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ABSTRACT 24 

Antimicrobial photodynamic treatment (APDT) has emerged as an effective 25 

therapy against pathogenic fungi with both acquired and intrinsic resistance to commonly 26 

used antifungal agents. Success of APDT depends on the availability of effective 27 

photosensitizers capable of acting on different fungal structures and species. Among the 28 

phenothiazinium dyes tested as photoantifungals, new methylene blue N (NMBN) and 29 

the novel pentacyclic compound S137 are the most efficient. In the present study we 30 

compared the effects of APDT with NMBN and S137 on the survival of Candida albicans 31 

and employed a set of fluorescent probes (propidium iodide, FUN-1, JC-1, DHR-123 and 32 

DHE) together with confocal microscopy and flow cytometry to evaluate the effects of 33 

these two chemically diverse photosensitizers on cell membrane permeability, 34 

metabolism and redox status, and mitochondrial activity. Taken together, our results 35 

indicate that, due to chemical features resulting in different lipophilicity, NMBN and 36 

S137 localize to distinct subcellular structures and hence inactivate C. albicans cells via 37 

different mechanisms. S137 localizes mostly to the cell membrane and, upon light 38 

exposure, photo-oxidizes membrane lipids. NMBN readily localizes to mitochondria and 39 

exerts its photodynamic effects there, which was observed to be a less effective way to 40 

achieve cell death at lower light fluences. 41 

 42 

Keywords: antimicrobial photodynamic treatment, fungal photodynamic inactivation, 43 

phenothiazine photosensitizers, fluorescent probes, reactive oxygen species  44 

  45 
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1. Introduction 46 

Several procedures in modern medicine, such as solid organ and hematopoietic 47 

stem cell transplantations, surgeries, autoimmune disease therapies, and uncontrolled 48 

HIV infection make millions of patients vulnerable to lethal fungal diseases (Köhler et al. 49 

2015; Limper et al. 2017). Candida albicans, usually a harmless commensal fungus, is 50 

also an opportunistic pathogen for immunocompromised people and the major human 51 

fungal pathogen in the USA and several other countries (Nishimoto et al. 2020). Today, 52 

fungal infections are among the most difficult diseases to treat in humans (Köhler et al. 53 

2015). One of the factors that makes treatment so difficult is the rapid acquisition of 54 

resistance to all of the only four major classes of antifungal agents clinically available: 55 

azoles, polyenes, echinocandins, and a nucleotide analog (Chang et al. 2019; Perlin et al. 56 

2017; Shor and Perlin 2015). Additionally, many species of Candida, such as Candida 57 

auris and Candida glabrata are intrinsically resistant to some antifungal classes (Chang 58 

et al. 2019; Nishimoto et al. 2020; Rhodes and Fisher 2019). Multidrug resistance can 59 

eliminate treatment options completely, which has a serious effect on patient survival 60 

(Perlin et al. 2017). 61 

The emergence of resistance to currently used antifungals has promoted the 62 

development of novel antifungal approaches, such as the antimicrobial photodynamic 63 

treatment (APDT). The basic principle behind photodynamic antimicrobial inactivation 64 

is the combination three factors: (1) visible or near-infrared light, (2) molecular oxygen, 65 

and (3) a photosensitizer (PS). Light exposure excites the photosensitizer to a singlet state. 66 

Then, intersystem crossing results in a photosensitizer in an excited triplet state which 67 

can interact with molecular oxygen either via electron or energy transfer. Electron 68 

transfer, also called Type I reactions, usually results in the formation of radicals such as 69 

the superoxide radical anion. Conversely, energy transfer or Type II reaction results in 70 
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the formation of singlet oxygen. In either case, reactive oxygen species (ROS) such as 71 

singlet oxygen, superoxide radical anions, and hydroxyl radicals have a broad spectrum 72 

of activity and can damage several microbial targets such asas among the various proteins, 73 

lipids, and nucleic acids encountered, therefore making selection of resistant strains 74 

unlikely (Brancini et al. 2016; Wainwright et al. 2017). Among photoantimicrobials 75 

evaluated as antifungals, the phenothiazinium dyes methylene blue and toluidine blue are 76 

the most commonly used, mainly due to their low toxicity and their long-established use 77 

for other clinical applications (Rodrigues et al. 2013; Wainwright et al. 2017). 78 

Phenothiazinium derivatives with improved photoantimicrobial activity against yeasts 79 

and filamentous fungi such as new methylene blue N (NMBN) and the novel pentacyclic 80 

compound S137, have been identified (Dai et al. 2011; Rodrigues et al. 2013). APDT 81 

with NMBN and S137 has been shown to be highly effective against fungi of the genera 82 

Aspergillus (de Menezes et al. 2014), Candida (Dai et al. 2011; Rodrigues et al. 2013), 83 

Colletotrichum (de Menezes et al. 2014), Neoscytalidium (Tonani et al. 2018), and 84 

Trichophyton (Rodrigues et al. 2012).  85 

The most important factor determining the outcome of APDT is how a 86 

photosensitizer interacts with cells of the target microorganism, with its subcellular 87 

localization being of particular interest (Gonzales et al. 2017; de Menezes et al. 2014; de 88 

Menezes et al. 2016). This is because ROS have a short half-lif e and therefore exert their 89 

action in the vicinity of their production site (Castano et al. 2004). Cellular uptake and 90 

intracellular localization is determined by chemical and structural features of the PS (e.g. 91 

molecular mass, lipophilicity, charge distribution, number of H-bond donors and 92 

acceptors, etc.), the concentration of the PS, the incubation time, and the phenotypic 93 

characteristics of the target cells (Castano et al. 2004). PS characteristics such as charge 94 
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type and distribution as well as lipophilicity may be controlled by informed synthesis 95 

(Wainwright and Giddens 2003). 96 

The use of confocal laser scanning fluorescence microscopy has made the 97 

determination of intracellular localization of PS much easier. Colocalization of 98 

subcellular organelle-specific fluorescent probes with differing fluorescence emission 99 

peak to that of the PS can be used to more closely identify the site of localization and 100 

these probes can also be used to identify sites of damage after illumination (Castano et al. 101 

2004). 102 

The photosensitizers NMBN and S137 are chemically and structurally distinct, 103 

and consequentially present different outcomes when used in APDT. For instance, use of 104 

S137 usually results in cell damage even in the dark (dark toxicity) and its microbial 105 

photoinactivation tends to be higher at lower light fluences when compared to NMBN. 106 

As previously mentioned, PS subcellular localization can greatly influence the results of 107 

APDT. Therefore, here we compared NMBN and S137 by employing a set of fluorescent 108 

probes (propidium iodide, FUN-1, JC-1, DHR-123, and DHE) together with confocal 109 

microscopy and flow cytometry in order to evaluate potential PS subcellular localization 110 

as well as the mechanism behind APDT with these PS. 111 

 112 

2. Materials and Methods 113 

2.1. C. albicans strain and growth conditions 114 

C. albicans strain ATCC 64548 was obtained from the American Type Culture 115 

Collection (ATCC) (Manassas, USA). Cells were grown on Sabouraud Dextrose Agar 116 

(SDA) medium (BD Difco, USA) in the dark, at 35 °C, for 48 h. Cells from isolated 117 

colonies were transferred to 150-mL Erlenmeyer flasks containing 50 mL of YPD 118 

medium [1% Yeast Extract (BD Difco, Sparks, USA), 2% Peptone (BD Difco) and 2% 119 
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Dextrose (Vetec, Duque de Caxias, Brazil)]. Cultures were incubated in the dark at 35 °C 120 

for 6 h under shaking (100 rpm). Cells were then washed in phosphate-buffered saline 121 

(PBS, pH 7.4) (8,000 × g, 5 min) and cell concentration was adjusted by counting in a 122 

hemocytometer and performing the appropriate dilutions in PBS. 123 

 124 

2.2. Photosensitizers 125 

New Methylene Blue N zinc chloride double salt (NMBN) was purchased from 126 

Sigma-Aldrich (catalog number 202096; St. Louis, USA) (Fig. 1A). The pentacyclic 127 

phenothiazinium photosensitizer S137 was synthesized as previously described 128 

(Wainwright et al. 2011) (Fig. 1A). Stock solutions of the PS were prepared in water at a 129 

concentration (500 µM) two hundred-fold greater than the concentration used in the 130 

�V�W�X�G�\�����7�K�H���V�R�O�X�W�L�R�Q�V���Z�H�U�H���V�W�R�U�H�G���L�Q���W�K�H���G�D�U�N���D�W���í�������ƒ�&���I�R�U���X�S���W�R�������Z�H�H�N�V�����'�L�O�X�W�L�R�Q�V���Z�H�U�H��131 

prepared in PBS. Absorption spectra of the PS were obtained with a UltrospecTM 2100 132 

Pro UV-visible spectrophotometer (GE Healthcare) in water (Fig. 1B). 133 

 134 

 135 

Fig. 1. Chemical structure (A) and absorption spectra (B) of the photosensitizers NMBN and S137 136 

 137 

2.3. Light exposure 138 
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Light was provided by an array of 96 light-emitting diodes (LED) with peak 139 

emission at 631 ± 20 nm and an irradiance of 13.89 mW cm-2. Irradiance and emission 140 

spectrum (Fig. 2) were obtained with a USB spectroradiometer (Ocean Optics, Dunedin, 141 

USA) as previously described (Rodrigues et al. 2012). 142 

 143 

 144 

Fig. 1. Irradiance spectrum of the red light source used in this study 145 

 146 

2.4. Photodynamic treatment 147 

Five mL of the fungal cell suspension and 5 mL of the PS (NMBN or S137) were 148 

added to 15 mL tubes (TPP, Switzerland). Final concentrations of cells and PS in the 149 

mixture were 2 × 107 cells mL-1 and 2.5 µM of NMBN or S137. Tubes were kept in the 150 

dark for 30 min at 28 °C and light exposure was performed under agitation in a 60-mm 151 

Petri dish. The fluences used were 3, 9, and 14 J cm-2 (obtained after 3.42, 10.28, and 152 

17.13 min, respectively). Relative cell survival after APDT was evaluated for each 153 

fluence used by counting colony-forming units (CFU). To do this, the initial suspensions 154 

were serially diluted tenfold in PBS to give dilutions of 10-1 to 10-3. Fifty microliters were 155 

then spread on the surface of 5 mL of SDA medium in Petri dishes (60 × 15 mm). Three 156 
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replicate-dishes were prepared for each light treatment. The dishes were incubated in the 157 

dark at 35 °C. After 24 h, CFU were counted at 8× magnification daily for up to 4 days. 158 

A dark control group was obtained by treating cells with PS but never exposing them to 159 

light. A light control group was prepared by exposing cells alone (in the absence of PS) 160 

to light fluences of 3, 9, and 14 J cm-2. Absolute controls consisted of cells unexposed to 161 

either light or PS. Relative survival was calculated as the ratio of CFU of fungal cells 162 

treated only with light (light effect), only with PS (toxicity in the dark), and light and PS 163 

(APDT) to CFU treated with neither light nor PS. Three independent experiments were 164 

performed. 165 

 166 

2.5. Propidium iodide (PI) staining and visualization 167 

After APDT with NMBN or S137, cell suspensions were washed with PBS to 168 

remove excess PS. Cells were then suspended in a 1.5 µM PI (Sigma-Aldrich, catalog 169 

number P4170) solution prepared in PBS immediately before being used. Flow cytometry 170 

was performed in a BD FACSCanto I equipment and BD FACSDiva software. In each 171 

experiment, ten thousand events were monitored with excitation at 488 nm and detection 172 

between 564 and 606 nm. Cells not treated with PS and cells treated with 70% ethanol 173 

were used as negative and positive controls, respectively. Three independent experiments 174 

were performed. 175 

Confocal fluorescence microscopy was used to visualize PI entry into cells. After 176 

APDT and PI staining, cells were centrifuged (10,000 × g, 2 min) and the supernatant was 177 

discarded. Three microliters of 2% Ultra Pure low-melting-point agarose (Invitrogen) and 178 

3 µL of Fluoromount (Sigma) were added to 3 µL of cell pellet and the mixture was used 179 

to mount the slide. Confocal microscopy was performed on a Leica DMI 6000 CS, 180 

scanner TCS SP8 with a 63× objective lens (f/1.4) and using oil immersion. For PI 181 
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visualization, excitation was performed with an Optically Pumped Semiconductor Laser 182 

at 488 nm and detection at 597-637 nm. 183 

 184 

2.6. FUN-1 staining and visualization 185 

After APDT with NMBN or S137, cells were washed with 10 mM HEPES pH 7.2 186 

(Sigma-Aldrich) supplemented with 2% glucose (hereinafter referred to as GH buffer) to 187 

remove excess PS. Cells were then suspended in a 0.5 µM FUN-1 solution (Molecular 188 

Probes, Life Technologies, Eugene, OR, USA) prepared in GH buffer. Cells were 189 

incubated in the dark under shaking (300 rpm) at 30 °C for 30 min. The 190 

spectrofluorimetric analysis was performed in black 96-well plates with a Synergy 2 191 

equipment (BioTek®, Winooski, USA). Excitation was set to 475-495 nm and detection 192 

to 518-538 nm (green fluorescence) and 580-600 nm (red fluorescence). Three 193 

independent experiments were performed. 194 

For confocal microscopy, FUN-1-stained cells were centrifuged (10,000 × g, 2 195 

min) and slides were mounted and visualized as described above for PI. Laser excitation 196 

was set to 488 nm and detection to 530-560 nm (green fluorescence) and 604-636 nm (red 197 

fluorescence). 198 

 199 

2.7. JC-1 staining and visualization 200 

After APDT with NMBN and S137, cells were washed (10,000 × g, 2 min) with 201 

GH buffer to remove excess PS. Cells were then suspended in a 5 µM JC-1 (Molecular 202 

Probes, Life Technologies, USA) solution prepared in GH buffer and incubated in the 203 

dark under shaking (300 rpm) at 35 °C for 30 min. Then, cells were washed twice with 204 

GH buffer and flow cytometry was performed as described previously. A total of 10,000 205 

events were monitored. Excitation was set to 488 nm and detection to 515-545 nm (green 206 
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fluorescence) and 564-606 nm (red fluorescence). Three independent experiments were 207 

performed. 208 

 Confocal microscopy was performed as described previously. Laser excitation 209 

was set to 488 nm and detection to 505-550 nm (green fluorescence) and 575-630 (red 210 

fluorescence). 211 

 212 

2.8. Dihydrorhodamine-123 (DHR-123) staining and visualization 213 

After APDT with NMBN or S137, cells were washed (10,000 × g, 2 min) with 214 

GH buffer to remove excess PS. Cells were then suspended in a 5 µg mL-1 DHR-123 215 

solution (Sigma-Aldrich, catalog number D1054) prepared in GH buffer and incubated in 216 

the dark at 25 °C for 120 min. Flow cytometry was performed as described previously. A 217 

total of 10,000 events were monitored. Excitation was set to 488 nm and detection to 515-218 

545 nm. Three independent experiments were performed. 219 

 Confocal microscopy was performed as described previously. Laser excitation 220 

was set to 488 nm and detection to 501-570 nm. 221 

 222 

2.9. Dihydroethidium (DHE) staining and visualization 223 

After APDT with NMBN or S137, cells were washed (10,000 × g, 2 min) with 224 

GH buffer to remove excess PS. Cells were then suspended in a 20 µM DHE (Sigma-225 

Aldrich, catalog number D7008) solution prepared in GH buffer and incubated in the dark 226 

at 25 °C for 45 min. Flow cytometry was performed in a Guava EasyCyte 8HT (Merck 227 

Millipore, Darmstadt, Germany). In each experiment, a total of 30,000 events were 228 

analyzed using the red filter. Three independent experiments were performed. 229 

 Confocal microscopy was performed as described previously. Laser excitation 230 

was set to 552 nm and detection to 556-624 nm. 231 
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 232 

2.10. PS lipophilicity prediction 233 

Lipophilicity of NMBN and S137 (as expressed by logD as a function of pH) was 234 

calculated with the MarvinJS logD Predictor software (ChemAxon). PS structures used 235 

in the predictions are those depicted in Fig. 1. 236 

 237 

2.11. Statistical analysis 238 

�'�L�I�I�H�U�H�Q�F�H�V���E�H�W�Z�H�H�Q���P�H�D�Q�V���Z�H�U�H���D�Q�D�O�\�]�H�G���Y�L�D���$�1�2�9�$���Z�L�W�K���7�X�N�H�\�¶�V���S�R�V�W-test. 239 

Significance threshold was set to P < 0.05. Statistical analyses were performed with SAS® 240 

9.2 software (SAS Analytics, USA). 241 

 242 

3. Results 243 

3.1. C. albicans survival after APDT 244 

The PS NMBN and S137 were compared in terms of cell mortality after APDT 245 

with fluences of 3, 9, and 14 J cm-2. Importantly, treatment with PS alone or light exposure 246 

alone did not result in cell mortality (Fig. 3). At 3 J cm-2, S137 was a much more effective 247 

PS, reducing cell viability by 99.98% (3.70 log10) whereas NMBN achieved only 85.2% 248 

(0.83 log10) under the same conditions (Fig. 3). Increasing fluence to 9 and to 14 J cm-2 249 

allowed NMBN and S137 to achieve similar cell mortality, which was above four orders 250 

of magnitude for both PS (Fig. 3). 251 

 252 
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 253 

Fig. 3. Relative survival of Candida albicans after antimicrobial photodynamic treatment 254 
with NMBN and S137 as a function of light fluence. Control groups were either treated 255 
with light alone (-PS) or photosensitizer alone (fluence = 0 J cm-2). Error bars are the 256 
standard deviation from three independent experiments. 257 

 258 

3.2. Propidium iodide staining and visualization 259 

Staining with PI was used to study fungal membrane disturbance caused by the 260 

PS both in the dark and after APDT. In the dark, NMBN caused little to no PI labeling as 261 

evaluated by flow cytometry whereas S137 caused about 80% of cells to become PI-262 

positive (Fig. 4). The percentage of PI-positive cells achieved 100% for S137 already at 263 

the lowest fluence used (3 J cm-2) whereas this number was only about 40% for NMBN 264 

even at the highest fluence (14 J cm-2) (Fig. 4). 265 
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 266 

Fig. 4. Candida albicans Propidium iodide staining as evaluated by flow cytometry. Cells 267 
were treated with either NMBN or S137 and control groups received neither light nor 268 
photosensitizer (-L -PS). Different lower case letters indicate that means are statistically 269 
different. Error bars are the standard deviation from three independent experiments. 270 

 271 

 Although adding S137 resulted in PI permeability already in the dark in flow 272 

cytometry experiments, confocal fluorescence microscopy could not distinguish between 273 

NMBN and S137 in the dark (Fig. 5). At 14 J cm-2, both NMBN- and S137-treated cells 274 

were stained (Fig. 5). 275 

 276 

 277 

Fig. 5. Candida albicans propidium iodide staining as evaluated by confocal fluorescence 278 
microscopy. Control cells were not treated with either photosensitizer or light. NMBN 279 
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and S137 were used either in the dark or under light at a fluence of 14 J cm-2. Images are 280 
representative of three independent experiments. 281 

 282 

3.3. FUN-1 staining and visualization 283 

FUN-1 is a dye that diffuses inside fungal cells and stains them green irrespective 284 

of viability. However, in viable cells, further processing of the dye results in the 285 

appearance of red fluorescent spots accompanied by reduced green fluorescence. 286 

Therefore, the red/green fluorescence ratio is used as a marker of cell viability in flow 287 

cytometry experiments. Cells treated with either NMBN or S137 in the dark were not 288 

significantly different from untreated cells (Fig. 6). After APDT, the red/green 289 

fluorescence ratio decreased proportionally with increasing fluences and both PS were 290 

similar in this regard, although the majority of differences were not statistically 291 

significant (Fig. 6). 292 

 293 

 294 

Fig. 6. Candida albicans FUN-1 staining as evaluated by spectrofluorimetry. Cells were 295 
treated with either NMBN or S137 and control groups received neither light nor 296 
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photosensitizer (-L -PS). Different lower case letters indicate that means are statistically 297 
different. Error bars are the standard deviation from three independent experiments. 298 

 299 

 As expected, confocal fluorescence microscopy showed the accumulation of 300 

vacuolar-like red fluorescence in untreated cells and those that were treated with either 301 

PS in the dark, indicating normal viability (Fig. S1). After APDT with 14 J cm-2, these 302 

red spots were lost and cells stained yellow (Fig. S1). 303 

 304 

3.4. JC-1 staining and visualization 305 

JC-1 is a dye that accumulates in mitochondria in a membrane potential-dependent 306 

manner. This accumulation is indicated by a red-to-green fluorescence shift. The loss of 307 

mitochondrial membrane potential (depolarization) reduces the red/green fluorescence 308 

ratio. Treating cells with S137 in the dark resulted in no mitochondria depolarization. 309 

However, NMBN caused considerable loss of membrane potential in the dark (Fig. 7). 310 

 311 

Fig. 7. Candida albicans JC-1 staining as evaluated by flow cytometry. Cells were treated 312 
with either NMBN or S137 and control groups received neither light nor photosensitizer 313 
(-L -PS). Different lower case letters indicate that means are statistically different. Error 314 
bars are the standard deviation from three independent experiments 315 
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 316 

 Mitochondrial membrane potential decreased upon light exposure for both PS, 317 

even though S137 required a fluence of 9 J cm-2 to achieve a statistically significant 318 

difference from the control (Fig. 7). 319 

 Although flow cytometry experiments showed that NMBN can reduce 320 

mitochondrial membrane potential already in the dark, fluorescence microscopy did not 321 

indicate the same result as both NMBN and S137, when used in the dark, were very 322 

similar to untreated cells (Fig. S2). Upon light exposure (14 J cm-2), the expected decrease 323 

in red/green fluorescence ratio was observed for both PS. However, loss of red 324 

fluorescence was higher for NMBN when compared to S137 (Fig. S2), which reflects 325 

flow cytometry experimental data (Fig. 7). 326 

 327 

3.5. Dihydrorhodamine-123 (DHR-123) staining and visualization 328 

DHR-123 is an uncharged and membrane-permeant compound that, upon 329 

oxidation, is converted to the mitochondrial dye rhodamine-123, emitting green 330 

fluorescence. Treating cells with either PS in the dark did not result in a significant 331 

increase in green fluorescence. Light exposure at a fluence of 3 J cm-2 revealed that S137 332 

generated more DHR-123-oxidizing species than did NMBN (Fig. 8), which was also 333 

observed for the fluence of 9 J cm-2. At 14 J cm-2, both PS leveled off and produced about 334 

the same amount of oxidizing species (Fig. 8). 335 

 336 
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 337 

Fig. 8. Candida albicans Dihydrorhodamine-123 staining as evaluated by flow 338 
cytometry. Candida albicans cells were treated with either NMBN or S137 and control 339 
groups received neither light nor photosensitizer (-L -PS). Different lower case letters 340 
indicate that means are statistically different. Error bars are the standard deviation from 341 
three independent experiments. 342 

 343 

 Fluorescence microscopy, as expected, showed no green fluorescence in untreated 344 

cells and cells treated with either PS (Fig. S3). Strong green fluorescent emission was 345 

observed at 14 J cm-2, which was similar for NMBN and S137 (Fig. S3). 346 

 347 

3.6. Dihydroethidium (DHE) staining and visualization 348 

DHE is widely regarded as an indicator of superoxide anion radical (O2
�”�í) 349 

production because DHE oxidation by O2
�”�í gives 2-hydroxyethidium, which emits red 350 

fluorescence. However, unspecific oxidation of DHE by other ROS results in ethidium, 351 

which also emits red fluorescence and is hard to distinguish from 2-hydroxyethidium. 352 

Therefore, we employed DHE as a general indicator of ROS and not specifically of O2
�”�í. 353 

Neither NMBN nor S137 leads to ROS production in the dark when compared to 354 
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untreated cells (Fig. 9). ROS production increased upon light exposure, although we 355 

observed no difference between NMBN and S137 (Fig. 9). 356 

 357 

 358 

Fig. 9. Candida albicans dihydroethidium staining as evaluated by flow cytometry. Cells 359 
were treated with either NMBN or S137 and control groups received neither light nor 360 
photosensitizer (-L -PS). Different lower case letters indicate that means are statistically 361 
different. Error bars are the standard deviation from three independent experiments. 362 

 363 

 Confocal fluorescence microscopy reflected flow cytometry results: no red 364 

fluorescence was observed in the dark for either PS and red fluorescence was observed at 365 

14 J cm-2 that was indistinguishable between NMBN and S137 (Fig. S4). 366 

 367 

3.7. NMBN and S137 lipophilicity prediction 368 

In the dark, S137 caused extensive membrane damage (Fig. 4) and NMBN 369 

reduced mitochondrial membrane potential (Fig. 7). These observations prompted an 370 

investigation of PS lipophilicity. Predicting logD as a function of pH for both PS revealed 371 

that whereas NMBN is of moderate lipophilicity (logD = 3.08 at pH 7), S137 is highly 372 
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lipophilic (logD = 6.26) (Fig. 10A). For comparison, we also calculated logD values for 373 

the membrane component ergosterol (logD = 6.63) and the mitochondria-specific dye 374 

�0�L�W�R�7�U�D�F�N�H�U�Œ���5�H�G���&�0�;�5�R�V�����O�R�J�'��� ������������ (Fig. 10B). 375 

 376 
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 377 

Fig. 10. Prediction of lipophilicity (logD) as a function of pH for the photosensitizers NMBN and 378 
S137 (A), and membrane-�D�V�V�R�F�L�D�W�H�G�� �H�U�J�R�V�W�H�U�R�O�� �D�Q�G�� �P�L�W�R�F�K�R�Q�G�U�L�D�O�� �G�\�H�� �0�L�W�R�7�U�D�F�N�H�U�Œ�� �5�H�G��379 
CMXRos (B). 380 

 381 

 382 

 383 
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4. Discussion 384 

 Understanding the mechanism behind microbial photoinactivation with different 385 

PS is a key step in improving the efficiency of APDT and in selecting the most appropriate 386 

PS based on target microorganism and condition. APDT of C. albicans with the PS 387 

NMBN and S137 revealed that the latter achieves increased cell mortality at lower 388 

fluences when compared to the former (Fig. 3). Under the experimental conditions used 389 

here, NMBN is expected to produce more singlet oxygen compared to S137 as its peak 390 

absorption (630 nm, Fig. 1B) essentially matches that of the light system used (631 nm). 391 

Furthermore, NMBN has a higher molar absorption coefficient (Fig. 1B). Indeed, recent 392 

observations from our group have shown that singlet oxygen quantum yield of NMBN is 393 

higher than that of S137 (De Menezes et al., in preparation). Therefore, the different 394 

efficiency in APDT between NMBN and S137 at 3 J cm-2 cannot be explained by 395 

photophysical properties alone. To better understand this phenomenon, we employed a 396 

set of fluorescent dyes analyzed by both flow cytometry (or spectrofluorimetry in the case 397 

of FUN-1) and confocal fluorescence microscopy. 398 

 Initially, we used FUN-1 and PI as vital dyes. FUN-1 was not capable of 399 

distinguishing the difference between APDT with NMBN and S137 at 3 J cm-2 (Fig. 6), 400 

showing that it is not an adequate dye to evaluate cell mortality after APDT. Results 401 

obtained with PI showed that S137 caused extensive membrane permeabilization even in 402 

the dark whereas NMBN could only permeabilize the membrane at higher light fluences 403 

(Fig. 4). Interestingly, membrane permeabilization by S137 was unrelated to cell survival 404 

as this PS caused no mortality in the dark (Fig. 3). This is in agreement with prior works 405 

showing that membranes of stressed yeast and conidia of filamentous fungi can become 406 

permeable to PI without loss of cell viability (Davey and Hexley 2011; de Menezes et al. 407 

2016; Tonani et al. 2018). 408 
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 The above-mentioned increase in PI permeability after S137 treatment in the dark 409 

was easily quantified by flow cytometry (Fig. 4) but was not observed by confocal 410 

fluorescence microscopy (Fig. 5). This discrepancy between the two techniques is likely 411 

a consequence of differences in sensitivity. Flow cytometry is more sensitive than 412 

confocal microscopy because, in the latter, out-of-focus image signals are ignored by the 413 

confocal system, rendering this technique inadequate for faint fluorescence probes (Basiji 414 

et al. 2007). On the other hand, flow cytometry sacrifices all imaging capabilities in favor 415 

of greater sensitivity. In fact, flow cytometry can detect as few as 100 fluorescent 416 

molecules per cell (Basiji et al. 2007), making it the method of choice for quantitative 417 

measurement of a heterogeneous population of cells. Therefore, we can hypothesize that 418 

confocal microscopy could not detect the difference between NMBN and S137 in the dark 419 

for PI because the number of PI molecules entering the cell in S137-treated samples is 420 

insufficient to produce a fluorescence signal that is strong enough to be detected by 421 

confocal microscopy. Further evidence of this difference in sensitivity is that for other 422 

fluorescent probes (such as DHR-123) confocal microscopy fails to detect any fluorescent 423 

signal for both PS in the dark whereas flow cytometry detects a weak signal. 424 

 The increased uptake of PI by S137-treated cells prompted us to investigate PS 425 

lipophilicity. Predicting logD for S137 and NMBN revealed that the former is about 426 

1,500-fold more lipophilic than the latter at pH 7 (Fig. 10A). Indeed, S137 has a logD 427 

value comparable to that of ergosterol (Fig. 10B). These results indicate that S137 mainly 428 

accumulates at the cell membrane, potentially disturbing it and subsequently increasing 429 

PI permeability. 430 

On the other hand, NMBN is only moderately lipophilic, which, combined with 431 

its positive charge, makes the PS a good candidate for mitochondria targeting (Rashid 432 

and Horobin 1990). Accordingly, the lipophilicity of NMBN is comparable to that of the 433 
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mitochondria-�V�S�H�F�L�I�L�F�� �G�\�H�� �0�L�W�R�7�U�D�F�N�H�U�Œ�� �5�H�G�� �&�0�;�5�R�V (Fig. 10B). Use of the 434 

mitochondrial membrane potential indicator JC-1 revealed that NMBN caused 435 

considerable membrane depolarization already in the dark whereas S137 treatment was 436 

not different from untreated cells (Fig. 7). The fact that S137 is also a lipophilic cationic 437 

compound could indicate that it also targets mitochondria. However, extremely lipophilic 438 

compounds can take as long as hours or even days to diffuse through the lipid bilayer, a 439 

task that is achieved within minutes for moderately lipophilic molecules ���%�D�O�i�å��2000; 440 

Rashid and Horobin 1990). Therefore, under our experimental conditions in which cells 441 

and PS were allowed to interact for 30 min, the most likely outcome is that NMBN 442 

accumulates in mitochondria while S137, owing to its very high lipophilicity, is trapped 443 

at the cell membrane. 444 

The reduced mitochondrial membrane potential observed after NMBN treatment 445 

could affect the outcome of some commonly used fluorescent dyes for monitoring 446 

reactive species production. This is the case for DHR-123. Oxidation of DHR-123 447 

produces rhodamine-123 which localizes to mitochondria. However, rhodamine-123 448 

accumulation is dependent on mitochondrial status: loss of membrane potential reduces 449 

dye accumulation and therefore washes away the fluorescent signal (Scaduto and 450 

Grotyohann 1999). In our experiments, rhodamine-123 signal was increased for S137 at 451 

3 J cm-2 when compared to NMBN, which would be a plausible explanation for the higher 452 

mortality achieved by S137 (Fig. 8). However, this result needs to be interpreted with 453 

care. Because NMBN caused mitochondrial membrane depolarization already in the dark, 454 

then rhodamine-123 accumulation and signal could be hindered in NMBN-treated cells. 455 

In support of this hypothesis, rhodamine-123 fluorescence did not increase for either S137 456 

or NMBN when fluence increased (Fig. 8), probably as a consequence of the reduced 457 

mitochondrial membrane potential at higher fluences (Fig. 7). 458 
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 To overcome this limitation, we used DHE as a marker for the production of 459 

reactive species as it does not depend on mitochondrial status. The fact that NMBN and 460 

S137 produced approximately the same amount of reactive species at all light fluences 461 

tested (Fig. 9) indicates that it is most likely PS subcellular localization, and not the 462 

amount of reactive species generated, the deciding factor for APDT efficiency under our 463 

experimental conditions. In support of this hypothesis, prior work evaluating a series of 464 

photophysically similar porphyrin PS reported that photodynamic efficiency increases 465 

with increasing membrane binding and is only partially dependent on mitochondria 466 

localization (Pavani et al. 2009). Also, for PS targeting mitochondria, loss of membrane 467 

potential resulted in decreased binding (Pavani et al. 2009), a feature that could affect the 468 

outcome of APDT employing mitochondria-targeting PS such as NMBN. 469 

 470 

5. Conclusion 471 

 Taken together, our results indicate that S137 and NMBN localize to different 472 

subcellular structures and hence inactivate C. albicans cells via different mechanisms. 473 

S137 localizes mostly to cell membrane and, upon light exposure, photo oxidizes 474 

membrane lipids, which in turn could change membrane permeability to S137 itself and 475 

allow the PS to reach other intracellular sites (Bocking et al. 2000). On the other hand, 476 

NMBN readily localizes to mitochondria and exerts its photodynamic effects there, which 477 

was observed to be a less effective way to achieve cell death at lower fluences. Finally, 478 

while using a combination of fluorescent dyes allowed us to better comprehend APDT 479 

with two distinct PS, the use of individual stains could be problematic: FUN-1 as a vital 480 

stain could not tell apart the differences in survival between S137 and NMBN at 3 J cm-481 

2, DHR-123 depends on mitochondrial status which was affected by NMBN in the dark; 482 

and DHE is only a general indicator of reactive species production and cannot take into 483 
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account that the same species could differently affect survival depending on where it is 484 

generated. 485 
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