful infrastructure and feasible
train routing strategies from open data in UK rail network. The majority of the network
is divided into sections called berths, and the transition point from one berth to another
is called a berth step. There are sensors at berth steps that can detect the movement
when a train passes by. The result of the method is a directed graph, where each node
represents a berth and each arc represents a berth-step. The arcs represent the feasible
routing strategies, i.e. where a train can move from one berth. A connected path
between two berths represents a connected section of the network.

Our work is important for the following reasons. Firstly, the berth graphs are not publicly
available in an easy machine-readable format. All existing copies are only for a local
network, and were created manually as hard copies. Secondly, a method to infer the
graph directly from the stream of data produced allows automatic re-configuration after
special maintenance, i.e. if a new line is built, a junction is introduced, and so on.
Thirdly, after the graph is established and validated, it is easy to modify the method for
detecting in real-time events such as: failure of the train detection system, i.e. trains
that cannot be detected easily due to railhead contamination problems or on-board
systems not working properly. Such an event detection can help improve service recovery
and network maintenance. Fourthly, the berth graph is the model that represents the
feasible train routing strategies in network. The model has been exploited to develop

74

Chapter 6

a reactionary delay simulator and an optimiser of mitigation strategies in the RSSB
funded COF-INP-05: “Anticipating and mitigating reactionary delays: A case study on
Merseyrail’s Northern Line”.

The chapter is organised as follows. Section 6.1 provides an overview about the data
we will use; Section 6.2 shows the algorithm; and Section 6.3 reports the results. The
chapter finishes with the conclusions in Section 6.4.

6.1 Overview about the C-class of Train Describer data

The Train Describer (TD) data reports seven types of messages, divided into two classes:
C-class and S-class. The first one, TD-C-class, provides information about the transition
of trains between berths. The second one, TD-S-class, provides information about the
state of the signalling hardware placed on the network. This study exploits the TD-C-
class. Scholars or practitioners who are interested in the TD-S-CLASS should consider
to have access to software such as the Network Rail’s VISION software or, eventually,
the configuration map between the signal addresses and the TD-S-CLASS bitmap (Open
Rail Data Wiki, n.d.).

The C-class message data source will be abbreviated as TD-C in the next parts. TD-C
messages have 7 fields (Open Rail Data Wiki, n.d.). The field timestamp is the time
that the message has been received in the mainframe, area_id identifies the geographical
area. msg_type is the message type, Table 6.1 shows the possible message types for TD-
C. headcode represents the train code, the first character is the train class, the second
is the destination area and the last two are a numeric counter. from and to are berth
id, in combination with area_id they represent the berth step. report_time represents
the hour, minute and second of the message when it was sent. Table 6.2 summarizes the
fields and in which message type they appear. The field descr represents the headcode in
the official data-feed documentation. From now on, for the sake of clarity, we are going
to use headcode.

Table 6.1: TD-C message types

Event type Message description
CA Transition from a berth to another
CB Cancels the description of the previous (from) berth
CC Overwrites the description of the current (to) berth
CT Heartbeat, periodically sent

A typical TD-C message inside an area code is shown in Table 6.3. Table 6.4 shows a
sequence of messages produced during a transition between an area code and another
one.

75

Chapter 6

Table 6.2: TD-C message fields according to message types.

Field Size CA CB CC CT Description
timestamp 10 • • • • UNIX timestamp in milliseconds
area_id 2 • • • • Area code
msg_type 2 • • • • CA, CB, CC, CT

from 4 • • From berth
to 4 • • To berth

descr 4 • • • Headcode
report_time 6 • Reporting time

Table 6.3: Typical TD-C message sequence (Rail, a) (comments added by the authors)

Timestamp Type TD
area Headcode from to Time Comment

1514795790048 CA SS 2U10 0054 0052 083629 Departure
at Sandhills

1514795844213 CA SS 2U10 0052 0036 083723
1514795925445 CA SS 2U10 0036 0034 083844 Arrival at

Moorfields
1514796018739 CA SS 2U10 0034 0030 084018 Departure

at Moor-
fields

1514796114024 CA SS 2U10 0030 0026 084153

The TD system is also used by controllers to map exceptional events, i.e. tracks oc-
cupied with engineering works, temporary speed restrictions, and so on. Using TD-C
class could be challenging because there are duplicated and missing messages. In very
busy networks, the same headcode may be used more than once during the same day.
Moreover, even if it should be rare, two trains having the same headcode might run in
the same area.

Another very important task, to controllers, planners and end-users, is to forecast the
train running time, from one point of the network to another. Controllers and planners
can exploit a precise forecast to better plan and control the railway traffic, during normal
operating conditions and during disruption management. Commuters use the forecast
every time that they look at any Customer Information Screen (screens that display the
arrival and departure times at station/platform).

6.2 Methodology

In this section we show how to infer the berth graph that represents the feasible train
routing strategies from the TD messages flow. The output is a directed graph, where
each node represents a berth and each arc represents a berth-step. The arcs represent

76

Chapter 6

Table 6.4: A TD-C message in a transition between the XL and the SS areas (Rail,
a)

Timestamp Type TD
area

Head-
code

Berth
from

Berth
to Time Comment

151. . . 182 CC XL 2S01 A087 055911
151. . . 853 CA XL 2S01 A087 0091 060538
151. . . 854 CA XL 2S01 STIN L091 060538 Departure Hunts

Cross
151. . . 146 CA XL 2S01 0091 0099 060659 Arrival at Liver-

pool South Park-
way

151. . . 148 CA XL 2S01 STIN L099 060659
151. . . 149 CA XL 2S01 L091 COUT 060659
151. . . 821 CA XL 2S01 0099 0101 061000 Departure Liver-

pool South Park-
way

151. . . 829 CA XL 2S01 L099 COUT 061001
151. . . 436 CA XL 2S01 0101 0103 061230 Arrival Aigburth
151. . . 437 CC SS 2S01 H103 061230
151. . . 443 CC SS 2S01 HC2A 061230
151. . . 950 CA SS 2S01 H103 H105 061440
151. . . 950 CA XL 2S01 0103 0105 061440 Arrival at St

Michaels
151. . . 554 CA SS 2S01 H105 H107 061716
151. . . 554 CA XL 2S01 0105 0107 061716 Arrival at

Brunswick
151. . . 556 CB SS 2S01 HC2A 061716
151. . . 142 CA SS 2S01 H107 0021 061944
151. . . 142 CA XL 2S01 0107 M021 061944
151. . . 143 CC SS 2S01 M021 061945
151. . . 320 CA SS 2S01 0021 0023 062027
151. . . 323 CB SS 2S01 M021 062027
151. . . 435 CA XL 2S01 M021 COUT 062041
151. . . 788 CA SS 2S01 0023 0025 062154
151. . . 889 CA SS 2S01 0025 0027 062220 Arrival at Liver-

pool Central

the feasible routing strategies, i.e. where a train can move from one berth. A connected
path between two berths represents a connected section of the network.

The first step is to parse the XML data feed, and convert it into a more convenient
format. Specifically, we convert the messages into a matrix, in which the columns are
the message fields and the rows are the single messages.

We preprocess the matrix and remove all messages that have an empty headcode, or are
duplicated (all fields equal with a timestamp difference of less than one second). We
also remove all the messages with their headcode having non-alphanumeric characters

77

Chapter 6

(such as *, +, -, ., _). These are messages with an obfuscated or malformed headcode.
The graph of a specific region can be extracted by filtering the area_id.

After the preprocessing phase, we can split the stream into journeys. The task is done
with the following operations:

1. Sort stream by area_id, headcode and timestamp

2. For each day

(a) Group the daily stream by area_id and headcode

(b) Sort each group by timestamp ascending

(c) For each group, split the sequence when a gap greater than α minutes is
detected between two successive timestamps. We choose α = 180 minutes,
but a smaller value may be used.

3. For each couple of sequences a,b

(a) If they have the same headcode and the distance between the last timestamp

of a and the first timestamp of b is less than a β = 35 minutes, merge them.

Algorithm (7-8) uses some external functions. Let s be a string, the function
transitionsChars(s), returns true if smatches the regular expression ^(H|M)[0-9]+, false
otherwise.
onlyCharacters(s) returns true if s matches with the regular expression
^[a-zA-Z][a-zA-Z][a-zA-Z][a-zA-Z], false otherwise. isFirst(s, c) returns true if the
string s starts with the character c, false otherwise.

Algorithm (7-8) parses the sequence of messages for each journey. It checks that for each
message i, the value in fromi is equal to the value in toi−1. This constraint is useful to
maintain coherence in the chain of messages, avoiding false introduction of a new edge
just because of a missing message. If the algorithm finds a broken sequence, where the
to of the previous message does not match with the from of the current message, it
registers the exception and increments a counter.

Note that there may be multiple causes for the existence of an exception, i.e. a lost
message, a broken sensor, low-adhesion event, and a configuration setting. To handle
each exception e, we have adopted a simple method: if the counter of e is greater than
a threshold, then insert e into the graph. Otherwise, e is discarded.

Once the graph is built, it may be important to analyse the causes of the exceptions.
To do so, we need to maintain in the exception list also the timestamp of the event

78

Chapter 6

Algorithm 7 Generate graph of berths(1)
Require: journeys list of journeys
Require: maxLimit

1: set: nodes ← {∅}, links ← {∅}
2: for journey ∈ journeys do
3: set: pl ← {}, switch ← False , last ← none, lastrow ← none, exceptions ← {}
4: for m ∈ journey do
5: skip ← false
6: if mtype = CA then
7: if (onlyCharacters(mfrom) OR onlyCharacters(mto)) OR

(transitionsChars(mto) AND transitionsChars(mfrom)) OR
isFirst(mfrom,’H’) then

8: skip ← true
9: end if

10: if skip = false AND switch=true then
11: if {mareaid,mfrom} /∈ nodes then
12: nodes{mareaid,mfrom} ← 1
13: end if
14: if plto = mfrom then
15: if {{plarea, plfrom}, {mareaid, plto}} /∈ links then
16: link{{plarea,plfrom},{mareaid,plto}} ← 1
17: else
18: link{{plarea,plfrom},{mareaid,plto}} ← link{{plarea,plfrom},{mareaid,plto}} + 1
19: end if
20: end if
21: set: switch ← false, pl ← {}, last ← mfrom

22: end if
23: if skip = false AND

transitionsChars(mto) AND
NOT transitionsChars(mfrom) then

24: set: switch ← true, pl ← {area:mareaid,from:mfrom,to:mto}
25: if (mareaid,mfrom) /∈ nodes then
26: nodes(mareaid,mfrom) ← 1
27: end if
28: end if

(change line 40 of Algorithm 8). Once this has been done, the cause of exception can be
identified by checking the following cases: 1) for each link d inferred by an exception,
let a,b,c be a chain of berths. If there exists a link d from a to c, then it is likely
that the sensor in b is broken, or there may be a maintenance event in the railway that
involves b; 2) if there is no maintenance in b, then b is broken; 3) if the d events that
involve b have a burst pattern in the data stream, then we may be in the presence of a
low-adhesion event.

79

Chapter 6

Algorithm 8 Generate graph of berths(2)
29: if skip=false AND mfrom AND mto then
30: if (mareaid,mfrom) /∈ nodes then
31: nodes(mareaid,mfrom) ← 1
32: end if
33: if switch=false AND (mareaid,mto) /∈ nodes then
34: nodes(mareaid,mto) ← 1
35: end if
36: if last AND mfrom=last then
37: calculate the timestep between last_row and row
38: nodes(mareaid,mfrom) ← nodes(mareaid,mfrom) + 1
39: else
40: push into exceptions (last_rowareaid, last,mareaid,mfrom), if already ex-

ists increment counter
41: end if
42: set: last ← mto, last_row ← row
43: if switch=false then
44: if ((mareaid,mfrom), (mareaid,mto)) /∈ links then
45: link((mareaid,mfrom),(mareaid,mto)) ← 1
46: else
47: link((mareaid,mfrom),(mareaid,mto)) ← link((mareaid,mfrom),(mareaid,mto)) + 1
48: end if
49: end if
50: end if
51: end if
52: end for
53: end for
54: return Graph(nodes, links)

6.3 Results and discussion

The dataset used to test Algorithm (7-8) is the TD-C-CLASS stream in the UK from
January, 1st 2018 to April, 30th 2018. We used the algorithm to build the berth graph
for the network of Merseyrail. The number of journeys available is 74212.

Since this is a data-driven method, we need enough data to infer all the berths and
connections that represent feasible train routing strategies. We can link only berths
that have been used in the dataset. If a transition between two berths is rare (i.e. is
used only during major disruptions or in case of network maintenance) then the link,
despite its existence in the berth diagram, will not be registered.

Fig 6.1 shows the result for the network managed by Merseyrail without managing the
exceptions. The graph produced is disconnected, with nine subgraphs. Each subgraph
is a coherent sequence of transitions, and this coherency automatically ensures that the
graph is validated.

80

Chapter 6

Figure 6.1: The Merseyrail network’s graph of berths, without managing the excep-
tions. The graph is disconnected, there are 9 subgraphs.

The next step is to analyse the exceptions. Table 6.5 shows the first 10 exceptions sorted
by their counter in descending order. We assume that if an exception really happens, i.e.
its frequency of occurrence is less than a small threshold, it can be ignored, otherwise
the exception must be handled by adding an edge from the previous to to the current
from.

Since the threshold depends on the number of journeys available, we have tried different
thresholds. Fig 6.2 shows the histogram of sub-graph numbers when varing the threshold.
Fig 6.3 shows the number of edges in the graph when varying the threshold. The analysis
reveals that only with a threshold of 0 (Fig 6.4), and 1 (Fig 6.5), can we create a
connected graph for the whole Merseyrail network. The main difference between them
is the number of edges, in the first case we have 1,118 edges, while in the second one

81

Chapter 6

Table 6.5: The first 10 exceptions sorted by their counter in descending order.

area_id_from from area_id_to to counter
XZ E299 XZ E045 882
XZ E299 XZ E053 255
XZ 0AP2 SS 0740 148
SS 0737 XZ E053 144
XZ 0AP1 SS 0740 143
SS 0715 XZ E295 111
XZ E297 SS 0715 109
SS 0741 XZ E053 101
SS 0741 XZ 0006 92
XZ 0006 SS 0737 91

882. Increasing the threshold produces graphs with fewer edges, and more disconnected.
Fig 6.6a shows the graph computed with a threshold of 20, with 7 subgraphs. Fig 6.6b
has been made using a threshold of 5, and number of sub-graphs is six.

Figure 6.2: Histogram of threshold compared to the number of subgraphs. Note that,
the threshold axis does not follow a linear scale: from 0 to 20, the step is 1; from 20
to 350, the step is 10; over 350 there is only one value, 900, equivalent to the infinite

threshold

6.4 Summary

In this chapter we presented a data-driven method to infer the berth graph. The method
does not need to access any additional input except for access to the raw data stream.

The algorithm’s output is a directed graph, where a node is a berth and an arc is a
berth step. The graph represents the feasible train routing strategies on the network

82

Chapter 6

Figure 6.3: The number of edges compared to the threshold. Note that, the threshold
axis does not follow a linear scale: from 0 to 20, the step is 1; from 20 to 350, the step

is 10; over 350 there is only one value, 900, equivalent to the infinite threshold

of berths. This graph is useful for the following reasons. Firstly, this will be the first
algorithm to generate berth graphs from TD data automatically. Secondly, the algorithm
automatically adapts the graph in case of major network maintenance, i.e. if a new line is
built, a junction is introduced, and so on. Thirdly, the validated graph can be exploited
to detect some network problems in real-time. Fourthly, the graph has been exploited
to develop a reactionary delay simulator and an optimiser of mitigation strategies.

The algorithm has been tested with the TD C-class stream in the UK from January, 1st

2018 to the April, 30th 2018. We built the network of a UK Train company (Merseyrail),
testing the algorithm utilizing different parameterizations.

83

Chapter 6

Figure 6.4: The Merseyrail network’s graph of berths, after managing the exceptions
with a threshold strictly greater than 0.

84

Chapter 6

Figure 6.5: The Merseyrail network’s graph of berths: threshold strictly greater than
one. The graph is connected.

(a) Threshold strictly greater than 20 excep-
tions (b) Threshold strictly greater than 5 exceptions

Figure 6.6: The Merseyrail network’s graph of berths, after managing the exceptions
with different thresholds.

85

Chapter 7

A comparison between the
ARMA, GRU and LSTM:
forecast the time that a train
spends to run a track section.

In this chapter, we present a novel method to estimate the amount of time that a train
is going to spend on a section of the track. We exploit a real-world case study, one berth
that represents a busy junction in the Merseyside region. We describe the dataset in
detail, and we statistically analyse each method of choice in detail. We compared two
different approaches, the AutoRegressive Moving Average (ARMA) and two Recurrent
Neural Netwoks (RNN) models: the Gated Recurrent Unit and the Long short-term
memory.

Experimental results on historical data showed that the RNN models outperformed the
ARMA model. We analyze both approaches and we show that the best results are
obtained by networks with input sizes that were covering the statistically significant
spikes of the AutoCorrelation Function.

The novelties are the following: we make a detailed statistical analysis of the berth data
exploiting a case study from the Merseyside region; we compare two different approaches,
the AutoRegressive Moving Average model with two Recurrent Neural Networks models;
we analyze the two approaches and we found that adapting the Box-Jerkins method to
defining a range of the sizes of the input of the Recurrent Neural Network may be
beneficial to save processing power.

86

Chapter 7

Our method is the building block to estimate expected delays. The TD’s berth infor-
mation delivers the highest accuracy possibly achievable, without changing the TDS
technology stack.

The chapter is organised as follows. Section 7.1 introduces the case study utilised.
Section 7.2 describes the methodology and Section 7.3 shows the results. The chapter
will end with the conclusions in Section 7.4.

7.1 Case study

We have restricted the case study on one berth in the Merseyside region. We have
choosen the berth SS 0028, because, being just outside Liverpool Central station, it
is a very busy junction in the network. The period that we have considered for our
experiments ranges from 2018-01-01 08:01:24 to 2018-04-30 22:56:59. There are 6,315
messages with the berth SS 0028 in the from field or to field. The possible paths that
include the berth SS 0028 are shown in Table 7.1 with their cumulative frequency.

Table 7.1: Paths of berth SS 0028. There are three valid paths, the most frequent
goes from berth SS 0030 to berth SS 0024, passing through berth SS 0028.

from throught arrive frequency
SS 0030 SS 0028 SS 0024 5731
SS 0032 SS 0028 SS 0024 5
SS 0044 SS 0028 SS 0024 579

Fig. 7.1 shows how the measured times in berth are distributed by frequency. The figure
represents the three different paths using three different colours. The less frequent one,
from SS 0032 to SS 0024, is not visible because of its scarce frequency, but it is positioned
between the distributions of the other two paths. We are not going to further analyse
it, since it is not frequent enough to draw any conclusions. For the sake of simplicity,
we will omit SS from now on, and we will represent the path from XZ to YW using the
notation Z-W.

Figure 7.2 compares the time distributions during the week. The median values remain
stable in both paths, the first and third quartile vary consistently during the days.

We have restricted the further analysis on the path 0030-0024. This is because this path
has more values, and thus can draw more statistically meaningful conclusions. We have
done an Augmented Dickey-Fuller test (ADF) to verify the hypothesis that our time
series is stationary. The null hypothesis (H0) is that our data can be represented by
a unit root, which means that it is not stationary and thus has some time-dependent
structure. The alternate hypothesis (H1) is that the time series is stationary. Table 7.2

87

Chapter 7

Figure 7.1: Berth SS 0028, distribution of times differentiated by path.

(a) Path from 0030 to 0024 (b) Path from berth 0044 to 0024

Figure 7.2: Weekly boxplot, vertical axis is the time delta, horizontal axis is the week
day.

shows the results. The ADF rejects the null hypothesis with 99% confidence threshold
in every grouping condition considered. We have tested the hypothesis on the data
grouped by: weekly, working days, non-working days, peak time and non-peak time.

Figure 7.3 shows the distributions of the times during the day. Figure 7.4 compares the
difference between peak time, and non-peak time. In the UK, peak time (Fig 7.4a) is
defined as the interval from Monday to Friday, from 6:30 to 9:30, and from 16:00 to
19:00. Non-peak time (Fig 7.4b) is the other time on the day, weekend and festivities.

88

Chapter 7

Table 7.2: Stationary tests on the data grouped by: weekly, working days, non work-
ing days, peak time and non-peak time.

ADF cv-1% cv-5% cv-10% mean std p-value description length

0 -21.833 -3.431 -2.862 -2.567 29.018 3.067 0.000 weekly 5731
1 -19.378 -3.432 -2.862 -2.567 29.076 3.093 0.000 working days 4405
2 -10.711 -3.435 -2.864 -2.568 28.824 2.970 3.327206e-19 non working days 1326
3 -17.932 -3.434 -2.863 -2.568 29.164 3.039 2.881641e-30 peak time 1865
4 -17.149 -3.433 -2.863 -2.567 28.849 3.501 6.966646e-30 off-peak time 2395

Figure 7.3: Hourly boxplot. Vertical axis is the time spent in berth, horizontal axis
is the hour of the day.

To present more detailed statistics, the data has been grouped in hourly (Table 7.3),
non-peak time (Table 7.4), peak time (Table 7.5) and weekly (Table 7.6). We report
mean value, standard deviation, median, skew, minimum value, maximum value, first
quartile and third quartile. In the time between 1:00am and 4:00am, there is no running
train in the considered path.

89

Chapter 7

(a) Path 0030-0024 : peak time (from Monday
to Friday, hours from 6:30 to 9:30 in the morning

and 16:00 to 19:00 in the evening)
(b) Path 0030-0024 : non-peak time

Figure 7.4: Comparison between the peak time data, and the non-peak time data. In
the boxplots: the vertical axis is the time spent in the berth, and the horizontal axis is

the day of the week.

7.2 Methodology

The task is to forecast the future value of a time series. Figure 7.5 shows the full
dataset, without removing outliers and without preprocessing. The time series has no
visible trend, as confirmed by the ADF test, and is stationary.

Figure 7.5: The full time series for the path 0030-0024

90

Chapter 7

Table 7.3: Path from 0030 to 0024: hourly statistics. Data from 2018-01-01 08:01:24
to 2018-04-30 22:56:59.

mean std median skew min max first quartile third quartile
hour

0 29.160 N/A 29.160 N/A 29.160 29.160 29.160 29.160
4 27.766 1.164 27.095 1.732 27.092 29.110 27.092 27.092
5 28.670 3.008 28.117 1.668 23.078 42.275 23.251 23.596
6 28.973 2.833 29.126 0.235 21.115 40.395 21.120 21.818
7 29.430 2.909 30.138 -0.343 20.162 40.343 20.958 21.119
8 29.191 2.945 29.207 -0.273 20.121 41.232 21.116 21.391
9 29.452 3.000 29.417 0.130 20.075 42.220 21.120 22.090
10 28.796 2.772 29.154 -0.474 19.090 37.134 20.096 21.099
11 28.819 3.017 29.150 0.401 19.174 49.205 21.067 21.285
12 28.913 3.236 29.174 2.760 20.096 64.258 20.101 21.174
13 29.043 3.333 29.177 1.220 20.156 55.786 21.082 21.150
14 28.651 3.220 29.145 0.405 19.161 48.233 19.270 21.127
15 28.787 2.787 29.148 -0.534 21.103 36.195 21.112 21.328
16 28.902 3.135 29.143 0.263 19.278 46.232 20.096 21.130
17 28.967 2.920 29.183 -0.333 20.102 38.207 20.207 22.112
18 28.891 2.873 29.160 -0.357 21.065 38.220 21.072 21.103
19 29.039 2.644 29.165 -0.389 21.076 38.220 21.155 21.917
20 29.182 3.303 29.107 -0.157 20.072 37.170 20.454 21.218
21 30.807 5.046 29.131 1.919 21.078 51.237 21.482 22.289
22 29.996 4.499 29.093 2.046 23.076 50.216 23.088 23.113
23 29.716 3.784 29.078 0.775 22.067 40.124 22.240 22.587

Table 7.4: Path from 0030 to 0024: non peak time statistics. Data from 2018-01-01
08:01:24 to 2018-04-30 22:56:59.

mean std median skew min max first quartile third quartile
day of week

Friday 29.153 4.103 29.145 0.983 21.105 48.233 21.615 22.074
Monday 28.449 3.848 28.333 0.916 19.090 50.216 19.690 20.137
Saturday 29.048 2.710 29.159 -0.287 19.161 42.220 20.271 22.097
Sunday 28.403 3.370 29.085 2.473 20.072 64.258 20.226 21.077
Thursday 28.757 4.396 28.770 1.282 19.174 51.237 20.219 21.101
Tuesday 28.757 4.039 28.415 0.875 19.164 50.231 19.708 20.675
Wednesday 29.371 3.901 29.336 1.413 20.088 55.786 20.121 20.614

Fig 7.6 splits the distibution of times by train class. The train class is the first letter
of the headcode, and represents the train typology. It is evident that considering the
time series for each train class separately is beneficial. This is because the underlying
distribution may be different due to different train classes may imply different speed
limits (i.e. freight, special, and rail head treatment trains may run more slowly than

91

Chapter 7

Table 7.5: Path from 0030 to 0024: peak time statistics. Data from 2018-01-01
08:01:24 to 2018-04-30 22:56:59.

mean std median skew min max first quartile third quartile
day of week

Friday 28.855 2.979 29.172 -0.355 19.278 36.318 20.934 22.114
Monday 29.061 2.996 29.197 -0.235 20.162 39.458 21.052 21.117
Thursday 29.552 3.043 29.402 0.383 21.110 46.232 22.062 23.117
Tuesday 28.991 3.146 29.231 -0.281 20.096 41.232 20.100 20.961
Wednesday 29.351 2.990 30.146 -0.207 20.144 44.215 21.030 21.253

Table 7.6: Path from 0030 to 0024: weekly statistics. Data from 2018-01-01 08:01:24
to 2018-04-30 22:56:59.

mean std median skew min max first quartile third quartile
day of week

Friday 29.024 3.088 29.168 0.366 19.278 48.233 21.230 22.109
Monday 28.947 3.060 29.168 0.153 19.090 50.216 20.150 21.103
Saturday 29.048 2.710 29.159 -0.287 19.161 42.220 20.271 22.097
Sunday 28.403 3.370 29.085 2.473 20.072 64.258 20.226 21.077
Thursday 29.181 3.215 29.177 0.828 19.174 51.237 21.108 22.111
Tuesday 28.906 3.117 29.166 0.165 19.164 50.231 20.101 21.106
Wednesday 29.330 2.966 29.341 0.558 20.088 55.786 20.314 21.686

other passenger trains).

To deal with this type of time series, a suitable forecasting method should be able to
adapt automatically to the service disruptions, i.e. temporary change of speed. The
below analysis will be done to identify such a method.

We have compared two different approaches. The first one is based on the consolidated
theory of the time series analysis: since the time series is stationary with a constant
variance (there is no need for the difference operator), one could choose a stationary
method such as an AutoRegressive Moving Average (ARMA) model. The second ap-
proach exploits two Recurrent Neural Networks (RNN) architectures, that have been
very successful in sequence learning: the Long-Short Term Memory (LSTM)(Hochreiter
and Schmidhuber, 1997) and the Gated Recurrent Units (GRU)(Cho et al., 2014).

The ARMA(s,q) model is the composition of s autoregressive terms θj , and q moving
average terms γk. (7.1) shows the model: m is a constant, εt represents the white noise
(independent identically distributed random variable sampled from a normal distribution
with zero mean), θj are the parameters of the autoregressive model, γk are the parameters

92

Chapter 7

Figure 7.6: Berth path 0030-0024, distribution of times differentiated by train class.

of the moving average models. Xt is the value of the time series to forecast, whilst Xt−j

is the previous j value.

Xt = m+ εt +
s∑
j=1

θjXt−j +
q∑

k=1
γkεt−k (7.1)

Let d be the number of input features, p be the number of hidden units, and t the time
step. Let ◦ define the element-wise product (Hadamard product). The LSTM model is
described in (7.2), where: xt ∈ Rd is the input vector, ft ∈ Rp is the activation vector of
the forget gate, it ∈ Rp is the activation vector of the input gate, ot ∈ Rp is the activation
vector of the output gate, ht ∈ Rp is the hidden state vector (output vector), ct ∈ Rp is
the cell state vector, W π ∈ Rp×d, Uπ ∈ Rp×p are the weight matrices, and bπ ∈ Rp is
the bias vector. The apices π ∈ {f, i, o, c} indicate the belonging to the equation f, i, c
and o. σg is the hyperbolic tangents, while σh and σc are hard sigmoids.

93

Chapter 7

ft = σg(W fxt + Ufht−1 + bf)

it = σg(W ixt + U iht−1 + bi)

ot = σg(W oxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(W cxt + U cht−1 + bc)

ht = ot ◦ σh(ct)

(7.2)

The GRU model is described in (7.3). Reusing the notation of the LSTM: xt ∈ Rd is the
input vector, ht ∈ Rp is the output vector, zt ∈ Rp is the update gate vector, rt ∈ Rp is
the reset gate vector. σg is the hyperbolic tangent function, and σh is the hard sigmoid
function.

zt = σg(W zxt + U zht−1 + bz)

rt = σg(W rxt + U rht−1 + br)

ht = (1− zt) ◦ ht−1 + zt ◦ σh(W hxt + Uh(rt ◦ ht−1) + bh)

(7.3)

The output vector, ht, in both the architectures LSTM and GRU, is connected to a
densely connected layer, with linear activation and output of unitary size.

7.3 Results and discussion

We developed the ARMA model using the Box-Jerkins method (Box and Jenkins, 1976).
Since this time series is verified as stationary, there is no need to adopt a differencing
operator. We need to derive the order s of the autoregressive process and the order q of
the moving average process. Fig 7.7 shows the autocorrelation function (Fig 7.7a, ACF)
and the partial autocorrelation function (Fig 7.7b, PACF). The PACF plot gives insights
about the order of the autoregressive side. According to this plot, the first significant
spike is on the third lag, thus we set s = 3. To decide the order of the moving average
side, we look at the ACF plot. In this plot, the first significant spike is at the third lag,
thus we set q = 3.

94

Chapter 7

(a) autocorrelation function (b) partial autocorrelation function

Figure 7.7: PACF and ACF.

The case study dataset is split in training and testing (80% - 20%). The training part is
used to train the models, and the testing part is used to test the models with unknown
data. The regression error is measured using the mean squared error (MSE).

The ARMA(3, 3) model is fitted using the maximum likelihood method (Jones, 1980).
The regression error in the test dataset has been MSE = 8.969508. Fig 7.8 summarizes
the results for the ARMA(3, 3) model: Fig 7.8a plots the test dataset with the overlapped
prediction, Fig 7.8b and Fig 7.8c plot, respectively, the PACF and ACF of the residuals.

The framework to exploit the RNN models has the following structure: 1) preprocess the
dataset using a min-max scaler, with the output ranges between 0 and 1; 2) feed data
to the RNN architecture (training-testing); 3) postprocess the results: inverse scaling to
the original output range.

The LSTM and GRU models have been trained using the Adam optimiser (Kingma and
Ba, 2014) with default parameterisation (learning rate = 0.001, β1 = 0.9, β2 = 0.999,
learning rate decay=0.0). The loss function is the mean squared error.

We have explored the effects of different combinations of parameters without further
hyper-tuning. The number of neurons has been set with the following values: 1, 2, 4,
8, 16, 32, 64, 128, 180, 260. The batch size: 8, 16, 64, 32. The training epochs: 30,
60, 120. The input dimension (as the number of the previous values to consider for the
forecast): 1, 3, 5, 7, 8, 9, 11, 16, 32. Table 7.7 presents the results for the first ten best
architectures.

There is a consistent gap between the ARMA model and the RNN architectures. RNN
architectures perform better than the ARMA model, even without tuning them further
or using more elaborate techniques.

95

Chapter 7

(a) Plot of the test dataset with the overlapped prediction.

(b) PACF of the residuals from the test dataset. (c) ACF of the residuals from the test dataset.

Figure 7.8: ARMA(3,3)

Fig 7.9 shows the best performing RNN, a GRU architecture. In this figure we report
the plot of the dataset overlapped with the prediction, distinguishing the training from
the test in different colours (Fig 7.9a); the PACF (7.9b) and ACF (7.9c) of the residuals.

It is interesting to highlight that the best performing RNNs have an input size that is
around the third spike of the ACF of the dataset (Fig: 7.7a). Moreover, all the input
sizes greater than 11 achieve worse results, in a few combinations even worse than the
ARMA model. The reason is that greater input sizes require greater effort in terms of
the computational power and memory to process the dataset. This observation suggests
that using the Box-Jerkins method to define a restricted exploration range of the input
size may be beneficial to save computing power.

96

Chapter 7

Table 7.7: comparison

Architecture MSE test batch size epoch input size neurons

GRU 7,70128342164419 64 30 9 8
LSTM 7,70244964133797 8 30 8 8
GRU 7,70538247941626 8 30 7 128
LSTM 7,70686516569197 8 30 11 260
GRU 7,70909780976722 32 30 8 8
LSTM 7,71495684949493 8 30 11 32
LSTM 7,71557511850318 8 30 9 32
LSTM 7,71604104974153 8 30 9 16
LSTM 7,71630973211366 64 30 7 8
LSTM 7,71952616013033 8 30 9 260

We notice that the RNN architectures have something in common with the ARMA
model. The output ht of the models (7.3) and (7.2) can be seen as a non-linear coefficient
θj of the ARMA (7.1). The input size is the amount of the autoregressive behaviour of
the series, which can be seen by an ACF plot. The PACF and ACF of the residuals of
the best RNN and the ARMA model are similar: the plots of the RNN are a smoothed
version of the plots of the ARMA model.

Using more advanced techniques, such as using the early stopping to prevent overfitting,
preprocessing with other methods, adding drop-out, regularizer layers, and hypertuning
the parameters of the optimiser, the RNN architectures can achieve better results. In
the next chapter we will show an example.

7.4 Summary

In this chapter, we have presented a novel method to estimate the amount of time that
a train is going to spend in a berth.

We have exploited a real-world case study, one berth that represents a busy junction in
the Merseyside region. We have described the dataset in detail, and we have justified
each of our choices with statistical analyses.

We compared the ARMA model with two of the Recurrent Neural Networks models, the
Gated Recurrent Unit and the Long short-term memory. We tested both approaches
on our case study. The results showed that RNN architectures outperform the ARMA
model, even in their simpler configurations.

The comparison has been beneficial to analyse the strength and similarities of the two
approaches. We have found that adapting the Box-Jerkins method to estimate the input

97

Chapter 7

(a) Plot of the dataset with the overlapped prediction, divided in training and test.

(b) PACF of the residuals from the test dataset. (c) ACF of the residuals from the test dataset.

Figure 7.9: Best performing model, GRU, parameterised with: batch size=64, train-
ing epochs=30, input size = 9, number of neurons = 8.

size range of the RNN may be beneficial to better manage the computational resources.
In detail, we have shown that the best results can be obtained by networks with input
sizes that can cover the statistically significant spikes of the AutoCorrelation Function.

Our method is the building block to estimate expected delays for trains. The importance
of using the TD’s berth information is that TD delivers the highest accuracy possibly
achievable, i.e. to the second, without changing the existing technology stack.

98

Chapter 8

Train journey running time
forecasting using Train Describers
and Gated Recurrent Units

In Chapter 7, we analysed the data of a single berth, and compared different forecasting
models to predict the train’s running time. In this chapter, we exploit these results. We
present an adaptive method to forecast the running time of a train’s journey using the
Gated Recurrent Units (GRU). We tested the system on a real-world case study based
in the Merseyside region.

We show a sequential training procedure that is a trade-off between accuracy and training
time. Each round improves the model knowledge of the time series. The motivation for
building such a procedure is that the berths have different distributions: for some berths,
there may be a lack of samples or a very low variance distribution, while other berths
may have richer variability.

We have compared two different forecasting systems. The first one utilises an input of
the immediate previous n running times. The second one, instead, uses the previous n
running times available 4 hours before the start of the journey. The experimental results
show that the second method is not significantly less accurate than the first method. We
also compared both methods with the standard train time prediction system currently
used by the UK rail industry, called Darwin. The results showed that for most of
the tested journeys, our proposed systems provide more accurate prediction than the
industry system Darwin.

99

Chapter 8

We have concluded that a balanced procedure that filters the communication of the new
forecasting based on the exceeding of a threshold could be an effective trade-off between
accuracy, delivery costs, and stability of the forecast.

This work is important because forecasting the train running time is a very important
task to both controllers and end-users. Moreover, our method is the building block to
estimate expected delays also. The importance of using the Train Describer’s berth
information is that it delivers the highest possible accuracy that can be achieved using
the current UK rail infrastructure, i.e. to the second, without changing the existing
Train Detection System technology stack.

The novelties are the following. Firstly, we propose a training procedure that effectively
balances accuracy and training time. Secondly, we propose, analyse and compare two
different forecasting concepts. The first one forecasts the running time, for each berth,
based on the immediate previous n running times. The second forecasts the running
time, for each berth, based on the previous n running times available 4 hours before
the start of the journey. Thirdly, we evaluate the efficiency of the proposed methods
against the standard train time prediction system currently used by the UK rail industry,
called Darwin. We conclude that our proposed systems can provide more accurate
prediction than the industry system Darwin, and that a balanced procedure that filters
the communication of the new forecasting based on the exceeding of a threshold could
be an effective trade-off between accuracy, delivery costs, and stability of the forecast.

The chapter is organised as follows. Section 8.1 introduces the case study utilised.
Section 8.2 describes the methodology and Section 8.3 shows the experiments and results.
The chapter will end with the conclusions.

8.1 Case study

We have restricted the case study on the journeys of the Merseyrail’s Northern Line,
from Liverpool Central to Southport. The journeys start from the berth SS0027, located
in Liverpool, to end with berth SS0111, located in the entrance of Southport station. We
have chosen the Northern Line because it is a very busy part of the network. We have
included every train that travels in this route, in the period from 2018-01-01 08:01:24 to
2018-04-30 22:56:59. The dataset contains 6,753 journeys, of which 5,287 in the training
months (January, February, and March), and 1,466 in the testing month (April).

The time on each berth has been deducted by substraction between successive berth
steps: i.e. using the values in Table 6.3. For example, the time extracted for the berth

100

Chapter 8

SS0036 is 81.232 seconds by having the timestamp of the third row minus the timestamp
of the second row.

Fig 8.1 shows in a box plot the distribution of time for each berth in the path. Fig 8.1a
considers the full dataset from January to April, while Fig 8.1b includes only the month
of April. There are very small differences between the two distributions, so the two
periods can be considered as having the same distribution. The figure shows the journeys
with train class 2, the most frequent.

101

Chapter 8

(a
)
Fr
om

Ja
nu

ar
y
to

A
pr
il.

(b
)
A
pr
il.

F
ig

ur
e

8.
1:

D
ist

rib
ut
io
n
of

tim
es

pe
r
be

rt
h:

(8
.1
a)

sh
ow

s
th
e
fu
ll
da

ta
se
t,
w
hi
le

(8
.1
b)

on
ly

th
e
m
on

th
of

A
pr
il

102

Chapter 8

Table 8.1 shows the complete path. For each berth we show its size and, when available,
the corresponding station. The size of the berths has been measured by analysing the
On Train Data Recorder (the train’s black box) that covers the track, with an accuracy
of around 40 metres.

The size of the berths becomes useful to compare the forecasting results of our proposed
models with the official forecasting result provided by the current industry system Dar-
win. Darwin is the official system that feeds live and forecasting train running time
information (at station level, i.e. from station to station) to most station screens, web
applications, and mobile applications in the UK.

Table 8.1: Northern Line case study. Forecasting path from berth SS 0027 to berth
SS 0111.

Berth
(area & code)

Berth Size
(meters) Station Overall

frequency
SS 0027 167 Liverpool Central
SS 0031 233 -
SS 0033 400 -
SS 0035 324 Moorfields
SS 0039 527 -
SS 0049 851 -
SS 0051 644 -
SS 0053 459 Sandhills
SS 0057 1012 Bank Hall
SS 0063 1217 Bootle Oriel Road
SS 0069 577 Bootle New Strand
SS 0079 1662 Seathforth & Litherland
SS 0081 1664 Waterloo
SS 0083 579 - 6753 1466
SS 0085 1589 Blundellsands & Crosby
SS 0087 911 Hall Road
SS 0091 3221 HighTown
SS 0093 2394 -
SS 0095 867 Formby
SS 0097 547 -
SS 0099 927 Freshfield
SS 0101 4402 Ainsdale
SS 0103 1589 -
SS 0105 927 Hillside
SS 0107 1505 Birkdale
SS 0109 487 -
SS 0111 734 -

103

Chapter 8

8.2 Methodology

Let us formalize the problem: in the following definitions we will use the term berth to
refer to a berth path as discussed in Chapter 7. A journey is a finite sequence ai∈{0,...,m}
of m berths, a connected path in the model discussed in Chapter 6. Let πi be the
running time, which is the time required for a train to travel across the berth ai. Let
si ∈ N be the length of berth ai. Let us define bi as the identifier of the station if berth
ai includes the station’s platform, or an empty string otherwise.

The objective is to forecast the running time πi,∀i ∈ {0, . . . ,m}. The running time with
the sequence of the travelled berths leads to the forecast of the arrival time (8.1) in each
berth-step (the transition point between berth ai and berth ai+1).

τi,i+1 =
i∑
0
πi (8.1)

Regarding the berth-step position σ it is defined as in (8.2), which represents the sum
of the berth sizes.

σi,i+1 =
i∑
0
si (8.2)

The arrival time at the platform, ωi, is defined as (8.3),

ωi = τi−1,i + ci (8.3)

where ci is a constant term that defines the time required for the train to get from the
previous berth-step to the stopping point. It should be noted that, as to be discussed
later in the experimental section, our proposed methodology forecasts train running
time from berth to berth, and to the second, while Darwin, the current industry system,
forecasts train running time from station to station, and to the minute. Despite this
difference, it is still possible to compare the two methodologies by plotting their forecast
results against the actual running time of a train, as recorded from the train’s black box
(OTDR). The proposed method should provide more detailed forecasts, since there are
more berth steps than stations, and since it can provide results rounded to the second.

104

Chapter 8

It should be noted that if berth ai includes also station bi within it, then the running
time of the train on berth ai will include also the dwell time, i.e the time taken for
passengers to get on and off the train at that station.

The first berth, a0, is the berth starting from the platform of the departure station, while
the last berth, am, is the last berth just before the terminal station. This simplification
does not affect the generality or accuracy of the method or the results.

In Chapter 7 we have shown that the Gated Recurrent Units (GRU)(Cho et al., 2014)
and the Long Short-Term Memory (LSTM)(Hochreiter and Schmidhuber, 1997) archi-
tectures perform better than Autoregressive Moving Average models. In this chapter we
use the GRU architecture. It achieved previously the best results and it is faster to be
trained.

Let us formally define the GRU architecture. Let d be the number of input features,
p be the number of hidden units, and t the time step. Let ◦ define the element-wise
product (Hadamard product). The GRU model is described in (8.4). xt ∈ Rd is the
input vector, ht ∈ Rp is the output vector, zt ∈ Rp is the update gate vector, rt ∈ Rp is
the reset gate vector. W ∈ Rp×d, U ∈ Rp×p are the weight matrixes, and b ∈ Rp is the
bias vector. σg is the hyperbolic tangent function, and σh is the hard sigmoid function.

zt = σg(Wzxt + Uzht−1 + bz)

rt = σg(Wrxt + Urht−1 + br)

ht = (1− zt) ◦ ht−1 + zt ◦ σh(Whxt + Uh(rt ◦ ht−1) + bh)

(8.4)

The output vector, ht, is connected to a densely connected layer, with linear activation
and output, π̃, of unitary size.

For every berth i, we train a GRU model such that the mean squared error between the
output of the GRU (π̃i) and the running time (πi) is minimised: min MSE(π̃i, πi). The
learning phase has been optimised using the Adam (Kingma and Ba, 2014) optimiser.

8.3 Experiments, results and discussion

As previously introduced, the dataset contains 6753 journeys (excluding any journey
with unpredictable delays, e.g. cancellation, train broken down, etc.), covering the first
four months of the year 2018. The first 5287 journeys have been exploited in the training

105

Chapter 8

phase, while the last 1466 journeys have been utilized for the testing phase. The training
dataset is further divided into two parts: 90% for training, and 10% for validation. The
validation is required to measure how successful the training phase has been. The testing
dataset measures how good the model is in dealing with unknown data.

For every berth we trained a model using the procedure in 8.3.1. Then we combined the
results in two forecasting experiments, and we compared the results with the industry
official forecast (the Darwin system) in 8.3.2. In the following subsections we are going
to analyse these points separately.

8.3.1 Training one model

We are now considering the procedure for training one model, and the dataset is a time
series of train running times for one berth.

The testing dataset has been scaled such that the features follow a normal distribution
(in the scikit-learn library, a quantile transformer), using 100 quantiles. Then in the
testing phase, the quantile transformer is applied locally to each input vector. That
is because in a real-time forecast, the only available data are historical data and the
distribution of the future data would be unknown. The distribution of the data in
the Fig 7.1 shows the minimal variations between the testing and the training dataset.
For each epoch of the training procedure, the dataset is shuffled, and the batches are
extracted for the training.

In Chapter 7, we have shown that the time series autoregression has spikes up to the
9th previous element, and the best results are those using input sizes between 9 and 11.
We utilized an input size d = 11. The number of hidden units p is set to 180.

The first objective of this chapter is to build a training procedure that is a trade-off
between accuracy and training time. The training procedure is sequential: it combines
early stopping with varying batch sizes, number of training epochs, and learning rate.

These factors greatly influence the speed of the training procedure: larger batches can be
computed efficiently with graphic cards. Moreover, a batch is a partition of the dataset,
thus increasing the batch implies reducing the number of batches per epoch. We remind
that in the training procedure, the gradients are computed for every sample of the batch,
while the update of the matrix backpropagation is done by averaging the gradients of
the batch. This implies that a larger batch is more likely to catch the average features,
which are the more common ones among random samples of the dataset.

106

Chapter 8

Reducing the batch size, reducing the learning rate, and increasing the number of epochs
increase the accuracy, but the time required to complete the training increases signifi-
cantly.

Our solution is to sequentially train the model following the training map in Table 8.2.
For each training round we set a different combination of batch size, training epochs,
learning rate, and early stopping configuration.

The early stopping monitors the improvements in the loss function, and keeps a counter:
the number reported in the table is the maximum number of epochs allowed without
improvements in the loss function. If the threshold is met then the procedure resets the
matrices to the best achieved, and the training continues to the next round.

It should be noted that the stopping criteria for a training round are the number of
epochs, and the threshold of the early stopping procedure. In fact, since the learning
rate is reduced in each round, the number of epochs becomes an upper bound for the
training length that is rarely met. Having a reduced learning rate implies that the
variations in the loss are minimal, thus the early stopping becomes the actual stopping
criteria. Reducing the batch size makes the epoch more sensitive to local variations.
This can be compensated by the reduced learning rate, and the increased number of
epochs available.

Table 8.2: Training map

Round Batch Epochs Learning rate Early stopping
1 64 200 0.005 10
2 32 350 0.003 30
3 16 500 0.0009 50
4 8 800 0.0005 60
5 4 1200 0.0003 80
6 2 1500 0.0001 100

The combinations of these factors result in a training procedure that, in each round,
provides a model that has learnt more details of the underlying time series. As the
tracking progresses, the last rounds may no longer be necessary. This is because, due
to the variability of the distributions of the time series, some berths may have very
low variance which can be captured direcly with a larger batch size, while in smaller
batches they may end up overfitting the regression. The early stopping criteria prevent
the overfitting case and restore the weights of the best validation result. Fig 8.2 shows
the progression of the training of the berth SS0027, round 1 and round 2, whilst Fig 8.3

107

Chapter 8

shows round 3 and round 4. Round 5 and 6 failed to achieve a better result, and the
procedure kept the matrices of round 4.

(a) Round 1

(b) Round 2

Figure 8.2: Training results for berth SS0027. The blue plot is the real time series;the
orange plot is the fitted training dataset; and the green plot is the forecasted validation
dataset. While progressing through the training rounds, the model learns more details

of the underlying distribution.

8.3.2 Forecasting a journey and comparison with actual train running
data and industry system (Darwin)

After we have trained all the models, the next objective is to combine the results to pro-
vide a journey forecast. We set up two different experiments using the previously trained

108

Chapter 8

(a) Round 3

(b) Round 4

Figure 8.3: Training results for berth SS0027. The blue plot is the real time series;the
orange plot is the fitted training dataset; and the green plot is the forecasted validation
dataset. While progressing through the training rounds, the model learns more details

of the underlying distribution.

109

Chapter 8

models, named M1 and M2 : M1 is the forecast considering as input, independently for
each berth, the immediate previous 11 berth times; M2, converserly, considers the pre-
vious 11 berth times that are available 4 hours before the start of the journey. This
comparison is very useful to understand whether the freshness of inputs can influence
the usefulness of the forecast, and if so, by how much.

The first objective of this section is to show how accurate is the forecast. Fig 8.4 shows
the box plot of the residuals, the difference between π̃i and πi. M2, as expected degrades
in comparison to M1. The surprising fact is that the degradation is minimal. Fig 8.5
compares the errors (against actual train running time) of M1 and M2. The error is
defined as the absolute value of the residual (the difference between the forecasted time
and the actual train running time). The degradation can be seen more clearly in Fig. 8.5:
in the M1 experiment (Fig 8.5a) the third quartile is over 10 seconds in 9 berths, whilst
in the M2 (Fig 8.5b) the third quartile is over 10 seconds in 13 berths. Note that Fig 8.4
and Fig 8.5 are built from the results of the testing dataset.

110

Chapter 8

(a
)
M
1

(b
)
M
2

F
ig

ur
e

8.
4:

C
om

pa
ris

on
be

tw
ee
n
th
e
re
sid

ua
ls

of
M
1,

an
d
M
2.

111

Chapter 8

(a
)
M
1

(b
)
M
2

F
ig

ur
e

8.
5:

C
om

pa
ris

on
be

tw
ee
n
th
e
er
ro
r
of

M
1,

an
d
M
2.

112

Chapter 8

Table 8.3 compares the Root Mean Squared Error (RMSE) of the forecasting of M1 and
M2 on all journeys with running time ≤ (average running time+3∗standard deviation).
This condition is to exclude journeys with exceptional delays that are not representative.
In total 1137 journeys were selected for this comparison. As can be seen in the table,
for most of the berths M2 perform less well than M1, but the differences are mostly
insignificant. There are two berths, SS0109 and SS0051, where M2 performs better than
M1. We believe this is due to a combination of factors: the time series of these berths
have a very narrow variance and a lucky initialisation of the weights during the training
of M2 may have lead to a better fitting.

M1 M2

RMSE std RMSE std

SS0027 14.581836 23.075769 20.668506 27.695899
SS0031 4.361917 5.113927 4.388976 5.210449
SS0033 5.224612 9.631311 5.951244 11.491995
SS0035 11.512732 17.055514 13.573504 18.054848
SS0039 4.548265 5.716148 4.966396 6.084083
SS0049 1.776982 3.007798 1.810412 3.035663
SS0051 3.676582 7.820575 3.586933 7.576574
SS0053 15.710668 20.770596 16.788535 22.555885
SS0057 8.353682 11.391245 8.620071 11.473983
SS0063 9.989990 16.018613 11.907013 15.939782
SS0069 8.086827 12.674306 9.267214 12.690157
SS0079 9.494750 14.591014 10.355410 16.077068
SS0081 8.954740 11.309755 9.389406 11.651676
SS0083 2.888621 3.789270 2.988745 3.976358
SS0085 9.598039 15.316348 10.317552 15.411000
SS0087 7.237614 12.604651 7.376964 12.547221
SS0091 9.060519 15.005347 9.859909 15.257585
SS0093 3.965536 5.577765 4.144572 5.756028
SS0095 9.107166 12.833648 9.998929 13.625749
SS0097 2.476155 4.120374 3.013623 4.576232
SS0099 8.648233 14.768626 9.042913 14.903215
SS0101 11.893781 17.971506 12.349709 18.003396
SS0103 2.258325 3.150573 2.411672 3.299971
SS0105 6.538481 8.012071 6.732601 8.284258
SS0107 9.270532 14.247824 9.679752 13.972443
SS0109 3.168467 6.478378 3.153379 5.931737
SS0111 13.647585 23.035171 14.502992 23.185706

Table 8.3: Comparison of M1 and M2 in forecast accuracy against actual running
time (RMSE). The number of tested journeys is 1137. The unit of measure is second.

Fig 8.6 shows a typical example of the comparison between the forecasted values by M1
and M2 against the actual train running times. The journey is the 362S48MV01 (a train
with headcode 2S48 that ran on 1st April 2018). The times reported are rounded to

113

Chapter 8

the minute, and are calculated using Eq.(8.1). The vertical axis is the time in seconds,
while the horizontal axis is the position of berths along the journey (Eq.(8.2)). The
example illustrates that firstly the two models can forecast train times effectively with
small errors, and secondly although there is some degrades in M2, it is minimal.

(a) M1

(b) M2

Figure 8.6: Comparison between M1, and M2 : the forecast for the journey
362S48MV01.

Figs 8.7-8.9 compare the forecasts of M1, M2, and the industry system Darwin against
the actual train running time. The vertical axis shows the time progression of the

114

Chapter 8

journey, in seconds, while the horizontal axis shows spatial progression, in metres. In
the horizontal axis we use the blue dashed lines to show the positions of the berth steps,
and the green dotted lines to show the positions of the stations, measured along the
reference line of the rail track. We remind that the Darwin forecast is rounded to the
minute, thus, the progression on the plots are all shown in minutes to allow comparisons.
The baseline for the first estimation is the first berth of the journey.

We reported here only three typical journeys, but the behaviours are the same for all 200
journeys that we have analysed. The first one shows M1, Fig 8.7a, forecasts the running
time well and matches almost exactly the actual running time, while M2, Fig 8.7b,
slightly overestimates the arrival time τi,i+1. Both models forecast better than Darwin,
which underestimates the running time. The second journey shows some interesting
behaviours. Throughout the journey, M1 (Fig 8.8a) starts well and maintains only a
small gap to the actual running time. However, when the journey progresses toward the
end, from the last four berth steps (corresponding to the last two stations), it starts
to further underestimate and eventually ends up with an underestimation of 2 minutes
at the end of the journey. M2 (Fig 8.8b), on the other hand, is less accurate than M1
for most of the journey (although the gap to actual time still remains small), but when
the journey approaches its end (last four berth steps), M2 becomes better than M1
and ends up underestimating only 1 minute at the end of the journey. Darwin remains
less accurate than both proposed models and ends up underestimating by 3 minutes
at the end. In the third journey (Figs 8.9a, 8.9b), both M1 and M2 forecast well and
match almost exactly the actual running time. Darwin again performs worse, but what
is interesting is that the plot shows Darwin updates its forecasts multiple times during
the journey, based on real time inputs. This reflects how Darwin works in reality.

In summary, the experiments show that both proposed models can work well in fore-
casting train running time. Both models work better than the current industry system,
Darwin, in the tested data. The experiments also show that as expected using more
recent inputs (M1) will provide more accuracy than using inputs from 4 hours before
the start of the journey (M2), but the difference is shown to be minimal.

It is possible to make the proposed model to be even more accurate. This can be done
by updating the model with real time arrival of trains for the incoming berths, each
time the train crosses a new berth-step. This way, in (8.1), the forecasts of πi will
be substituted with the real values achieved. This substitution, obviously, reduces the
overall error, because it reduces the sources of errors. Given a journey of n berths, the
procedure requires n·(n+1)

2 recomputations of forecasts (each time a new berth step is
crossed). Moreover, given m endpoint devices (CIS), the number of transmissions will
be m · n·(n+1)

2 .

115

Chapter 8

(a) M1, 362S35MP03

(b) M2, 362S35MP03

Figure 8.7: Comparison of M1, M2, and Darwin forecasting on real data of train
running time. The ID of the journeys presented here is 362S35MP03.

This recomputation can be reduced by comparing the actual value τi,i+1 with the fore-
casted value τ ′

i,i+1: if the distance between them is under a fixed threshold ε then is
not necessary to recompute and propagate the new results. Converserly, if the distance
is over the threshold, the recomputations are necessary to keep the forecast error con-
tained, especially in very long journeys. This improvement, however, is out of the scope
of this thesis.

116

Chapter 8

(a) M1, 362S101C02

(b) M2, 362S101C02

Figure 8.8: Comparison of M1, M2, and Darwin forecasting on real data of train
running time. The ID of the journeys presented here is 362S101C02.

8.4 Summary

In this chapter we proposed a forecasting system based on the higher detail level available
real-time data feeds, the Train Describer system. We have tested this system on real
data from the Northern line on the Merseyrail network in the UK.

117

Chapter 8

(a) M1, 362S60MZ01

(b) M2, 362S60MZ01

Figure 8.9: Comparison of M1, M2, and Darwin forecasting with on real data of train
running time. The ID of the journeys presented here is 362S60MZ01.

We have firstly built a Gated Recurrent Unit model to forecast the train running time.
We have also proposed a training procedure that is a trade-off between accuracy, and
training time. The procedure is a sequential training that in each round improves the
model knownledge of the time series. The motivation for building such a procedure is
that the berths have different distributions: for some berths, there may be a lack of sam-
ples or a very low variance distribution, while other berths may have richer variability.

118

Chapter 8

Secondly, we have compared two different forecasting concepts. The first one, M1,
forecasts the running time, for each berth, based on the immidiate previous n running
times. The second one, M2, forecasts the running time, for each berth, based on the
previous n running times available 4 hours before the time of the start of the journey.
Testing on real data, most concepts have shown to be effective and can forecast train
time with low errors. The experimental results have also shown that the difference
in terms of accuracy between M1 and M2 is minimal. We have also compared both
methods with Darwin, the forecast system that is being used in most UK stations. The
results show that both of our proposed methods are more accurate than Darwin on the
tested real data.

We have concluded that a balanced procedure that filters the communication of the new
forecasting based on the exceeding of a threshold could be an effective trade-off between
accuracy, delivery costs, and stability of the forecast.

This work is important because forecasting the train running time is a very important
task to both traffic controllers and passengers. Traffic controllers can exploit a precise
forecast to better plan and control the railway traffic, during normal operating conditions
and during distruption management. Passengers use the forecast every time that they
look for train runtime, either from one of the screens at stations, or from a journey
planner app or website.

Our method is the building block to estimate also expected delays. The importance
of using the Train Describer’s berth information is that it delivers the forecasts to the
second, the highest accuracy possibly achievable with the current UK infrastructure.

119

Chapter 9

Final conclusions and future work

This thesis researches into four real problems coming from the supply chain manage-
ment and railway industry. The suggested solutions exploit computational intelligence
techniques and methodologies.

The first problem is the Multiple Heterogeneous Knapsack Problem, giving priority to
smaller bins and considering the following constraints: non overlapping, boundaries and
positioning (both constrained and free), rotations (around the vertical axis), orthogonal
displacement, weight limit, static stability, weight distribution in a pyramidal region and
load bearing considering items’ arbitrary centre of mass. The contributions are:

• A mixed-integer linear model for the aforementioned problem

• A study of the trade-off of adding more constraints to make the problem more
realistic and the complexity of finding a solution.

• New metrics that facilitate the comparison of datasets used in experiments.

• A constructive heuristic named Weight First Best Fit to handle large scale in-
stances in a reasonable time.

The second problem is how to estimate if a particular packing solution is feasible in a
constant O(1) computational time. Given that traditional feasibility checking for packing
solutions is an NP-Hard problem, the aim is to significantly save time and computational
effort. The contributions are:

• A novel two-stage strategy: the first stage exploits the master/slave Bender’s
decomposition to build a dataset of knapsack solutions; the second stage exploits
the dataset to train a classifier for checking the feasibility of a packing solution.

120

Chapter 9

• A new dataset of packing solutions and benchmark different classification algo-
rithms.

• An analysis on the classification performances in the new dataset for the follow-
ing algorithms: decision trees (DT), random forest (RF), support vector machine
with radial basis function kernel (SVM-R), support vector machine with polyno-
mial kernel (SVM-P), three different architectures of convolutional neural networks
(CNN), feed forward fully connected neural networks (FFNN) with one, two and
three hidden layers.

• We also suggest some research directions on how to improve the methodology in
its various stages.

The third problem is to improve the train seat reservation system. The contributions
are:

• A mixed-integer linear model for the Group Seat Reservation Knapsack Problem
with Price on Seat, an extension of the Offline Group Seat Reservation Knap-
sack Problem. We introduce a profit evaluation dependent on not only the space
occupied, but also on the individual profit brought by each reserved seat.

• A new GRASP based algorithm that solves the original problem and the newly
proposed one.

• Problem instances that represent real world scenarios more realistically.

The fourth problem is to exploit the recently opened datasets to improve the United
Kingdom railway system. The contributions are:

• An algorithm to automatically generate the berths graph, a graph that represents
the feasible train routing strategies through the network of berths.

• Two different approaches to estimate the amount of time that a train is going to
spend on a berth. The first approach uses an AutoRegressive Moving Average
model, the second approach uses the Gated Recursive Unit and the Long short-
term memory.

• An analysis that reveals that the best results have been obtained by networks with
input sizes that were covering the statistically significant spikes of the AutoCorre-
lation Function.

121

Chapter 9

• Two different forecasting systems based on Gated Recurrent Unit models and the
berths graph. The first one utilises an input of the immediate previous n running
times. The second one, instead, uses the previous n running times available 4
hours before the start of the journey.

• A sequential training procedure that is a trade-off between accuracy and training
time. Each round improves the model knowledge of the time series. The motiva-
tions for building such a procedure is that the berths have different distributions.
For some berths, there may be lack of samples or a very low variance distribution,
while other berths may have a richer variability.

• A comparison of the methods with official forecast system currently used by the
industry.

• A procedure that filters the communication of the new forecasting based on the
exceeding of a threshold.

The work done in this thesis can be further improved as follows.

• The model in section 3.1.1 can be further generalised by introducing a priority
term pj . In this thesis the priority is given to smaller bins pj = 1

(Lj ·Wj ·Hj) , we
could change the priority to bigger bins by setting pj = 1. We published this
generalization of the model and the heuristic in Deplano et al. (2019). However, a
complete study on the general model could form part of a future study, since we
focused on the priority of smaller bins.

• The problem in chapter 3 could be further studied by performing a sensitivity
analysis. In particular it could be interesting to show the relationship between
the problem instance complexity, the position of the items’ centre of mass, their
weight, and the shape of the bin.

• The heuristic Weight First Best Fit presented in section 3.2 does not take into
account that the global centre of mass changes in space after one item is put in.
The heuristic could further be improved by adopting a look-ahead strategy that
takes into account the combination of the next n items. For example, using an
n = 2 could solve the limitation shown in Figure 3.7.

• In section 4.2 we have shown that in the second stage we built an unbalanced
dataset. If one requires a balanced dataset, the following approach can be used:
1) exploiting the works done in Atamtürk (2004, 2005); Atamtürk and Bhardwaj
(2015) to derive, for each bin type in J , and for each couple of variables in I,

122

Chapter 9

a valid cover, 2) then sample a fixed number of points under the cover inequal-
ity and augment the sampled set with unfeasible points, 3) eventually extend the
sampling to random combinations of variables, e.g. uniformly sampling as in Xu
et al. (2018). Some covers may be easier to find by exploiting the work on har-
monic packing in Barnes (1982a,b), and applying a lifting procedure (Zemel, 1989;
Kaparis and Letchford, 2010). The work on harmonic packing is useful also for
reducing the number of classes of items and bins considered, since some of them
may be multiples of others by Barnes (1982a,b).

• The sequential master/slave Bender’s decomposition described in stage one of
chapter 4, combined with a reinforcement learning, can be exploited to build a
cover lifting procedure. The policies may be defined to lift a feasible/unfeasible
packing until it becomes unfeasible/feasible, the state represents the candidate
facet, while the reward/penalty drives the optimisation.

• The two stage strategy described in chapter 4 can be enhanced with a third stage:
the exploitation of the classifiers into the optimisation process. A direct way
could be, as mentioned in section 4.1, to bind the classifiers in the mathematical
programming model, e.g. implementing the piecewise linearisation of the classifier
in constraint (4.10). Another strategy that may be effective with evolutionary
methods is to bind the classifiers in the evaluation procedure: it will become a
Monte Carlo evaluation, where the more time the best solution survives, the more
likely a certificate of feasibility is produced. The benefit in this case is to avoid
certifications until the exploitation phase, while the exploration would benefit from
checking done in constant time.

• The classifier of chapter 4 could be enhanced by considering the class of items by
their packing efficiency. The transformation can be achieved by dividing the items’
dimension by the bins’ dimensions. Given m classes of bins and n classes of items,
the classifier would be one with an input of m ·n elements. This formulation would
achieve a multiplication invariance: packing an item 4x4x4 on a bin 10x10x10,
would be the same as packing an item 8x8x8 into a bin 20x20x20.

• The problem studied in chapter 5 could be improved by considering seat reserva-
tion over time. The model proposed in section 5.1 could be adapted by considering
the problem as sequential packing, where in each stage the function is maximized
considering the allocations done in the previous stages as constraints. A better
strategy would be possible if we have access to the distribution of future reserva-
tions. The problem in this scenario could be approached considering sequential
packing, where in each stage a certain number of reservations, and the distribu-
tion of the future reservations is available. The objective would be transformed in

123

Chapter 9

maximising the expected value of the filling rate in each stage given the previous
allocations as constraints.

• The algorithm proposed in section 5.2 tries to pack items in the order of the
permutation and stops when it encounters the first infeasible item. The algorithm
could be improved by changing the stopping criterion of the evaluation function
to test all the remaining items until there is free space. This change would reduce
the searching space and thus will improve the overall convergence speed.

• The forecasting model in chapter 8 forecasts the journey running time of a train.
The model is not suitable to directly forecast the running time in a what-if analysis
considering as example, skipping a station, a prolonged dwell-time, a temporary
speed restriction, the effects of reactionary delays, etc. To enable this type of
analysis the model has to be exploited into a simulation, where the scenarios can
be parametrized more easily. As example, the running time in each berth implies a
train speed, a speed restriction could be modelled by multiplying a rational speed
factor. Skipping a station can be modelled in a similar way in which the penalty
factor has to be defined per berth. The modelling of the reactionary delay is more
complex, it implies the consideration of the trains’ interaction in the complete
network and with the timetable. The interactions are in the junctions and in
station. A discrete event simulation could correctly model the problem.

124

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.
(2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org.

Alvarez-Valdés, R., Parreño, F., and Tamarit, J. M. (2013). A grasp/path relinking al-
gorithm for two-and three-dimensional multiple bin-size bin packing problems. Com-
puters & Operations Research, 40(12):3081–3090.

Atamtürk, A. (2004). Sequence independent lifting for mixed-integer programming.
Operations Research, 52(3):487–490.

Atamtürk, A. (2005). Cover and pack inequalities for (mixed) integer programming.
Annals of Operations Research, 139(1):21–38.

Atamtürk, A. and Bhardwaj, A. (2015). Supermodular covering knapsack polytope.
Discrete Optimization, 18:74–86.

Balfe, N. (2010). Appropriate automation of rail signalling systems: a human factors
study. PhD thesis, University of Nottingham.

Barnes, F. W. (1982a). Algebraic theory of brick packing i. Discrete Mathematics,
42(1):7–26.

Barnes, F. W. (1982b). Algebraic theory of brick packing ii. Discrete Mathematics,
42(2-3):129–144.

Beasley, J. (1985). Algorithms for unconstrained two-dimensional guillotine cutting.
Journal of the Operational Research Society, 36(4):297–306.

125

References 9

Becker, M. and Schreckenberg, M. (2018). Analytical method for the precise and fast
prediction of railway running times and its applications. IEEE Transactions on Intel-
ligent Transportation Systems, (99):1–10.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940.

Belov, G., Kartak, V., Rohling, H., and Scheithauer, G. (2013). Conservative scales in
packing problems. OR spectrum, pages 1–38.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming
problems. Numerische mathematik, 4(1):238–252.

Berger, A., Gebhardt, A., Müller-Hannemann, M., and Ostrowski, M. (2011). Stochastic
delay prediction in large train networks. In 11th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Bortfeldt, A. and Wäscher, G. (2013). Constraints in container loading–a state-of-the-art
review. European Journal of Operational Research, 229(1):1–20.

Box, G. E. and Jenkins, G. M. (1976). Time series analysis: Forecasting and control san
francisco. Calif: Holden-Day.

Boyar, J. and Larsen, K. S. (1999). The seat reservation problem. Algorithmica,
25(4):403–417.

Cambazard, H. and Jussien, N. (2005). Integrating benders decomposition within con-
straint programming. Principles and Practice of Constraint Programming-CP 2005,
pages 752–756.

Ceschia, S. and Schaerf, A. (2013). Local search for a multi-drop multi-container loading
problem. Journal of Heuristics, pages 1–20.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078.

Chollet, F. et al. (2015). Keras. https://keras.io.

Christensen, H. I., Khan, A., Pokutta, S., and Tetali, P. (2016). Multidimensional bin
packing and other related problems: A survey.

Christensen, H. I., Khan, A., Pokutta, S., and Tetali, P. (2017). Approximation and
online algorithms for multidimensional bin packing: A survey. Computer Science
Review, 24:63–79.

126

https://keras.io

References 9

Christofides, N. and Whitlock, C. (1977). An algorithm for two-dimensional cutting
problems. Operations Research, 25(1):30–44.

Clausen, T., Hjorth, A. N., Nielsen, M., and Pisinger, D. (2010). The off-line group seat
reservation problem. European Journal of Operational Research, 207(3):1244–1253.

Clautiaux, F., Alves, C., and de Carvalho, J. V. (2010). A survey of dual-feasible and
superadditive functions. Annals of Operations Research, 179(1):317–342.

Cochrane, E. and Beasley, J. (2003). The co-adaptive neural network approach to the
euclidean travelling salesman problem. Neural Networks, 16(10):1499 – 1525.

Coffman Jr, E. G., Csirik, J., Galambos, G., Martello, S., and Vigo, D. (2013). Bin pack-
ing approximation algorithms: survey and classification. In Handbook of combinatorial
optimization, pages 455–531. Springer.

Coffman Jr, E. G., Csirik, J., Johnson, D. S., and Woeginger, G. J. (2004). An intro-
duction to bin packing. Bibliographie. Siehe www. inf. u-szeged. hu/˜ csirik.

Corman, F. and Kecman, P. (2018). Stochastic prediction of train delays in real-time
using bayesian networks. Transportation Research Part C: Emerging Technologies,
95:599 – 615.

Côté, J.-F., Dell’Amico, M., and Iori, M. (2014). Combinatorial benders’ cuts for the
strip packing problem. Operations Research, 62(3):643–661.

Crainic, T., Perboli, G., and Tadei, R. (2012a). A greedy adaptive search procedure for
multi-dimensional multi-container packing problems.

Crainic, T. G., Perboli, G., and Tadei, R. (2009). Ts2pack: A two-level tabu search
for the three-dimensional bin packing problem. European Journal of Operational Re-
search, 195(3):744–760.

Crainic, T. G., Perboli, G., and Tadei, R. (2012b). Recent advances in multi-dimensional
packing problems. In New technologies-trends, innovations and research. InTech.

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations
Research, 6(6):791–812.

Daamen, W., Goverde, R. M. P., and Hansen, I. A. (2008). Non-discriminatory auto-
matic registration of knock-on train delays. Networks and Spatial Economics, 9(1):47–
61.

Dantzig, G. B. and Thapa, M. N. (2006a). Linear programming 1: introduction. Springer
Science & Business Media.

127

References 9

Dantzig, G. B. and Thapa, M. N. (2006b). Linear programming 2: theory and extensions.
Springer Science & Business Media.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs.
Operations Research, 8(1):101–111.

de Queiroz, T. A. and Miyazawa, F. K. (2013). Two-dimensional strip packing problem
with load balancing, load bearing and multi-drop constraints. International Journal
of Production Economics, 145(2):511–530.

Deane, J. and Agarwal, A. (2013). Neural, genetic, and neurogenetic approaches for
solving the 0-1 multidimensional knapsack problem. International Journal of Man-
agement & Information Systems (Online), 17(1):43.

Delorme, M., Iori, M., and Martello, S. (2015). Combinatorial benders’ decomposition for
the orthogonal stock cutting problem. Proceedings of the XLVII Simpósio Brasileiro
de Pesquisa Operacional (SBPO).

Delorme, M., Iori, M., and Martello, S. (2016). Bin packing and cutting stock prob-
lems: Mathematical models and exact algorithms. European Journal of Operational
Research, 255(1):1–20.

Delorme, M., Iori, M., and Martello, S. (2017). Logic based benders’ decomposition for
orthogonal stock cutting problems. Computers & Operations Research, 78:290–298.

Deplano, I., Lersteau, C., and Nguyen, T. T. (2019). A mixed-integer linear model for the
multiple heterogeneous knapsack problem with realistic container loading constraints
and bins’ priority. International Transactions in Operational Research, n/a(n/a).

Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of
Operational Research, 44(2):145–159. Cutting and Packing.

Eremin, A. and Wallace, M. (2001). Hybrid benders decomposition algorithms in con-
straint logic programming. In International Conference on Principles and Practice of
Constraint Programming, pages 1–15. Springer.

Fekete, S. P. and Schepers, J. (2004). A combinatorial characterization of higher-
dimensional orthogonal packing. Mathematics of Operations Research, 29(2):353–368.

Fekete, S. P., Schepers, J., and Van der Veen, J. C. (2007). An exact algorithm for
higher-dimensional orthogonal packing. Operations Research, 55(3):569–587.

Feo, T. A. and Resende, M. G. (1989). A probabilistic heuristic for a computationally
difficult set covering problem. Operations research letters, 8(2):67–71.

128

References 9

Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures.
Journal of global optimization, 6(2):109–133.

Fraga-Lamas, P., Fernández-Caramés, T. M., and Castedo, L. (2017). Towards the
internet of smart trains: A review on industrial iot-connected railways. Sensors,
17(6):1457.

Geoffrion, A. M. (1972). Generalized benders decomposition. Journal of optimization
theory and applications, 10(4):237–260.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256.

Gonçalves, J. F. and Resende, M. G. (2011a). Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, 17(5):487–525.

Gonçalves, J. F. and Resende, M. G. (2013). A biased random key genetic algorithm
for 2d and 3d bin packing problems. International Journal of Production Economics,
145(2):500–510.

Gonçalves, J. F. and Resende, M. G. C. (2011b). A parallel multi-population genetic
algorithm for a constrained two-dimensional orthogonal packing problem. Journal of
Combinatorial Optimization, 22(2):180–201.

Goverde, R., Daamen, W., and Hansen, I. (2007). Automatic identification of secondary
delays based on train describer systems. In Forms/Format’07 Conference.

Goverde, R. and Hansen, I. (2000). Tnv-prepare: analysis of dutch railway operations
based on train detection data. Computers in Railways, 7:779–788.

Goverde, R. M. and Hansen, I. A. (2001). Delay propagation and process management
at railway stations. In 5th World Conference on Railway Research (WCRR 2001),
Köln, November 25-29, 2001. WCRR.

Goverde, R. M. and Meng, L. (2011). Advanced monitoring and management infor-
mation of railway operations. Journal of Rail Transport Planning & Management,
1(2):69–79.

Goyal, S. (2018). Essays on the online multiple knapsack problem & the online reserva-
tion problem.

Gupta, I. K., Choubey, A., and Choubey, S. (2017). Clustered genetic algorithm to solve
multidimensional knapsack problem. In Computing, Communication and Networking
Technologies (ICCCNT), 2017 8th International Conference on, pages 1–6. IEEE.

129

References 9

Han, J., Jentzen, A., and Weinan, E. (2018). Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences of
the United States of America, 115 34:8505–8510.

Hansen, I. A., Goverde, R. M., and van der Meer, D. J. (2010). Online train delay recog-
nition and running time prediction. In Intelligent Transportation Systems (ITSC),
2010 13th International IEEE Conference on, pages 1783–1788. IEEE.

Hatano, L. (2004). Complexity versus choice: Uk rail fares. Japan Railway and Transport
Review, 37:26–34.

Hifi, M., Kacem, I., Nègre, S., and Wu, L. (2010). A linear programming approach for
the three-dimensional bin-packing problem. Electronic Notes in Discrete Mathematics,
36:993–1000.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

Hopfield, J. J. and Tank, D. W. (1985). "neural" computation of decisions in optimization
problems. Biol. Cybern., 52(3):141–152.

Hu, H., Duan, L., Zhang, X., Xu, Y., and Wei, J. (2018). A multi-task selected learning
approach for solving new type 3d bin packing problem. CoRR, abs/1804.06896.

Hu, H., Zhang, X., Yan, X., Wang, L., and Xu, Y. (2017). Solving a new 3d bin packing
problem with deep reinforcement learning method. arXiv preprint arXiv:1708.05930.

Jegadeshwari, S. and Jaisree, D. (2014). Heuristic algorithm for constrained 3d container
loading problem: A genetic approach. International Journal of Computing Algorithm,
3(1):1016–1020.

Jin, R. (2017). Deep learning at alibaba. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pages 11–16. AAAI Press.

Jin, Z., Ito, T., and Ohno, K. (2003). The three-dimensional bin packing problem and
its practical algorithm. JSME International Journal Series C Mechanical Systems,
Machine Elements and Manufacturing, 46(1):60–66.

Jones, R. H. (1980). Maximum likelihood fitting of arma models to time series with
missing observations. Technometrics, 22(3):389–395.

Junqueira, L., Morabito, R., and Yamashita, D. S. (2012). Three-dimensional container
loading models with cargo stability and load bearing constraints. Computers & Op-
erations Research, 39(1):74–85.

130

References 9

Kaparis, K. and Letchford, A. N. (2010). Cover inequalities. Encyclopedia of Operations
Research and Management Science, 2:1074–1080.

Kecman, P. and Goverde, R. M. (2013a). Adaptive, data-driven, online prediction of
train event times. In Intelligent Transportation Systems-(ITSC), 2013 16th Interna-
tional IEEE Conference on, pages 803–808. IEEE.

Kecman, P. and Goverde, R. M. (2013b). Process mining of train describer event data
and automatic conflict identification. Computers in Railways XIII: Computer System
Design and Operation in the Railway and Other Transit Systems, 127:227.

Kecman, P. and Goverde, R. M. (2015). Predictive modelling of running and dwell times
in railway traffic. Public Transport, 7(3):295–319.

Kecman, P., Goverde, R. M. P., and Hansen, I. A. (2011). Train describer records
as a source of information for infrastructure monitoring, performance analysis and
traffic management. In 5th IET Conference on Railway Condition Monitoring and
Non-Destructive Testing (RCM 2011), pages 1–5.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Introduction to np-completeness of
knapsack problems. In Knapsack problems, pages 483–493. Springer.

Kennedy, M. P. and Chua, L. O. (1988). Neural networks for nonlinear programming.
IEEE Transactions on Circuits and Systems, 35(5):554–562.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, NIPS’12, pages 1097–1105, USA. Curran Associates Inc.

Kumar, M. and Yadav, N. (2011). Multilayer perceptrons and radial basis function neural
network methods for the solution of differential equations: a survey. Computers &
Mathematics with Applications, 62(10):3796–3811.

Lachhwani, K. (2019). Application of neural network models for mathematical pro-
gramming problems: A state of art review. Archives of Computational Methods in
Engineering.

Landschützer, C., Ehrentraut, F., and Jodin, D. (2015). Containers for the physical
internet: requirements and engineering design related to fmcg logistics. Logistics
Research, 8(1):1–22.

Laterre, A., Fu, Y., Jabri, M. K., Cohen, A., Kas, D., Hajjar, K., Dahl, T. S., Kerkeni,
A., and Beguir, K. (2018). Ranked reward: Enabling self-play reinforcement learning
for combinatorial optimization. CoRR, abs/1807.01672.

131

References 9

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lessan, J., Fu, L., and Wen, C. (2018). A hybrid bayesian network model for predicting
delays in train operations. Computers & Industrial Engineering.

Leung, J. Y., Tam, T. W., Wong, C. S., Young, G. H., and Chin, F. Y. (1990). Packing
squares into a square. Journal of Parallel and Distributed Computing, 10(3):271–275.

Li, D., Daamen, W., and Goverde, R. M. (2016). Estimation of train dwell time at
short stops based on track occupation event data: A study at a dutch railway station.
Journal of Advanced Transportation, 50(5):877–896.

Li, D., Goverde, R. M., Daamen, W., and He, H. (2014). Train dwell time distributions
at short stop stations. In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th
International Conference on, pages 2410–2415. IEEE.

Li, D., Yin, Y., and He, H. (2018). Testing the generality of a passenger disregarded
train dwell time estimation model at short stops: Both comparison and theoretical
approaches. Journal of Advanced Transportation, 2018.

Lin, Y.-H., Meller, R. D., Ellis, K. P., Thomas, L. M., and Lombardi, B. J. (2014). A
decomposition-based approach for the selection of standardized modular containers.
International Journal of Production Research, 52(15):4660–4672.

Looi, C.-K. (1992). Neural network methods in combinatorial optimization. Computers
& Operations Research, 19(3):191 – 208.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3.

Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley & Sons, Inc., New York, NY, USA.

Martin, L. J. (2016). Predictive reasoning and machine learning for the enhancement of
reliability in railway systems. In International Conference on Reliability, Safety, and
Security of Railway Systems, pages 178–188. Springer.

Masutti, T. A. and de Castro, L. N. (2009). A self-organizing neural network using
ideas from the immune system to solve the traveling salesman problem. Information
Sciences, 179(10):1454 – 1468. Including Special Issue on Artificial Imune Systems.

Milinković, S., Marković, M., Vesković, S., Ivić, M., and Pavlović, N. (2013). A fuzzy
petri net model to estimate train delays. Simulation Modelling Practice and Theory,
33:144–157.

132

References 9

MoDULUSHCA (2012). The modulushca project.

Montreuil, B. (2011). Toward a physical internet: meeting the global logistics sustain-
ability grand challenge. Logistics Research, 3(2-3):71–87.

Montreuil, B. (2012). Physical internet manifesto.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with
the rate of convergence o (1/kˆ 2). In Doklady AN USSR, volume 269, pages 543–547.

Ohlsson, M., Peterson, C., and Söderberg, B. (1993). Neural networks for optimiza-
tion problems with inequality constraints: The knapsack problem. Neural Comput.,
5(2):331–339.

Oneto, L., Fumeo, E., Clerico, G., Canepa, R., Papa, F., Dambra, C., Mazzino, N., and
Anguita, D. (2018). Train delay prediction systems: a big data analytics perspective.
Big data research, 11:54–64.

Open Rail Data Wiki, n.d. Open Rail Data Wiki, n.d. https://wiki.openraildata.com.
Accessed: 2019-04-25.

Palmer, J. (2010). The need for train detection. In Railway Signalling and Control
Systems (RSCS 2010), IET Professional Development Course on, pages 52–64. IET.

Paquay, C., Schyns, M., and Limbourg, S. (2016). A mixed integer programming for-
mulation for the three-dimensional bin packing problem deriving from an air cargo
application. International Transactions in Operational Research, 23(1-2):187–213.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

Perboli, G., Crainic, T. G., and Tadei, R. (2011). An efficient metaheuristic for
multi-dimensional multi-container packing. In Automation Science and Engineering
(CASE), 2011 IEEE Conference on, pages 563–568. IEEE.

Pochet, Y. and Weismantel, R. (1998). The sequential knapsack polytope. SIAM Journal
on Optimization, 8(1):248–264.

Pochet, Y. and Wolsey, L. A. (1995). Integer knapsack and flow covers with divisible
coefficients: polyhedra, optimization and separation. Discrete Applied Mathematics,
59(1):57 – 74.

133

https://wiki.openraildata.com

References 9

Pongnumkul, S., Pechprasarn, T., Kunaseth, N., and Chaipah, K. (2014). Improving
arrival time prediction of thailand’s passenger trains using historical travel times. In
2014 11th International Joint Conference on Computer Science and Software Engi-
neering (JCSSE), pages 307–312. IEEE.

Qin, S., Feng, J., Song, J., Wen, X., and Xu, C. (2018). A one-layer recurrent neural
network for constrained complex-variable convex optimization. IEEE transactions on
neural networks and learning systems, 29(3):534–544.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The benders decom-
position algorithm: A literature review. European Journal of Operational Research,
259(3):801–817.

Rail, N. Network Rail real-time data feed. https://datafeeds.networkrail.co.uk/. Ac-
cessed: 2019-04-25.

Rail, N. Ppm series, periods 28 days.

Ramanujam, J. and Sadayappan, P. (1988). Optimization by neural networks. IEEE
1988 International Conference on Neural Networks, pages 325–332 vol.2.

Rashidy, R. A. H. E., Hughes, P., Figueres-Esteban, M., Harrison, C., and Van Gulijk,
C. (2018). A big data modeling approach with graph databases for spad risk. Safety
science, 110:75–79.

Resende, M. G. and Ribeiro, C. C. (2016). Optimization by GRASP. Springer.

Resende, M. G. and Ribeiro, C. C. (2019). Greedy randomized adaptive search pro-
cedures: Advances and extensions. In Handbook of Metaheuristics, pages 169–220.
Springer.

Rudd, K. and Ferrari, S. (2015). A constrained integration (cint) approach to solv-
ing partial differential equations using artificial neural networks. Neurocomputing,
155:277–285.

Sallez, Y., Pan, S., Montreuil, B., Berger, T., and Ballot, E. (2016). On the activeness
of intelligent physical internet containers. Computers in Industry, 81:96–104.

Shen, Y., Xu, J., Wu, X., and Ni, Y. (2019). Modelling travel time distribution and its
influence over stochastic vehicle scheduling. Transport, 34(2):237–249.

Smith, K. A. (1999). Neural networks for combinatorial optimization: A review of more
than a decade of research. INFORMS Journal on Computing, 11(1):15–34.

Smith-Miles, K. and Lopes, L. (2012). Measuring instance difficulty for combinatorial
optimization problems. Computers & Operations Research, 39(5):875–889.

134

References 9

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

Sweeney, P. E. and Paternoster, E. R. (1992). Cutting and packing problems: a cate-
gorized, application-orientated research bibliography. Journal of the Operational Re-
search Society, 43(7):691–706.

Szegedy, C., , , Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–9.

Toossi, A., Barson, L., Hyland, B., Fung, W., and Best, N. (2017). Infrastructure/Train
Borne Measurements in Support of UK Railway System Performance-Gaining Insight
Through Systematic Analysis and Modelling, pages 223–244.

Travacca, B. and Moura, S. (2018). Dual hopfield method for large-scale mixed-integer
programming [preprint, accepted to cdc 2018].

Trenn, S. (2008). Multilayer perceptrons: Approximation order and necessary number
of hidden units. IEEE transactions on neural networks, 19(5):836–844.

Trivella, A. and Pisinger, D. (2016). The load-balanced multi-dimensional bin-packing
problem. Computers & Operations Research, 74:152–164.

Tromp, J. (2004). Validation of a train simulation model with train detection data. WIT
Transactions on The Built Environment, 74.

UK, R. D. G. (2016). http://data.atoc.org/. Technical report, Rail Delivery Group.

Van Gulijk, C., Hughes, P., Figueres-Esteban, M., Dacre, M., and Harrison, C. (2015).
Big data risk analysis for rail safety? In Proceedings of ESREL 2015. CRC/Balkema.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Advances in
Neural Information Processing Systems, pages 2692–2700.

Wang, H. and Chen, Y. (2010). A hybrid genetic algorithm for 3d bin packing problems.
In Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010 IEEE Fifth
International Conference on, pages 703–707. IEEE.

Wang, P. (1983). Two algorithms for constrained two-dimensional cutting stock prob-
lems. Operations research, 31(3):573–586.

Wäscher, G., Haußner, H., and Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183(3):1109 – 1130.

135

References 9

Wei, L., Oon, W.-C., Zhu, W., and Lim, A. (2013). A goal-driven approach to the 2d
bin packing and variable-sized bin packing problems. European Journal of Operational
Research, 224(1):110–121.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82.

Xu, H., Koenig, S., and Kumar, T. S. (2018). Towards effective deep learning for con-
straint satisfaction problems. In International Conference on Principles and Practice
of Constraint Programming, pages 588–597. Springer.

Yaghini, M., Khoshraftar, M. M., and Seyedabadi, M. (2013). Railway passenger
train delay prediction via neural network model. Journal of advanced transportation,
47(3):355–368.

Yazdani, D., Omidvar, M. N., Deplano, I., Lersteau, C., Makki, A., Wang, J., and
Nguyen, T. T. (2019). Real-time seat allocation for minimizing boarding/alighting
time and improving quality of service and safety for passengers. Transportation Re-
search Part C: Emerging Technologies, 103:158–173.

Zemel, E. (1989). Easily computable facets of the knapsack polytope. Mathematics of
Operations Research, 14(4):760–764.

Zhang, Z., Zheng, L., Li, L., Deng, X., Xiao, L., and Huang, G. (2018). A new finite-
time varying-parameter convergent-differential neural-network for solving nonlinear
and nonconvex optimization problems. Neurocomputing, 319:74–83.

Zhao, X., Bennell, J. A., Bektaş, T., and Dowsland, K. (2016a). A comparative review of
3d container loading algorithms. International Transactions in Operational Research,
23(1-2):287–320.

Zhao, Y., Stow, J., and Harrison, C. (2016b). Improving the understanding of spad risks
using red aspect approach data. In Safety and Reliability, volume 36, pages 199–212.
Taylor & Francis.

Zhao, Y., Stow, J., and Harrison, C. (2018). A method for classifying red signal ap-
proaches using train operational data. Safety science, 110:67–74.

Zhu, W., Oon, W.-C., Lim, A., and Weng, Y. (2012). The six elements to block-building
approaches for the single container loading problem. Applied Intelligence, 37(3):431–
445.

136

Appendix A

Minimizing the wasted space
giving priority to smaller bins is
equivalent to maximizing the
packing efficiency

In this appendix we show the proof of the following sentence: “Minimizing the wasted
space giving priority to smaller bins is equivalent to maximizing the packing efficiency”
(A.1)-(A.4).

minimize
∑
j∈J

(
Lj ·Wj ·Hj −

∑
i∈I(li · wi · hi · Ci,j)

)
(Lj ·Wj ·Hj)

= (A.1)

∑
j∈J

Lj ·Wj ·Hj

Lj ·Wj ·Hj
−
∑
j∈J

∑
i∈I(li · wi · hi · Ci,j)
Lj ·Wj ·Hj

= (A.2)

n−
∑
j∈J

∑
i∈I(li · wi · hi · Ci,j)
Lj ·Wj ·Hj

⇔ (A.3)

maximize
∑
j∈J

∑
i∈I(li · wi · hi · Ci,j)
Lj ·Wj ·Hj

(A.4)

Where li·wi·hi
Lj ·Wj ·Hj

is the packing efficiency.

1

Appendix B

Slave Problem

Let I = {1, · · · , n} be a set that indexes n rectangular cuboids (items), the slave problem
is to determine if exists a configuration such that these items can be packed in a specific
rectangular cuboid (bin). For every item i ∈ I and for the considered bin, let us define
their dimensions as width wi (W), height hi (H) and length li (L). The problem is
constrained to avoid any two items i, k to overlap; all the items must be allocated inside
the bin; any item i ∈ I is allowed to rotate orthogonally along the vertical axis.

It is preferable that the solution includes the items’ absolute positioning using one of the
bin’s corners as the origin of the Cartesian system. We define xi, yi, zi, the coordinates
of the front-bottom-left item corner.

ϕo,i ∈ {0, 1} is a binary variable that equals 1 if the orientation of item i ∈ I follows
orientation type o ∈ O = {1, . . . , r}, where r is the number of the feasible rotations for
an item (i.e 2). ϕo,i will be 0 otherwise. The orientation types are defined in Table B.1.

Table B.1: Table of orientations

Orientation
Type

Parallel to
x-axis

Parallel to
y-axis

Parallel to
z-axis

1 Length Width Height
2 Width Length Height

Table B.2 summarises all the parameters, while Table B.3 all the variables. The problem
is modeled as a constraint satisfation problem (B.1-B.14), where the result is feasible/un-
feasible.

2

Appendix B

Table B.2: List of parameters

Name Description
I Set of items indexes
O Set of available rotations
m Cardinality of I
L Length of the bin
W Width of the bin
H Height of the bin
li Length of item i
wi Width of item i
hi Height of item i

Table B.3: List of variables

Name Description
xi, yi, zi Position of the item i, xi, yi, zi, are the respective coor-

dinates of the front-bottom-left edge
x

′
i, y

′
i, z

′
i Coordinate of the back-top-right edge of the item i.

ϕo,i 1 if the applied rotation for the item i is o ∈ O, otherwise
0

xpi,k, y
p
i,k, z

p
i,k 1 if item i is placed after item k along the coordinate

x, y and z, which means respectively x′
k ≤ xi, y

′
k ≤ yi,

z
′
k ≤ zi, otherwise 0

3

Appendix B

subject to

x
′
i − xi = li · ϕ0,i + wi · ϕ1,i ∀i ∈ I (B.1)

y
′
i − yi = li · ϕ1,i + wi · ϕ0,i ∀i ∈ I (B.2)

z
′
i − zi = hi ∀i ∈ I (B.3)

x
′
i ≤W ∀i ∈ I (B.4)

y
′
i ≤ L ∀i ∈ I (B.5)

z
′
i ≤ H ∀i ∈ I (B.6)

xpi,k + ypi,k + zpi,k+

xpk,i + ypk,i + zpk,i ≥ 1 ∀i, k ∈ I|i 6= k (B.7)

x
′
k ≤ xi + (1− xpi,k) ·W

xi + 1 ≤ x′
k + xpi,k ·W ∀i, k ∈ I|i 6= k (B.8)

y
′
k ≤ yi + (1− ypi,k) · L

yi + 1 ≤ y′
k + ypi,k · L ∀i, k ∈ I|i 6= k (B.9)

z
′
k ≤ zi + (1− zpi,k) ·H ∀i, k ∈ I|i 6= k (B.10)

zpi,k = 0, xpi,k = 0, ypi,k = 0 ∀i, k ∈ I|i = k (B.11)

xi, yi, zi, x
′
i, y

′
i, z

′
i ∈ N, ∀i ∈ I (B.12)

xpi,k, y
p
i,k, z

p
i,k ∈ {0, 1}, ∀i, k ∈ I (B.13)

ϕo,i ∈ {0, 1}, ∀i, k ∈ I, o ∈ O (B.14)

Constraints (B.1)-(B.3) define the borders of the items along the axes, taking into ac-
count the possible rotation. Constraints (B.4)-(B.6) ensure that the shape of each item
is contained inside the borders of the bin. Constraint (B.7) states that two items do not
overlap if the boundaries along at least one dimension do not overlap. The overlapping
boundaries are characterized by the constraints (B.8)-(B.10).

For further reading there are many examples of three-dimensional orthogonal packing
available in the literature, e.g. (Junqueira et al., 2012; Paquay et al., 2016; Hifi et al.,
2010; Lin et al., 2014).

4

Appendix C

Relation of equivalence with
rotation along the vertical axis

Let I = {1, · · · , n} be a set that indexes n rectangular cuboids (items). For every item
i ∈ I, let us define their dimensions as width wi, height hi and length li. Two items
i, k ∈ I are equivalent for the relation of equivalence ∼= (i, k) defined in (C.1), if and
only if there exists an orthogonal rotation r along the vertical axis that overlaps the
dimensions of i with the dimensions of k.

i ∼= k ⇔((li = lk ∧ wi = wk)∨

(li = wk ∧ wi = lk)) ∧ hi = hk (C.1)

Reflexivity, symmetry and transitiveness of (C.1) are trivial to prove.

5

Appendix D

Application of the results of this
thesis

The work presented in this thesis has been used in the following research projects:

Chapter 5 is one of the two results of the project “INTELLIGENT REAL-TIME SEAT
ALLOCATION, T. T. Nguyen (PI), A. A. Makki, D. Yazdani, C. Lersteau, I. Deplano,
J. J. Peiro Ramada, R. Wang, Y. Ancele, funded by Department for Transport via the
T-TRIG programme. 2017”. The second result has been published in Yazdani et al.
(2019).

Chapter 6, Chapter 7 and Chapter 8 have been developed under the project “Anticipat-
ing and mitigating reactionary delays – a case study on the Northern line of Merseyrail,
Dr. Trung Thanh Nguyen (PI), Mr. Igor Deplano and Dr. Qian Zhang. Funded by the
Rail Safety and Standards Board, 2018-2019.”. The results of Chapter 5 and Chapter 7
are the core components of a simulator for the estimation of reactionary delays, that is
exploited to build a support decision system to mitigate the overall spreading effect of
the reactionary delays.

The results of Chapter 6 and Chapter 8 are used in the project “COINS - Customer-
Operational Information System for Railway Stations, Dr.Trung Thanh Nguyen (PI),
Dr. Alison Hardy, Dr.Charly Lersteau, Mr. Igor Deplano, Dr. Qian Zhang, Mr. Yannis
Ancele and Mr. Ahmed Makki. InnovateUK SBRI: First of A Kind, March – November
2019.” to develop a backup system to estimate the train arrival time at station. The
system is enabled when the real-time data feed of DARWIN is down.

The results of Chapter 6, Chapter 7 and Chapter 8 are used in the project “ANTI-SLIP:
A study on using Network Rail’s and train borne information to anticipate and mitigate
the impact of slippery rail, Dr. Trung Thanh Nguyen (PI), Mr. Igor Deplano, Dr.

6

Appendix D

Charly Lersteau and Dr. Qian Zhang. Rail Safety and Standards Board, 2019-2020.” to
estimate performance-related impact of low-adhesion events.

7

Appendix E

Publications resulting from this
thesis

In the course of completeing the work presented in this thesis, the contents of Chapter 3
have been published in a refereed journal:

Igor Deplano, Charly Lersteau, Trung Thanh Nguyen (2019), A mixed-integer linear
model for the Multiple Heterogeneous Knapsack Problem with realistic container load-
ing constraints and bins’ priority. International Transactions in Operational Research.
doi:10.1111/itor.12740

The contents of Chapter 5 have been published in a refereed journal:

Igor Deplano, Danial Yazdany, Trung Thanh Nguyen. The Offline Group Seat Reserva-
tion Knapsack Problem with Profit on Seats. IEEE access, vol. 7, pp. 152358-152367,
2019.

Igor Deplano July 1, 2020

8

	Declaration
	Abstract
	Acknowledgements
	Declaration of Authorship
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Packing problems
	1.3 Using machine learning to estimate feasibility of packing solutions in constant time - a novel strategy
	1.4 The Offline Group Seat Reservation Knapsack Problem with Profit on Seats
	1.5 Exploiting data-driven methodologies to improve the performance of the United Kingdom Railway System
	1.6 Summary of contributions

	2 Literature review
	2.1 Multiple Heterogeneous Knapsack Problem and Container Loading Problem constraints
	2.2 Using machine learning to estimate feasibility of packing solutions in constant time - a novel strategy
	2.3 The Offline Group Seat Reservation Knapsack Problem
	2.4 United Kingdom railway research

	3 A mixed-integer linear model for the Multiple Heterogeneous Knapsack Problem with realistic container loading constraints
	3.1 Problem definition
	3.1.1 The model
	3.1.2 Model splitting and sizes

	3.2 Heuristic Weight First Best Fit(WFBF)
	3.3 Dataset
	3.4 Experiments and discussion
	3.5 Summary

	4 Using machine learning to estimate feasibility of packing solutions in constant time - a novel strategy
	4.1 Methodology
	4.2 Dataset
	4.3 Classification, results and discussion
	4.4 Summary

	5 The Offline Group Seat Reservation Knapsack Problem with Profit on Seats
	5.1 Definitions, terminology and MIP model
	5.2 Proposed algorithm
	5.3 Class instances
	5.4 Experimental results
	5.5 Summary

	6 A data-driven methodology to infer the graph of the feasible train routing strategies from open data in UK rail network
	6.1 Overview about the C-class of Train Describer data
	6.2 Methodology
	6.3 Results and discussion
	6.4 Summary

	7 A comparison between the ARMA, GRU and LSTM: forecast the time that a train spends to run a track section.
	7.1 Case study
	7.2 Methodology
	7.3 Results and discussion
	7.4 Summary

	8 Train journey running time forecasting using Train Describers and Gated Recurrent Units
	8.1 Case study
	8.2 Methodology
	8.3 Experiments, results and discussion
	8.3.1 Training one model
	8.3.2 Forecasting a journey and comparison with actual train running data and industry system (Darwin)

	8.4 Summary

	9 Final conclusions and future work
	References
	Appendices
	A Minimizing the wasted space giving priority to smaller bins is equivalent to maximizing the packing efficiency
	B Slave Problem
	C Relation of equivalence with rotation along the vertical axis
	D Application of the results of this thesis
	E Publications resulting from this thesis

