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ABSTRACT  32 

Aims. Patients with pre-capillary pulmonary hypertension (PH) show poor survival, often 33 

related to right ventricular (RV) dysfunction. In this study we assessed the 5-year prognostic 34 

value of a novel echocardiographic measure that examines RV function through the temporal 35 

relation between RV strain (ԑ) and area (i.e. RV ԑ-area loop) for all-cause mortality in PH 36 

patients. 37 

Methods and results. Echocardiographic assessments were performed in 143 PH patients 38 

(confirmed by right heart catheterization). Transthoracic echocardiography was utilised to 39 

assess RV ԑ-area loop. Using ROC-derived cut-off values, we stratified patients in low- versus 40 

high-risk groups for all-cause mortality. Kaplan-Meier survival curves and uni-/multivariable 41 

cox-regression models were used to assess RV ԑ-area loop’s prognostic value (independent of 42 

established predictors: age, sex, NT-proBNP, 6-minute walking distance).  43 

During follow-up 45 (31%) patients died, who demonstrated lower systolic slope, peak ԑ, and 44 

late diastolic slope (all P<0.05) at baseline. Univariate cox-regression analyses identified early 45 

systolic slope, systolic slope, peak ԑ, early diastolic uncoupling and early/late diastolic slope to 46 

predict all-cause mortality (all P<0.05), whilst peak ԑ possessed independent prognostic value 47 

(P<0.05). High RV loop-score (i.e. based on number of abnormal characteristics) showed 48 

poorer survival compared to low RV loop-score (Kaplan-Meier: P<0.01). RV loop-score 49 

improved risk stratification in high-risk patients when added to established predictors. 50 

Conclusion.  Our data demonstrates the potential for RV ԑ-area loops to independently predict 51 

all-cause mortality in patients with pre-capillary PH. The non-invasive nature and simplicity of 52 

measuring the RV ԑ-area loop, support the potential clinical relevance of (repeated) 53 

echocardiography assessment of PH patients. 54 

 55 
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INTRODUCTION 58 

Pulmonary hypertension (PH) is a progressive pulmonary vascular disease, which is associated 59 

with a poor 5-year survival-rate.(1) The primary cause of death relates to deterioration of right 60 

ventricular (RV) function, caused by the inability of the RV to overcome the increased 61 

afterload.(2) Approximately 44% of all deaths in patients with PH is caused by RV failure or 62 

sudden death.(3) Despite the inherent connection between PH-related death and RV function, 63 

current risk assessment guidelines only includes cardiac index (derived by invasive right heart 64 

catheterization (RHC)) and right atrial (RA) area as variables of RV function.(4) Given the 65 

invasiveness of RHC, associated risks/complications and inability for repeated measurements, 66 

alternative non-invasive measures of RV function may be more suitable in PH. 67 

 68 

Although right heart echocardiography is advised in suspicion of PH and/or during follow-up 69 

of patients with PH, it possesses inferior prognostic value compared to other clinical measures 70 

(i.e. 6-minute walking distance (6M-WD), NT-proBNP) and RHC.(4)   RV longitudinal ԑ (a 71 

relatively novel echocardiographic derived indices) possesses independent prognostic value for 72 

PH-related events and all-cause mortality(5) and has been shown to be a stronger predictor than 73 

tricuspid annular plane excursion (TAPSE) (6) in patients with pre-capillary PH.  74 

 75 

Recently, we introduced the RV ԑ-area loop, which reflects the change of RV longitudinal ԑ 76 

across the cardiac cycle and is linked to the change in RV area.(7, 8) Simultaneous assessment 77 

of RV longitudinal ԑ and area provides novel insight into the contribution of RV longitudinal 78 

contraction and relaxation to area change. Interestingly, we found that the slope of the systolic 79 

ԑ-area relation is strongly related to pulmonary vascular resistance.(8) This raises questions 80 

about the potential prognostic value of the RV ԑ-area loop for future PH-related events and (all-81 

cause) mortality. 82 



The primary aim of this study was to examine the prognostic value of characteristics of the RV 83 

ԑ-area loop for future all-cause mortality in patients with pre-capillary PH across a 5-year 84 

follow-up. We hypothesize that characteristics of the RV ԑ-area loop (e.g. slope of the systolic 85 

ԑ-area relation) possesses predictive value for all-cause mortality in patients with pre-capillary 86 

PH, independent from currently known predictors (i.e., age, sex, 6M-WD, NT-proBNP).  87 

 88 

METHODS 89 

Ethics approval 90 

Ethics approval was obtained from the Radboud University Medical Center ethics committee 91 

to perform the proposed work (reference number 2015-1832). This study was registered at the 92 

Netherlands Trial Register (NTR5230) and conforms to the standards set by the latest revision 93 

of the Declaration of Helsinki. 94 

 95 

Study population 96 

We included 177 patients with pre-capillary PH, confirmed by RHC, who underwent 97 

transthoracic echocardiography at the department of Cardiology of the Radboud University 98 

Medical Center (Nijmegen) between June 2003 and June 2017. Patients with multifactorial PH 99 

were included when pre-capillary PH was confirmed and PH-modifying therapy was 100 

prescribed. Due to inadequate 2D image quality for RV longitudinal ԑ analysis, 44 patients were 101 

excluded, resulting in a final cohort of 143 patients. Additional information regarding the 102 

included population can be found in Table 1. 103 

 104 

Experimental design 105 

To address our aims, we retrospectively collected data on patient characteristics, PH-modifying 106 

therapy, 6M-WD and NT-proBNP at the time of echocardiographic assessment. Survival status 107 



of patients was retrieved from the Dutch population register at 21-01-2019, resulting in median 108 

follow-up of 60[interquartile range: 45-60] months while 91 patients fulfilled the maximal 109 

follow-up of 5-years. 110 

 111 

Echocardiographic assessment 112 

Echocardiographic data was obtained by experienced sonographers using ultrasounds machines 113 

of the Vivid series (GE Healthcare, Horton, Norway). Data were stored in raw DICOM format 114 

in a password-protected archive of the department of Cardiology of the Radboud University 115 

Medical Center. Data were retrieved for subsequent analysis by a single experienced researcher 116 

using commercially available software (EchoPac version 113.05, GE Healthcare, Horten, 117 

Norway). This researcher was blinded for the outcome during follow-up.  118 

 119 

Conventional Echocardiographic Assessment 120 

Conventional echocardiographic indices were obtained in accordance with ASE Guidelines for 121 

echocardiographic assessment of the right heart.(9) RV end diastolic area (RVEDA) and RV 122 

end systolic area (RVESA) were measured during the same cardiac cycle from a modified apical 123 

4 chamber orientation. RVFAC was calculated as ((RVEDA-RVESA)/RVEDA)*100. TAPSE 124 

was determined using an M-Mode image for measuring the displacement of the tricuspid 125 

annulus. 126 

  127 

2D Myocardial Speckle Tracking 128 

A modified apical 4-chamber view, with a frame-rate of at least 40 frames per second, was used 129 

to assess simultaneous RV longitudinal ԑ and area. Images were optimized to ensure adequate 130 

endocardial delineation using gain, compression and reject. A region of interest (ROI) was 131 

drawn from the basal free to the basal septal wall enclosing the entire myocardium. Automatic 132 



analysis divided this ROI in six segments, the average of these segments (i.e. RV global 133 

longitudinal ԑ) was used in subsequent analysis.(7) RV global longitudinal ԑ instead of RV free 134 

wall ԑ was used to ensure the inclusion of changes in RV function due to ventricular 135 

dyssynchrony as present in patients with pre-capillary PH.(10) 136 

 137 

RV ԑ-area loops 138 

Temporal RV longitudinal ԑ values were exported to a spreadsheet (Excel, Microsoft Corp, 139 

Washington, US). To correct for differences in HR between subjects and length of the systolic 140 

and diastolic part of cardiac cycle, the temporal RV longitudinal ԑ values were divided in 300 141 

points for systole and 300 points for diastole by cubic spline interpolation. For both systole and 142 

diastole the 300 ԑ values were then split into 5% increments of the cardiac cycle providing 10 143 

points in systole and 10 points in diastole. Concomitant time points, derived by tracing the 144 

echocardiography derived ECG signal, of the ɛ values were used in the same image and cardiac 145 

cycle to trace RV monoplane areas. For each patient, an RV ɛ-area loop was created. 146 

 147 

The RV ɛ-area loops were assessed by 1) the early systolic ɛ-area relation (ESslope), 2) linear 148 

slope of ԑ-area relation during systole (Sslope), 3) end systolic peak ԑ (peak ԑ), 4) diastolic 149 

uncoupling (i.e. mean difference between systolic vs diastolic ԑ contribution to area change) 150 

during early filling (UNCOUP_ED), 5) diastolic uncoupling during late diastole 151 

(UNCOUP_LD), 6) diastolic uncoupling during the entire cardiac cycle (UNCOUP), 7) the 152 

early diastolic ɛ-area relation (EDslope) and 8) the late diastolic ɛ-area relation (LDslope) as 153 

presented in Figure 1. Based on our extensive pilot work (7, 8, 11) we adopted either a linear 154 

regression (i.e. Sslope) or a second order polynomial (i.e. ESslope, UNCOUP_ED, 155 

UNCOUP_LD UCOUP, EDslope and LDslope) approach for data analysis as these models 156 

provide the best fit. Specifically, ESslope was calculated as the contribution of RV longitudinal 157 



ԑ to the first 5% of area change. The Sslope was derived as the gradient over the systolic phase 158 

of the RV ԑ-area loop. Longitudinal peak ԑ was derived as the raw peak ԑ value from the RV 159 

global longitudinal ɛ data. UNCOUP_ED, UNCOUP_LD and UNCOUP were calculated as an 160 

normalized estimation of the area between the systolic and diastolic strain-area curves. For this 161 

purpose, systolic and diastolic ԑ values were calculated at each % increment of EDA. 162 

Subsequently, the difference between diastolic and systolic ԑ at each % of EDA was calculated. 163 

Based on individual RVFAC the working range of the ventricle was determined, after which 164 

UNCOUP_ED, UNCOUP_LD and UNCOUP were calculated as the mean of the differences at 165 

the lowest 2/3 of EDA’s, at the highest 1/3 of EDA’s and over the entire working range 166 

respectively. EDslope and LDslope were calculated as the contribution of RV longitudinal ԑ to 167 

the first and last 5% of area change respectively. In addition, we calculated the Intra-class 168 

correlation (ICC) for intra-rater variability for all loop characteristics in a healthy population 169 

(n=7), with exception of UNCOUP_LD, we retrieved good to excellent ICC (supplementary 170 

Table 1) 171 

 172 

Statistical analysis 173 

Continuous variables were expressed as mean±SD in case of normal distribution. Normality of 174 

data distribution was examined using a Kolmogorov-Smirnov test. In case of non-Gaussian 175 

distribution, log-transformation was applied and data was presented as median[interquartile 176 

range]. Categorical variables were expressed as percentage. Patients lost to follow-up were 177 

censored at the time of last available follow-up. 178 

  179 

Cut-off values for risk stratification. Based on the optimal combination of sensitivity and 180 

specificity, derived from ROC-analyses at 5-year follow-up, cut-off values for all 181 

echocardiographic derived parameters were obtained (Supplementary Table 2). Based on this 182 



cut-off value, patients were divided into low versus high risk for all-cause mortality. Cut-off 183 

values for established predictors (6M-WD, NT-proBNP, RA area) for low versus high risk group 184 

were based on current guidelines.(4) 185 

 186 

Survival analysis. Kaplan-Meier survival curves were constructed to assess discriminative 187 

capacity of the RV ԑ-area loop characteristics. Univariate cox proportional hazard ratios were 188 

determined to assess the predictive value of RV ԑ-area loop characteristics for all-cause 189 

mortality. Subsequently, significant univariate predictors were fitted into multivariable models 190 

to determine their independent predictive value compared to the reference model (consisting of 191 

age, sex, 6M-WD, and NT-proBNP). Finally, we calculated a combined RV loop-score based 192 

on the RV ԑ-area loop characteristics with predictive value after univariate cox regression 193 

analyses (n=6, Table 3), combining the risk stratifications of the individual characteristics. The 194 

RV loop-score was ranged between 0 and 6 (i.e. 1 point for each characteristic in the high-risk 195 

category), categorising patients with ‘low score’ (RV loop-score of 0-3) versus ‘high score’ 196 

(RV loop-score of 4-6). First, we examined the Kaplan-Meier curve based on the RV loop-197 

score. Secondly, we examined if the RV loop-score improved risk stratification based on the 198 

2015 ESC/ERS guidelines for diagnosis and treatment of PH (including NT-proBNP, RA area 199 

and 6M-WD) that is clinically used to categorise PH patients into low, intermediate and high 200 

risk.  201 

 202 

RESULTS 203 

Of the 143 patients, 117 were diagnosed with WHO class 1 PH, consisting of 95 patients with 204 

(idiopathic) pulmonary artery hypertension (PAH) and 22 with multifactorial PH. The 205 

remaining 26 patients were diagnosed with WHO class IV PH, i.e. Chronic Trombo-Embolic 206 

PH (CTEPH).  207 



Follow-up. After a median follow-up period of 60 [45-60] months, 45 out of 143 patients died 208 

(5-year survival: 69%). Patients who died were older, predominantly male sex, had a higher 209 

NT-proBNP level, showed larger RVEDA and RVESA, and lower 6M-WD and RVFAC at 210 

baseline (all P<0.05, Table 2). A marked rightward shift in the RV ԑ-area loop was visible at 211 

baseline between surviving and deceased patients (Figure 2). A significantly lower Sslope, 212 

EDslope, and peak ԑ was found in deceased versus surviving patients after 5-years follow-up 213 

(all P<0.05, Table 2). Kaplan-Meier survival analysis revealed significant differences in 214 

survival when patients were categorised based on ESslope, Sslope, Peak ԑ, EDslope and 215 

LDslope of the RV ԑ-area loop (Figure 3).  216 

 217 

Uni- and multivariate Cox regression. Univariate cox regression analysis revealed age, sex, 218 

NT-proBNP, 6M-WD, RVEDA, RVESA, RVFAC, TAPSE and RV ԑ-area loop characteristics 219 

(ESslope, Sslope, peak ԑ, Uncoup_ED, ESslope and LDslope) as univariate predictors for 5-220 

year all-cause mortality (Table 3). Multivariable models revealed that RVESA (>16.9 cm2), 221 

RVFAC (<25.55%) and peak ԑ (>-14.45%) remained significant predictors when added to the 222 

reference model (Table 4). 223 

 224 

RV loop-score. Kaplan-Meier survival curves revealed significant differences in 5-year survival 225 

between ‘low’ and ‘high’ RV loop-scores (Figure 4A). Hazard Ratio showed a 3.182 [1.768-226 

5.726] times higher risk for all-cause mortality in those with a ‘high’ RV loop-score compared 227 

to ‘low’ loop-score. More importantly, the RV loop-score improved risk classification 228 

following the 2015 ESC/ERS guidelines (Figure 4B), with high risk individuals with ‘low’ RV 229 

loop-scores showing significantly better survival than high risk patients with an ‘high’ RV loop-230 

score (Kaplan-Meier: P=0.02, Figure 4C). The RV loop-score did not significantly improve 231 

classification of patients at low (P=0.83) and intermediate (P=0.91) risk.  232 



DISCUSSION 233 

The purpose of this study was to examine the 5-year prognostic value of RV ԑ-area loop 234 

characteristics for all-cause mortality in patients with pre-capillary PH. We present the 235 

following findings: 1) A markedly different RV ԑ-area loop is present in PH patients who died 236 

across 5-year follow-up compared to surviving patients, 2) RV ԑ-area loop characteristics show 237 

significant prognostic value for 5-yr all-cause mortality in PH patients, with RV longitudinal 238 

peak ԑ possessing independent prognostic value, 3) The RV loop-score, i.e. reflecting the 239 

number of ‘abnormal’ loop characteristics, successfully predicts 5-yr all-cause mortality in PH 240 

patients, but also improves risk stratification in the high risk population. Taken together, our 241 

findings suggest the RV ԑ-area loop predicts all-cause mortality in patients with pre-capillary 242 

PH and may reclassify some patients from the high-risk group to an intermediate-risk group. 243 

The non-invasive nature and relative simplicity of measuring the RV ԑ-area loop, support the 244 

potential clinical relevance of echocardiography for (repeated) assessment of PH patients. 245 

  246 

The marked shift between the RV ԑ-area loop of the surviving and deceased patients suggests 247 

the presence of a (further) impairment in RV function at the time of echocardiographic 248 

assessment in the deceased patients. The lower peak ԑ and flatter systolic ԑ-area slopes may be 249 

related to an impaired RV systolic function, presented by the smaller deformation (i.e. ԑ) of the 250 

ventricular wall for each cm2 change in area in the deceased patients compared to those who 251 

survived. These adaptations may be the consequence of the RV being exposed to increased 252 

afterload(12). However, no differences in mean pulmonary artery pressure or pulmonic vascular 253 

resistance were present between both groups. Possibly, different RV ԑ-area loop characteristics 254 

between groups may relate to the presence of maladaptation in the deceased group (i.e. dilation 255 

of ventricles).(13) Similarly to the impaired systolic function, the lower diastolic ԑ-area slopes 256 

suggest that although RV area is increasing eventually, less contribution from longitudinal 257 



strain is present during early relaxation in deceased patients compared to those who survived. 258 

In line with our observation, others have shown increased isovolumetric relaxation times in 259 

patients with PH(14), indicating poor myocardial relaxation(15) and diminished ventricular 260 

compliance. Taken together, both systolic and diastolic RV ԑ-area loop characteristics seem 261 

impaired in PH patients at higher risk for all-cause mortality across a 5-year follow-up. 262 

 263 

Despite the growing consensus of the importance of RV function in patients with pre-capillary 264 

PH,(16) current guidelines only include RA area, presence of pericardial effusion and through 265 

RHC obtained cardiac index to predict mortality.(4) Interestingly, our study found no 266 

prognostic value of RA area, whilst measures the novel RV ԑ-area loop possessed predictive 267 

capacity. To further support the relevance of echocardiography, RVESA (<16.9), RVFAC 268 

(<25.5%) and RV longitudinal peak ԑ (>-14.45)) possessed independent predictive value for 269 

all-cause mortality (Table 4). These results confirm findings of previous studies assessing the 270 

prognostic value of echocardiography in patients with pre-capillary PH.(17, 18) It is important 271 

to emphasize that we used ROC-analyses to determine the threshold for low versus high risk.  272 

A potential limitation of this approach is that these thresholds cannot be simply applied to other 273 

data sets. This highlights the importance of defining reference values for echocardiographic 274 

derived indices of RV function.   275 

 276 

A key observation in our study was the prognostic value of both systolic and diastolic RV ԑ-277 

area loop characteristics. Traditionally, markers of RV function only include RV systolic 278 

function. In a recent study, it was demonstrated that deterioration of RV diastolic function may 279 

precede deterioration of RV systolic function in patients with pre-capillary PH.(14) This 280 

suggests that the processes of diastolic and systolic dysfunction represent linked, but possibly 281 

independent impact. In support of this view, we found only low-to-moderate correlations 282 



(r2=0.07-0.45) between indices of systolic function (ESslope, Sslope) and diastolic function 283 

(EDslope, LDslope) of the RV ԑ-area loop. This data highlights that the combined temporal 284 

data on the relative contribution of strain to area change during both systole and diastole, and 285 

the association between systolic and diastolic function, provide in depth insights in ventricular 286 

function compared to single peak value based assessments such and peak strain or RVFAC. 287 

The dynamic temporal data acquired within the strain-area loop therefore increases its 288 

predictive value over functional measures at a single point during the cardiac cycle. 289 

 290 

Presence of predictive value of the individual indices (including both systolic and diastolic RV 291 

function), and absence of strong relations amongst the 6 individual RV ԑ-area loop 292 

characteristics (r2=0.001-0.47), support the potential value of calculating a multi-parameter 293 

value such as an RV loop-score. Whilst the RV loop-score showed strong and significant 294 

prognostic value, adding the RV loop-score to the clinically used, 2015 ESC/ERS guidelines 295 

improved risk stratification for the high-risk population. More specifically, high risk patients 296 

with a low RV loop-score showed a significantly better 5-year survival than those with a high 297 

RV loop-score. Effectively, the high-risk patients with low RV loop-scores were reclassified as 298 

moderate risk, given their similar survival curves (Figure 4C). This may be explained by the 299 

absence of echocardiographic RV function indices in the 2015 ESC/ERS risk stratification 300 

guidelines. Since deterioration of RV function remains the main cause of death in patients with 301 

pre-capillary PH,(16) stratification of PH patients may be improved by including characteristics 302 

of RV function. 303 

 304 

Clinical implications. The prognostic capacity, but especially the ability of the RV ԑ-area loop 305 

to reclassify high-risk patients to intermediate-risk, has potential clinical importance. Following 306 

the 2015 ESC/ERS guidelines, predicting all-cause mortality and classifying PH patients 307 



importantly dictates clinical decision making related to (non)pharmaceutical therapy. 308 

Specifically, excessive physical activity is not recommended in high-risk patients, whilst an 309 

increasing amount of follow-up visits and more aggressive PH-modifying therapy strategy is 310 

advised for high-risk patients. Successfully reclassifying the high-risk to intermediate-risk, i.e. 311 

51% of our population, will therefore impact treatment (and lower associated costs and risks 312 

for complications/side-effects). Finally, the ability for repeated assessment of RV function 313 

enables evaluation of disease progress and efficacy of (non)pharmaceutical therapy. 314 

 315 

Limitations. Although all patients had pre-capillary PH, different etiology was present. Whilst 316 

our sample size is sufficiently powered to identify predictors for all-cause mortality in PH, it 317 

does not allow for sub-analyses related to the various aetiology of PH. Another limitation is 318 

that some patients (n=54) received PH-modifying therapy prior to inclusion. A sub-analysis 319 

revealed no differences in the RV ԑ-area loop characteristic at the time of inclusion between 320 

those with and without PH-modifying therapy prior to inclusion (supplementary table 3). 321 

Moreover, patients with PH-modifying therapy at time of inclusion, typically started this within 322 

weeks prior to inclusion, whilst the majority started PH-modifying therapy within 1 week after 323 

the day of inclusion. Therefore, this short time-frame wherein all participants started PH-324 

modifying therapy unlikely affected the main outcomes of our study. Finally, the current 325 

method to assess the ɛ-volume loops and their characteristics is currently only partially 326 

automated and thus time-consuming. Automated self-learning analysis protocols should be 327 

created prior to clinical implementation. In response to the time-consuming nature of the current 328 

loops analysis we have analysed a simplified parameter, here called the endsystolic-enddiastolic 329 

ԑ-area slope (ESEDslope), which provides the systolic slope based on individual measures of 330 

just RVEDA, RVESA and Peak ɛ. Similar too the Sslope significant differences were found for 331 

ESEDslope between groups (Alive vs. Deceased; 1.80±0.74 vs. 1.49±0.55; P=0.01) and a 332 



significant HR (2.084 [1.140-3.811]; P=0.02) using a univariate analysis. In line with the Sslope 333 

significance disappeared when ESEDslope was added to the reference model (HR: 1.449 334 

[0.663-3.168]; P=0.35). This suggests that the combination of characteristics for the loop may 335 

outperform individual, simplified measures. This outcome supports the use of multiple 336 

measures from the ԑ-area loop in predictive analysis.  337 

 338 

In conclusion, our data demonstrate a distinct RV ԑ-area loop in PH patients who deceased 339 

across a 5-yr follow-up since diagnosis compared to those who survived. Several RV ԑ-area 340 

loop characteristics predict 5-yr all-cause mortality, with RV peak longitudinal ԑ demonstrating 341 

independent prognostic value. More importantly, combining these RV ԑ-area loop 342 

characteristics into a RV loop-score successfully stratified PH patients into high versus low risk 343 

for all-cause mortality, and improved risk stratification of the ‘high risk’ patients when added 344 

to the current (guidelines-based) risk assessment model. These results support the clinical 345 

potential of echocardiography-based assessment of the RV ԑ-area loop for risk stratification and 346 

survival-analyses in patients with pre-capillary PH. Future studies are warranted to further 347 

explore its potential use, especially in the context of repeated assessment of echocardiography 348 

to monitor progression and adjust treatment to optimise care for this vulnerable group of 349 

patients. 350 
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TABLE 1 – Population characteristics of the included patients with pre-capillary PH. 425 

 PH-patients (n=143) 

Age (y) 61±16 

Female (%) 100 (70%) 

Height(cm) 169±9 

Weight (Kg) 73±15 

BSA (m2) 1.82±0.19 

BMI (kg/m2) 26.0±4.9 

     

Therapy at time of 

ultrasound 

    

Treatment Naive 89 (62%) 

Single Therapy 24 (17%) 

Double Therapy 26 (18%) 

Triple Therapy 4 (3%) 

     

Aetiology     

PAH 55 (38%) 

IPAH 40 (28%) 

CTEPH 26 (18%) 

Multifactorial 22 (15%) 

     

Risk factors Yes No Unknown Former 

Hypertensive 41 39 63  

Dyslipidemia 21 41 81  

Diabetes Mellitus 15 52 76  

Smoker 16 41 27 59 

Familiar history 34 41 68  

PH=Pulmonary Hypertension; BSA=Body Surface Area; BMI=Body Mass Index; 426 

PAH=Pulmonary Arterial Hypertension; IPAH=Idiopathic Pulmonary Arterial Hypertension; 427 

CTEPH=Chronic Thrombo-Embolic Pulmonary Hypertension. 428 
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TABLE 2 – Population characteristics of the surviving and deceased patients after 5 years 430 

follow-up. 431 

 

60 [45-60] months follow up 

Alive 

(n=98) 

Deceased 

(n=45) P-Value 

Demographics    
  Age (y) 59±17 64±14 0.08 
  Height(m) 167±0.09 169±0.09 0.27 
  Weight (kg) 73±15 74±14 0.73 
  BSA (m2) 1.81±0.19 1.84±0.18 0.43 
  BMI (kg/m2) 26.0±4.8 25.8±5.0 0.86 
      

Clinical characteristics    
  6M-WD (m) 382±112 290±108 <0.01 

  Log NT-ProBNP 2.83[1.07] 3.44[0.95] <0.01 

      

Right heart catherization        
  PAP (mmHg) 46±15 43±12 0.24 
  PVR (dynes*s/cm5) 652±493 658±329 0.95 
  CO (l/min) 4.8±1.3 4.7±1.9 0.84 
  CI (l/min/m2) 2.7±0.8 2.5±1.0 0.37 
          

Echocardiography    
  RVEDA (cm2) 28±7 32±9 <0.01 

  RVESA (cm2) 18±6 23±8 <0.01 

  RVFAC (%) 35±7 31±10 <0.01 
  TAPSE (cm) 2.0±0.4 1.8±0.4 0.06 
  RA area (cm2) 21±7 22±6 0.29 
      

ԑ-area loop     
  ESslope -1.3±1.0 -1.1±1.0 0.23 
  Sslope (%/cm^2) -1.9±0.8 -1.5±0.6 <0.01 

  Peak ɛ (%) -16.3±4.5 -14.0±4.7 <0.01 

  UNCOUP_ED (AU) 2.0±2.4 1.7±2.1 0.47 
  UNCOUP_LD (AU) 2.0±2.4 1.8±2.1 0.68 
  UNCOUP(AU) 2.0±2.3 1.7±2.0 0.52 
  EDslope (%/cm^2) 1.3±1.1 1.0±0.8 0.25 
  LDslope (%/cm^2) 2.2±1.2 1.8±0.9 0.02 

BSA=Body Surface Area; BMI=Body Mass Index; PAP=Pulmonary Arterial Pressure; 432 

PVR=Pulmonary Vascular Resistance; CO=Cardiac output; CI=Cardiac Index; 6M-WD=6 433 

Minute Walking Distance; RVEDA=Right ventricular end diastolic Area; RVESA=Right 434 

ventricular end systolic area; RVFAC=Right ventricular fractional area change; 435 

TAPSE=Tricuspid annular plane systolic excursion.  436 



TABLE 3 - Univariate cox-regression hazard ratio’s of currently used predictors and 437 

echocardiographic derives indices of RV structure and function including the RV ɛ-area loop 438 

characteristics. 439 

 
Univariate HR [95%-

CI] 
p-value 

Age (y) 1.023 [1.002-1.044]  0.03 

Sex (Male) 2.191 [1.210-3.968] 0.01 

NT-ProBNP (>1400 ng/l) 3.215 [1.727-5.982]  <0.01 

6M-WD (<165 m) 2.873 [1.005-8.209] <0.01 

RA Area (>26 cm2) 1.310 [0.676-2.537] 0.42 

   

RVEDA (>26.8 cm2) 2.777 [1.405-5.488] <0.01 

RVESA (>16.9 cm2) 3.690 [1.775-7.669] <0.01 

RVFAC (<25.5 %) 5.429 [2.973-9.914] <0.01 

TAPSE (<1.95 cm) 2.199 [1.202-4.022]  0.01 

   

ESslope (>-1.695 %/cm) 2.658 [1.125-6.282]  0.03 

Sslope (>-1.62 %/cm) 2.124 [1.161-3.886] 0.01 

Peak ɛ (>-14.45 %) 3.400 [1.858-6.222] <0.01 

UNCOUP_ED (<1.025) 1.840 [1.025-3.301]  0.04 

UNCOUP_LD (<2.035) 1.362 [0.745-2.491]  0.32 

UNCOUP (<0.805) 1.557 [0.861-2.813] 0.14 

EDslope (<0.95 %/cm) 1.800 [1.000-3.238]  0.05 

LDslope (<2.465 %/cm) 2.684 [1.198-6.014] 0.02 

Abbreviations are explained below Table 2. 440 
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TABLE 4 – Independent predictive value for 5-years survival of echocardiographic derived 442 

parameters within a multivariable model, including, age, sex 6MWD and log NT-proBNP as 443 

baseline model. 444 

 

60 [45-60] months 

45 events 

HR [95%-CI] p-value 

RVEDA (cm2) 1.566 [0.670-3.656] 0.30 

RVESA (cm2) 2.520 [1.014-6.265] 0.05 

RVFAC (%) 3.671 [1.635-8.238] <0.01 

TAPSE (cm) 1.322 [0.641-2.728] 0.45 

ESslope (%/cm) 1.865 [0.707-4.924] 0.21 

Sslope (%/cm) 1.089 [0.491-2.415] 0.84 

Peak strain (%) 2.597 [1.135-5.943] 0.02 

UNCOUP_ED (AU) 1.325 [0.662-2.653] 0.43 

EDslope (%/cm) 1.347 [0.647-2.802] 0.43 

LDslope (%/cm) 1.776 [0.711-4.435] 0.22 

Abbreviations are explained below Table 2. 445 
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FIGURE LEGENDS 447 

FIGURE 1 – Schematic overview of the RV ԑ-area loop and the derived characteristics. The 448 

black line represents the ε-area loop, the thick part represents the systolic phase and 449 

the thin line the diastolic phase.  450 

 451 

 452 
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FIGURE 2 – Mean RV ԑ-area loops taken at baseline (i.e. start of the follow-up period) from 454 

surviving patients (black ԑ-area loop, n=98) and deceased patients (grey ԑ-area loop, 455 

n=45). The dotted black lines represent the ԑ-area loop in a control group as published 456 

previously.(8) The thick lines represents the systolic phase while the thin lines 457 

represent the diastolic phase of the ԑ-area loop. 458 

 459 
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Figure 3 – Kaplan-Meier survival curves (5-yr follow-up) in 143 PH patients for individual 461 

characteristics of the RV ԑ-area loop that were categorised  into low risk (blue line) 462 

and high risk (green line). The following loop characteristics were presented: 463 

ESslope (A), Sslope (B), peak strain (C), Uncoup (D), EDslope (E) and LDslope (F). 464 

 465 
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Figure 4 – Kaplan-Meier survival curves for A) the RV loop-score, categorised into low risk 467 

(blue line, n=98) versus high risk (green line, n=45), B) the 2015 ESC/ERS 468 

guidelines based model, categorised into low (blue line, n=23), intermediate (green 469 

line, n=60) and high risk (red line, n=39) and C) the combined RV loop-score and 470 

ESC/ERS based model, categorised into low risk (blue line, n=23), intermediate risk 471 

(green line, n=60), high risk – low RV loop-score (orange line, n=20) and high risk 472 

– high RV loop-score (purple line, n=19). 473 
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