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Abstract: With the widespread use of embedded sensing capabilities of mobile devices, there
has been unprecedented development of context-aware solutions. This allows the proliferation of
various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent
personalized services, etc. However, activity context recognition based on multivariate time series
signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance
class problems. This means that recognition models tend to predict classes with the majority number
of samples whilst ignoring classes with the least number of samples, resulting in poor generalization.
To address this problem, we propose augmentation of the time series signals from inertial sensors
with signals from ambient sensing to train Deep Convolutional Neural Network (DCNNs) models.
DCNNs provide the characteristics that capture local dependency and scale invariance of these
combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor
signals and then developed another model that combined signals from both inertial and ambient
sensors aiming to investigate the class imbalance problem by improving the performance of the
recognition model. Evaluation and analysis of the proposed system using data with imbalanced
classes show that the system achieved better recognition accuracy when data from inertial sensors
are combined with those from ambient sensors, such as environmental noise level and illumination,
with an overall improvement of 5.3% accuracy.

Keywords: activity context sensing; smartphones; deep convolutional neural networks; smart devices

1. Introduction

According to the World Health Organization (WHO), insufficient physical activity is one of
the leading risk factors for death worldwide [1]. This could lead to non-communicable illnesses,
such as cardiovascular diseases, cancer, diabetes, and many more. Physical activity is defined as “any
bodily movement produced by skeletal muscles that require energy expenditure, including activities
undertaken while working, carrying out household chores, traveling, and engaging in recreational
pursuits” [1]. To improve the physical wellbeing of people and to reduce the pressure on health
infrastructure and the cost of healthcare delivery, governments now encourage people to engage in
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various forms of physical activities. In this regard, various research works have been conducted to
provide solutions that support physical activities. Besides, being able to predict or recognize user
activity contexts is not only important in health monitoring applications, but such information can
also be used in designing and implementing other intelligent applications in transportation, security,
and intelligent recommendation systems, etc. [2–5]. This is inevitable because recent advances in
ubiquitous computing, cloud computing, Artificial Intelligence (AI), and developments in network
solutions, such as the 5G, etc., open up greater opportunities. Today, many people not only use
smart devices that have the incredible capability for sensing human activities and contexts, but these
devices can also provide solutions that promote and improve human general wellbeing. Besides, smart
objects are everywhere, interacting with our living spaces and producing an incredible amount of
data [2]. Exploiting this data for developing more intelligent applications has seen keen academic and
industrial interests [2,4]. One of the key research interests is how to use the data to identify meaningful
information not only about mobile users but also in the environments. In particular, researchers in the
last decade have investigated various approaches for recognizing human activity contexts by collecting
a large volume of data from body-worn devices or smartphones, as well as other sensory devices,
to develop automated solutions using various AI techniques [2,6–8].

Activity context recognition is one of the techniques that has been widely used to study human
behaviors, such as walking, running, driving, eating, jogging, running patterns, etc. [2–4]. With a
better understanding of the patterns of these behaviors, more intelligent applications in the domain
of mobile healthcare systems, information systems, such as service recommendation systems, etc.,
are now a reality [3,4]. However, recognizing activity context despite the impressive efforts and
results by enthusiastic researchers still has some significant challenges. One of such challenges, which
has not been adequately addressed is that of class imbalance [2]. It is common with some human
activities involving human behavioral monitoring. For example, some activities occur more frequently,
e.g., sleeping, while others occur infrequently, e.g., climbing stairs. This problem is particularly
common with sensing in unconstrained environments.

Another key challenge is that current approaches in the realm of human activity context recognition
have largely focused on identifying individual activity by using handcrafted approaches to extract
useful features from the collected data [9]. Feature extraction is one of the crucial steps in activity
context recognition that captures information, which discriminates various activity contexts [2–4,10].
In our previous work, we reported extensively on the traditional approaches used in activity context
recognition applications [3]. The traditional activity context recognition system as depicted in Figure 1
consists of key processing steps, including data collection, data filtering, data pre-processing, such
as segmentation, handcrafted features extraction, model training, and activity context classification.
Since this classical technique relies on handcrafted feature extraction, it is prone to recognition errors
and cannot generalize.
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Recently, deep learning algorithms have achieved unparalleled performance in several areas, such
as image processing, visual object recognition, natural language processing, driverless cars, robots,
etc. [6–11]. DCNNs are now widely used for the development of automatic human activity context
recognition [6–9,12–18]. Representational learning of activity context from raw sensor data using a
DCNN has been proposed for automatic feature extraction in activity context recognition [12–21].
Besides, deep learning algorithms have the capability for unsupervised and incremental learning
because of its deep network structure compared to the traditional neural network. A DCNN is
composed of multiple building blocks, such as convolutional layers, pooling layers, and fully connected
layers [9,13–17]. It has been designed to automatically and adaptively learn spatial hierarchies of
features, from low to high-level patterns, through backpropagation algorithm [16,19–22]. Its attraction
is due to its special architecture with a strong ability to learn filters and apply them to small-sub regions
of data. This unsupervised feature learning, which is performed in the convolution layers, allows them
to easily capture hidden local patterns and variations in the data. The resulting feature map is then
passed to the fully connected layers for activity context classification. The convolutional layers are
trained alongside other layers of the network as their outputs serve as the inputs of other convolutional
layers. The convolutional operation exploits effectively the local temporal dependency of time series
data, while its pooling operation cancels the impact of small translation of the input. With its weight
sharing feature, the convolution operation of the DCNN allows reservation of scale invariance, which,
in activity context recognition, can discriminate between two similar or identical classes. Furthermore,
this operation helps to capture local dependencies of the signals [9]. For example, it would be able
to capture the dependencies between inertial sensing signals and those of nearby ambient sensors.
It also lowers the computational cost by reducing the number of connections between convolutional
layers [6,9,11]. With the capability to be optimized using backpropagation, it is an excellent deep
learning architecture that produces minimal prediction error [22].

Most research works using DCNNs have focused on using visual data from video cameras [21]
or inertial sensors, such as accelerometers, and gyroscopes [9,11,15,16]. Ambient sensing has been
largely ignored, however, ambient sensing is used to capture interactions between humans and the
environment. Belapurka et al. [23] made a strong case for using ambient sensing for recognizing human
activity contexts. However, they only proposed it as a means of tackling privacy-related problems of
human activity context recognition. Ambient sensors are usually embedded in the environment and
examples include temperature, light, sound, pressures sensors, etc. But modern mobile devices, such
as smartphones, have these sensors, and they are important sources of data that could be explored
to improve the performance of human activity recognition models. To provide richer contextual
information and address class imbalance challenge of activity context recognition, we proposed to
enrich the traditional inertial dataset with ambient sensing by using the CNN for automatic feature
extraction to improve both the local and global performance of models with imbalanced classes.

The key contribution of this article is threefold:

(1) We demonstrate that with inertial and ambient sensors, namely environment noise level and
illumination could improve recognition performance using data with imbalanced classes.

(2) We performed extensive hyperparameter tuning to select optimal values to build the DCNN model.
(3) We demonstrate that the DCNN can perform better recognition with raw sensing data without

handcrafted features than with manually extracted features.

The rest of the paper is organized as follows. Section 2 presents relevant related work. In Section 3,
we present details of the proposed system for classifying context from raw sensor data. Section 4
presents our experiments and evaluation results. In Section 5, we conclude and outline our future work.

2. Related Work

Human activity contexts are important contextual information, especially in the new ubiquitous
computing environments. This type of contextual information will play an important role in our daily
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lives through various intelligent applications. Human activity contexts coupled with the emergence
of the Internet of Things (IoT) as the de facto means of gathering huge volumes of data relating to
the human environment and their behaviors is revolutionizing how we engineer intelligent systems.
In addition, the new paradigm of emerging IoT network infrastructure enables billions of interconnected
devices to communicate and exchange information and is the future platform for providing intelligent
applications in various domains, such as health and wellbeing monitoring systems, enhanced retail
recommendation applications, smart homes, and smart cities. To engineer such systems, there is a need
to provide an automatic way of recognizing and classifying human activity context. The process for
automatic recognition of human activity context is generally known as Human Activity Recognition
(HAR) [15–17]. This is a typical pattern recognition problem based on using traditional algorithms,
such as support vector machines, K-Nearest Neighbor, naïve Bayes, decision trees, random forest,
etc. [3,4,10,24].

Research activities in the human activity context can be broadly categorized into two. Video-based
human activity recognition and sensor-based activity recognition [4,7–18]. The sensor-based activity
recognition process focused more on using data generated by inertial sensors, such as accelerometer and
gyroscope, for recognizing human locomotive activities by either placing these sensors on various parts
of the human body or using smartphones [16,24–26]. The video-based human activity recognition has
focused on using video surveillance data in the activity recognition processes [21]. In recent years, many
research works have explored various algorithms, whilst building new ones, to automatically identify
human activities. The conventional machine learning algorithms have been extensively explored and
widely reported in the literature [2–4,10,16]. For example, in our previous work, we explored various
traditional classification algorithms for automatic context recognition [3]. The result was applied in the
development of a context model for an intelligent context-aware recommendation system. Other works
based on classical machine learning algorithms and handcrafted feature extraction processes have been
extensively reported [4,24–27]. For example, authors in Reference [18] proposed a new approach using
a descriptor-based approach to human activity recognition. They handcrafted time and frequency
domain features from accelerometer and gyroscope signals and then used conventional support vector
machines and k-nearest neighbor algorithms. In Reference [28], Straczkiewicz and Onnela provide a
comprehensive review of several human activity recognition research works using classical machine
learning algorithms. The majority of the reported works using traditional machine learning algorithms
are based on handcrafted feature extraction processes. Zeng et al. [9] report that, although these works
might have demonstrated good performance recognizing one activity, they, however, perform poorly
recognizing others due to class imbalance. They also noted that these works cannot capture local
dependencies of an activity signal, as well as not being able to preserve scale invariance. This explains
why some models struggle to discriminate between jogging and running contexts [25].

In recent years, several works also focused on using deep neural networks for activity recognition
using signals from only inertial sensors [5–9,12–19,29,30]. This new development is due to the incredible
advancements in compute power. For example, one of the earliest works is the one presented by Jiang
and Yin [12]; in their paper, rather than exploring handcrafted features from time-series sensor signals,
they assembled signal sequences of accelerometers and gyroscopes into a novel activity image and
used the data to train the DCNN to automatically learn the optimal features for the activity recognition
task. Another important and interesting work is the one presented by Zeng et al. [9]. They also
developed a system that automatically extracts features from raw sensing data, using a CNN with
partial weight sharing technique. Another interesting work is the one presented by Zebin et al. [29],
where signals from inertial sensors have been used to train the DCNN for automatic feature extraction
and activity recognition.

Some works combine statistical features with deep learning to automatically recognize human
activities. For example, Hassan et al. [15] present a robust human activity recognition system using
smartphone sensors and deep learning algorithms. In that work, from gyroscope and accelerometer
data, they extracted statistical features, such as mean, median, autoregressive coefficients, etc., which
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are then fed into the DCNN. Similarly, Ignatov [16] proposed a deep neural network architecture
that combines shallow DCNN for unsupervised feature extraction together with statistical features to
encode global characteristics of smartphone sensor data. Ronao and Cho [17] proposed a DCNN-based
recognition system where they fed raw inertial sensor data into the DCNN model for automatic feature
extraction. To improve the performance of the model, they combined manually extracted fast Fourier
Transform of the HAR dataset.

Researchers have also come up with an innovative way to identify human activity context using
data from sensors other than the traditional inertial or motion sensors to augment these classical sensing
data. The rationale is to address the problems, such as class imbalance, associated with using inertial
sensors to improve activity context recognition performance. Researchers, such as Belapurka et al. [23],
made a very strong case for using ambient sensing for recognizing human activity contexts. However,
they only proposed it as a means of tackling privacy-related problems of human activity context
recognition. Some others also used ambient sensing to address the computational complexity, power
consumption, cost and recognition accuracy, or poor generalization issues. An example of such work is
the one presented by Golestani and Moghaddam [31], where they introduced magnetic induction-based
human activity recognition to effectively detect physical movements using magnetic induction signals
rather than inertial sensors signals. They compared the performance of their work using traditional
machine learning algorithms, such as Support Vector Machines (SVM), K-Nearest Neighbor ( KNN),
etc., with deep learning algorithms, such as deep long short-term memory (LSTM), and concluded that
deep learning outperformed the traditional algorithms.

In terms of combining ambient sensing data with inertial sensing data for activity recognition,
only a few works have reported this approach. One of the latest reports is the one conducted by
Cruciani et al. [13], in which they used audio and inertial datasets to pre-train a DCNN model for
automatic human activity recognition. Another recent work is presented by Schrader et al. [32], which
uses audio signals and cameras as ambient sensors in addition to other sensors to recognize elderly
people’s activities for rehabilitation and early intervention. We proposed a combination of 3 inertial
sensors, namely accelerometer, gyroscope, and magnetometer. This data is combined with ambient
sensing data from environmental illumination and noise level data. We investigate the importance
of ambient sensing in combination with inertial sensors to address the class imbalance problem of
human activity context recognition. Like some of the works reviewed above, we combined inertial and
ambient sensing to recognize human activity contexts using deep convolutional neural networks for
automatic feature extraction, fully connected neural networks, and sliding window with overlapping
as signal segmentation algorithm for activity context classification.

3. Methods and Materials

Activity context recognition based on multi-class classification algorithms requires labeled training
datasets, in which training samples belong to known classes or categories. The samples representing
these classes are usually not evenly distributed. We have classes with a higher number of samples
forming the majority classes and those with very few samples making up the minority classes. With this
skewed dataset, classification algorithms will typically over-classify the majority classes because of
their higher prior probability, whereas the minority classes are misclassified due to their very low
prior probability. To address the problems, our method takes a data-centric approach and combines
DCNN, inertial, and ambient data augmentation. The data-centric approach provides additional
sensing signals from the ambient sensors in addition to the traditional sensing signals from inertial
sensors. This section describes the architecture of the proposed system and the structure of the DCNN.

The overview of the method is illustrated in Figure 2, which shows sensing data from both
inertial and ambient sensors as inputs to the DCNN. In the literature, three categories of techniques
have been applied to address the class imbalance problem. These approaches are classified into three
types, namely data-based approaches, algorithm-based approaches, and the hybrid approach that
combines both [33]. We adopted this approach to enhance the recognition accuracy of the minority
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classes. This requires an additional dataset to augment the original data collected from inertial sensors.
The process involves collecting labeled data using sound (microphone and speakers) and light sensors.
In total, signals from 3 inertial and 2 ambient sensors were analyzed. First, labeled data was collected
from only inertial sensors. The second step involved collecting labeled data using all the 5 sensors.
These sensors and the corresponding signals represent 9 classes. In the next section, we describe
these sensors.
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3.1. Inertial Sensing

Inertial sensors are the most used sensors for activity context recognition [2–10]. In contrast to
vision-based systems, inertial sensing does not pose many privacy issues and is available on most
smartphones. The baseline model developed in our system uses inertial sensor signals, like several
other existing systems. However, instead of using data from the accelerometer and gyroscope as other
works have done, we added a magnetometer as an additional sensor. Figure 3 illustrates the feature
extraction model for the raw inertial sensing data. The following are the inertial sensors used by the
proposed system.
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(a) Accelerometer: It is a motion sensor that measures the acceleration in m/s2, along three axes.
The measurement is the rate of change of velocity of the object. Figure 4 illustrates the accelerometer
sensor’s representation of the signals for the activity context classes in 3D.Sensors 2020, 20, x FOR PEER REVIEW 7 of 26 
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(b) Gyroscope: It is a sensor that measures the orientation and angular velocity of an object. A gyroscope
is an advanced form of accelerometer that is about to capture the tilt and lateral orientation of an
object, whereas the accelerometer only measures the change in linear velocity. Figure 5 illustrates the
gyroscope sensor’s representation of the signals for the activity context classes in 3D.
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(c) Magnetic sensor (magnetometer): This position sensor measures magnetic field strength and
directions. Such magnetic field results from the movement of charges or electrons. It is generally
used to measure the induction. It is an important component of aircraft but now is being used as
one of those sensors for detecting human activities. This is because several mobile devices now
come with magnetometers. Normally, it has been used to detect the orientation of the mobile
phone relative to the Earth’s magnetic north. Figure 6 illustrates the magnetometer sensor’s
representation of the signals for the activity context classes in 3D.
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3.2. Ambient Sensing

Several approaches addressing class imbalance rely on oversampling of the minority classes
by synthetically generating additional samples [2]. Some other works downsample the majority
classes [34]. Our approach follows the oversampling method, but rather than generating synthetic
sample data, we used additional data collected from two ambient sensors.

(a) Sound sensor: consisting of a microphone and speaker. Modern smartphones usually have a pair
of built-in speakers and a microphone. These can be used to recognize human activities and other
ambient conditions, such as noise level. While the microphone receives the ultrasound signal, the
speaker transmits the signals.

(b) Light sensor: generates an output signal that indicates the intensity of light by measuring the
radiant energy that exists in a narrow range of frequencies, and which ranges from infrared,
through visible light up to ultraviolet light spectrum. Figure 7 illustrates the environment noise
and illumination representation of the activity context classes.
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Figure 8 illustrates the feature extraction model for both ambient and inertial sensing data, where
l and a represent the illumination and audio sensing signals as inputs in addition to the inertial sensing
data, denoted by x j

i , y j
i , and z j

i , i.e., axes of the inertial sensors.
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3.3. The Architecture and Structure of the Proposed System

Figure 7 illustrates the architecture of the proposed DCNN model. It consists of 3 types of layers:
the convolutional and pooling layers; the flattened and the fully connected layer; and the output layer.
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Note that, in Figure 9, where n denotes the number of layers. The value of n is determined later,
in Section 4. In the first layer, the sensors signals are fed as inputs to 3 convolutional layers stacked
with corresponding max-pooling layers and Rectified Linear Unit (ReLU) activation function [20,22].
Automatic feature extraction is executed at this layer. The resulting feature maps represent the activity
context classes. We arrived at the number of convolution layers after a set of experiments to determine
an optimal number with the highest recognition accuracy, as reported in Section 4.3.1. The second
component of the architecture consists of flattened and fully connected layers. The flattened layer
accepts the feature maps from the previous layer (max-pooling layer) and converts the feature maps to
a single column vector that is then fed to the fully connected layer. The fully connected layer performs
the classification process. The final layer is the output layer, i.e., Softmax layer, that receives the
outputs of the fully connected layer and computes the probability distribution of each class [16,17].
The recognition model was trained to minimize cross-entropy errors with L2 regularization and
dropout probability to prevent overfitting [17,22,34]. We optimized the model’s hyperparameters
using Adam optimization, and backpropagation to compute the gradient of the loss function [35].
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3.3.1. Raw Data Pre-processing

The two important preprocessing techniques used are data standardization and segmentation
using sliding windows with overlapping [36].

(a) Data Standardization

To minimize bias [16,17], we standardized the data samples by subtracting the mean from the
original value and then dividing the result by its standard deviation. Both the 3D inertial signals and
1D ambient signals were standardized using Equation (1).

x− x
σ

(1)

(b) Segmentation

Following the standardization of the input signals, a temporal sliding window algorithm was
applied [4]. In this process, the input data is split into data segments of fixed intervals of samples
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called “windows”. Each window contains a small part of the sensor signal [3,32]. As illustrated by
Figure 10, each window is 50% “overlapped” to form the next window, preserving a proportion of the
previously sampled signal data overlapping the start of the next sample [3,27,35].
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3.4. The Proposed Deep Convolutional Neural Networks Structure

In this section, we describe the structure of the DCNN model, as illustrated in Figure 11.
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(a) Convolutional layer

The convolutional layer is responsible for the automatic feature extraction process [12]. We assume
that xa

i = [x1, . . . , xN] are inputs from the sensors, where a represents the axis of the sensors. Depending
on the number of convolutional layers, the feature map of the lth convolutional layer is computed
using Equation (2).
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zl, j
i = σ(

∑K

k=1
w j

kxl−1, j
i+k−1 + bl

j), (2)

where wl, j
k and bl

j are the weight and bias of the j-th term of the l-th layer. xl, j
i+k−1 is the input patch, l is

the index of the current layer, and σ is the activation function. K represents the size of the filter/kernel.
The activation function al

j = σ(zl, j
i ) introduces non-linearity to the CNN layer for detecting the

discriminative features of the raw sensing data.

(b) Pooling Layer

The pooling layer is responsible for the downsampling operation of the generated feature maps of
the convolutional layer [9,22]. We used max-pooling operation [5], which outputs the maximum value
from every patch of inputs (Equation (3)).

f l, j
i = maxs∈S

(
zl, j

i∗T+s

)
, (3)

where S is the pooling size, and its stride is denoted by T. zl, j
i∗T+s is the value of the i− th node in layer l.

(c) Fully connected layer

Following the convolutional and max-pooling operations, the feature maps produced by the last
convolutional and max-pooling layer are then flattened into a one-dimensional (1D) vector of features
f l = [ f1, . . . , fl], where l is the number of nodes in the last pooling layer.

This is then fed as input to the fully connected layer. The output of the pooling layer is illustrated
in Equation (5).

f l
i =

∑
j
wl−1

i j

(
σ( f l−1

i

)
+ bl−1

i ), (4)

where σ is the ReLU activation function, wl−1
i j is the weight connecting the i− th unit in layer l− 1 and

the j− th unit in layer l, and bl−1
i is the bias.

(d) Softmax layer

The output of the fully connected layer is fed to the softmax layer to produce the inferred class.
The softmax layer uses the softmax function to compute the probability distribution of each class. If the
activation function of j-th output neuron is:

al
j =

exL
J∑

K eZL
J

, (5)

then the probability distribution is computed using Equation (7):

P(c
∣∣∣ f ) = argmax

e f l−1
wLbL∑N

k=1 e f l−1wk
, (6)

where N is the total number of classes or the number of neurons in the output layer, and al
j is the

activation function of output node j.
For each CNN layer and fully connected layer, we applied a ReLU activation function [11,12,22],

as in Equation (4), applied pointwise to the outputs of their respective CNN layer.

ReLU = f (x) = max(0, x). (7)

(e) Regularization

Regularization allows the model to generalize to test or unseen data [22]. To prevent overfitting
due to large weights, which is a very common problem in deep neural networks, a dropout layer
was added to the network. Adding dropout means randomly and temporarily dropping some nodes,
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including all their incoming and outgoing connections [22,34]. Besides the dropout probability, we
also applied weight decay [17,22], as illustrated in Equation (9).

wi → ẃi = wi − αλwi − α
∂L
∂wi

. (8)

(f) Backpropagation

In each iteration, following the forward propagation (performed by Equations (2)–(7)), the loss
error is computed. The error is the difference between the predicted class and the ground truth using
the loss function L, by applying the Adam optimization [22,35]. The backpropagation iteration executes
until a stopping criterion, i.e., epoch has been satisfied, using the chain rule of derivative [16,17,22].

In the fully connected layer, the gradient descent is computed using the classical partial derivatives
and chain rules.

∂L
∂wl

i, j

= yl
i
∂L

∂xl+1
j

, (9)

where L is the categorical cross-entropy loss function that defines multiclass s logarithmic loss by
comparing the distributions of the predictions with those of the ground truths setting the probability
of the ground truth to [0, 1], yl

i = σ
(
xl

i

)
+ bl

i, and σ = Non− linear mapping f unction. wl
i, j is the weight

connecting node nl
i in the network layer l, the network node nl+1

i at layer l + 1, and the total number of
input nodes nl+1

i is xl+1
j .

L = −
∑T

i
ŷilog(so f tmax(yi)), (10)

where softmax is the function (Equation (7)) that outputs the probability distributions of each class.
In the 3 convolution layers of the model, the backpropagation is executed by computing the

gradients of the layer’s respective weights using Equation (12) based on the chain rule:

∂L
∂wa,b

=
∑N−M−1

i=1

∂L
∂xl

i, j

yl−1
i+a. (11)

yl−1
i+a = σ

(
xl−1

i+a

)
+ bl−1

i , and σ = Nonlinear mapping f unction of the convolution layer. ∂L
∂xl

i, j
=

∂L
∂xl

i, j
σl

(
xl

i, j

)
. This process is repeated until the maximum epoch (the stopping criteria) is reached.

4. Experiments and Evaluation Results

In this section, we present our experimental setup, including the analysis of the obtained results.

4.1. Dataset and Experimental Setup

The data used in this experiment was obtained from inertial and ambient sensors. We provided a
full description of the process involved in our data gathering from the smartphone’s built-in sensors in
Reference [3,37], where we used conventional machine learning algorithms and handcrafted statistical
feature extraction processes. In the experiments conducted in this article, we used two datasets to train
the developed models. We describe the datasets in the next sections.

4.1.1. The Inertial Dataset

Unlike most existing works that used the 3D accelerometer dataset [8,9,12,16,17], we collected data
from additional inertial sensors, namely gyroscope and magnetic sensors. The dataset was collected
using our mobile app that was developed for the data collection process [3]. Figure 12 shows the
distribution of classes, including the number of samples for each class. Three of the classes have a
significantly lower number of samples (“downstairs”, “riding in a car”, and “upstairs”). Details of the
data collection process and the mobile app that was developed are presented in Reference [3].
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4.1.2. The Inertial and Ambient Dataset

To augment the inertial sensing data in Section 4.1.1 with additional sensing signals, ambient
data was collected from two additional sources: audio and light sensors. Whilst the first dataset
consists of signal data from 3 inertial sensors, the second dataset consists of data from both inertial and
ambient sensors. This is done to allow us to investigate, if any, the importance of ambient sensors
for recognizing human activity contexts with imbalanced classes. Like the first dataset, the speaker,
loudspeaker, and light sensors were used in tandem with the inertial sensor to collect data representing
9 classes of activity contexts. The audio and the light sensor signals were further processed into the
representations of environmental noise and illumination as shown in Table 1.

Table 1. Experiment Parameters.

Hyperparameter (Ambient + Inertial) Inertial

Window size (size of input vectors) 32 32
Epochs from 25 25
Kernel size 1 × 3 − 1 × 5 1 × 3 − 1 × 5
Batch Size 32 32

Learning Rate 0.001 0.001
Decay 0.0001 0.0001

Dropout 0.5 0.5
Pooling Size 3 × 3 3 × 3

Activation Function ReLU (CNN layer), Softmax ReLU (CNN layer), Softmax
Input Channels 17 15

Fully connected layer (No. of nodes) 512 512

Besides, we divided each of the two datasets into five sub-datasets, with window lengths of 32, 64,
128, 256, 512, and 1024 samples (approximately 0.75, 1.5, 3, 6, 12, and 24 s, respectively). With the raw
inertial and ambient sensors, we performed 17 and 15 channel 1D convolutions. Table 1 shows our
experimental setup. Note that part of the pre-processing conducted standardization using Equation (1).

4.2. Evaluation Metrics

The metrics used in the context recognition experiments are precision, recall, F-Score, and confusion
matrix. These are the most widely used metrics to evaluate context recognition models [3,10,24].
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F-Score is an often-used metric in information retrieval and natural language processing
communities, and it is interpreted as the weighted average of precision (P) and recall (R). It is a
measure of the statistical accuracy of the models given as follows:

F-Score (R, P) = 2*RP/(R + P), (12)

where Recall (R) is the measure of the ability of a classification model to select instances of a certain
class from a dataset. It is the sensitivity of the model defined as:

R = TP/(TP + FN). (13)

TP is the number of true positive predictions and FN is the number of false-negative predictions.
Precision (P): is the measure of the accuracy if a specific class is predicted; defined as:

P = TP/(TP + FP). (14)

FP is the number of false-positive predictions.
Confusion matrix is a square matrix of order n number of classes used to present detailed results of

a multiclass classification problem. The confusion matrix provides a more detailed and fine-grained
analysis of both correctly and incorrectly classified classes of the supervised learning-based models.
A given element ci, j of the matrix is the number of instances belonging to class i, classified as class j.
Information about classification errors is also presented by the confusion matrix.

4.3. Experiments and Performance Evaluation

The experimental models were implemented using the Python 3 [38], Keras, and TensorFlow
libraries [39]. Two models were implemented. The first model is the baseline model. This model was
trained with the first dataset, i.e., th inertial sensing data. The second model was trained using inertial
and ambient sensing data. We performed extensive experiments to gain insights into various aspects
of deep convolutional neural network-based activity context recognition using ambient and inertial
sensors. To train the models, 70% of the dataset was used, while the remaining 30% was used for testing.
The experiments are broadly categorized into three types. The first set of experiments investigated
the impacts of various hyperparameters on the performance of the system. These experiments were
performed to determine the best/optimal values for the parameters to build the final recognition models.
In the second set of experiments, first, we investigated the recognition accuracy of the model using
inertial sensing data with imbalanced classes. In the third experiment, we evaluated the recognition
accuracy of the system when trained with both inertial and ambient sensing data. In the following
sections, we provide details of these experiments and present the results.

4.3.1. Hyperparameter Sensitivity Evaluation

Hyperparameter value selection is one of the most difficult parts of training an optimal learning
model [22]. It is both an optimization problem (whereby we are looking for the hyper-parameter
configuration that generates the lowest validation error) and a generalization problem (whereby
we are looking for the configuration of the parameters that reduce estimation bias after optimizing
validation performance) [22]. Therefore, the goal of this set of experiments is to carefully choose
optimal configurations of the hyperparameters to produce models with not only minimal test error but
also with the least bias. In this section, we evaluate the impacts of various sliding windows lengths,
decay values, batch sizes, learning rates, dropout probabilities, number of nodes in the fully connected
layer, and the number of CNN layers.

a. Impact of sliding window size on the recognition accuracy
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The segmentation of sensing data, especially time-series data, is a crucial pre-processing mechanism.
One of the key advantages of segmentation is that it allows us to provide hidden discriminative
information in the time series data [3,17,25,36]. The sliding window algorithm with a 50% overlap was
used as a data segmentation process. The details of the impact of sliding window sizes from 16 to 128
are summarized in Figure 13, showing the accuracy of the system. The results show that the initial
window size of 16 with a 50% overlap produced the highest error, followed by window lengths of 64
and 128 with increasing loss error. Window size 32 has the lowest loss error; thus, it is the optimal
value used in subsequent experiments.Sensors 2020, 20, x FOR PEER REVIEW 15 of 26 
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Figure 13. Recognition accuracy with different window sizes overlapping at 50%.

b. Influence of pooling size on the model’s accuracy

We evaluated the impacts of various pooling sizes on the recognition performance of the DCNN
model’s configuration. We used 3 convolutional layers, filter size 16, 32, and 64, one fully connected
layer with 1024 nodes, sub-sampling factors of 2, 3, and 4, and a final softmax layer for generating the
posterior probability of each class. The max-pooling values were increased from 1 to 10 where the
max-pooling size of 1 is equivalent to no max-polling process. Figure 14 shows the influence of the
various pooling sizes on the accuracy of the model. The best performance was obtained between 3 and
5 although the loss of the pool size of 4 is higher than that of pool size of 5. However, the loss increases
from a pool size of 6 to 9.
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c. Impact of learning rates on CNN context recognition accuracy
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The initial learning rate is often considered as one of the most important hyperparameters to
tune to obtain good model performance. Normally, the values of the learning rate are usually less
than 1. Most practitioners rely on a value of 0.01 for standard multi-layer neural networks. To choose
the optimal learning rate for our model, we evaluated the α =

(
10−6, 10−1

)
. Figure 15 shows the

performance of the model with various values of the learning rate. The performance improved from
10−6 with 39.9% accuracy reaching the peak at 10−3 with 98.8% accuracy. The accuracy started to
decline from a learning rate value of 0.01 finally back to 39.9% at learning rate 0.1.
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d. Impact of minibatch size

The minibatch size controls the accuracy of the estimate of the loss function. It impacts the training
process in terms of convergence time and the amount of overfitting [22,40,41]. Smaller batch sizes tend
to lead to faster computation, but this requires visiting more examples to compute loss error during the
training process. In this experiment, we varied the values of batch sizes from 8 to 512, with increasing
values of 8. Figure 16 shows the performance of each batch size. Initially, the performance improves
with increasing batch size. However, initially, batch size 8 tends to overfat, but, from a mini-batch size
of 16, the model generalizes, but the accuracy was decreased with the increasing number of batch sizes.
The best performance was achieved with a batch size of 32 and then dropped from a batch size of 64.
The larger minibatch size of course will make greater gradient steps, thus producing poor performance.
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e. Impact of decay on CNN context recognition accuracy
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Another important regularization mechanism to eliminate overfitting and improve generalization
is weight decay, which is also known as L2 regularization [22]. The learning rate determines how much
weight updating steps influence the current value of weights. Weight decay is used to cause the weight
to decay exponentially to zero. To ascertain the optimal value of the decay for our DCNN model, we
tuned the decay values between 10−6 to 10−1. Figure 17 illustrates the impact of each decay value on
the performance of the model. The accuracy generally increases from the value of 0.1 and then does
not change from 0.0001. The significance of the result is that a further reduction in the decay value
does not improve the accuracy of the model. This means that a very small value of decay is required
for the model to reach its best recognition performance. Figure 18a,b show the worst performance at
0.1, which demonstrated that, at high values of decay, the model tends to be biased.
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f. Impact of dropout on the CNN context recognition accuracy

One of the key regularization techniques is dropout as explained in Section 3. The dropout
represents the probability of retaining a hidden node in the network. The decision on which nodes to
drop is random and node dropping is done independently for each hidden node. Therefore, using
the appropriate values for the dropout parameter helps the model to better learn redundant patterns
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in the time series input features. In the conducted experiment, we varied the values of the dropout
parameter (p), while keeping the values of other parameters fixed, i.e., the number of hidden nodes
and other parameters were kept constant, just as in other experiments, but only the values of dropout
changes. Figure 19 shows the test and training accuracies. Note that the value ranges between 0.1
and 1.0. The best probability is 0.5 reaching 98.8% test accuracy. However, the values of p remain the
same for both 0.9 and 1.0 but vary for other values of p. This result shows that, by randomly dropping
connections in the hidden layers and applying it in the top fully connected layer, the generalization
errors can be reduced, thereby preventing overfitting.
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g. Influence of the number of CNN layers context recognition accuracy

To determine the number of CNN layers required for the DCNN, we conducted experiments
using the same values for other parameters as explained in Section b above, where we varied the values
of l from 1 to 4. Figure 20 illustrates the improvement in performance from l = 1 to 3, and the accuracy
begins to decline from l = 4. This result is expected since increasing the number of layers generally
is expected to produce better performance. However, in the future, we would like to evaluate the
computation cost of increasing the number of CNN layers running on real mobile devices.Sensors 2020, 20, x FOR PEER REVIEW 19 of 26 
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Another experiment was performed to determine the optimal number of nodes in the fully
connected layer. To determine the best value, we varied the values from 32 to 1024. As shown
in Figure 21, the performance initially improves from 32 to 64 and declines before peaking at 512.
This indicates that we do not need to use many nodes in the fully connected layer to achieve
better performance.
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4.4. The Proposed System’s Performance Evaluation

Having analyzed the impact of various hyperparameters on the accuracy of the proposed model,
we now investigated the influence of combining data from ambient sensing with inertial sensors. First,
we analyzed the results obtained using only inertial sensing data. Secondly, we compared results from
inertial only sensing data and those of inertial and ambient sensing data combined. Table 1 illustrates
the values of hyperparameters used based on the results of Section 4.3.1.

a. Recognition accuracy using the baseline model using Inertial sensing data

The goal of the experiments in this section was to evaluate the performance of the model when
trained with data signals from inertial sensors. The inertial sensors, as explained in Section 4.1, include
motion and position sensors, namely accelerometer, gyroscope, and magnetometer. We set the values
of our hyperparameters to those optimal values obtained in the hyperparameter sensitivity evaluation,
as illustrated in Table 1.

Table 2 represents the confusion matrix of the results obtained showing the class-wise recognition
accuracy of the model of each class. Note the performance of those classes with lower accuracy as
measured by FScore. As expected, some of the classes have poor recognition performance. The result
shows that climbing, followed by climbing downstairs performed worse than any other class reaching
a poor value of 0.56 and 0.67, respectively. Compared to Running and Jogging classes shared the
highest FScore value of 0.98. This result aligns with our initial hypothesis, as reported in literature,
that recognition models generally tend to have poor recognition performance when dealing with
imbalanced classes and tend to perform well with classes that have a majority number of samples.
Besides, Figure 22a,b represents the overall accuracy of the model. The overall performance of the
model based on inertial sensing reached up to 93.6% accuracy.
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Table 2. Confusion Matrix for Inertial Sensing.

Predicted Class

Actual
Class

1 2 3 4 5 6 7 8 9 FScore Label

1 46 0 1 0 0 0 2 0 28 0.67 Downstairs

2 0 70 0 0 0 1 1 2 2 0.70 Riding in car

3 0 0 491 0 3 0 0 0 2 0.89 Standing

4 0 0 0 437 0 6 2 1 4 0.98 Jogging

5 0 0 5 0 180 0 0 1 1 0.77 Lying

6 1 0 1 6 0 1397 26 1 12 0.98 Running

7 2 0 1 3 0 4 362 6 19 0.90 Walking

8 7 0 6 0 0 9 6 56 40 0.56 Upstairs

9 4 0 4 0 2 4 7 9 1146 0.94 SittingSensors 2020, 20, x FOR PEER REVIEW 21 of 26 
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b. Recognition Accuracy using both inertial and ambient sensing data

A key hypothesis of this article was that combining sensing data from both inertial and ambient
sensors would produce a better performance of the CNN model. Having evaluated its performance
with sensing data from inertial sensors, this section evaluates its performance with both sets of data.
We also compared the results with the obtained in a of Section 4.4. The results in Table 3 shows the
confusion matrix. This shows the performance of the model in terms of recognition accuracy for each
activity class. The accuracy of the model reaches up to 98.9% as can be seen in Figure 21. This shows a
marginal increase of 5.3 % in recognition accuracy compared to when we used only inertial sensing
signals. This improvement is further elaborated in Figure 23a,b, where we compared FScore for each
of the activity context classes when using both datasets. The results indicate that models with inertial
sensing struggled to recognize certain activity albeit considering good FScore value, for example, in
climbing upstairs and sitting activity contexts. However, the model with both signals produced a far
superior performance. Table 2 is the confusion matrix showing the class-wise performance of the
model of the new model. As can be seen, the recognition accuracy of those classes in the previous
experiment significantly improved. In a of Section 4.4, downstairs and upstairs have 0.67 and 0.56,
respectively. But in the current experiment, the new model achieved far better performance recognizing
these activity contexts with 0.99 FScore value. This improvement is elaborated in Figure 23. For all
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classes, the model trained with both inertial and ambient data consistently performed better than the
model trained with only inertial data.

Table 3. Confusion Matrix for Inertial + Ambient Sensing.

Predicted Class

Actual
Class

1 2 3 4 5 6 7 8 9 FScore Label

1 629 0 2 1 0 0 0 1 2 0.99 Downstairs

2 0 304 0 0 0 1 0 0 0 1.00 Riding in car

3 0 0 821 1 3 0 1 0 1 0.99 Standing

4 0 0 0 2561 0 0 0 0 0 1.00 Jogging

5 0 0 4 0 136 0 0 0 0 0.97 Lying

6 0 0 0 3 0 1892 10 1 3 0.99 Running

7 1 0 1 0 0 1 2697 0 4 1.00 Walking

8 1 0 0 0 0 1 4 898 4 0.99 Upstairs

9 1 0 0 0 0 2 3 3 5725 1.00 Sitting
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5. Discussion and Conclusions

Activity context recognition using multichannel, time series inertial sensors have been extensively
studied [42]. In this article, we investigated the possibility of using ambient sensing data and deep
convolutional neural networks for activity context recognition using a dataset with imbalanced classes.
The inertial sensor signals were collected from the gyroscope, accelerometer, and magnetometer.
The ambient sensor signals were collected from audio and light sensors, representing environment
noise level and illumination, respectively. In our previous work [3,37], we used classical machine
learning algorithms with handcrafted features.

In the current work, our goal was to demonstrate that sensing data representing environment
noise level and illumination when combined with inertial sensor data to train DCNN models can
improve the model’s recognition accuracy. We used the CNN to automatically extract features from the
raw inertial and ambient sensing signals. Two DCNN models were implemented and trained. The first
model implements the baseline approach, whereas the second model implements the new approach.
To evaluate the performance of the proposed models, experiments were designed to compare results
obtained from the baseline model and the proposed model trained using inertial and ambient sensing
data for multi-class activity context recognition.
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In the preliminary experiments, we performed evaluations to select optimal window lengths in
the segmentation process using the sliding window with an overlapping algorithm. This experiment
informed the decision to use a window length of 32 in the subsequent experiments since this value
produced the best recognition accuracy. We then tuned the model’s hyperparameters to determine
their optimal values [41]. Hyperparameters, such as learning rates, batch size, decay, dropout, number
of CNNs, and the fully connected layers and pool size, as well as the number of nodes in the fully
connected layers, were tuned through extensive experiments. Table 1 summarizes the optimal values
obtained for these parameters.

The next set of experiments was performed to evaluate the performance of the baseline model.
This is where we trained the networks with inertial sensor signals. As illustrated in Figure 12, three
classes, namely “Downstairs”, “Riding in a car”, and “Upstairs”, contained fewer samples than other
classes. As expected, the classes with fewer samples generated poor recognition performance. The result
shows that climbing upstairs (upstairs), followed by climbing downstairs, performed worse than any other
class reaching a poor value of 0.56 and 0.67, respectively. We then used an additional dataset with
ambient sensing signals representing environment noise level and illumination from audio and light
sensors, respectively. Experimental results confirmed that using these additional signals to augment
inertial sensor datasets produced better recognition performance than the baseline model trained with
inertial sensor data, with improved global accuracy of 5.3 percent. The results also confirmed significant
improvement in the recognition performance of those classes with the least number of samples. Besides,
we used various techniques, such as regularization techniques, e.g., L2 regularization (aka weight decay)
and dropout, to prevent overfitting of the models. The developed DCNN model shows its capability
to automatically extract features from the raw sensing data with better performance compared to the
laborious and time-consuming handcrafted features and classical machine learning algorithms used in
Reference [3]. The developed DCNN model demonstrates the capability to capture local dependencies
of the activity context signals using the correlation of both the inertial and ambient data signals. It also
demonstrates that combining signals from ambient sensors produces better recognition performance
than using signals from only inertial sensors. In addition, our experimental results demonstrate the
influence of various hyperparameters on the eventual DCNN models.

There are limited existing works that have used noise level and illumination to augment inertial
sensing data to improve the performance of activity context recognition. One recent work that used
inertial and ambient sensing data is the one by Cruciani et al. [13]. The authors evaluated their method
using inertial and ambient use cases but did not combine sensing signals of both sensors. For inertial
sensing, they achieved 91.98% compared to the work presented in this article, achieved 93.6% accuracy,
whereas combination inertial and ambient sensing achieved 98.9% accuracy. Another recent work
is the one by Schrader et al. [32]. They used an accelerometer as an inertial sensor combined with a
camera and body pressure measurement system. They evaluated the performance of the systems for
locomotion and hand gesture activities, achieving accuracies of 0.9 and 0.87, respectively.

In conclusion, in this article, we have demonstrated that with inertial and ambient sensing data,
namely environment noise level and illumination, performance of recognition models trained with
imbalanced classes can be improved. Experimental evaluations of the implemented models showed
performance improvements in accuracy by 5.3% when compared to the baseline model. In addition,
extensive parameter tuning experiments were performed to inform the selection of optimal values to
build the DCNN models. These results provide valuable insights into the sensitivity of hyperparameters.
This article also demonstrates that the DCNN can perform better recognition accuracy with raw inertial
and ambient signals without performing a handcrafted feature extraction process than with manually
extracted features.

Lastly, one of the key benefits of using ambient sensing is that there is a limited connection to
the users in the environment, thus preserving the privacy of individuals [28]. Such independence
makes it a better approach for monitoring elderly people’s activities and for other applications, such as
intelligent recommendation services. However, one major disadvantage of the current activity context
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model is that it classifies simple classes; it only recognizes a single context in terms of the activity
of the user, i.e., it cannot combine certain contexts, such as location, to predict much semantically
meaningful contexts. In the future, we plan to update the system to integrate a semantic model able
to combine activity contexts with other ambient contexts, as well as location information and user
preferences, to provide much higher level of contextual information. Finally, we will be investigating
the computational cost of the model on resource-constrained devices considering the architecture of
the model and the number of sensors involved when performing real-time activity context recognition.
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