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Distributed Formation Control for Multi-Vehicle
Systems with Splitting and Merging Capability

Szilárd Novoth, Qian Zhang, Member, IEEE, Kang Ji, Dingli Yu, Member, IEEE,

Abstract—This work develops a novel strategy for splitting and
merging of agents travelling in formation. The method converts
the formation control problem into an optimization problem,
which is solved among the agents in a distributed fashion.
The proposed control strategy is one type of Distributed Model
Predictive Control (DMPC) which allows the system to cope with
disturbances and dynamic environments. A modified Alternating
Direction Method of Multipliers (ADMM) is designed to solve the
trajectory optimization problem and achieve formation scaling.
Furthermore, a mechanism is designed to implement path homo-
topy in splitting and merging of the formation, which examines
the H-signature of the generated trajectories. Simulation shows
that, by using the proposed method, the formation is able
to automatically resize and dynamically split to better avoid
obstacles, even in the case of losing communication among agents.
Upon splitting the newly formed groups proceed and merge again
when it becomes possible.

Index Terms—Distributed control, networked control systems,
multi-agent systems, homology classes, trajectory optimization

I. INTRODUCTION

RECENT improvements regarding micro-controllers and
communication technologies have led to increased at-

tention towards multi-vehicle systems (MVS). In comparison
to systems consisting of a single vehicle, MVSs have the
capability to accomplish a task more efficiently and reliably.

One significant research direction about MVSs is formation
control of swarm autonomous systems. Vehicles moving in
formation can be applied to cooperatively transport loads or
to monitor or survey the environment. In formation control,
four major problems can be identified: 1) maintaining the
formation, 2) formation reconfiguration, 3) formation scaling
and 4) splitting and merging. Many studies focus on 1), a
few works on 2) and 3) and only a handful considers 4)
due to its high complexity. However, splitting or merging of
formations is an important topic. In environments occupied
by static and dynamic obstacles, splitting the formation could
be highly beneficial in order to better avoid obstacles or to
prevent communication loss due to potentially signal-blocking
obstacles, like a radio-tower.

In this work, we tackle multiple problems in formation
control by proposing a new Distributed Model Predictive
Control (DMPC) strategy, which combines a modified Alter-
nating Direction Method of Multipliers (ADMM) with the path
homotopy concept. First, formation keeping is considered in a
dynamic environment. Second, the proposed algorithm enables
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the scaling of the formation to fit through narrow corridors or
to better avoid obstacles. Third, the proposed method based on
complex analysis enables splitting and merging of formation
in a practical way. This work is a very early attempt to achieve
flexible adaptation of formation, considering potential loss of
communication among agents. It is the first time to apply the
path homotopy concept to facilitate the formation splitting and
merging.

II. RELATED WORK

State-of-the-art formation control strategies can be divided
into three main categories: behavioral approaches [1], leader-
follower approaches [2] and virtual structure based approaches
[3]. These methods usually focus on keeping the formation
while traveling on the prescribed path. Defining this path is
commonly handled by an external computational unit which
generates it either in real-time or beforehand. For the calcu-
lation of the path, a well established control method called
Model Predictive Control (MPC) can be used.

The basis of MPC is to transform an original control
problem into an optimization problem which is then solved
in every sampling time. The advantage of MPC lies in its
ability to handle multi-variable interactions, constraints on the
input/output variables and nonlinear dynamics.

Centralized MPC is not robust against failure of the main
computational unit. Despite significant improvements in pro-
cessing power, they still cannot cope with large network sizes.
DMPC therefore has seen a surge in the number of applica-
tions. It breaks down a large optimization problem into smaller
sub-problems, which are then solved by individual agents and
so the system becomes scalable. Furthermore, the inherent
modularity of the system allows for simple formulation of the
individual objectives and an easy way to add or discard agents
from the group. For this reason, distributed systems are less
prone to failure, hence any misbehaving unit can be removed
and potentially replaced if needed.

Some works have been published that apply DMPC for the
control of multi-agent systems to move in a prescribed forma-
tion. In [4] so-called “assumed” states are exchanged between
the vehicles and each agent solves its optimization problem
taking these values in consideration. More recently another
method, ADMM has surfaced to solve consensus problems for
multi-vehicle systems. It is an augmented Lagrangian method
that was developed in the 1970s and later reviewed in [5].
In [6] ADMM was used for a distributed flocking control
strategy which allowed the vehicles to follow a prescribed
trajectory while avoiding collisions between agents and ob-
stacles. ADMM was used in [7] to drive a fleet of vehicles



represented with double integrator dynamics. Similarly [8]
also used ADMM to control a MVS with linear dynamics
through a dynamic environment. In a later work the method
was extended for systems possessing non-linear dynamics [9].
The optimization method presented in this paper is a modified
version of the ideas used in [8], [9].

The research relating to splitting and merging of au-
tonomous systems is still at a very early stage. One important
contribution to the topic can be found in [10] and [11],
where the intersection (or the lack thereof) of the obstacle-free
convex regions is the indicator whether splitting or merging
of groups should be executed. In [12] Homotopy Continuation
Method (HCM) was used to generate various collision free
paths in 2D and 3D environments. In [13] distinct paths were
generated using Path Guided Optimization (PGO). Each of
these paths was then optimized and the least cost one was
implemented.

III. TRAJECTORY OPTIMIZATION

The goal in trajectory optimization is to find an optimal state
and input trajectory {x∗(t),u∗(t)} ∀t ∈ [0, T ], that brings
a dynamical system from its initial state to its final state.
The trajectory is optimal in the sense that it minimizes some
cost functions while satisfying all the equality and inequality
constraints. In the centralized case the trajectory optimization
problem minimizes the sum of all agents’ objective functions
Ji while satisfying constraints on the states and inputs. The
state xi has to belong to the set Xi which usually represents
the system dynamics and boundaries on position, speed and
acceleration. Furthermore it also includes the initial and final
conditions for the states. Similarly, the input ui has to belong
to the set Ui. This set usually represents boundaries on the
inputs caused by actuator limitations. The number of agents is
represented by M . In the following we represent the current
agent using i and the neighbouring agent using j, which is a
member of the set Ni. Interaction among neighbouring agents
is defined by the equality constraint gij(·) = 0. Finding the
desired trajectory can be achieved by solving the optimization
problem as follows:

minimize
∀i:xi(·),ui(·)

M∑
i=1

Ji(xi,ui)

subject to xi(k) ∈ Xi ∀i
ui(k) ∈ Ui ∀i
gij(xi(k),xj(k)) = 0 ∀i,∀j ∈ Ni
k = 0, 1, ..., N

(1)

where k represents the discrete time instance up to N .
The state vector x of the i-th vehicle is composed of position

values p ∈ Rn and velocity values v ∈ Rn. As such, the
system dynamics can be described by using the equations (2):

p(k + 1) = p(k) + Tsv(k) ∀k = 0, 1, ..., N

v(k + 1) = v(k) + Tsa(k) ∀k = 0, 1, ..., N
(2)

where Ts represents the sampling time and a ∈ Rn denotes
the acceleration.

Collision avoidance between agents and obstacles is
achieved by using the separating hyperplane theorem, pre-
sented in [14]. If two nonempty sets C and D are disjoint

and convex, then there exists a hyperplane {x|aTnx = b} which
separates the two sets. In other words, aTnx ≥ b on one set and
aTnx ≤ b on the other. Given a rectangle with ι = 4 corners,
the collision avoidance constraint at time instance k assuming
a vehicle with radius rveh becomes (3):

an(k)T νι(k)− b(k) ≥ 0, ι = 1, ..., 4

an(k)T y(k)− b(k) ≤ −rveh
||an(k)||2 ≤ 1

∀k ∈ [0, N ]

(3)

where an(k) and b(k) are the normal vector and the offset
for the hyperplane respectively, y(k) represents the motion
trajectory and νι(k) are the individual corners of the ι-th
rectangle.

The formation constraint for each vehicle is expressed with
respect to the fixed coordinate system. The constraint can be
expressed as follows:
gij(xi(k),xj(k)) = xi(k)− xj(k)−∆xij ∀k = 0, 1, ..., N

(4)
where ∆xij is a constant, describing a user-defined relative
position between the two agents.

IV. DISTRIBUTED PROBLEM FORMULATION

ADMM [5] is a first-order optimization method that com-
bines the advantages of two distinctive algorithms. It inherits
decomposability from the dual ascent and the good con-
vergence property from the method of multipliers. It solves
problems of the form:

minimize
x,z

f(x) + g(z)

subject to x− z = 0
(5)

where f and g are two objectives, separated by using the
variable z which is a duplicate of the original decision variable
x.

Based on (5) the augmented Lagrangian can be formulated:

Lρ(x, z, λ) = f(x) + g(z) + λT (x− z) +
ρ

2
||x− z||22 (6)

where λ is the dual variable and ρ > 0 is the parameter of the
penalty term that alters the convergence speed. ADMM is a
minimization scheme which solves the augmented Lagrangian
in an alternating fashion. First, Lρ is minimized with respect
to x, then the updated value x+ is used to minimize Lρ with
respect to z. Finally, a gradient step is performed to update
the dual variable λ.

Using the above method the centralized optimization prob-
lem of (1) can be distributed among the agents. Analogous to
[15] we duplicate the state trajectories in order to decouple
the only coupling constraint gij(xi, xj) between the agents.
As such the duplicate of xi becomes zi. The duplicate of the
j-th agent’s state in the eyes of the i-th agent becomes zi→j .
This value can be considered as a proposal from agent i to
agent j. Using these notations the problem formulation can be
expressed as:



minimize
∀i:xi(·),ui(·)

M∑
i=1

Ji(xi,ui)

subject to xi(k) ∈ Xi ∀i
ui(k) ∈ Ui ∀i
gij(zi(k), zi→j(k)) = 0 ∀i, ∀j ∈ Ni
xi = zi ∀i
xij = zi→j ∀j ∈ Ni
k = 0, 1, ..., N

(7)

Based on (7) the augmented Lagrangian can be formulated as:

Lρ =

M∑
i=1

(
Ji(xi) + λTi (xi − zi) +

ρ

2
||xi − zi||22∑

j∈Ni

(λTi→j(xj − zi→j) +
ρ

2
||xj − zi→j ||22)

)

=

M∑
i=1

(
Lρ,i(xi, zi, λi) +

∑
j∈Ni

Lρ,i→j(xj , zi→j , λi→j)
)

=

M∑
i=1

(
Lρ,i(xi, zi, λi) +

∑
j∈Ni

Lρ,j→i(xi, zj→i, λj→i)
)
(8)

In the last line of (8), the indices i and j are flipped. This
change is appropriate if bi-directional interaction between the
agents is assumed (j ∈ Ni ⇔ i ∈ Nj) [8].

To find the optimum, gradient ascent is employed to maxi-
mize the dual problem (9):

q(λi, λi→j) = inf
∀i: x∈Xi,u∈Ui

∀i,∀j∈Ni: gij(zi,zi→j)=0

Lρ (9)

The variable xi and the variables zi, zi→j are updated in two
consecutive steps. Then, using the updated values x+i , z+i ,
z+i→j the gradient becomes (10). This is followed by a gradient
step, updating the dual variables λi and λi→j .

∇λiq = x+i − z
+
i

∇λi→j
q = x+j − z

+
i→j

(10)

V. PATH HOMOTOPY

Homotopy classes of trajectories were investigated in pre-
vious research [16]–[18] to plan trajectories for a single
agent, while this paper extends their application to formation
planning and control. Different trajectories belong to the
same homotopy class if they can be smoothly transformed by
bending and stretching without colliding with any obstacle. For
2D cases [16] uses complex analysis and the Cauchy Integral
Theorem.

Trajectories with different homotopy classes may arise in
the presence of obstacles. Two trajectories τ1 and τ2 connect-
ing the same start points zs and end points zf are homotopic
iff one can be smoothly deformed into the other without
intersecting obstacles [16]. The paths that are homotopic to
each other constitute one homotopic class.

With the help of homotopic classes one can decide whether
the communication between the agents can be retained
throughout the travel. The computation of these classes is

difficult however. Instead, [18] suggests comparing the homol-
ogy of the trajectories in question. This is easier to calculate
and in most robotic applications homotopy and homology
can be assumed to be equivalent. As defined in [17], two
trajectories τ1 and τ2 connecting the same start and end points
are homologous iff τ1 together with τ2 form the complete
boundary of a two-dimensional manifold embedded in the
configuration space and not containing or intersecting any
obstacle.

In [17] a functional H(τ) is defined (termed the H-signature
of the trajectory), which can be used to differentiate separate
homology classes. It assigns a unique complex number to var-
ious paths and upon comparing the number, a path’s homology
class can be determined.

The H-signature is defined as an integral for a continuous
path τ starting at τ(t = 0) = zs and ending at τ(t = T ) = zf
[17]:

H(τ) =

∫
τ

F(z)dz (11)

where F(z) denotes the obstacle marker function, defined as:

F(z) =
f0(z)

(z − ξ1)(z − ξ2)...(z − ξNobst
)

(12)

where ξl ∈ Z is an arbitrarily chosen point from inside an
obstacle Ol,∀l = 1, ..., Nobst. In the current work f0 was
chosen to equal (z−BL)2(z−TR)2, following the suggestion
in [16], where BL and TR are the complex representation of
the bottom-left and top-right points of the environment.

VI. PROPOSED CONTROL METHOD

In this section we propose some important modifications to
ADMM to achieve smooth and flexible adaptation of formation
in dynamic environments. The path homotopy idea is also
implemented to reflect the situation of losing communication
in travelling and help adjust formation objective and constraint
to achieve robust trajectory planning in the splitting and
merging cases.

A. New formation constraint

While the formation constraint presented in (4) is a straight-
forward choice to retain the desired formation, it doesn’t leave
enough flexibility for the formation to change its size. To this
end we propose a constraint that enforces the group to retain
the shape of the formation and also have the flexibility to grow
or contract. To achieve this, instead of restricting the relative
position of the position vectors, we restrict their crossproduct
with the constant ∆xij , which describes a user-defined relative
position between two agents. This change essentially requires
these vectors to point into the same direction. The updated
constraint can be seen in (13):
gij(zi(k), zi→j(k)) = (zi(k)− zi→j(k))×∆xij ∀j ∈ Ni

(13)
To balance the effect of the modified formation constraint, an
extra cost function Ĵi is added to the optimization problem in
Step 3 of Algorithm 1.

Ĵi(zi, zi→j) =
∑
j∈Ni

γz(zi(k)− zi→j(k)−∆xij) (14)



where γz is a predefined constant. Equation (14) effectively
turns the original formation constraint of (3) into a soft
constraint. Equation (13) in conjunction with (14) allows the
group to keep the shape of the desired formation and also
allows for smooth growing or contracting when fitting through
tight corridors or opening up to avoid small obstacles. During
experiments, the neighbourhood set Ni is set to be the four
closest neighbours that communicate with agent i.

B. Individual objectives

The individual objective of an agent is designed as (15):

Ji(ui) =

N∑
k=1

η · u2i (k) · k2 (15)

where η > 0 is a constant, ui is the input. The input is
multiplied by k2 so that the system is encouraged to arrive
to the destination as soon as possible.

C. Modified ADMM algorithm

Algorithm 1 Distributed trajectory optimization
update Ni and initialize λi, zi, {λi→j , λj→i, zj→i}j∈Ni

repeat
1. Prediction: update xi

argmin
xi,ui

Ji(ui) + λTi (xi − zi) +
ρ

2
||xi − zi||22∑

j∈Ni

(λTj→i(xi − zj→i) +
ρ

2
||xi − zj→i||22)

subject to xi ∈ Xi

2. Communication with agent j, ∀j ∈ Ni

send → x+i
receive ← {x+j }∀j∈Ni

3. Coordination: updating zi, zi→j

argmin
zi,zi→j

Ĵi(zi, zi→j) + λTi (xi − zi) +
ρ

2
||xi − zi||22∑

j∈Ni

(λTi→j(xj − zi→j) +
ρ

2
||xj − zi→j ||22)

subject to gij(zi, zi→j) = 0 ∀j ∈ Ni

4. Dual variable update: computing λi, λi→j
λ+i = λi + ρ(xi − zi)
λ+i→j = λi→j + ρ(xj − zi→j) ∀j ∈ Ni

5. Communication with agent j, ∀j ∈ Ni

send → (λ+i→j , z
+
i→j)

receive ← {λ+j→i, z
+
j→i}∀j∈Ni

until convergence

The optimization problem (7) can be solved in a distributed
fashion if all agents perform a modified ADMM algorithm,
as described in Algorithm 1. In the first, prediction step of
Algorithm 1 each agent plans a collision-free trajectory that

obeys its system dynamics, minimizes its objective and drives
the agent to the goal position. The objective function driving
each vehicle to its destination was described in (15). In the
second, communication step the agents exchange their updated
trajectories which will be used in the next optimization step.
In the third, coordination step the duplicate variables zi and
zi→j are updated. These values are chosen so, that they stay
close to the originally proposed trajectories. This is followed
by the update of the dual variables λi and λi→j . Finally, the
updated dual variables λ+i→j and suggested trajectories z+i→j
are communicated to all agents j, j ∈ Ni.

D. Implementation of path homotopy

The homotopy classification of trajectories from different
vehicles is not self-evident, because naturally the conditions
of starting from the same position and ending in the same
position cannot be met. For this reason, in this work we pro-
pose virtually connecting the starting point of each vehicle’s
trajectory to the current center of the formation. Similarly, its
ending point should be connected by a straight line to the
desired formation center at the ending position. As such, the
conditions for comparing homotopy classes of trajectories are
met.

E. Proposed DMPC scheme for formation control

To coordinate the agents to their desired destination, a
distributed MPC scheme is used. The strategy uses Algorithm
1 in every control step to calculate the optimal trajectories.
However, letting the optimization algorithm run until con-
vergence would mean too high of a computational load for
the system. For this reason, only a small number of ADMM
iterations are executed every control step and the time-shifted
results of the previous iteration are used to warm-start the
optimizer in the next control step.

The summary of the proposed control scheme can be found
in Algorithm 2. First, n optimization iterations are performed
to initialize the relevant variables. Thereafter starts the control
loop which is repeated until the agents arrive to their desti-
nation. Each agent follows the currently prescribed trajectory.
Meanwhile, the future position is estimated and a time-shifted
version of the previously calculated trajectory is used to warm-
start the optimizer. The optimization loop is performed to
update the variables. Each agent then calculates the path
homotopy of its trajectory and compares them with the visible
agents. If the difference in values is less than a predefined
value ε, the given agents will form the same group. The value
of ε should be tailored to the specific implementation, but in
general, it may be a fairly large value, because the H-signature
of paths that are not in the same homotopy class tends to give
significantly different results. If a new group is formed, the
agents receive updated final states and formation constraints
from a higher level controller and continue to make progress
towards the goal.

VII. EXPERIMENTAL RESULTS

The proposed DMPC strategy is an online algorithm capable
of scaling, splitting and merging formation. In this example



Algorithm 2 Control algorithm for agent i
Perform Algorithm 1 for n iterations, obtain:
x0i , x

0
j , z

0
i , z

0
i→j , λ

0
i , λ

0
i→j

repeat every ∆T until destination reached
follow trajectory xki
estimate future position x̂i(k + 1)
transform xki , x

k
j , z

k
i , z

k
i→j , λ

k
i , λ

k
i→j to warm

start the optimizer
perform Algorithm 1 for m iterations
calculate the center of the group
calculate H(xi) using equation (11)
communicate H(xi) with all visible agent jvisible
form a group with all {j | |H(xi)−H(xj)| < ε}
if no change in j

continue
else

update final destination and formation constraint
end if

end repeat

twelve two-dimensional holonomic vehicles receive a task to
travel in a circular formation. On their way they have to over-
come challenges like a narrow corridor and a dynamic obstacle
moving towards the group. The simulation was implemented
in Matlab using CasADi [19] to formulate the optimization
problem and to interface the optimizer IPOPT [20]. The host
platform was a Windows PC with an Intel i7-8550H CPU
@2.6 Ghz.

Figure 1 shows the agents agreeing on paths that squeeze the
formation through a narrow corridor. Furthermore, the system
can avoid dynamic obstacles by being able to predict the
obstacles’ future position, therefore the planned trajectories
open up for the obstacle coming from the right. The planned
trajectories of the groups are represented with coloured curves
and the already travelled paths are shown in grey. The trajec-
tories with the same color belong to the agents of the same
group. Figure 2 shows the path homotopy algorithm organizing
the trajectories in two separate classes, indicated by the green
and purple colors. The agents then form two new groups
and receive updated final destinations and updated formation
constraints, to reflect the situation that the communication
among agents is to be blocked. Following this, they start
to move towards their new final position keeping a smaller
circular formation, as shown in Figure 3.

Lastly, after leaving behind the obstacle that blocked the
communication, the planned trajectories of the agents again
form the same homotopy and the two groups are allowed
to merge. The updated final destinations and formation con-
straints are sent to all agents and the group is able to plan
trajectories that will lead to the desired formation after a few
iterations.

Separating the agents into groups has important advantages
in real-world scenarios. Once the communication between
agents is blocked, the agents have no information about the
agents on the other side of the obstacle. The non-visible
agents may follow their trajectories as planned but they might
also get stuck or have to take different routes. In a dynamic

Fig. 1: Squeezing through a narrow corridor

Fig. 2: Trajectories with different homotopy classes, triggered
by a nearby obstacle

Fig. 3: Two groups keeping circular formation in loss of
communication, and merging thereafter

environment there is no guarantee that all the agents can merge
in the future. For this reason it is suggested to split the agents
into independent groups which perform their individual tasks.
The groups can merge when the communication can be re-
established.

To evaluate the performance of the algorithm, a fitness value
is calculated to measure, how well the formation is kept. In
one control update, each agent calculates the angle between
two vectors, one pointing from the agent to its neighbour and
the other pointing from the agent to the neighbour’s desired
position. This angle is calculated by each agent for each of its
neighbours at the current time. The sum of these angle values
becomes the fitness value for the current control loop.

The performance of the proposed control strategy is greatly
affected by the warm-starting mechanism in optimization and
some pivotal parameters, such as the number of optimization
iterations per control update m and ρ in Algorithm 1. We have
carried out a set of experiments to study their effectiveness
and/or settings, which are introduced in the following para-
graphs.

Table I shows how m affects the overall performance and
the computational time. We can see a clear correlation between



TABLE I: The Effects of the Number of Optimization Itera-
tions per Control Update and the Warm-Starting Mechanism

no. of ADMM iterations 1 2 3 5 7 10 1̂

Overall fitness 912 802 787 775 766 747 1109
Time per control update (s) 0.5 1.7 2.6 4.7 6.2 8.5 1.4

* 1̂ stands for the case without optimizer warm-starting.

TABLE II: The Effect of ρ on Simulation Performance

ρ value 0.4 0.6 0.8 1 1.5 2

Overall fitness 1131 1009 977 912 873 836
Time to reach dest. (s) 45 48 51 53 60 65
Required control effort 132 131 128 127 121 119

m and the overall fitness value. The table shows, that perform-
ing more optimization iterations per control update can be
beneficial because it improves on the fitness value. However,
the computational burden also increases but to a much greater
extent. Based on the above findings, it is suggested to utilize
only a few optimization iterations, such as 1 or 2, to ensure a
fast but still good performing algorithm. In the table, 1̂ stands
for the case, where the optimizer was not warm started. The
computational time and overall fitness in this case has both
greatly increased, which verifies the effectiveness of the warm-
starting mechanism.

Another important parameter used to alter how closely
the formation is kept is ρ in Algorithm 1. This constant
influences how strictly the optimization algorithm alters the
desired trajectory of an agent to conform to the formation
constraint, set by the position of the neighbouring agents. As
shown in Table II, by increasing the value of ρ, the fitness
value can be improved. This indicates that the agents achieve
the desired formation faster, but the time to reach the goal and
the overall control effort increase. For this reason, the designer
has to consider the benefits and the trade-offs when choosing
an appropriate ρ value for a specific application.

VIII. CONCLUSION

In this work a distributed formation control algorithm was
developed that allows agents to avoid dynamic obstacles
and adapt the formation according to different environment
and obstacles. The novelty of the work lies in achieving
scaling, splitting and merging of formation simultaneously, by
designing an improved ADMM and applying path homotopy
techniques into formation adaptation for the first time. In the
proposed method, agents are able to detect obstacles that
may prevent inter-agent communication and in such cases
they split and form new groups based on different homotopy
classes. Similarly, if two groups find themselves in the same
homotopy class, they smoothly merge to form a new larger
group. Simulation results verified that the proposed method is
able to dynamically resize, split and merge the formation in
the case involving loss of communication among agents.
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